
Client

Kiewit Engineering (NY) Corp

Project

LAB Testing

Project No. JB215256H

SAMPLE LOCATION

Site:	LAB Testing							
Description:	Greywacke interbeded with Shale							
Boring:	KB-226.1	Depth (feet):	40.0-45.0					

SPECIMEN INFORMATION

Sample No.:	RC2	Mass (g):	573.16
Length (in.):	4.18	Diameter (in.):	1.98
L/D Ratio:	2.11	Density (pcf):	169.65

TEST RESULTS

Failure Load (lbs):	22736
Failure Strain (in/in):	0.020
Unconfined Compressive Strength (psi):	7,384
Elastic Modulus, E, (ksi):	1016
Time of Failure (min):	02:32
Rate of Loading (in/sec):	0.04
Moisture Content Post-break:	0.09%

D7012 Method C, 6-16-20, Rev. 0 Page 1 of 2

Rock Core D7012 Method C

Client Project

Kiewit Engineering (NY) Corp

LAB Testing

Project No. JB215256H

Equipment: TICCS ID:

Calipers W-44049 Scale B-71466 Dial Indicator C-70608

Compression (spherically seated) C-48999

Samples were prepared and tested in accordance with ASTM D4543 and D7012. Deviations, if any, are noted below: Notes:

Per ASTM D4543, this specimen has not met the requirements for perpendicularity, by exceeding 0.250°. Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches. Per ASTM D4543, this specimen has not met the requirements for parallelism, by exceeding 0.25°. Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches. Per ASTM D4543 and ASTM D7012, the desired specimen length to diameter are between 2.0:1 and 2.5:1.

According to ASTM D7012 Section 8.2.1, this specimen, although not meeting all requirements of ASTM D4543 is acceptable for testing. However, the results reported may differ from results obtained from a test specimen that meets the requirements of D4543.

D7012 Method C, 6-16-20, Rev. 0 Page 2 of 2

Client

Kiewit Engineering (NY) Corp

Project

LAB Testing

Project No. JB215256H

Splitting Tens	ile Streng	th of Intact F	Rock Core	Specimens	, ASTM D39	67	
Boring	K	B-226.1	Material	Description	Greywacke		
Sample No		RC2	Equipm	ent Used	Tinius Olsen	(120,000lbs)	
Depth (ft)		40.0-45.0	TICCS IE)/Serial No.	C-48999	, 118285	
Lab No		8752	Calibra	tion Date	11/2/	2021	
			TEN	ISILE STREI	NGTH		
Lab No.		1	2	3	4	5	
Diameter (in)		1.97	1.98	1.97	1.97	1.98	
Length (in)		0.6	0.64	0.58	0.69	0.58	
Length Diameter Rat	io	0.30	0.32	0.29	0.35	0.29	
Rate of Loading		0.06	0.064	0.058	0.069	0.058	
Moisture Condition		0.09%	0.09%	0.09%	0.09%	0.09%	
Maximum Applied Load	l (lbf)	270	1372	1046	701	626	
Splitting Tensile Streng	th (psi)	145.5	689.6	583.1	328.5	347.2	
			TEN	ISILE STREI	NGTH		
Lab No.		6	7	8	9	10	
Diameter (in)		1.97	1.97	1.97	1.97		
Length (in)		0.62	0.58	0.58	0.51		
Length Diameter Rat	io	0.31	0.29	0.29	0.26		
Rate of Loading		0.062	0.58	0.58	0.51		
Moisture Condition		0.09%	0.09%	0.09%	0.09%		
Maximum Applied Load	l (lbf)	2095	689	1804	534		
Splitting Tensile Streng	th (psi)	1092.5	384.1	1005.6	338.5		

CT0002, 10-16-13, Rev.8 Page 3 of 3

CERCHAR Abrasiveness ASTM D7625

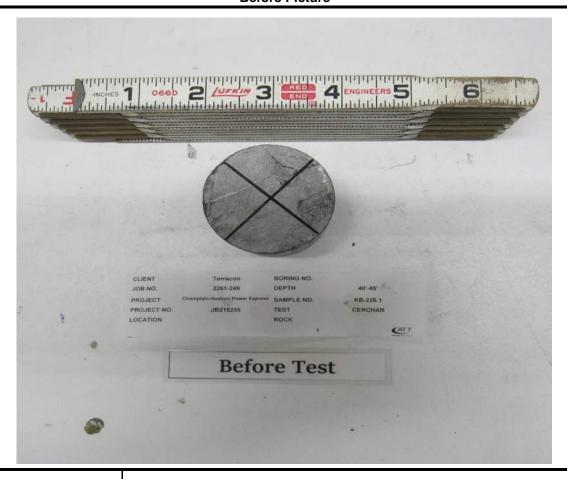
CLIENT	Terracon			JOB NO.	2261-249
	Champlain-Hudson F JB215256	Power Express		LOCATION	
BORING NO. DEPTH SAMPLE NO.		KB-192.8A 54.5	KB-226.1 40.0-45.0		
DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		10/18/22 HN	10/18/22 HN		
Surface Type: Moisture Condition	1	Natural As Received	Saw Cut As Received		
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in):		0.00920 0.01350 0.00380 0.00890 0.00830 0.00790 0.01620 0.00540 0.00790 0.00850	0.00480 0.00750 0.00600 0.00640 0.00650 0.00770 0.00760 0.00670 0.00500 0.00700		
Average Reading (Average Reading (` '	0.00896 0.2276	0.00652 0.1656		
Uncorrected CAI o Corrected CAI:	r CAI _s :	2.28 	1.66 2.12		
NOTES		CAI _s is the CAI c Corrected CAI fo Suggested formu Applied pins had	r saw cut speci ıla CAI = 0.99*0	imens based on CAIs + 0.48.	R. Plinger and H. Kasling
Checked by:	DL HN 2261249CHERCH	IAR ASTM D7625	5 0.xlsm		: 10/19/22 : 10/19/22

CHERCHAR Abrasiveness ASTM D7625

CLIENT Terracon JOB NO. 2261-249

PROJECT Champlain-Hudson Power Express

PROJECT NO. JB215256


LOCATION --

BORING NO. KB-226.1 DEPTH 40.0-45.0

SAMPLE NO. --DATE SAMPLED --

DATE TESTED 10/18/22 TECHNICIAN HN ROCK TYPE --

Before Picture

NOTES

Picture File: 3.JPG

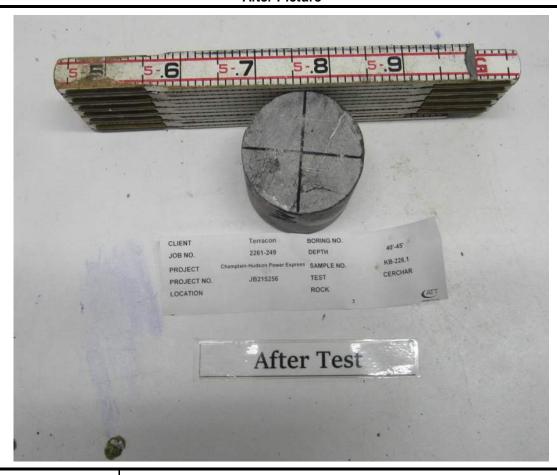
File name: 2261249__CHERCHAR ASTM D7625_0.xlsm

CHERCHAR Abrasiveness ASTM D7625

CLIENT Terracon JOB NO. 2261-249

PROJECT Champlain-Hudson Power Express

PROJECT NO. JB215256


LOCATION --

BORING NO. KB-226.1 DEPTH 40.0-45.0

SAMPLE NO. --DATE SAMPLED --

DATE TESTED 10/18/22 TECHNICIAN HN ROCK TYPE --

After Picture

NO	IES
----	-----

Picture File: 3a.JPG

File name: 2261249__CHERCHAR ASTM D7625_0.xlsm

DATE: December 16, 2022

TO: Zachary Bauer; Tetra Tech Rooney

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp.

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 11 – Package 7A – HDD Crossing 123 – Revision 1

Champlain Hudson Power Express Project

Catskill, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Catskill, New York. The approximate station for the start of HDD crossing number 123 is STA 70374+00 (42.1589° N, 73.9187° W).

The geotechnical data at this HDD crossing is attached. The available data is taken from the previous investigations by AECOM and TRC and the recent investigations by Kiewit, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.
- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 177.6-228.2, dated March 15, 2013.
- Kiewit Engineering (NY) Corp., Segment 11 Package 7A HDD Borings Catskill, Champlain-Hudson Power Express, dated May 9, 2022.
- Kiewit Engineering (NY) Corp., Package 7A Phase 3 Borings, Champlain Hudson Power Express, New York, dated December 8, 2022.

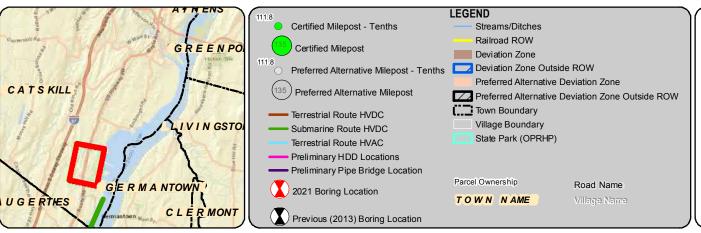
Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480

HDD 123
Borings B226.6-1, CU-5A,
K-226.7, K-226.8, K-227.0,
KB-226.8A
Segment 11 - Design Package 7A

CHPE Segment 11 - Package 7A HDD Soil Boring Coordinates and Elevations

Firms	Davisa	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B221.0-1	1237452.6	663787.2	99.6
	B221.2-1	1236173.4	663261.8	115.0
	B221.4-1	1235622.5	662622.3	22.4
	B221.5-1	1235006.9	662058.8	95.5
	B221.6-1	1234675.8	661633.8	98.3
	B221.8-1	1234265.3	661277.2	99.4
TRC*	B222.34-1	1232191.5	659098.9	133.5
	B222.6-1	1231252.6	658182.3	113.7
	B222.9-1	1229751.0	657274.3	121.4
	B225.8-1	1215861.0	650622.7	91.0
	B226.1-1	1214654.4	650328.3	105.9
	B226.2-1	1214120.5	650254.4	108.5
	B226.6-1	1211894.7	649689.7	112.1
	CU-1	1237028.6	663123.9	19.7
	CU-2	1236042.7	662897.0	24.8
ΛΕCΟΝ4**	CU-2A	1235325.9	662268.9	38.1
AECOM**	CU-5A	1210523.7	649411.8	118.4
	SC-5	1239310.3	664321.6	110.2
	SC-6	1237781.0	663919.8	101.6


Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

0

Champlain Hudson Power Express Project

Champlain Hudson Power Express Inc.

BORING LOCATION PLAN Catskill to Upland Figure A-11

Sheet 5 of 6

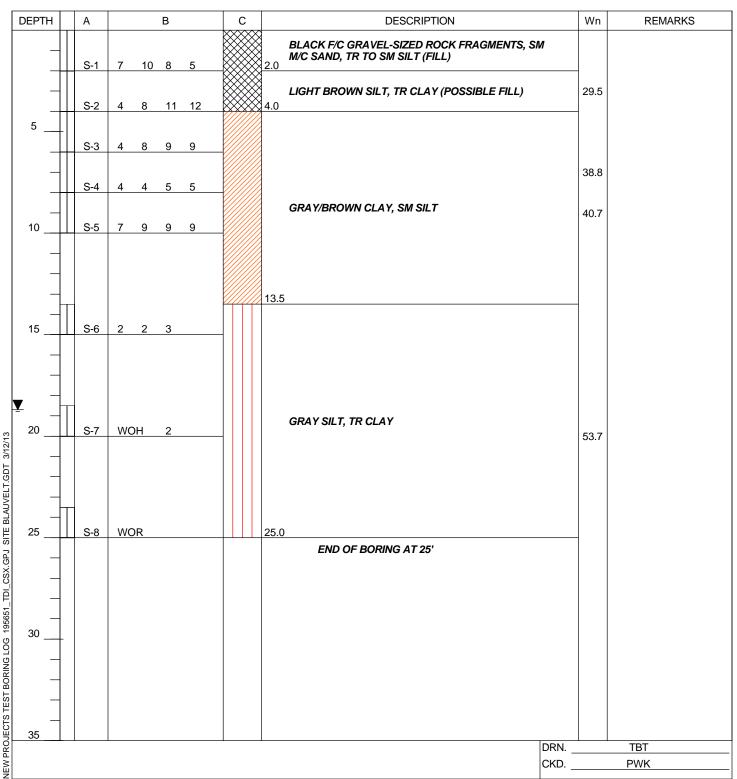
Prepared by: **AECOM**

5/20/2021

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS


LOCATION: CSX RAILROAD ROW, NY

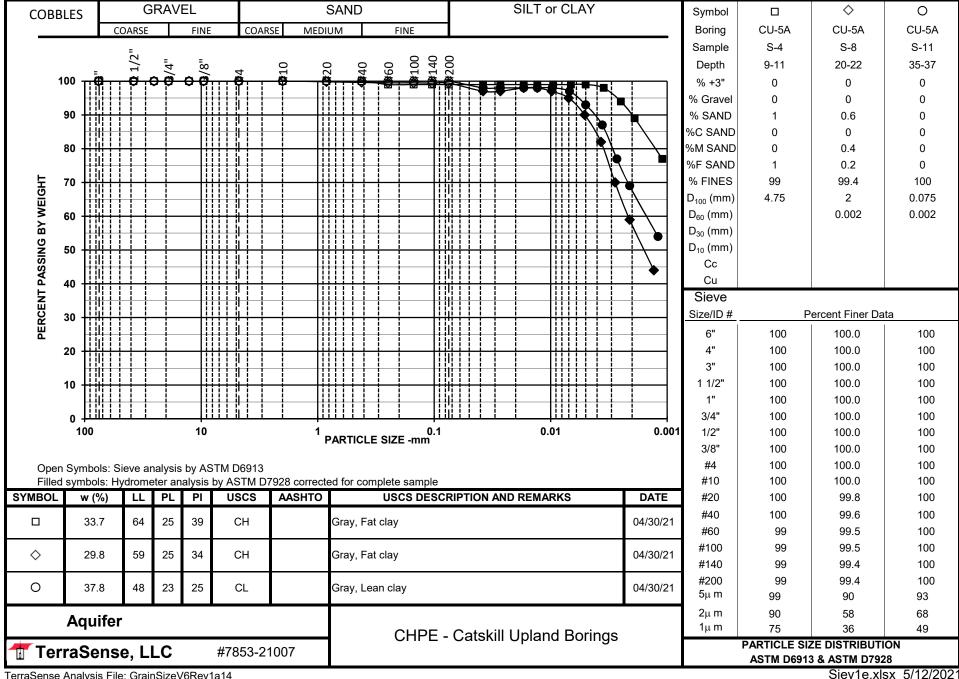
B226.6-1 G.S. ELEV. N/A FILE 195651 SHEET 1 OF 1

BORING

				-						
	GROU	NDWATER	R DATA		METHOD OF ADVANCING BOREHO					
FIRST E	NCOUNT	ERED NF	?	∇	а	FROM	0.0 '	TO	10.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	_	d	FROM	10.0 '	TO	25.0 '	
18.7'	NR	12/1	12/1 0 HR							
				_						
				-						

DRILLER	R. CARUSO
HELPER	C. SMART
INSPECTOR	N/A
DATE STARTED	11/30/2012
DATE COMPLETED	12/01/2012

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT				AECOM								PROJECT NAME: CHPE -	
	DRILLER:								PROJECT NO.: 60323056					
	Chris Chaillo	u						HOLE NO.: CU-5A						
	SOILS ENGI	NEER/GEOLOGIST	:					START DATE: 2/4/21						
	Chris French							BORIN		FINISH DATE: 2/4/21				
	LOCATION:	MP - 226.91 (CSX i	ail line)							OFFSET: N/A				
GROUND WATER OBSERVATIONS						CAS	SING	SAM	IPLER	DRIL	L BIT	CORE I	BARREL	DRILL RIG: CME LC-55
	Water at 25'	(informed)		TYPE		Eluch k	oint Steel		fornia dified		cone er Bit			BORING TYPE: SPT
	Water at 25' (inferred)			SIZE I.D)		4"		2.5"					BORING O.D.: 4.5"
				SIZE O.		1	.5"		3"		7/8"			SURFACE ELEV.:
				HAMME		1) lbs		0 lbs		.,.			LONGITUDE:
D	CORING	SAMPLI	E	HAMME	R FALL	3	0"	3	30"					LATITUDE:
Е	RATE	DEPTHS	TYPE	PEN.	REC.					Ν		STRAT.		
P	MIN/FT	FROM - TO	AND	in	in		S PER 6			Corr.(2)	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS
T H		(FEET)	NO.			(ROCK	QUALITY	DESIG	NATION)			DEPTH		
		0'-5'					Hand (Cleared						ne-coarse SAND, little subrounded gravel, trace silt;
1.0												긥	loose, n	noist
												RAV		
2.0												SAND & GRAVEL		
3.0												₽ND		
		3'-5'	S-1									Ŋ		
4.0													2 0': Do	are CII T and along modium stiff, maint
5.0														ork gray SILT and clay; medium stiff, moist 3.0'-5.0')
3.0		5'-7'	S-2	24"	15"	3	8	11	15	12	ML			SILT and clay; stiff, moist
6.0												Ϋ́		
												and CLAY		
7.0		7'-9'	S-3	24"	24"	11	15	21	22	23	ML	SILT a	Brown S	SILT and clay, trace fine-medium sand; very stiff,
8.0		7 -9	3-3	24	24	- ''	13	21	22	23	IVIL	S	moist	
													TR-2; (8	3.0'-8.5')
9.0													Drawn	and gray CLAY and silt, trace fine sand; very stiff,
10.0		9'-11'	S-4	24"	17"	6	10	12	16	14	CL		moist	and gray CLAT and Silt, trace line Sand, very Sill,
10.0														
11.0														
		11'-'13'	S-5	24"	18"	9	13	14	15	18	CL		Gray ar	nd brown CLAY and silt; stiff, moist
12.0													TR-3; (*	12.0'-12.5')
13.0														
		13'-15'	S-6	24"	21"	4	7	10	11	11	CL		Gray sil	ty CLAY; stiff, moist
14.0												¥		
15.0										1		Silty CLAY		
		15'-17'	S-7	24"	24"	13	15	15	16	20	CL	is	Gray sil	ty CLAY; medium stiff, moist
16.0														
17.0										1				
18.0										1				
	-													
19.0										-				
20.0										1				
	NOTES:			1		l					l		The info	ormation contained on this log is not warranted
		ng lined drive sampler				T samples.	Rings dime	ensions = 2	2-1/2" O.D. I	by 2-7/16" I	I.D. by 6" le	ngth.		the actual subsurface condition. The contractor
	(2) Correction fa	actor: Ncorr=N*(2.0 ² -1.3	375 ⁻)in./(3.	.u^-2.4^)in. =	= N*0.65.								-	that he will make no claims against AECOM ds that the actual conditions do not conform
														e indicated by this log.
	Soil description	on represents a field	identifica	ation after	D.M. Bur	mister unl	ess other	wise note	ed.					· -
	PLE TYPE:			T SPOON			BY TUBE	i.	R=ROCI					
PRO	PORTIONS:		TRACE=	=1-10%		LITTLE=	10-20%		SOME=2	20-35%		AND=3	5-50%	

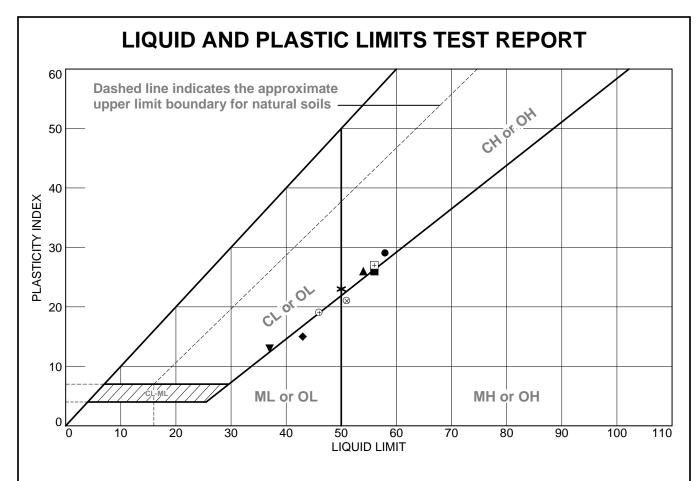

	BORING CO	NTRACTOR:								process of				SHEET 2 OF 2
	ADT			AECOM										PROJECT NAME: CHPE -
	DRILLER:								U	IV				PROJECT NO.: 60323056
	Chris Chaillou	ı												HOLE NO.: CU-5A
	SOILS ENGI	NEER:												START DATE: 2/4/21
	Chris French							BORIN	G LOG					FINISH DATE: 2/4/21
		MP - 226.91 (CSX r			1	ı					1	1	1	OFFSET: N/A
D E	CORING RATE	DEPTHS	TYPE AND	PEN.	REC. in	DI OW	e den e :	- ON CAR	4DL ED	N	USCS CLASS.	STRAT.		FIELD IDENTIFICATION OF SOILS
P T	MIN/FT	FROM - TO (FEET)	NO.	in	ın			n ON SAI ′ DESIGN		Corr.	CLASS.	DEPTH		FIELD IDENTIFICATION OF SOILS
Н		(-=)				(110011	Q0712111	220.0.	,			<i>D</i> 2		
		20'-22'	S-8	24"	24"	3	6	9	12	15	CL		Gray silt	ty CLAY; medium stiff, moist
21.0														
22.0														
23.0														
24.0														
25.0		25'-27'	S-9	24"	24"	5	8	10	11	12	CL		SAA	
26.0		20 2.				Ů	Ů				02			
27.0													TR-4; (2	26.0'-26.5')
27.0														
28.0														
29.0														
20.0												>		
30.0		001.001	0.40	0.4"	0.4"		-	_	_	_	011	Silty CLAY	Gray eil	ty CLAY; soft, wet
31.0		30'-32'	S-10	24"	24"	2	5	5	5	7	CH	Silty	Gray Sil	ty CLAT, SUIT, WET
32.0														
33.0														
34.0														
35.0														
26.0		35'-37'	S-11	24"	24"	WOH	WOH	2	5	1	CH		SAA	
36.0														
37.0														
38.0														
30.0		38'-40'	S-12	24"	24"	WOH	WOH	WOH	5		СН		Gray silt	ty CLAY; very soft, wet
39.0													TR-5; (3	39.0'-39.5')
40.0														
													CU-5A t	erminated at 40', grouted to surface
41.0														
42.0														
40.0														
43.0														
44.0														
45.0														
.0.0	NOTES:										<u> </u>		The info	rmation contained on this log is not warranted
														the actual subsurface condition. The contractor
													-	that he will make no claims against AECOM ds that the actual conditions do not conform
	Soil description	on represents a field	identifica	tion after	D.M. Buri				d.					indicated by this log.
	PLE TYPE: PORTIONS:		S= SPLIT			U=SHEL			R=ROCK SOME=2			AND=35	5-50%	

Aquifer CHPE - Catskill Upland Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH		IDENTIFICATION TESTS				REMARKS		
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	
							(1)	NO. 200	2 μm	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	
CU-1	S-3	7-9	7.5				SM	33	9	
CU-1	S-6	13-15	9.0				SM	16	4	
CU-2	S-2	5-7	22.1				SM	14	3	
CU-2	S-6	13-15	20.6	34	20	14	SC	45	14	
CU-2	S-11	35-37	7.0				SM	23	5	
CU-2A	S-6	15-17	59.4	53	23	30	CH	99	87	
CU-2A	S-9	30-32	35.4	37	20	17	CL	99.6	46	
CU-2A	S-14	55-57	25.1	28	17	11	CL	85	28	
CU-4	S-2	5-7	28.9	60	26	34	CH	95.7	77	
CU-4	S-4	9-11	33.0				GC	31	22	
CU-5A	S-4	9-11	33.7	64	25	39	CH	99	90	
CU-5A	S-8	20-22	29.8	59	25	34	CH	99.4	58	
CU-5A	S-11	35-37	37.8	48	23	25	CL	100	68	
CU-6	S-2	5-5.5	9.4				SM	20	7	
CU-6	S-5	11-13	9.8			_	SM	15	4	

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 5/12/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21007 File: Indx1.xlsx Page 1 of 1


SUMMARY OF LABORATORY TEST DATA

Project Name: <u>TDI Champlain Hudson Power Express – CSX</u>

Client Name: <u>Transmission Developers, Inc.</u>

TRC Project #: <u>195651</u>

SAMPLE I	[DENTI]	FICATION	nscs	GRAIN SIZE DISTRIBUTION					PLAS	TICIT	ΞΥ	vity	ntent	(pcf)	6	tent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	38.5	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	29.5	-	-	-
	S-3	4.0-6.0	CH					50	90	07	0.0		20.0	-		
D000 0 1	S-4	6.0-8.0	СН	-	-	-	-	56	29	27	0.3	-	38.8	84.0	-	-
B226.6-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	40.7	-	-	-
	S-6	13.5-15.0	MII					E 1	20	91	1 1		507			
	S-7	18.5-20.0	MH	-	-	-	-	51	30	21	1.1	-	53.7	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	36.0	-	-	_
D997 1 1	S-4	6.0-8.0	СН	0.0	9.7	1.0	06.2	E 7	20	97	0.2	9 01	20.0	-	-	-
B227.1-1	S-5	8.0-10.0	CH	0.0	2.7	1.0	96.3	57	30	27	0.3	2.81	38.2	84.6	-	-
	S-7	18.5-20.0	-	-	_	_	-	-	-	-	-	-	35.3	-	-	-

				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	B222.34-1	S-4	6.0-8.0 FT	35.2	29	58	29	СН
	B222.34-1	S-6	13.5-15.0 FT	34.8	30	56	26	СН/МН
	B222.9-1	S-5	8.0-10.0 FT	33.4	28	54	26	СН
•	B223.4-1	S-7	18.5-20.0 FT	31.6	28	43	15	ML
▼	B224.8-1	S-8 & S-9	23.5-30.0 FT	33.3	24	37	13	CL
*	B226.1-1	S-6	13.5-15.0 FT	36.9	27	50	23	СН
\oplus	B226.1-1	S-8	23.5-25.0 FT	39.0	27	46	19	CL
+	B226.6-1	S-3 & S-4	4.0-8.0 FT	38.8	29	56	27	СН
\otimes	B226.6-1	S-6 & S-7	13.5-20.0 FT	53.7	30	51	21	МН
L								

TRC Engineers, Inc. Mt. Laurel, NJ **Client:** TRANSMISSION DEVELOPERS INC.

Project: TDI CHAMPLAIN HUDSON POWER EXPRESS - CSX

Figure 9

Project No.: 195651

Segment 11 Package 7A HDD Borings - Catskill

Champlain Hudson Power Express New York

PROJECT NUMBER

20001480

CREATED BY Kiewit DATE 05/09/2022

Legend Key

- Kiewit Borings (2022)
- Borings by Others

20001480

03/09/2022

PROJECT NUMBER

START DATE

EXPLORATORY BORING LOG

Champlain Hudson Power Express **New York**

BORING NO: K-226.7

LOGGED BY Rafael Salas Jr

DRILLER/RIG Corey B. / Diedrich D-90

FINISH DATE DRILL CONTRACTOR 03/09/2022 Parratt Wolff

N 1211665.80 **COORDINATES** E 649663.36

GROUND ELEV. 110.9 ft HAMMER TYPE/EFF.

Manual - Safety Blow Counts (N Value) Run No. Sample Type Pocket Pen. (tsf) Legend € **Graphic Log** Recovery % SPT N Value Elevation ● MC (%)
— PL & LL (%)

■ Fines Content (%) Depth (**Material Description Notes** Core FILL: CLAY (CL) with organics and gravel, Boring advanced 2-4-4-8 medium to coarse, light to dark brown, angular with 3.5" ID HSA 50% (8) to subangular, medium dense, moist Water at around 1 ft from ground surface, 108.9 FILL: Silty GRAVEL (GM), some clay, dark likely from surface 8-5-4-4 brown to black, subangular to angular, medium 50% runoff. (9) to coarse, loose, wet 106.9 pH = 8.33, CLAY (CH), light brown with gray seams, stiff, Resistivity = 1,071 6-5-6-9 5 50% ohm/cm, Chloride (11)Content = 35 mg/kg, Sulfate = 700 mg/kg Very stiff 10-12-13-15 92% (25)4-4-7-7 92% (11) 10 Rock stuck in shoe 7-10-9-11 0% (19)15 95.9 CLAY (CH), with Gravel, medium coarse, subangular, gray brown, firm, wet 4-5-7-7 50% (12)20 2.5 3-inch ring sampler 100% 4-4-5-5 25 2-2-2-2 (4) Boring terminated at 30 ft 80.9 Page 1 of 1

EXPLORATORY BORING LOG

Champlain Hudson Power Express **New York**

BORING NO: K-226.8

PROJECT NUMBER 20001480 START DATE 03/08/2022 **LOGGED BY** Rafael Salas Jr

N 1210977.45 **COORDINATES** E 649510.63

GROUND ELEV.

DRILLER/RIG Corey B. / Diedrich D-90

108.5 ft

	FINISH	H DATE	03/08/2022 DRILL CONTRACTO	DRILL CONTRACTOR			att W	olff	HAMMER TYPE/EFF. Manual - Safety				_	
Depth (ft)	Elevation (ft)	Graphic Log	Material Description	Sample Type Core Run No. Recovery % RQD		Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	<u> </u>	Lege SPT N V MC (%) PL & LL Fines C	Value L (%)	(%)	
	ŭ	ō		Sa	ပိ	ž	4) Bio		20	40	60	80	
 	106.5		FILL: SAND (SM) with Gravel, fine to medium coarse sand, coarse gravel, subangular to angular, dark brown to black, loose, wet			62%		5-4-3-3 (7)	Boring advanced with 3.5" ID HSA Water present in	A				
	-		FILL: Silty GRAVEL (GM), black to dark brown, medium to coarse, angular to subangular, loose, moist	\mathbb{N}		66%		2-4-4-6 (8)	upper 2 ft, no water beyond.	A				
- 5 -	104.5		CLAY (CH) with Gravel, light gray brown, subangular to angular, coarse gravel, loose to medium dense, moist			71%		2-2-7-7 (9)		A				
 		' /////				0%		6-8-13-14 (21)		*				
 			with some gray sand, stiff, moist to dry			92%		2-5-9-8 (14)		A	•	-		
- 10 - 	98.5	/////	CLAY (CH), light brown to gray, firm to soft, moist to wet		3									
	-	/////												
 				V		71%		6-4-4-10 (8)		A				
- 15 - - -		/////			y									
	-	/////												
	-	/////		\bigvee				3-2-2-3						
	-	'/////				100%		(4)						
- 20 -		/////			3									
		/////												
		'/////					0.0		3-inch ring sampler					
		H/H/H		V		100%	0.0	4-3-5-8	3-incir ring sampler					
- 25 -		/////		Λ		100 %		4-3-3-0						
		'/////												
	_	/////												
		////			,									
	_	/////		\mathbb{N}		100%		1-2-3-4						
- 30 -	78.5	IIIII	Boring terminated at 30 ft					(5)						
		<u> </u>		1		1	I		I			Page	1 of	1

EXPLORATORY BORING LOG

Champlain Hudson Power Express **New York**

BORING NO: K-227.0

PROJECT NUMBER 20001480 START DATE 03/08/2022

LOGGED BY Rafael Salas Jr DRILLER/RIG Corey B. / Diedrich D-90

GROUND ELEV.

COORDINATES

N 1210143.14 E 649327.25 95.5 ft

FINISH DATE

03/08/2022

DRILL CONTRACTOR

HAMMER TYPE/EFF. Manual - Safety

	FINISI	H DATE	03/08/2022 DRILL CONTRACTOR			arratt V	/olff	HAMMER TYPE/EFF. Manual - Safety				_		
Depth (ft)	Elevation (ft)	Graphic Log	Material Description	Sample Type	Recovery %	Pocket Pen.	Blow Counts (N Value)	Notes		▲ SPT	Leger T N Va (%) & LL (es Cor	ilue '%)	(%)	
	ă	ษั		Sa	3 8	4	B O		20) 4	1 10	60	80	_
-			FILL: Sandy CLAY (CL), with silt, dark brown to brown, firm, moist	\mathbb{N}	589	%	5-5-1-2 (6)	Boring advanced with 3.5" ID HSA	A					
-	93.5		FILL: SILT (ML), with gravel and brick fragments, light brown and gray with red, 6 inches of brick, medium dense, dry		509	%	11-6-6-6 (12)		A					_
5 -	91.5		FILL: Sandy CLAY (CL), brown, 4 inches of red brick, very stiff, dry	\bigvee	469	%	8-11-15-7 (26)			•				
-	89.5		CLAY (CH) , light brown with gray seams, organics, some gravel, coarse, subangular, stiff, dry		509	%	6-11-7-7 (18)		A					
- - -	05.5		Some silt and gravel, dark brown	M	629	%	2-3-7-3 (10)		A	+•	F	•		
10 - - - -	85.5	/////	CLAY (CH), olive brown to light brown, stiff, dry											
- - 15 -			Blueish gray to light brown, firm		759	%	2-5-8-9 (13)		A					
-		/////		M	849	4	2-3-4-5							
- 20 - - -			Very stiff		843	/ 0	(7)							
-		/////		7				3-inch ring sampler						
- 25 -	70.5		CLAY (CH), gray, firm, moist	M	100	%	8-9-10-10			+ •		H		
-		/////												
- - - 20	GE E	/////	Boring terminated at 30 ft	M			2-3-3-2 (6)		A					
30 –	65.5			1"L							<u> </u>	二	1 of	I

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS ASTM D 2216

Page 1 of 1

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation Various Locations, New York

ATL Report No.: CD10279E-08-03-22

Report Date: Date Received: March 28, 2022

March 18, 2022

TEST DATA

ICST DATA										
Boring	Sample	Depth	Moisture							
No.	No.	(ft)	Content (%)							
K-225.9	S-6	13-15	43.0							
	S-9/10	28-30	48.0							
K-226.2A	S-4	6-8	36.0							
	S-6	13-15	33.8							
	S-9/10	28-30	38.1							
K-226.2B	S-5 ¹	8-10	7.7							
	S-8/9	21-23	37.6							
	S-12	33-35	37.8							
K-226.7	S-5/6	4-6	34.5							
	S-9/10	8-10	39.7							
:	S-15/16	23-25	55.6							
К-226.8	S-7/8	8-10	36.2							
	S-13/14	23-25	54.7							
K-227.0	S-5/6 ¹	4-6	23.5							
	S-9/10	8-10	33.3							
	S-15/16	23-25	40.6							

Remarks

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Date: 03/28/22

ATLANTIC TESTING LABORATORIES

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co. ATL Report No.:

CD10279E-08-03-22

Project: Champlain Hudson Power Express

Report Date:

March 28, 2022

United Cable Installation

Various Locations, New York

Test Date:

March 18, 2022

Performed By:

M. White

TEST DATA

Boring	Sample	Depth	Method	Soak Time	Initial Dry	% Finer
No.	No.	(ft)	(A or B)	(min)	Weight (g)	than #200
K-225.9	S-6	13-15	Α	10	48.43	97.9
K-225.9	S-9/10	28-30	А	10	100.48	99.9
K-226.2A	S-6	13-15	Α	10	62.57	98.3
K-226.2A	5-9/10	28-30	A	10	74.20	96.7
K-226.2B	S-8/9	21-23	A	10	95.42	99.9
K-226.28	S-12	33-35	Α	10	144.57	98.3
K-226.7	S-9/10	8-10	Α	10	87.63	99.6
K-226.7	S-15/16	23-25	Α	10	52.32	99.9
K-226.8	S-7/8	8-10	А	10	92.92	100.0
K-226.8	S-13/14	23-25	А	10	59.61	100.0
K-227.0	S-9/10	8-10	Α	10	180.64	54.8
K-227.0	S-15/16	23-25	Α	10	87.65	99.8

Reviewed By:	1	\sim	
	7	1	

Date:	03/28/22

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-08-03-22

Report Date: Date Received: March 28, 2022

March 18, 2022

TEST DATA

Boring No.	Sample No.	<u>L</u> L	PL	PI
K-225.9	S-6	58	24	34
K-225.9	S-9/10	37	21	16
K-226.2A	S-6	61	25	36
K-226.2A	S-9/10	61	26	35
K-226.2B	S-8/9	62	26	36
K-226.28	S-12	50	24	26
K-226.7	S-9/10	65	27	38
K-226.7	S-15/16	59	26	33
K-226.8	S-7/8	63	26	37
K-226.8	S-13/14	52	23	29
K-227.0	S-9/10	54	26	28
K-227.0	S-15/16	57	24	33

SAMPLE INFORMATION

		Maximum Grain Size	Estimated Amount of Sample Retained on No. 40 Sieve	As Received Moisture Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-225.9	S-6	0.074	0	43.0
K-225.9	S-9/10	0.050	0	48.0
K-226.2A	S-6	0.074	0	33.8
K-226.2A	S-9/10	0.074	0	38.1
K-226.2B	S-8/9	0.050	0	37.6
K-226.2B	S-12	0.074	0	37.8
K-226.7	S-9/10	0.050	O	39.7
K-226.7	S-15/16	0.050	0	55.6
K-226.8	S-7/8	0.050	0	36.2
K-226.8	S-13/14	0.050	0	54.7
K-227.0	S-9/10	4.76	6	33.3
K-227.0	S-15/16	0.050	0	40.6

Client: Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.

CD10279E-08-03-22

Date:

March 28, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-225.9	S-6	Air Dry	Not Necessary
K-225.9	S-9/10	Air Dry	Not Necessary
K-226.2A	S-6	Air Dry	Not Necessary
K-226.2A	S-9/10	Air Dry	Not Necessary
K-226.2B	S-8/9	Air Dry	Not Necessary
K-226.2B	S-12	Air Dry	Not Necessary
K-226.7	S-9/10	Air Dry	Not Necessary
K-226.7	S-15/16	Air Dry	Not Necessary
K-226.8	S-7/8	Air Dry	Not Necessary
K-226.8	S-13/14	Air Dry	Not Necessary
K-227.0	S-9/10	Air Dry	Pulverizing and Screening
K-227.0	S-15/16	Air Dry	Not Necessary

EQUIPMENT INFORMATION Liquid Limit Procedure: Single Point - Method B Multipoint - Method A Χ Liquid Limit Apparatus: Χ Manual Motor Driven Liquid Limit Grooving Tool Material: Х Plastic Metal Liquid Limit Grooving Tool Shape: Flat Х Curved (AASHTO Only) Mechanical Rolling Device Plastic Limit: Hand Rolled Х

Reviewed By:	1/2	\sim	Date	
	7	//		

ATLANTIC TESTING LABORATORIES

CORROSION ANALYSIS SUITE

Client:	Kiewit Intrastructure Co.	ATL Report No.	CD10279E-08-03-22
Project:	Champlain Hudson Power Express	Report Date:	March 28, 2022
	United Cable Installation	Date Received:	March 18, 2022

United Cable Installation

Location: Various Locations, New York

Sample: K-226.7, S-5/6 Depth (ft): 4-6

MEASURING pH OF SOIL FOR USE IN CORROSION TESTING ASTM G 51

Type of Test	Soil Temperature (°C)	р	H Reading	ţs	Average
Laboratory	20.0	8.37	8.32	8.31	8.33

pH of calibration standards used:

7.00

MEASUREMENT OF SOIL RESISITIVITY USING THE TWO-ELECTRODE SOIL BOX METHOD ASTM G 187 (LABORATORY)

Test Date:	03/22/22	Performed by:	E. Hannon
Meter Used:	Miller 400A	Soil Box Factor:	1.29

	Tempe	rature at	Measured	Calculated
Date Colle	cted Colle	ction (°C) Re	sistance (Ω)	Resistivity (Ω/cm)
10/19/2	021 Not	Provided	830	1,071

WATER-SOLUBLE CHLORIDE ION CONTENT IN SOIL AASHTO T 291, Method A

	Chloride by Mass of Soil (mg/kg)
l	35

WATER-SOLUBLE SULFATE IN SOIL ASTM C 1580

Sulfate by Mass of Sample (%)	Sulfate by Mass of Sample (mg/kg)
0.07	700

Reviewed By:	 A A	Date:	03/28/22
	 7		

Package 7A Phase 3 Borings Champlain Hudson Power Express

New York

PROJECT NUMBER

20001480

CREATED BY Kiewit DATE 12/08/2022

Legend Key

• Kiewit Borings (Phase 3)

EXPLORATORY BORING LOG

Champlain Hudson Power Express **New York**

BORING NO: KB-226.8A

PROJECT NUMBER 20001480 START DATE 08/31/2022

LOGGED BY DRILLER/RIG

Rafael Salas

C. Brown / CME-850

N 1211213.00 **COORDINATES** E 649563.70

108.9 ft HAMMER TYPE/EFF. Automatic

GROUND ELEV.

FINISH DATE DRILL CONTRACTOR 08/31/2022 Parratt Wolff Blow Counts (N Value) Sample Type Core Run No. Pocket Pen. (tsf) Legend **Graphic Log** € Recovery % SPT N Value Elevation ● MC (%)
— PL & LL (%)

■ Fines Content (%) Depth (**Material Description Notes** FILL: Silty GRAVEL with railroad ballast (GM), Boring advanced dark gray, loose, fine to coarse, moist, with 3.25" ID HSA 1-2-3-4 46% subangular to subrounded (5) 105.9 50% 5-3-3-3 Silty CLAY (CL-ML), light gray, firm, moist (6) 104.9 SILT (MH), olive brown and gray, very stiff to firm, high plasticity, moist 5 2-4-7-6 50% (11) 100% 7-9-7-10 (16)3-5-6-9 100% (11) 10 100% 2-3-4-4 2" gravel seam, fine to medium grained, (7) ▼ subangular to subrounded, at 11.0- 11.2 ft 93.9 CLAY (CH), medium to high plasticity, dark gray, stiff, moist 100% 4-4-5-6 (9) 20 Firm below 20 ft 100% 3-2-3-3 (5) 25 83.9 SILT (MH), dark gray, very soft, moist 100% 0-0-1-2 (1) 30 100% 0-0-0-1 (0)35 Page 1 of 2

EXPLORATORY BORING LOG

Champlain Hudson Power Express

New York

BORING NO: KB-226.8A

N 1211213.00

E 649563.70

 PROJECT NUMBER
 20001480

 START DATE
 08/31/2022

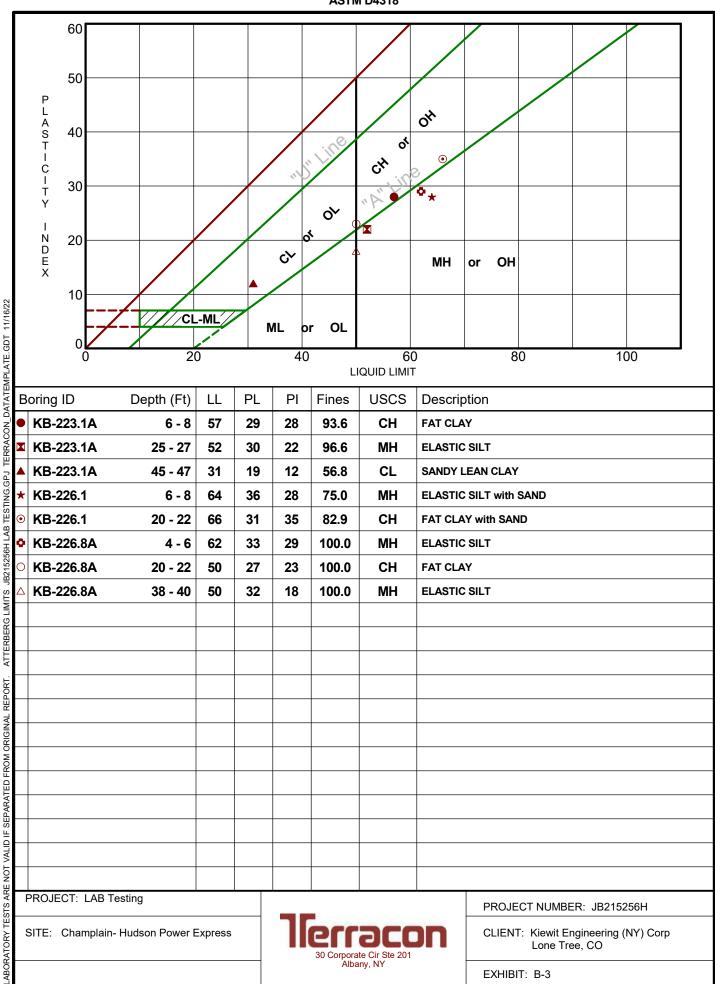
LOGGED BY Rafael Salas

DRILLER/RIG C. Brown / CME-850

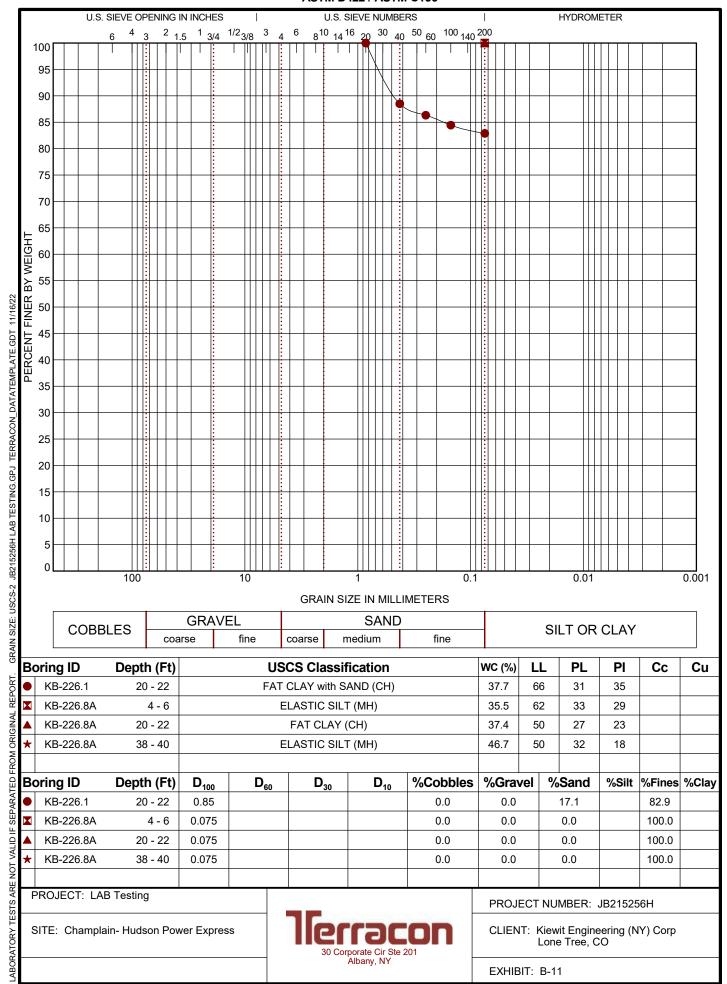
GROUND ELEV. 108.9 ft

COORDINATES

FINISH DATE DRILL CONTRACTOR HAMMER TYPE/EFF. 08/31/2022 Automatic Parratt Wolff Sample Type Core Run No. Blow Counts (N Value) Recovery % RQD **Graphic Log** Pocket Pen. (tsf) Legend € Depth (ft) ▲ SPT N Value
● MC (%)
— PL & LL (%)
■ Fines Content (%) SPT N Value Elevation **Material Description** Notes SILT (MH), dark gray, very soft, moist 100% 0-0-0-2 (0) 100% 0-0-0-1 (0) 40 3-inch ring sampler 100% 4-4-4-5 50 100% 0-0-0-0 WOH (0) 55 100% 0-0-0-0 WOH (0) 100% 0-0-0-3 (0) 60 48.9 Boring Terminated at 60 ft 65 70 Page 2 of 2


Cummon, of Laborator, Doculto

		ımmary of Laboratory Re	
			Sheet 2 c
BORING ID	Depth (Ft.)	Water Content (%)
KB-222.6A	15-17	1.2	
KB-222.6A	35-37	35.8	
KB-222.6A	50-52	41.7	
KB-222.6A	65-67	38.4	
KB-223.1A	6-8	31.3	
KB-223.1A	25-27	39.6	
KB-223.1A	45-47	22.0	
KB-226.1	6-8	33.3	
KB-226.1	20-22	37.7	
KB-226.8A	4-6	35.5	
KB-226.8A	20-22	37.4	
KB-226.8A	38-40	46.7	
PROJECT: I	AB Testing	75	PROJECT NUMBER: JB215256H
SITE: Chan	nplain- Hudson Power Express	lerracon	CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO
		30 Corporate Cir Ste 201 Albany, NY	Lone Tree, CO


ATTERBERG LIMITS RESULTS

ASTM D4318

GRAIN SIZE DISTRIBUTION

ASTM D422 / ASTM C136

Appendix C

BoreAid HDD Simulation Output

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 111.B DWG C-311.B

Input Summary

Start Coordinate (0.00, 0.00, 112.32) ft End Coordinate (765.00, 0.00, 120.00) ft

Project Length 765.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

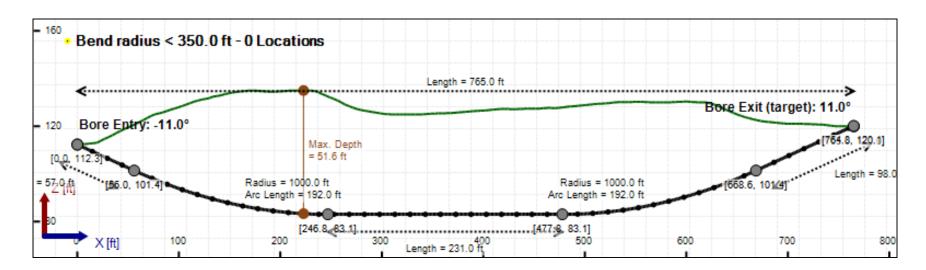
Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Gravel (G), GM

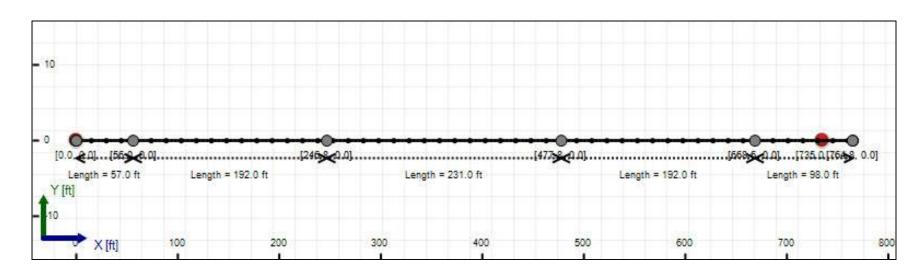
Depth: 11.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

Depth: 65.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 780.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.2	41.9
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	6.2	41.9
Deflection		
Earth Load Deflection	1.701	11.401
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.833	11.533
Compressive Stress [psi]		
Compressive Wall Stress	28.1	188.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	13656.8	13656.8
Pullback Stress [psi]	380.9	380.9
Pullback Strain	6.624E-3	6.624E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	380.9	406.2
Tensile Strain	6.624E-3	7.512E-3

Net External Pressure = 21.9 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.833	7.5	4.1	OK
Unconstrained Collapse [psi]	25.4	117.3	4.6	OK
Compressive Wall Stress [psi]	28.1	1150.0	40.9	OK

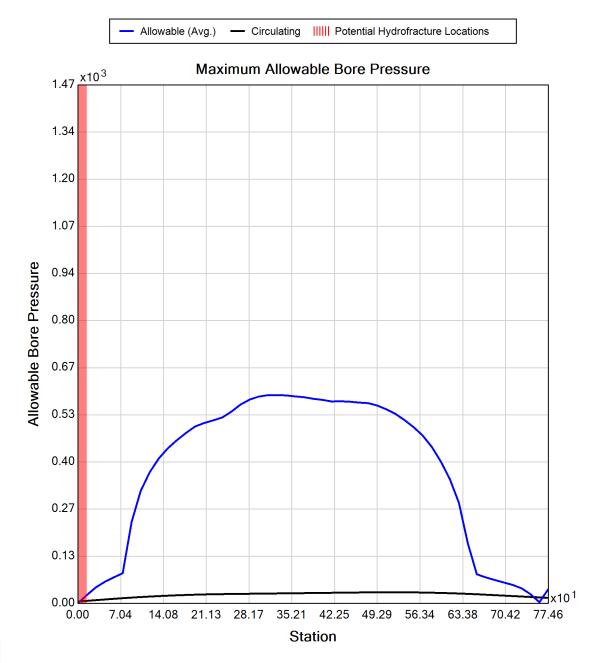
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	35.3	233.1	6.6	OK
Tensile Stress [psi]	406.2	1200.0	3.0	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	591.142 psi	1337.413 psi
1	8.75 in	12.00 in	591.064 psi	1337.294 psi
2	12.00 in	16.13 in	590.930 psi	1337.088 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 111.B DWG C-311.B.2

Input Summary

Start Coordinate (0.00, 0.00, 113.48) ft End Coordinate (765.00, 0.00, 120.84) ft

Project Length 765.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

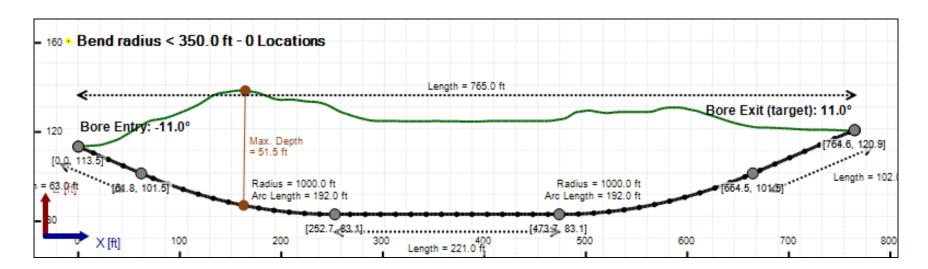
Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Gravel (G), GM

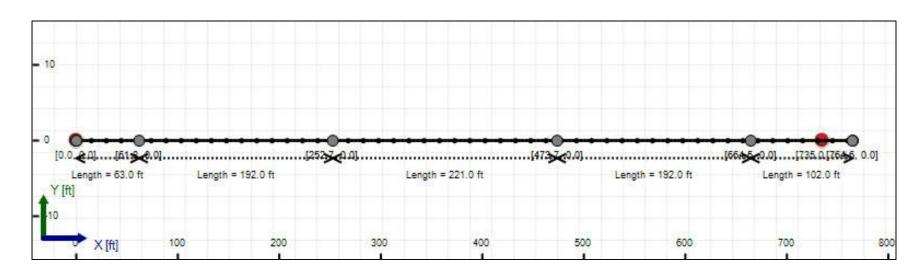
Depth: 11.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

Depth: 65.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 780.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.2	42.0
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	6.2	42.0
Deflection		
Earth Load Deflection	1.699	11.425
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.831	11.557
Compressive Stress [psi]		
Compressive Wall Stress	28.1	188.8

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	13674.3	13674.3
Pullback Stress [psi]	381.4	381.4
Pullback Strain	6.632E-3	6.632E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	381.4	405.6
Tensile Strain	6.632E-3	7.502E-3

Net External Pressure = 23.5 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.831	7.5	4.1	OK
Unconstrained Collapse [psi]	25.8	117.4	4.5	OK
Compressive Wall Stress [psi]	28.1	1150.0	41.0	OK

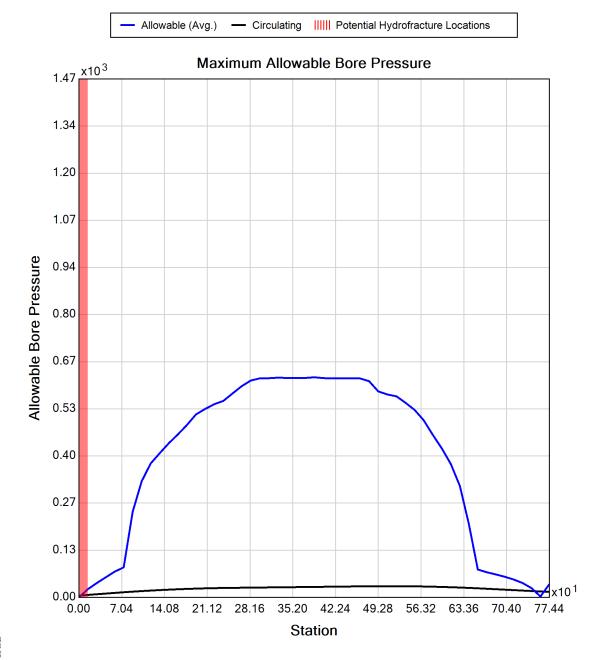
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	35.8	232.9	6.5	OK
Tensile Stress [psi]	405.6	1200.0	3.0	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	624.836 psi	1337.485 psi
1	8.75 in	12.00 in	624.753 psi	1337.366 psi
2	12.00 in	16.13 in	624.609 psi	1337.161 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 111.B DWG C-311.B.2

Input Summary

Start Coordinate (0.00, 0.00, 113.48) ft End Coordinate (765.00, 0.00, 120.84) ft

Project Length 765.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

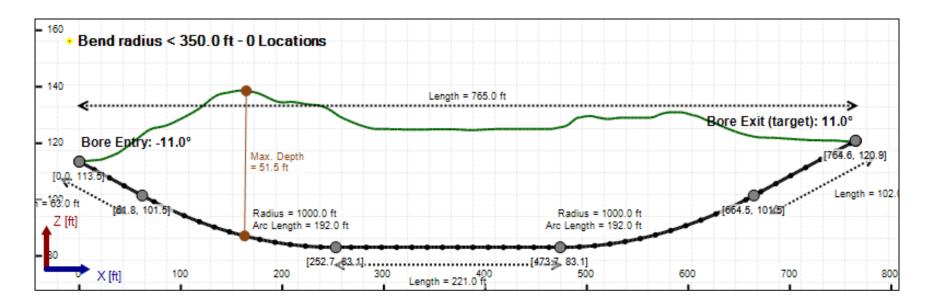
Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Gravel (G), GM

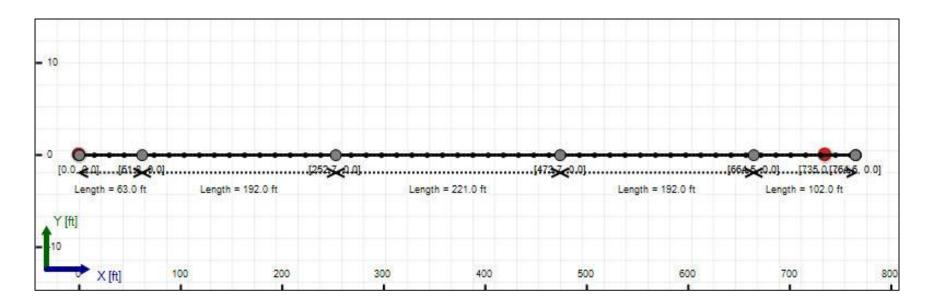
Depth: 11.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

Depth: 65.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 780.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.0	42.0
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	3.0	42.0
Deflection		
Earth Load Deflection	0.810	11.425
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	0.853	11.468
Compressive Stress [psi]		
Compressive Wall Stress	13.4	188.8

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1562.1	1562.1
Pullback Stress [psi]	411.0	411.0
Pullback Strain	7.148E-3	7.148E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	411.0	417.9
Tensile Strain	7.148E-3	7.413E-3

Net External Pressure = 23.5 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.853	7.5	8.8	OK
Unconstrained Collapse [psi]	25.8	128.2	5.0	OK
Compressive Wall Stress [psi]	13.4	1150.0	86.0	OK

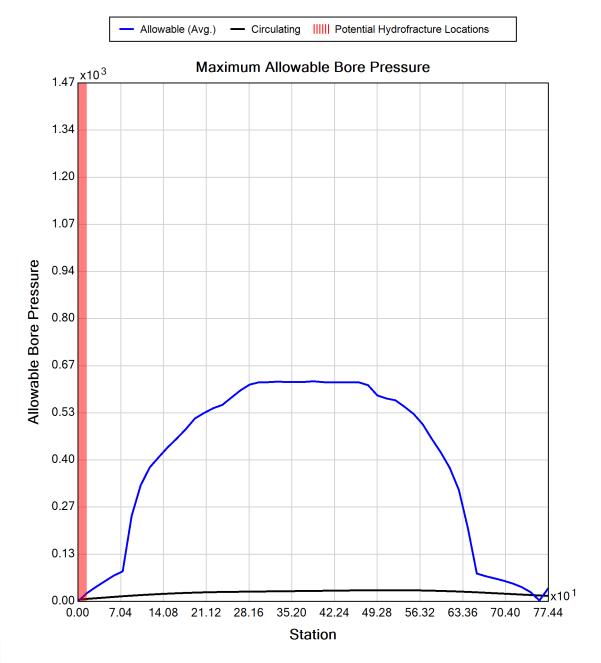
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	35.8	233.0	6.5	OK
Tensile Stress [psi]	417.9	1200.0	2.9	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	624.836 psi	1337.485 psi
1	8.75 in	12.00 in	624.753 psi	1337.366 psi
2	12.00 in	16.13 in	624.609 psi	1337.161 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 111.B DWG C-311.B.2

Input Summary

Start Coordinate (0.00, 0.00, 113.48) ft End Coordinate (765.00, 0.00, 120.84) ft

Project Length 765.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 780.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	8.0	42.0
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	8.0	42.0
Deflection		
Earth Load Deflection	10.061	52.497
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	10.751	53.186
Compressive Stress [psi]		
Compressive Wall Stress	57.5	299.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11427.6	11427.6
Pullback Stress [psi]	285.3	285.3
Pullback Strain	4.962E-3	4.962E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	318.9	318.9
Tensile Strain	6.129E-3	6.129E-3

Net External Pressure = 15.1 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	18.6	50.4	2.7	OK
Tensile Stress [psi]	318.9	1200.0	3.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 112 DWG C-312

Input Summary

Start Coordinate (0.00, 0.00, 110.55) ft End Coordinate (960.00, 0.00, 131.68) ft

Project Length 960.00 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 7

Soil Layer #1 USCS, Sand (S), SP

Depth: 5.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 3.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 9.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

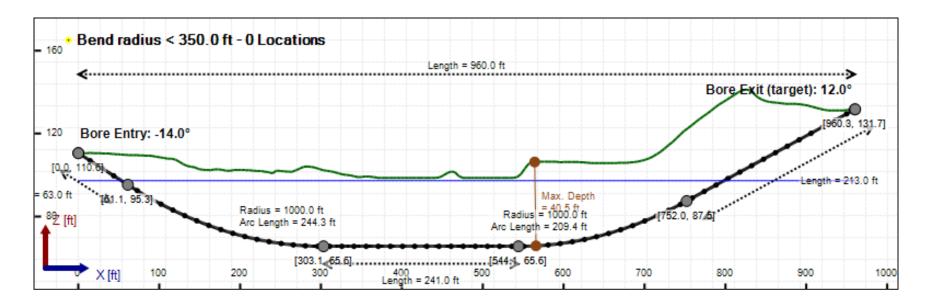
Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Soil Layer #6 USCS, Gravel (G), GM

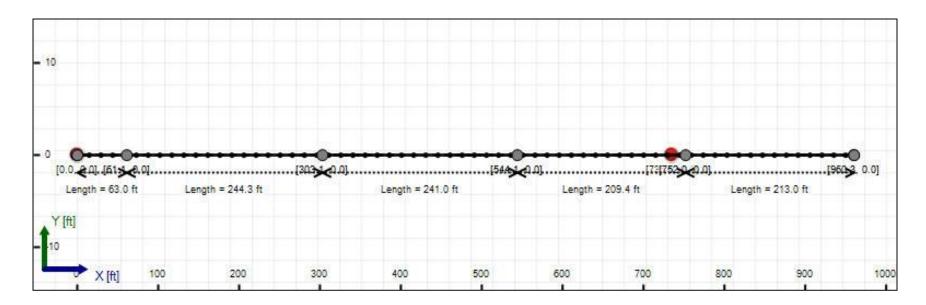
Depth: 7.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #7 Rock, Geological Classification, Sedimentary Rocks

Depth: 25.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 975.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.4	29.4
Water Pressure	13.7	13.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.2	43.0
Deflection		
Earth Load Deflection	1.541	8.025
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.673	8.157
Compressive Stress [psi]		
Compressive Wall Stress	86.2	193.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	18384.6	18384.6
Pullback Stress [psi]	512.7	512.7
Pullback Strain	8.917E-3	8.917E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	512.7	536.9
Tensile Strain	8.917E-3	9.785E-3

Net External Pressure = 33.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.673	7.5	4.5	OK
Unconstrained Collapse [psi]	43.6	119.5	2.7	OK
Compressive Wall Stress [psi]	86.2	1150.0	13.3	OK

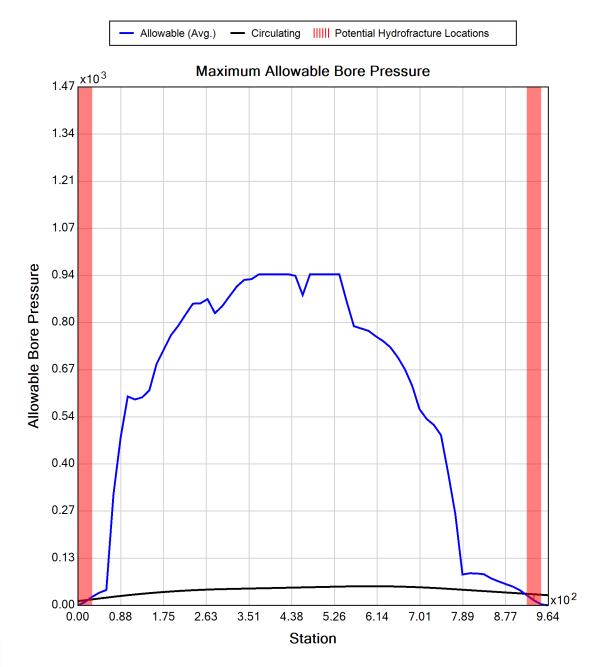
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	53.6	225.5	4.2	OK
Tensile Stress [psi]	536.9	1200.0	2.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	942.479 psi	1340.560 psi
1	8.75 in	12.00 in	942.273 psi	1340.367 psi
2	12.00 in	16.13 in	941.918 psi	1340.033 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 112 DWG C-312.2

Input Summary

Start Coordinate (0.00, 0.00, 110.99) ft End Coordinate (960.00, 0.00, 129.86) ft

Project Length 960.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 7

Soil Layer #1 USCS, Sand (S), SP

Depth: 5.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 3.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 9.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

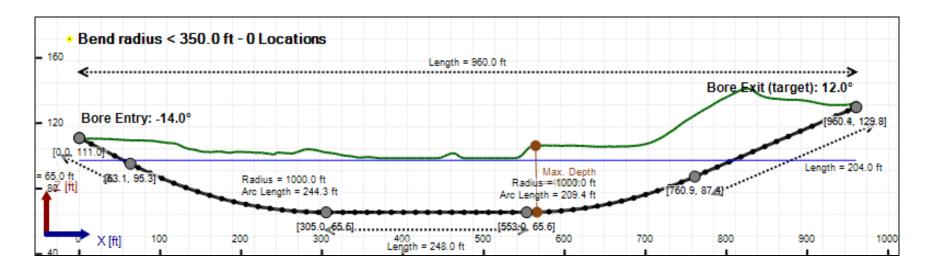
Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Soil Layer #6 USCS, Gravel (G), GM

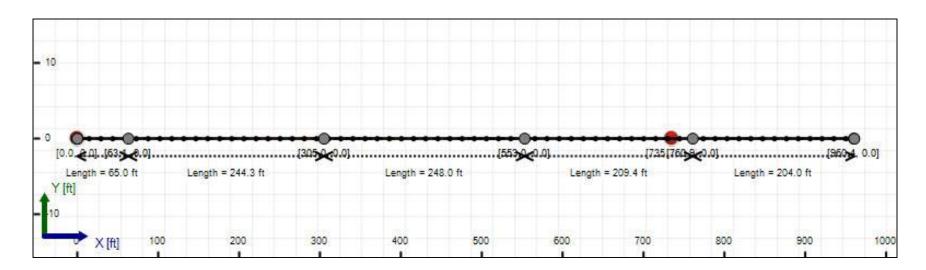
Depth: 7.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #7 Rock, Geological Classification, Sedimentary Rocks

Depth: 25.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 975.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.5	29.7
Water Pressure	13.7	13.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.2	43.4
Deflection		
Earth Load Deflection	1.541	8.460
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.673	8.592
Compressive Stress [psi]		
Compressive Wall Stress	86.5	195.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	18257.6	18257.6
Pullback Stress [psi]	509.2	509.2
Pullback Strain	8.855E-3	8.855E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	509.2	533.6
Tensile Strain	8.855E-3	9.727E-3

Net External Pressure = 32.3 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.673	7.5	4.5	OK
Unconstrained Collapse [psi]	42.4	119.4	2.8	OK
Compressive Wall Stress [psi]	86.5	1150.0	13.3	OK

Installation Analysis

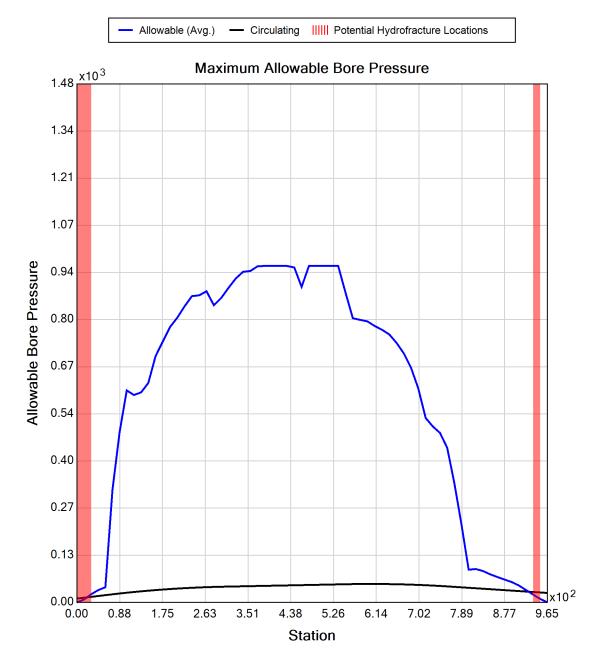
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	52.3	225.7	4.3	OK
Tensile Stress [psi]	533.6	1200.0	2.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	957.767 psi	1340.904 psi
1	8.75 in	12.00 in	957.558 psi	1340.712 psi
2	12.00 in	16.13 in	957.198 psi	1340.381 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 112 DWG C-312.2

Input Summary

Start Coordinate (0.00, 0.00, 110.99) ft End Coordinate (960.00, 0.00, 129.86) ft

Project Length 960.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 7

Soil Layer #1 USCS, Sand (S), SP

Depth: 5.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Sand (S), SM

Depth: 4.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 3.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 9.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

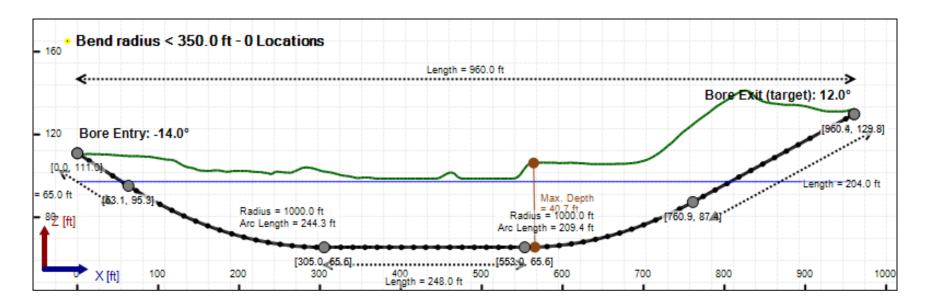
Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Soil Layer #6 USCS, Gravel (G), GM

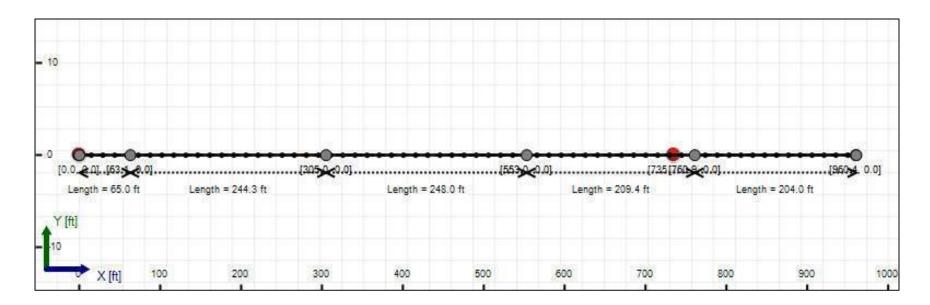
Depth: 7.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #7 Rock, Geological Classification, Sedimentary Rocks

Depth: 25.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 975.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.6	29.7
Water Pressure	13.7	13.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	16.3	43.4
Deflection		
Earth Load Deflection	0.750	8.460
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	0.793	8.503
Compressive Stress [psi]		
Compressive Wall Stress	73.4	195.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	2048.0	2048.0
Pullback Stress [psi]	538.8	538.8
Pullback Strain	9.371E-3	9.371E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	538.8	545.8
Tensile Strain	9.371E-3	9.639E-3

Net External Pressure = 32.3 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.793	7.5	9.5	OK
Unconstrained Collapse [psi]	42.4	129.2	3.1	OK
Compressive Wall Stress [psi]	73.4	1150.0	15.7	OK

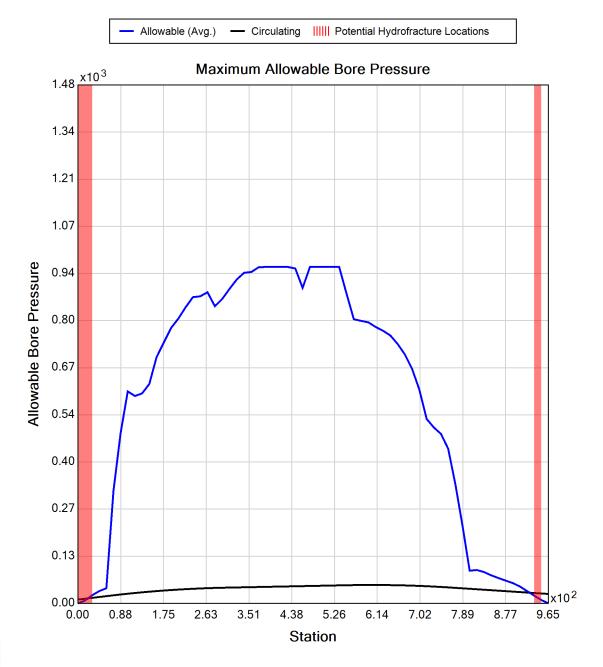
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	52.3	225.7	4.3	OK
Tensile Stress [psi]	545.8	1200.0	2.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	957.767 psi	1340.904 psi
1	8.75 in	12.00 in	957.558 psi	1340.712 psi
2	12.00 in	16.13 in	957.198 psi	1340.381 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 112 DWG C-312.2

Input Summary

Start Coordinate (0.00, 0.00, 110.99) ft End Coordinate (960.00, 0.00, 129.86) ft

Project Length 960.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 975.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.0	29.7
Water Pressure	13.7	13.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	20.7	43.4
Deflection		
Earth Load Deflection	9.120	38.875
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	9.810	39.565
Compressive Stress [psi]		
Compressive Wall Stress	148.4	310.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15033.1	15033.1
Pullback Stress [psi]	375.4	375.4
Pullback Strain	6.528E-3	6.528E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	408.9	408.9
Tensile Strain	7.695E-3	7.695E-3

Net External Pressure = 18.2 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	24.1	49.3	2.0	OK
Tensile Stress [psi]	408.9	1200.0	2.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 113 DWG C-313

Input Summary

Start Coordinate (0.00, 0.00, 96.49) ft End Coordinate (610.00, 0.00, 110.20) ft

Project Length 610.00 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM

Depth: 2.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

Depth: 18.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

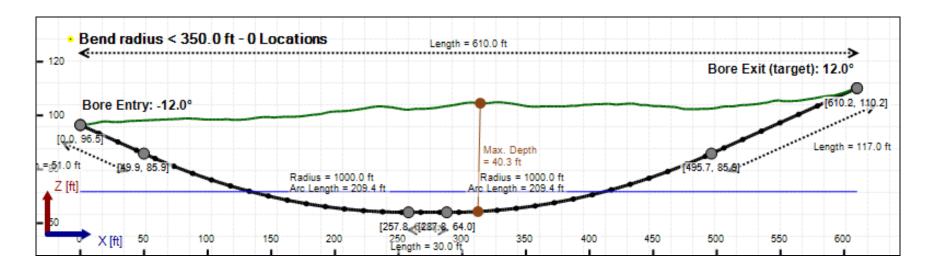
Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Clay (C), CL

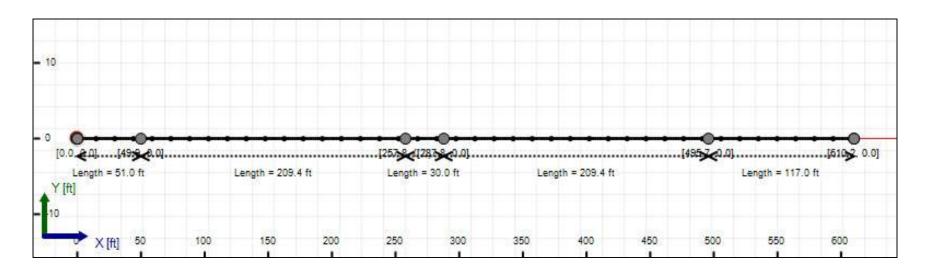
Depth: 25.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #4 USCS, Silt (M), ML

Depth: 12.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 630.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	9.1	26.3
Water Pressure	3.3	3.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.4	29.5
Deflection		
Earth Load Deflection	2.696	7.176
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.828	7.308
Compressive Stress [psi]		
Compressive Wall Stress	55.7	132.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11975.3	11975.3
Pullback Stress [psi]	334.0	334.0
Pullback Strain	5.808E-3	5.808E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	334.0	359.3
Tensile Strain	5.808E-3	6.696E-3

Net External Pressure = 26.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.828	7.5	2.7	OK
Unconstrained Collapse [psi]	31.8	109.4	3.4	OK
Compressive Wall Stress [psi]	55.7	1150.0	20.6	OK

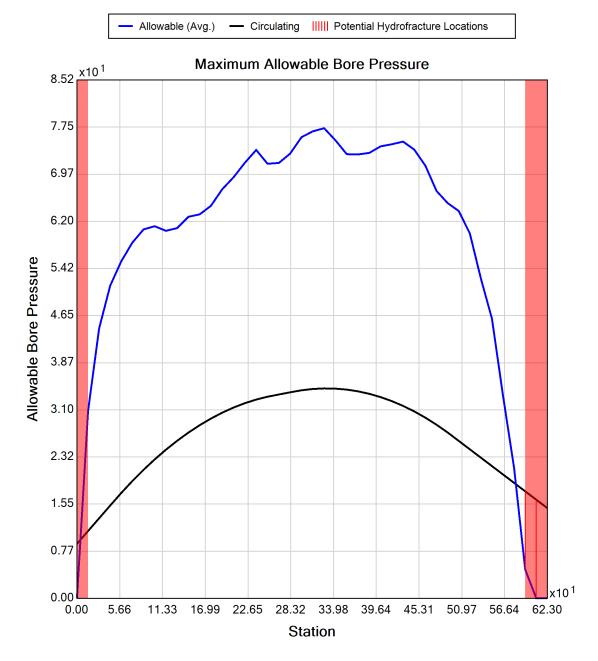
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	41.8	235.9	5.6	OK
Tensile Stress [psi]	359.3	1200.0	3.3	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	77.451 psi	58.806 psi
1	8.75 in	12.00 in	77.384 psi	58.562 psi
2	12.00 in	16.13 in	77.269 psi	58.157 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 113 DWG C-313.2

Input Summary

Start Coordinate (0.00, 0.00, 96.49) ft End Coordinate (610.00, 0.00, 109.16) ft

Project Length 610.00 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM

Depth: 2.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

Depth: 18.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

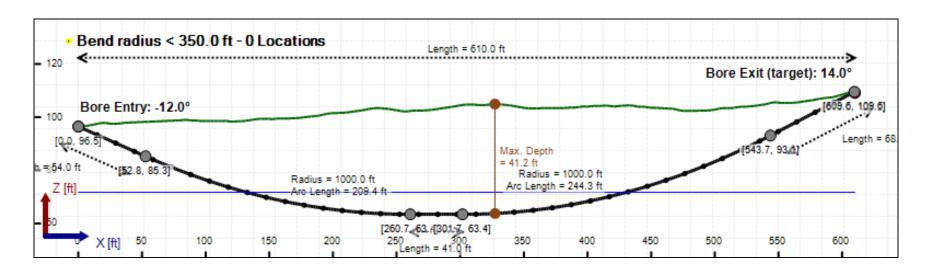
Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Clay (C), CL

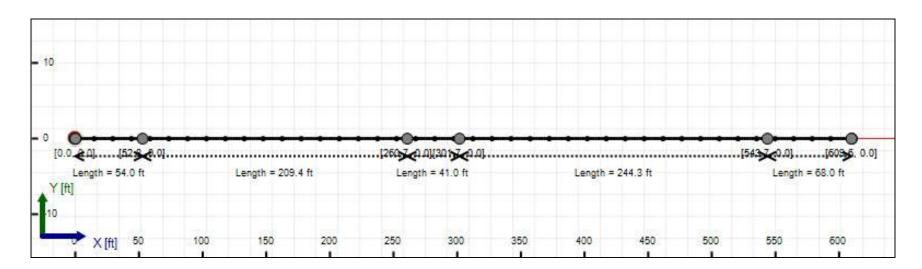
Depth: 25.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #4 USCS, Silt (M), ML

Depth: 12.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 630.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	9.1	26.7
Water Pressure	3.6	3.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.7	30.3
Deflection		
Earth Load Deflection	2.713	7.307
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.845	7.439
Compressive Stress [psi]		
Compressive Wall Stress	57.2	136.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12100.8	12100.8
Pullback Stress [psi]	337.5	337.5
Pullback Strain	5.869E-3	5.869E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	337.5	363.2
Tensile Strain	5.869E-3	6.764E-3

Net External Pressure = 26.7 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.845	7.5	2.6	OK
Unconstrained Collapse [psi]	32.1	109.3	3.4	OK
Compressive Wall Stress [psi]	57.2	1150.0	20.1	OK

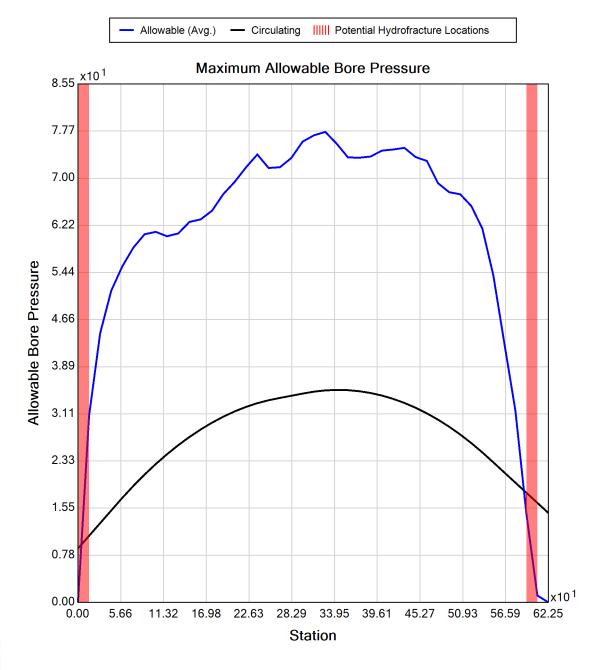
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	42.1	235.5	5.6	OK
Tensile Stress [psi]	363.2	1200.0	3.3	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	77.756 psi	56.297 psi
1	8.75 in	12.00 in	77.694 psi	55.980 psi
2	12.00 in	16.13 in	77.587 psi	55.463 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 113 DWG C-313.2

Input Summary

Start Coordinate (0.00, 0.00, 96.49) ft End Coordinate (610.00, 0.00, 109.16) ft

Project Length 610.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM

Depth: 2.00 ft

Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

Depth: 18.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

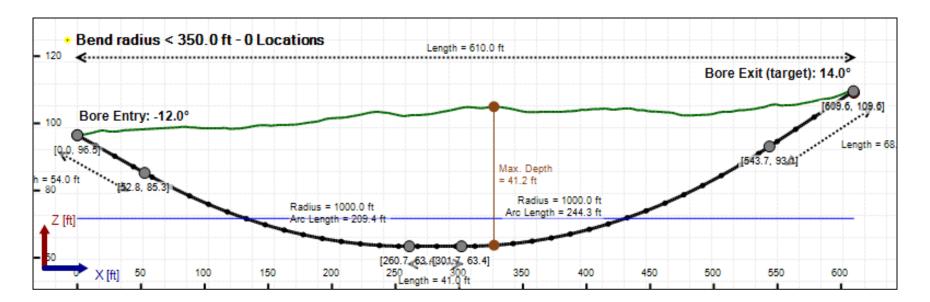
Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Clay (C), CL

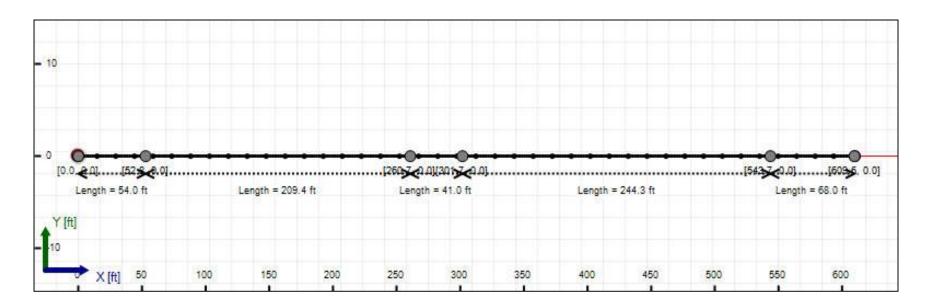
Depth: 25.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #4 USCS, Silt (M), ML

Depth: 12.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 630.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.6	26.7
Water Pressure	3.6	3.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	8.2	30.3
Deflection		
Earth Load Deflection	1.562	7.307
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	1.605	7.350
Compressive Stress [psi]		
Compressive Wall Stress	36.9	136.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1395.3	1395.3
Pullback Stress [psi]	367.1	367.1
Pullback Strain	6.384E-3	6.384E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	367.1	375.4
Tensile Strain	6.384E-3	6.675E-3

Net External Pressure = 26.7 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.605	7.5	4.7	OK
Unconstrained Collapse [psi]	32.1	123.0	3.8	OK
Compressive Wall Stress [psi]	36.9	1150.0	31.2	OK

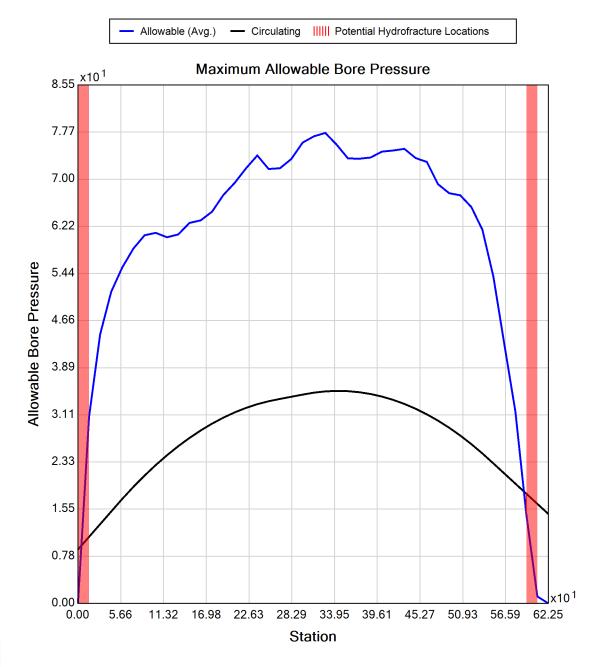
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	42.1	235.7	5.6	OK
Tensile Stress [psi]	375.4	1200.0	3.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	77.756 psi	56.297 psi
1	8.75 in	12.00 in	77.694 psi	55.980 psi
2	12.00 in	16.13 in	77.587 psi	55.463 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 113 DWG C-313.2

Input Summary

Start Coordinate (0.00, 0.00, 96.49) ft End Coordinate (610.00, 0.00, 109.16) ft

Project Length 610.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 630.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	11.0	26.7
Water Pressure	3.6	3.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.6	30.3
Deflection		
Earth Load Deflection	14.503	33.574
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	15.192	34.263
Compressive Stress [psi]		
Compressive Wall Stress	104.7	216.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10257.0	10257.0
Pullback Stress [psi]	256.1	256.1
Pullback Strain	4.454E-3	4.454E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	289.7	289.7
Tensile Strain	5.621E-3	5.621E-3

Net External Pressure = 18.0 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	20.7	50.7	2.5	OK
Tensile Stress [psi]	289.7	1200.0	4.1	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

TetraTech Rooney

115 Inverness Drive, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 115 DWG C-315

Input Summary

Start Coordinate (0.00, 0.00, 34.11) ft End Coordinate (1337.80, 0.00, 51.18) ft

Project Length 1337.80 ft PVC Pipe Type IPS **OD** Classification Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GC

Depth: 2.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

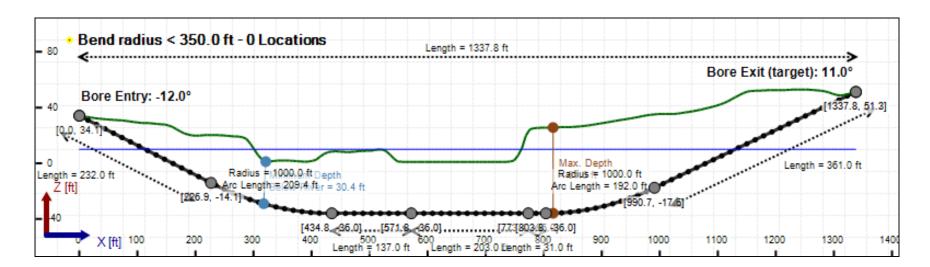
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Gravel (G), GC

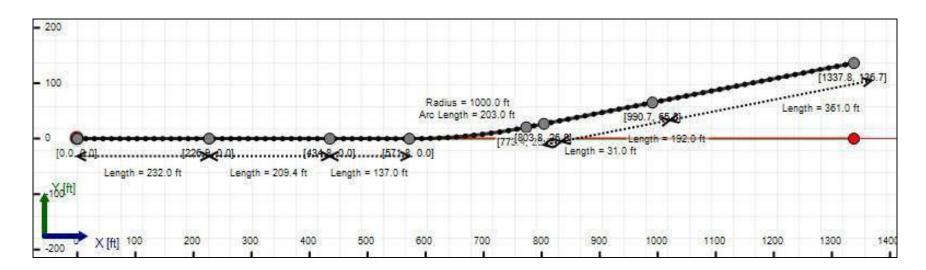
Depth: 8.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 94.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1379.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.0	49.2
Water Pressure	19.9	20.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	25.0	69.1
Deflection		
Earth Load Deflection	0.929	9.063
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	0.989	9.123
Compressive Stress [psi]		
Compressive Wall Stress	224.9	622.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17818.3	17818.3
Pullback Stress [psi]	1453.1	1453.1
Pullback Strain	3.633E-3	3.633E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	1453.1	1588.1
Tensile Strain	3.633E-3	4.330E-3

Net External Pressure = 53.4 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.989	7.5	7.6	OK
Unconstrained Collapse [psi]	58.5	174.1	3.0	OK
Compressive Wall Stress [psi]	224.9	3200.0	14.2	OK

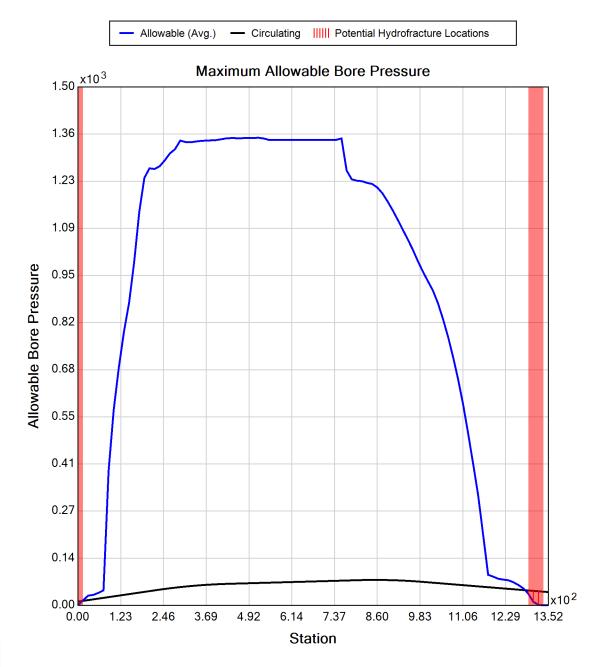
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	68.4	160.8	2.4	OK
Tensile Stress [psi]	1588.1	2800.0	1.8	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1353.006 psi	1363.489 psi
1	8.75 in	12.00 in	1352.855 psi	1363.405 psi
2	12.00 in	12.94 in	1352.802 psi	1363.376 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 115 DWG C-315.2

Input Summary

Start Coordinate (0.00, 0.00, 33.87) ft End Coordinate (1349.00, 0.00, 54.01) ft

Project Length 1349.00 ft PVC Pipe Type IPS **OD** Classification Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GC

Depth: 2.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

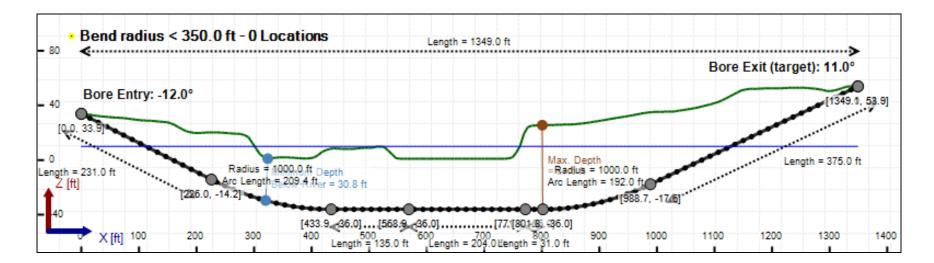
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Gravel (G), GC

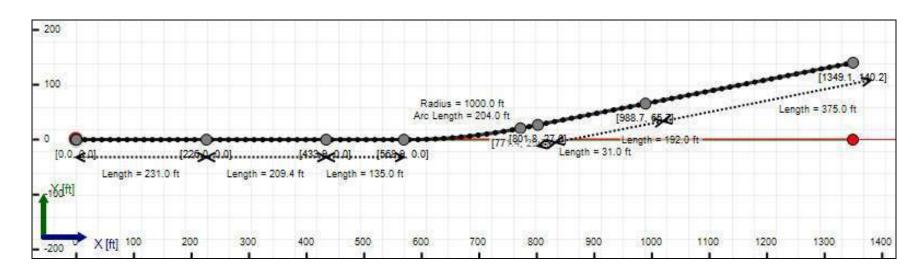
Depth: 8.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 94.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1379.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.0	49.2
Water Pressure	20.0	20.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	25.0	69.2
Deflection		
Earth Load Deflection	0.935	9.070
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	0.995	9.129
Compressive Stress [psi]		
Compressive Wall Stress	225.1	622.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17844.6	17844.6
Pullback Stress [psi]	1455.2	1455.2
Pullback Strain	3.638E-3	3.638E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	1455.2	1589.8
Tensile Strain	3.638E-3	4.334E-3

Net External Pressure = 53.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.995	7.5	7.5	OK
Unconstrained Collapse [psi]	58.8	174.1	3.0	OK
Compressive Wall Stress [psi]	225.1	3200.0	14.2	OK

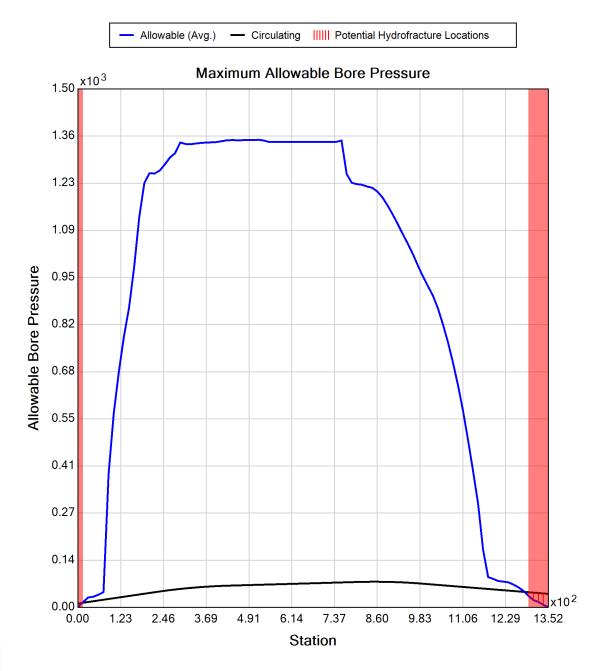
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	68.7	160.7	2.3	OK
Tensile Stress [psi]	1589.8	2800.0	1.8	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1353.042 psi	1363.545 psi
1	8.75 in	12.00 in	1352.891 psi	1363.461 psi
2	12.00 in	12.94 in	1352.838 psi	1363.432 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 115 DWG C-315.2

Input Summary

Start Coordinate (0.00, 0.00, 33.87) ft End Coordinate (1349.00, 0.00, 54.01) ft

Project Length 1349.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GC

Depth: 2.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

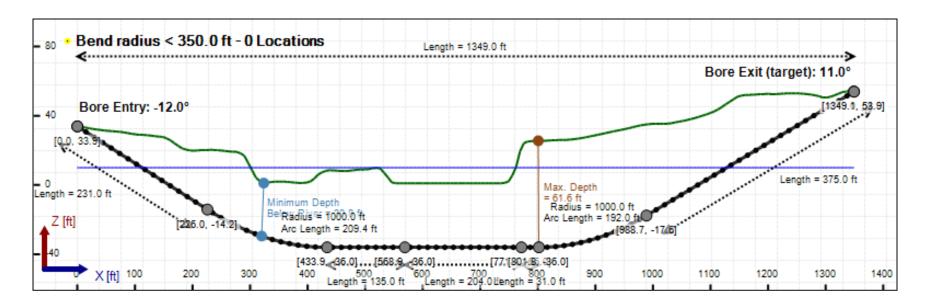
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Gravel (G), GC

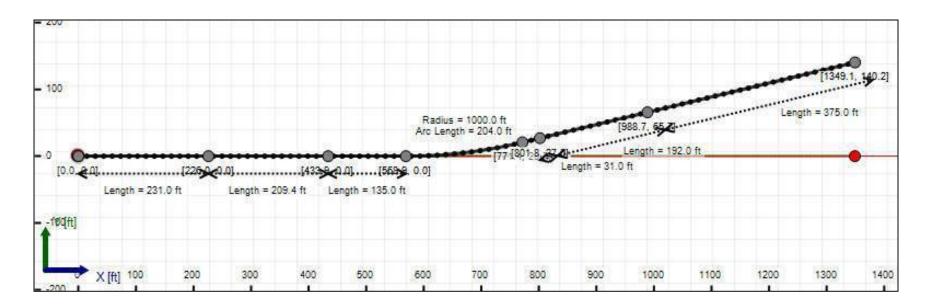
Depth: 8.00 ft

Unit Weight: 16.3086 (dry), 18.2028 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 94.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 1379.99 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.9	49.2
Water Pressure	20.0	20.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	22.9	69.2
Deflection		
Earth Load Deflection	0.926	13.407
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	0.969	13.450
Compressive Stress [psi]		
Compressive Wall Stress	103.0	311.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	2945.2	2945.2
Pullback Stress [psi]	774.9	774.9
Pullback Strain	1.348E-2	1.348E-2
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	774.9	779.6
Tensile Strain	1.348E-2	1.370E-2

Net External Pressure = 53.8 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.969	7.5	7.7	OK
Unconstrained Collapse [psi]	58.8	128.1	2.2	OK
Compressive Wall Stress [psi]	103.0	1150.0	11.2	OK

Installation Analysis

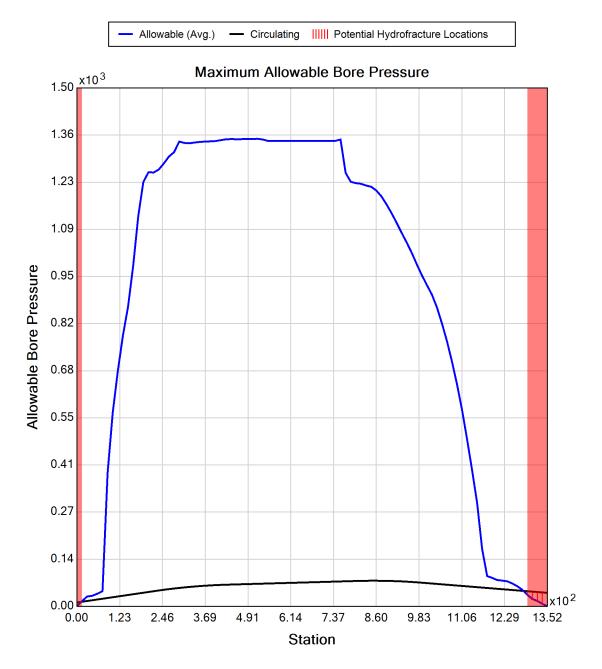
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	68.7	209.6	3.1	OK
Tensile Stress [psi]	779.6	1200.0	1.5	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1353.042 psi	1363.545 psi
1	8.75 in	12.00 in	1352.891 psi	1363.461 psi
2	12.00 in	12.94 in	1352.838 psi	1363.432 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 115 DWG C-315.2

Input Summary

Start Coordinate (0.00, 0.00, 33.87) ft End Coordinate (1349.00, 0.00, 54.01) ft

Project Length 1349.00 ft
Pipe Type PVC
OD Classification IPS

Pipe OD 12.750 in
Pipe DR 25.0
Pipe Thickness 0.51 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 12" (12.75")

Pipe DR: 25

Pipe Length: 1379.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.59400002161662 ft

Silo Width: 1.59400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.4	49.2
Water Pressure	20.0	20.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	27.4	69.2
Deflection		
Earth Load Deflection	3.855	25.520
Buoyant Deflection	0.237	0.237
Reissner Effect	0	0
Net Deflection	4.092	25.757
Compressive Stress [psi]		
Compressive Wall Stress	342.5	864.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15944.7	15944.7
Pullback Stress [psi]	813.0	813.0
Pullback Strain	2.033E-3	2.033E-3
Bending Stress [psi]	0.0	212.5
Bending Strain	0	5.313E-4
Tensile Stress [psi]	813.0	1023.4
Tensile Strain	2.033E-3	3.090E-3

Net External Pressure = 24.6 [psi]

Buoyant Deflection = 0.2

Hydrokinetic Force = 798.4 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.237	7.5	31.7	OK
Unconstrained Collapse [psi]	29.6	59.9	2.0	OK
Tensile Stress [psi]	1023.4	2800.0	2.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 Package 7A

Conduit 1 HDD 117 DWG C-317

Input Summary

Start Coordinate (0.00, 0.00, 100.79) ft End Coordinate (735.00, 0.00, 101.29) ft

Project Length 735.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SP

Depth: 2.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 29.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

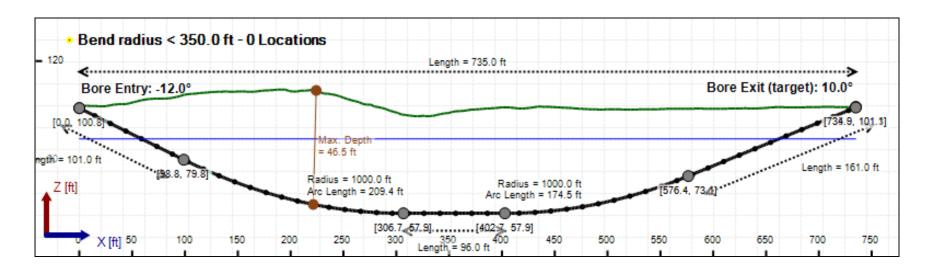
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Silt (M), MH

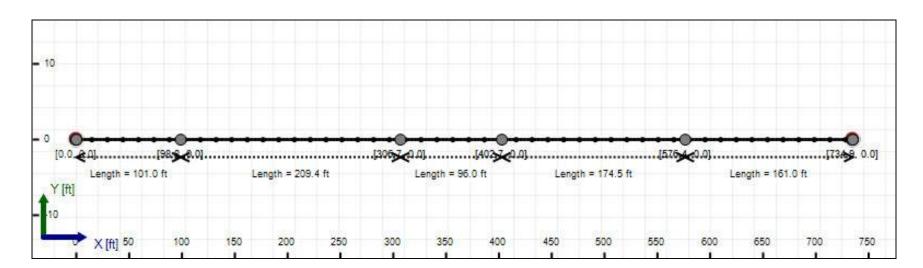
Depth: 10.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]


Soil Layer #6 USCS, Silt (M), ML

Depth: 37.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 750.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	20.0	26.3
Water Pressure	13.1	11.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	33.1	37.9
Deflection		
Earth Load Deflection	5.440	7.163
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	5.572	7.295
Compressive Stress [psi]		
Compressive Wall Stress	149.0	170.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	13164.4	13164.4
Pullback Stress [psi]	367.1	367.1
Pullback Strain	6.385E-3	6.385E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	367.1	392.7
Tensile Strain	6.385E-3	7.277E-3

Net External Pressure = 23.3 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.572	7.5	1.3	OK
Unconstrained Collapse [psi]	33.1	84.0	2.5	OK
Compressive Wall Stress [psi]	149.0	1150.0	7.7	OK

Installation Analysis

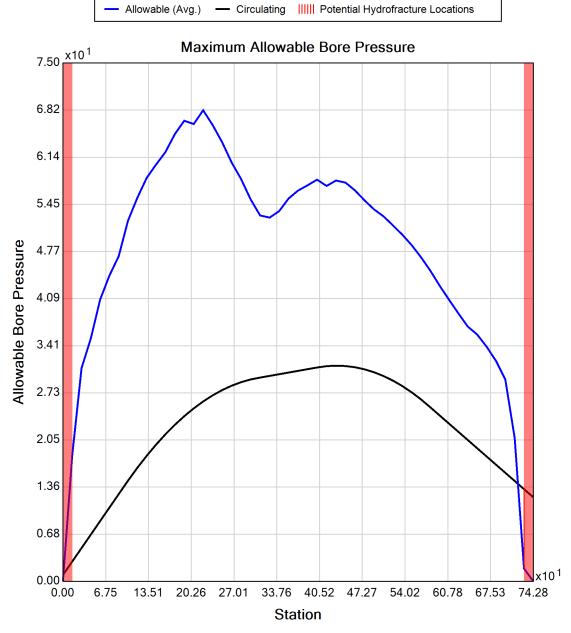
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	38.9	234.0	6.0	OK
Tensile Stress [psi]	392.7	1200.0	3.1	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	68.226 psi	57.625 psi
1	8.75 in	12.00 in	68.201 psi	57.594 psi
2	12.00 in	16.13 in	68.157 psi	57.541 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 117 DWG C-317.2

Input Summary

Start Coordinate (0.00, 0.00, 105.20) ft End Coordinate (790.00, 0.00, 101.50) ft

Project Length 790.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SP

Depth: 2.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 29.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Silt (M), MH

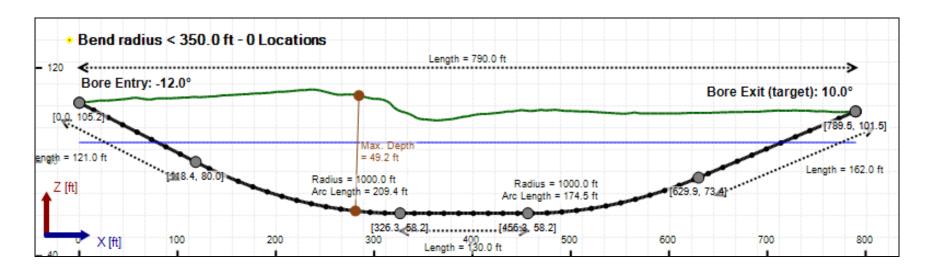
Depth: 10.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

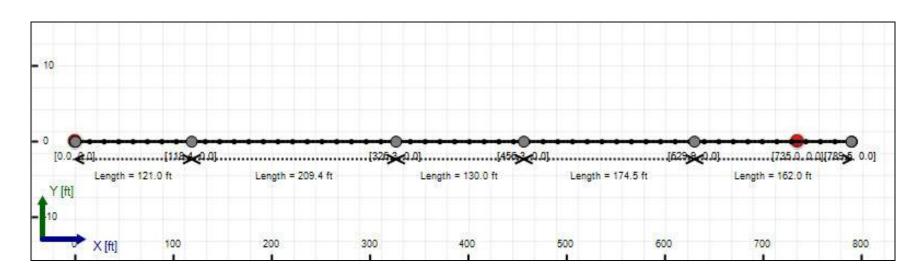
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #6 USCS, Silt (M), ML

Depth: 37.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]


HDD 117

DWG C-317.2

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 810.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	22.2	26.9
Water Pressure	13.0	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	35.3	39.5
Deflection		
Earth Load Deflection	6.056	7.481
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	6.188	7.613
Compressive Stress [psi]		
Compressive Wall Stress	158.7	177.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	14050.5	14050.5
Pullback Stress [psi]	391.8	391.8
Pullback Strain	6.815E-3	6.815E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	391.8	416.2
Tensile Strain	6.815E-3	7.686E-3

Net External Pressure = 26.2 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	6.188	7.5	1.2	OK
Unconstrained Collapse [psi]	35.3	79.5	2.3	OK
Compressive Wall Stress [psi]	158.7	1150.0	7.2	OK

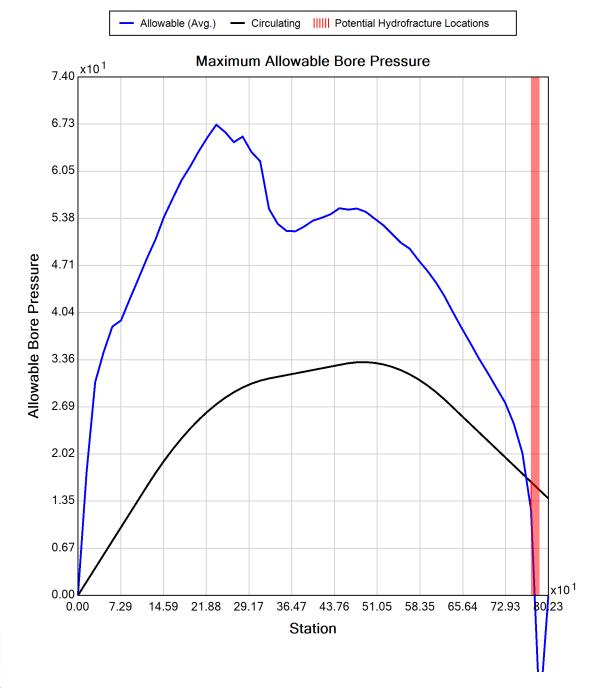
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	40.6	232.7	5.7	OK
Tensile Stress [psi]	416.2	1200.0	2.9	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	67.239 psi	59.266 psi
1	8.75 in	12.00 in	67.217 psi	59.239 psi
2	12.00 in	16.13 in	67.179 psi	59.192 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 117 DWG C-317.2

Input Summary

Start Coordinate (0.00, 0.00, 105.20) ft End Coordinate (790.00, 0.00, 101.50) ft

Project Length 790.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Powered by SoreAid

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SP

Depth: 2.00 ft

Unit Weight: 14.6454 (dry), 16.9323 (sat) [lb/US (liquid) gallon]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 29.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Silt (M), MH

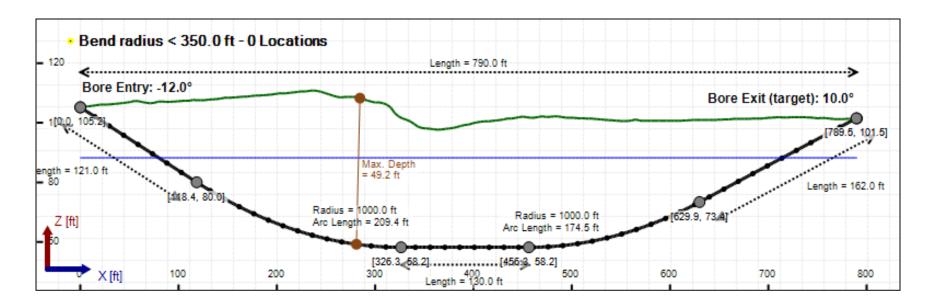
Depth: 10.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

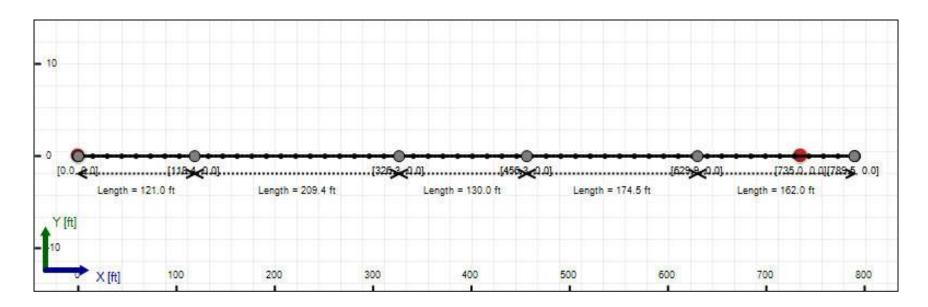
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #6 USCS, Silt (M), ML

Depth: 37.00 ft


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]


HDD 117

DWG C-317.2

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 810.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	22.2	26.9
Water Pressure	13.0	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	35.3	39.5
Deflection		
Earth Load Deflection	6.056	7.481
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	6.099	7.524
Compressive Stress [psi]		
Compressive Wall Stress	158.7	177.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1602.0	1602.0
Pullback Stress [psi]	421.5	421.5
Pullback Strain	7.330E-3	7.330E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	421.5	428.5
Tensile Strain	7.330E-3	7.597E-3

Net External Pressure = 26.2 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	6.099	7.5	1.2	OK
Unconstrained Collapse [psi]	35.3	80.2	2.3	OK
Compressive Wall Stress [psi]	158.7	1150.0	7.2	OK

Installation Analysis

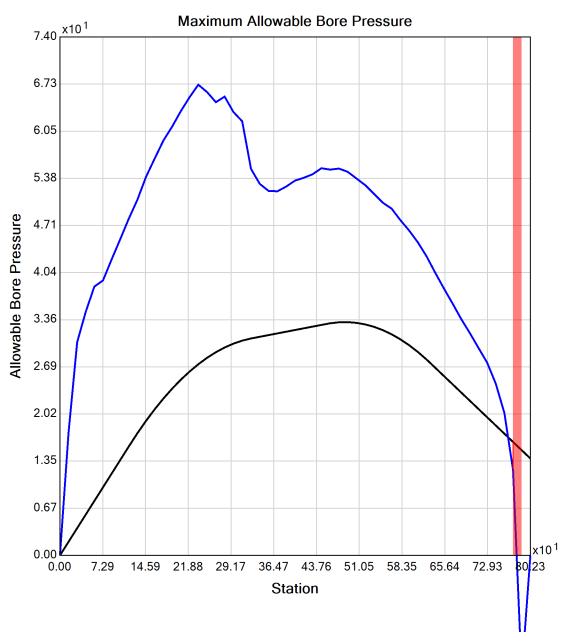
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	40.6	232.8	5.7	OK
Tensile Stress [psi]	428.5	1200.0	2.8	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	67.239 psi	59.266 psi
1	8.75 in	12.00 in	67.217 psi	59.239 psi
2	12.00 in	16.13 in	67.179 psi	59.192 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 117 DWG C-317.2

Input Summary

Start Coordinate (0.00, 0.00, 105.20) ft End Coordinate (790.00, 0.00, 101.50) ft

Project Length 790.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 810.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	22.2	26.9
Water Pressure	13.0	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	35.3	39.5
Deflection		
Earth Load Deflection	27.829	34.373
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	28.519	35.063
Compressive Stress [psi]		
Compressive Wall Stress	252.2	282.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11898.2	11898.2
Pullback Stress [psi]	297.1	297.1
Pullback Strain	5.167E-3	5.167E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	330.6	330.6
Tensile Strain	6.334E-3	6.334E-3

Net External Pressure = 16.1 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	20.2	50.2	2.5	OK
Tensile Stress [psi]	330.6	1200.0	3.6	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 118 DWG C-318

Input Summary

Start Coordinate (0.00, 0.00, 134.19) ft End Coordinate (850.00, 0.00, 122.96) ft

Project Length 850.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Gravel (G), GW

From Assistant

Unit Weight: 17.3250 (dry), 18.9651 (sat) [lb/US (liquid) gallon]

Phi: 40.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

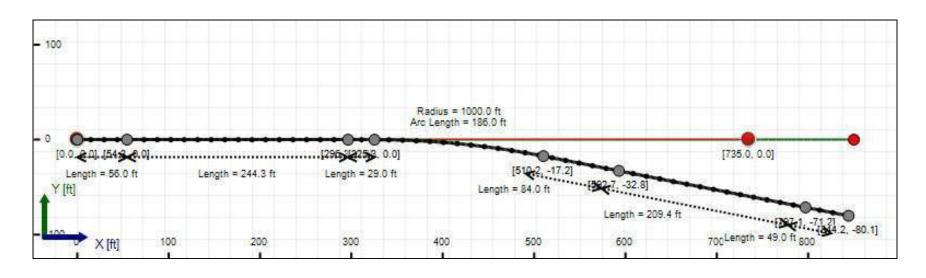
From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 869.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	21.0	31.9
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.0	31.9
Deflection		
Earth Load Deflection	5.731	8.693
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	5.863	8.825
Compressive Stress [psi]		
Compressive Wall Stress	94.7	143.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15404.2	15404.2
Pullback Stress [psi]	429.6	429.6
Pullback Strain	7.471E-3	7.471E-3
Bending Stress [psi]	25.8	25.8
Bending Strain	4.479E-4	4.479E-4
Tensile Stress [psi]	455.4	455.4
Tensile Strain	8.367E-3	8.367E-3

Net External Pressure = 19.4 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.863	7.5	1.3	OK
Unconstrained Collapse [psi]	27.8	81.9	2.9	OK
Compressive Wall Stress [psi]	94.7	1150.0	12.1	OK

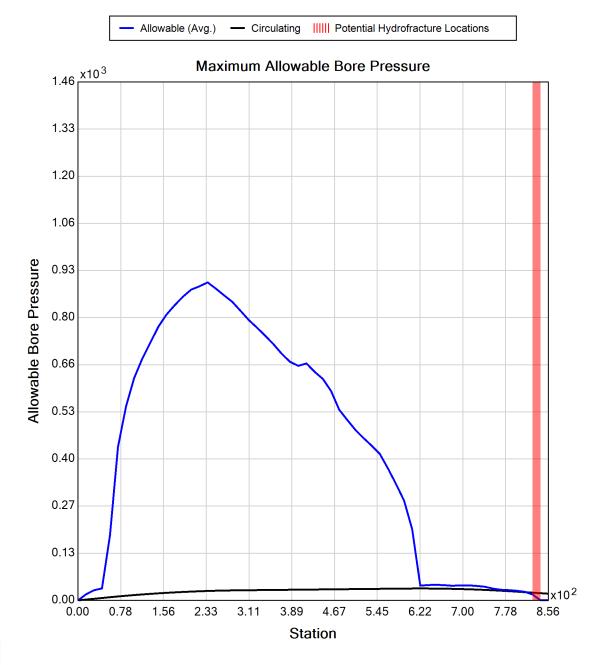
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	38.1	230.3	6.0	OK
Tensile Stress [psi]	455.4	1200.0	2.6	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	897.089 psi	1329.070 psi
1	8.75 in	12.00 in	896.960 psi	1328.895 psi
2	12.00 in	16.13 in	896.737 psi	1328.594 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 118 DWG C-318.2

Input Summary

Start Coordinate (0.00, 0.00, 133.93) ft End Coordinate (854.50, 0.00, 121.52) ft

Project Length 854.50 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Gravel (G), GW

From Assistant

Unit Weight: 17.3250 (dry), 18.9651 (sat) [lb/US (liquid) gallon]

Phi: 40.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

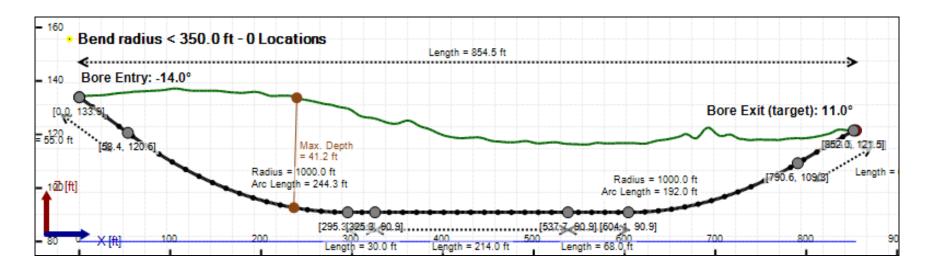
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

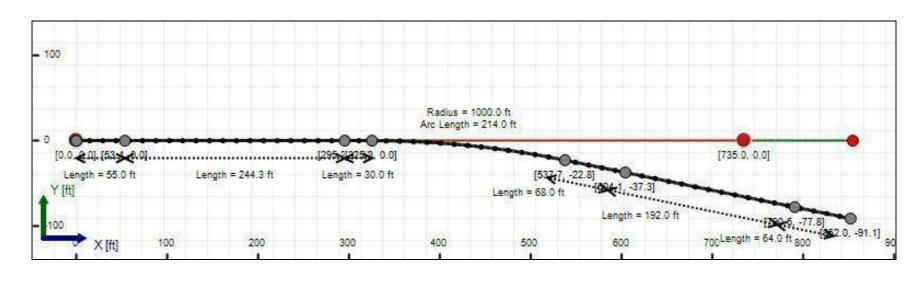
From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 869.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	18.8	31.2
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.8	31.2
Deflection		
Earth Load Deflection	5.112	8.492
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	5.244	8.624
Compressive Stress [psi]		
Compressive Wall Stress	84.5	140.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15189.1	15189.1
Pullback Stress [psi]	423.6	423.6
Pullback Strain	7.367E-3	7.367E-3
Bending Stress [psi]	25.8	25.8
Bending Strain	4.479E-4	4.479E-4
Tensile Stress [psi]	449.4	449.4
Tensile Strain	8.263E-3	8.263E-3

Net External Pressure = 19.4 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.244	7.5	1.4	OK
Unconstrained Collapse [psi]	27.9	87.2	3.1	OK
Compressive Wall Stress [psi]	84.5	1150.0	13.6	OK

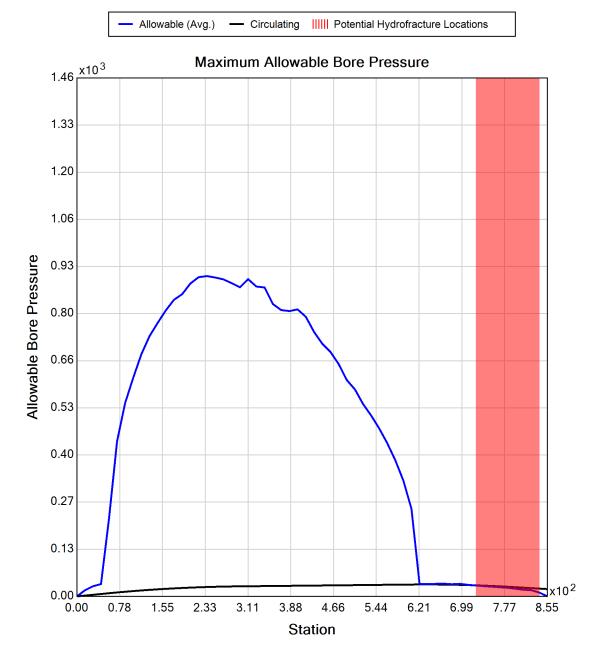
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	37.9	230.5	6.1	OK
Tensile Stress [psi]	449.4	1200.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	903.243 psi	1328.445 psi
1	8.75 in	12.00 in	903.110 psi	1328.261 psi
2	12.00 in	16.13 in	902.881 psi	1327.943 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 118 DWG C-318.2

Input Summary

Start Coordinate (0.00, 0.00, 133.93) ft End Coordinate (854.50, 0.00, 121.52) ft

Project Length 854.50 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Gravel (G), GW

From Assistant

Unit Weight: 17.3250 (dry), 18.9651 (sat) [lb/US (liquid) gallon]

Phi: 40.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

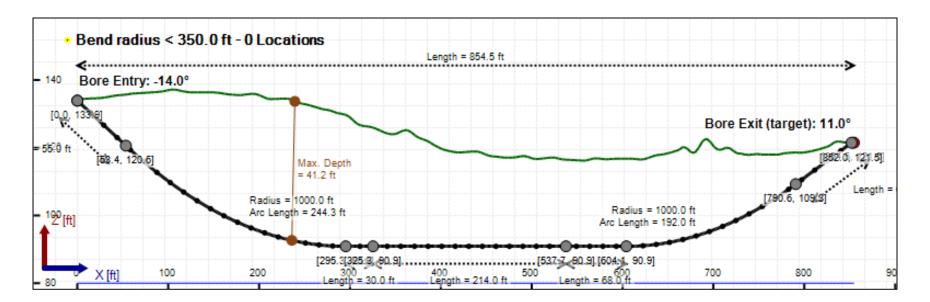
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

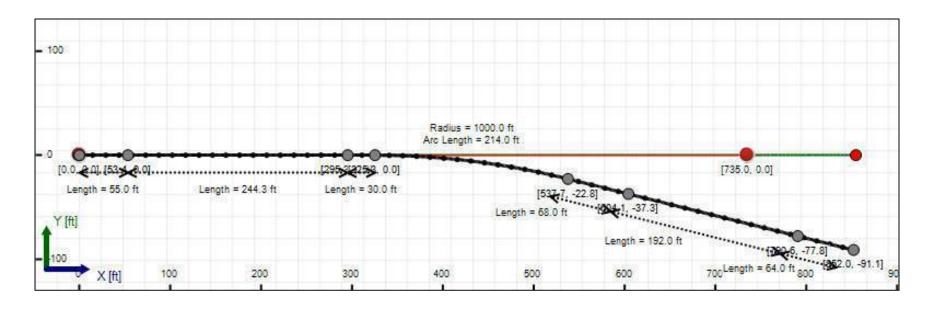
From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 869.99 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	18.8	31.2
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.8	31.2
Deflection		
Earth Load Deflection	5.112	8.492
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	5.155	8.535
Compressive Stress [psi]		
Compressive Wall Stress	84.5	140.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1722.7	1722.7
Pullback Stress [psi]	453.2	453.2
Pullback Strain	7.882E-3	7.882E-3
Bending Stress [psi]	8.4	8.4
Bending Strain	1.458E-4	1.458E-4
Tensile Stress [psi]	461.6	461.6
Tensile Strain	8.174E-3	8.174E-3

Net External Pressure = 19.4 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.155	7.5	1.5	OK
Unconstrained Collapse [psi]	27.9	87.8	3.2	OK
Compressive Wall Stress [psi]	84.5	1150.0	13.6	OK

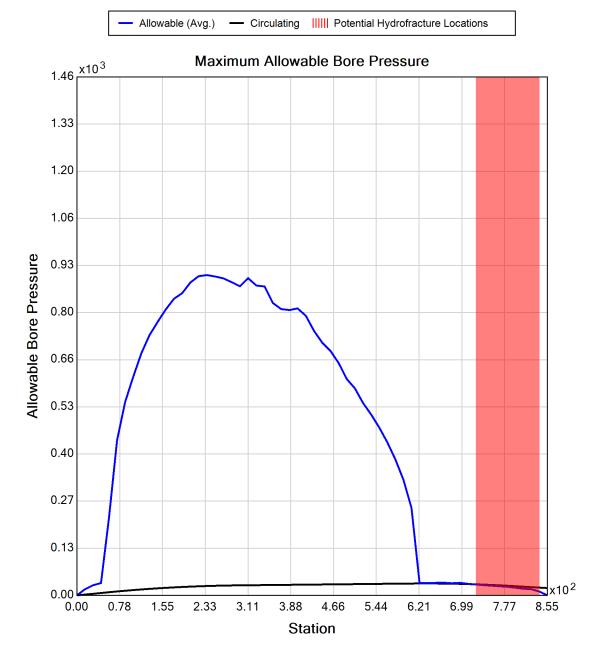
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	37.9	230.5	6.1	OK
Tensile Stress [psi]	461.6	1200.0	2.6	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	903.243 psi	1328.445 psi
1	8.75 in	12.00 in	903.110 psi	1328.261 psi
2	12.00 in	16.13 in	902.881 psi	1327.943 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 118 DWG C-318.2

Input Summary

Start Coordinate (0.00, 0.00, 133.93) ft End Coordinate (854.50, 0.00, 121.52) ft

Project Length 854.50 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 869.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	18.8	31.2
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.8	31.2
Deflection		
Earth Load Deflection	23.489	39.021
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	24.179	39.711
Compressive Stress [psi]		
Compressive Wall Stress	134.2	222.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12736.8	12736.8
Pullback Stress [psi]	318.0	318.0
Pullback Strain	5.531E-3	5.531E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	351.6	351.6
Tensile Strain	6.698E-3	6.698E-3

Net External Pressure = 15.2 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	19.3	49.9	2.6	OK
Tensile Stress [psi]	351.6	1200.0	3.4	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 119 DWG C-319

Input Summary

Start Coordinate (0.00, 0.00, 94.50) ft End Coordinate (840.00, 0.00, 116.17) ft

Project Length 840.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Clay (C), CL

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 32.00, S.M.: 100.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH

From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #4 USCS, Silt (M), ML

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

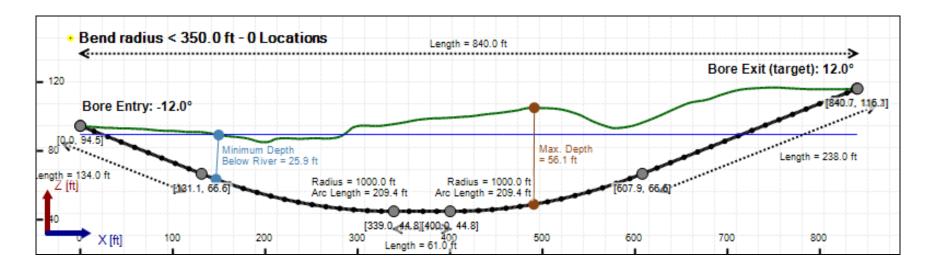
Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Silt (M), MH

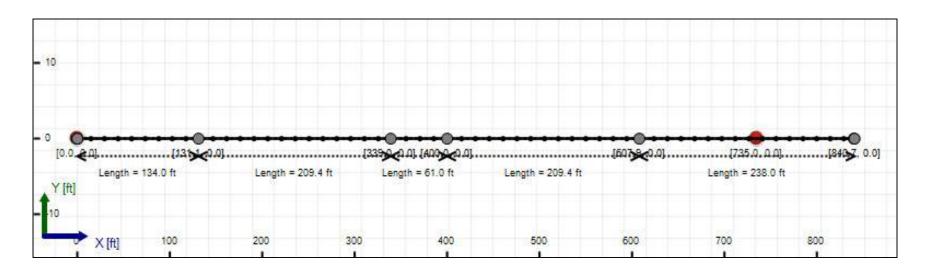
From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]


Soil Layer #6 USCS, Clay (C), CL

From Assistant


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 855.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.1	24.7
Water Pressure	19.4	18.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	22.5	43.6
Deflection		
Earth Load Deflection	2.065	4.733
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	2.125	4.793
Compressive Stress [psi]		
Compressive Wall Stress	202.3	392.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11045.4	11045.4
Pullback Stress [psi]	900.8	900.8
Pullback Strain	2.252E-3	2.252E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	900.8	1042.5
Tensile Strain	2.252E-3	2.966E-3

Net External Pressure = 40.7 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.125	7.5	3.5	OK
Unconstrained Collapse [psi]	46.8	179.8	3.8	OK
Compressive Wall Stress [psi]	202.3	3200.0	15.8	OK

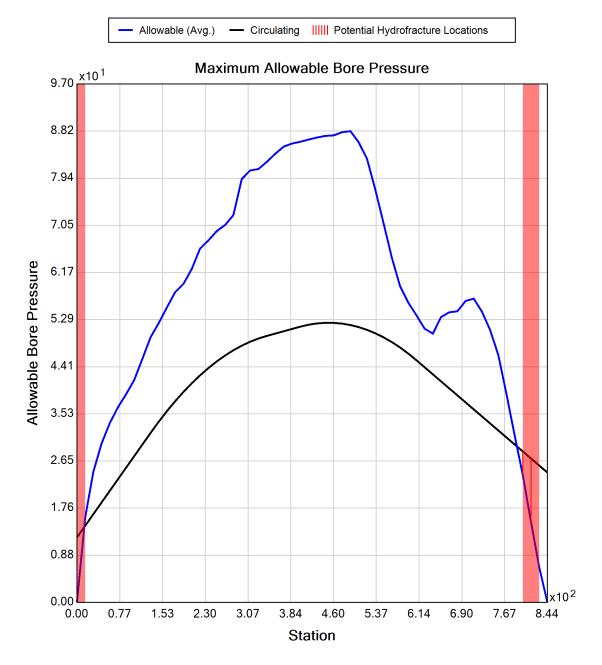
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	56.8	171.9	3.0	OK
Tensile Stress [psi]	1042.5	2800.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	88.204 psi	77.160 psi
1	8.75 in	12.00 in	88.177 psi	77.154 psi
2	12.00 in	12.94 in	88.167 psi	77.151 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 119 DWG C-319.2

Input Summary

Start Coordinate (0.00, 0.00, 95.00) ft End Coordinate (840.00, 0.00, 116.84) ft

Project Length 840.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Clay (C), CL

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 32.00, S.M.: 100.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH

From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #4 USCS, Silt (M), ML

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

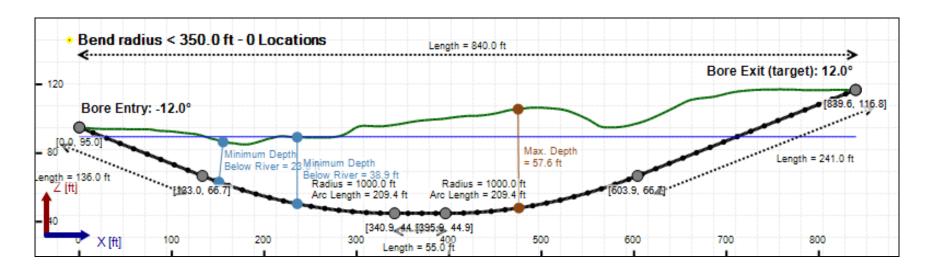
Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Silt (M), MH

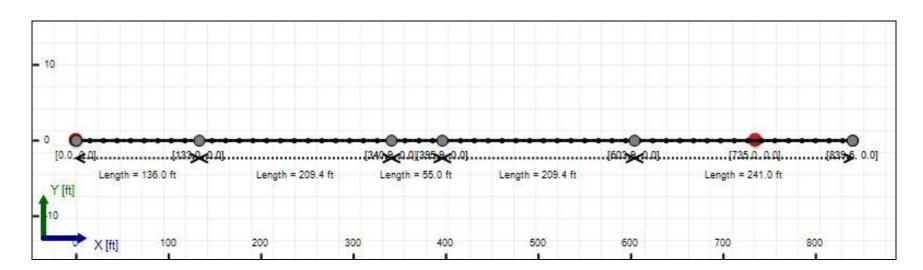
From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]


Soil Layer #6 USCS, Clay (C), CL

From Assistant


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 855.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.2	26.0
Water Pressure	19.3	18.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	22.5	44.4
Deflection		
Earth Load Deflection	2.000	4.869
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	2.060	4.928
Compressive Stress [psi]		
Compressive Wall Stress	202.6	400.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11066.5	11066.5
Pullback Stress [psi]	902.5	902.5
Pullback Strain	2.256E-3	2.256E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	902.5	1039.5
Tensile Strain	2.256E-3	2.958E-3

Net External Pressure = 41.0 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.060	7.5	3.6	OK
Unconstrained Collapse [psi]	47.3	179.6	3.8	OK
Compressive Wall Stress [psi]	202.6	3200.0	15.8	OK

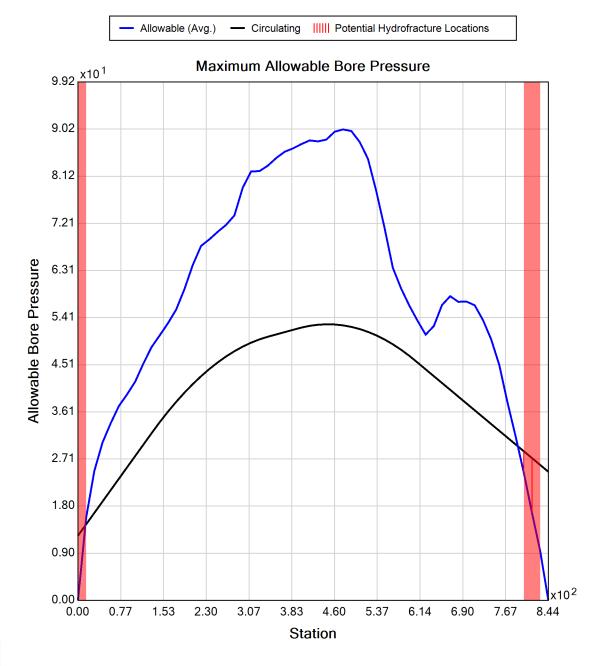
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	57.4	172.1	3.0	OK
Tensile Stress [psi]	1039.5	2800.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	90.150 psi	78.459 psi
1	8.75 in	12.00 in	90.124 psi	78.453 psi
2	12.00 in	12.94 in	90.115 psi	78.450 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 119 DWG C-319.2

Input Summary

Start Coordinate (0.00, 0.00, 95.00) ft End Coordinate (840.00, 0.00, 116.84) ft

Project Length 840.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Clay (C), CL

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 32.00, S.M.: 100.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH

From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #4 USCS, Silt (M), ML

From Assistant

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

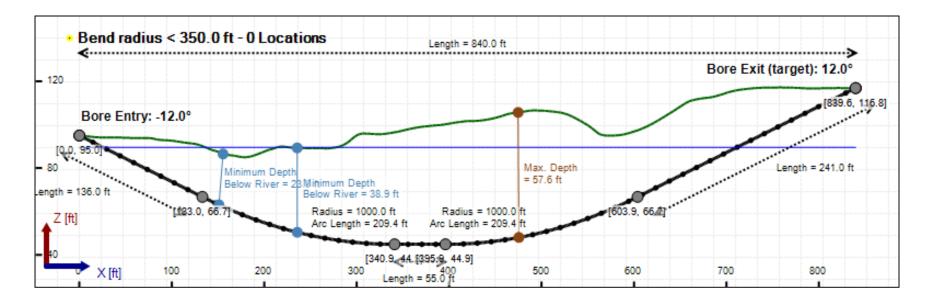
Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Silt (M), MH

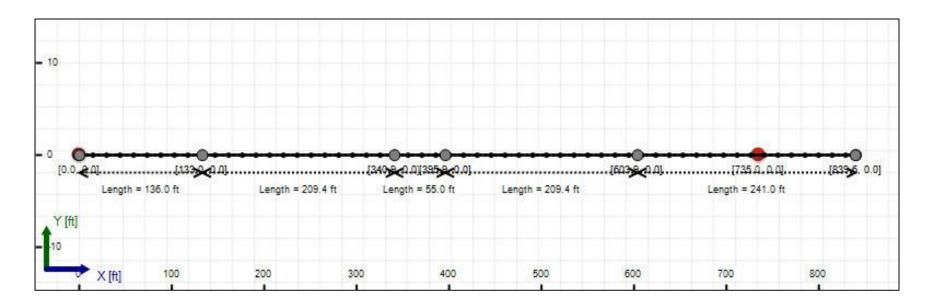
From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]


Soil Layer #6 USCS, Clay (C), CL

From Assistant


Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 855.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.8	26.0
Water Pressure	19.3	18.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.2	44.4
Deflection		
Earth Load Deflection	2.475	7.197
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	2.518	7.240
Compressive Stress [psi]		
Compressive Wall Stress	95.3	200.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1862.3	1862.3
Pullback Stress [psi]	490.0	490.0
Pullback Strain	8.521E-3	8.521E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	490.0	496.4
Tensile Strain	8.521E-3	8.780E-3

Net External Pressure = 43.0 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.518	7.5	3.0	OK
Unconstrained Collapse [psi]	47.3	131.5	2.8	OK
Compressive Wall Stress [psi]	95.3	1150.0	12.1	OK

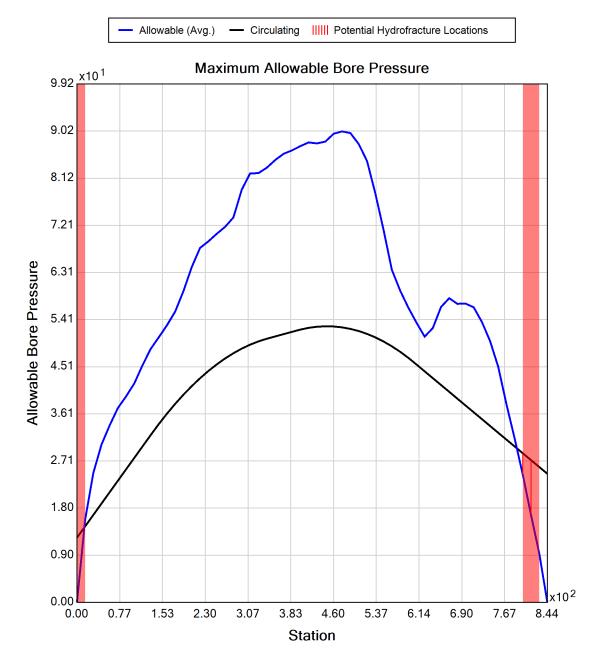
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	57.4	228.6	4.0	OK
Tensile Stress [psi]	496.4	1200.0	2.4	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	90.150 psi	78.459 psi
1	8.75 in	12.00 in	90.124 psi	78.453 psi
2	12.00 in	12.94 in	90.115 psi	78.450 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 119 DWG C-319.2

Input Summary

Start Coordinate (0.00, 0.00, 95.00) ft End Coordinate (840.00, 0.00, 116.84) ft

Project Length 840.00 ft
Pipe Type PVC
OD Classification IPS

Pipe OD 12.750 in
Pipe DR 25.0
Pipe Thickness 0.51 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 12" (12.75")

Pipe DR: 25

Pipe Length: 855.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.59400002161662 ft

Silo Width: 1.59400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.8	26.0
Water Pressure	19.3	18.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	24.0	44.4
Deflection		
Earth Load Deflection	6.121	13.699
Buoyant Deflection	0.237	0.237
Reissner Effect	0	0
Net Deflection	6.357	13.936
Compressive Stress [psi]		
Compressive Wall Stress	300.1	555.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	9974.7	9974.7
Pullback Stress [psi]	508.6	508.6
Pullback Strain	1.272E-3	1.272E-3
Bending Stress [psi]	0.0	212.5
Bending Strain	0	5.313E-4
Tensile Stress [psi]	508.6	720.8
Tensile Strain	1.272E-3	2.333E-3

Net External Pressure = 21.0 [psi]

Buoyant Deflection = 0.2

Hydrokinetic Force = 798.4 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.237	7.5	31.7	OK
Unconstrained Collapse [psi]	25.8	61.9	2.4	OK
Tensile Stress [psi]	720.8	2800.0	3.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 120 DWG C-320

Input Summary

Start Coordinate (0.00, 0.00, 119.72) ft End Coordinate (1470.00, 0.00, 122.35) ft

Project Length 1470.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Clay (C), CH

Depth: 25.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #2 USCS, Silt (M), MH

Depth: 20.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

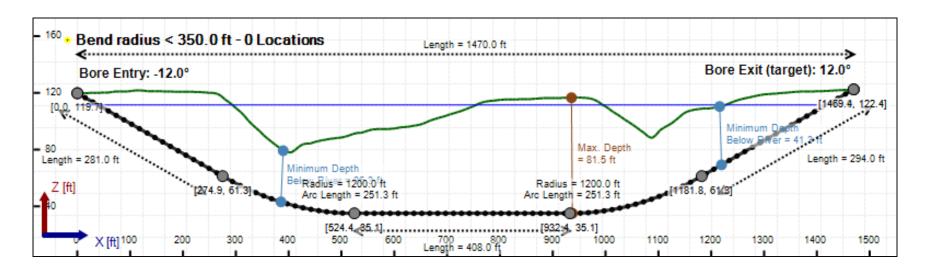
Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

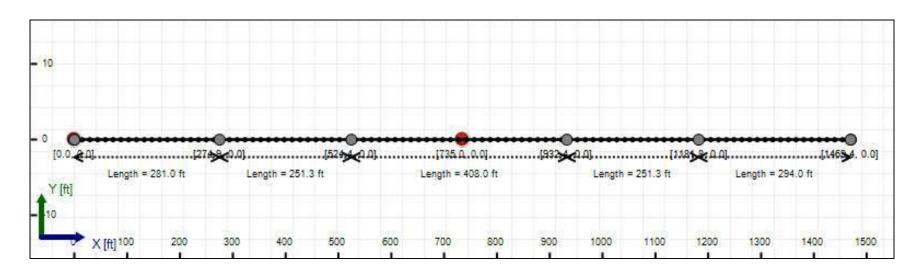
Depth: 10.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 38.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.9	46.6
Water Pressure	33.1	33.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	37.0	79.7
Deflection		
Earth Load Deflection	3.493	8.589
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	3.553	8.649
Compressive Stress [psi]		
Compressive Wall Stress	333.2	717.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17770.9	17770.9
Pullback Stress [psi]	1449.2	1449.2
Pullback Strain	3.623E-3	3.623E-3
Bending Stress [psi]	0.0	119.8
Bending Strain	0	2.995E-4
Tensile Stress [psi]	1449.2	1563.6
Tensile Strain	3.623E-3	4.209E-3

Net External Pressure = 50.2 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

HDD 120 DWG C-320

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	3.553	7.5	2.1	OK
Unconstrained Collapse [psi]	58.7	177.4	3.0	OK
Compressive Wall Stress [psi]	333.2	3200.0	9.6	OK

Installation Analysis

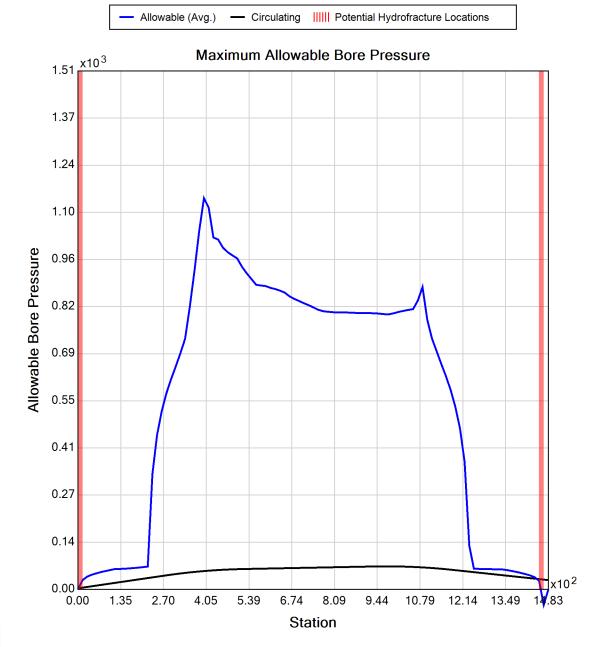
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	68.6	161.6	2.4	OK
Tensile Stress [psi]	1563.6	2800.0	1.8	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1141.125 psi	1374.555 psi
1	8.75 in	12.00 in	1140.919 psi	1374.507 psi
2	12.00 in	12.94 in	1140.848 psi	1374.491 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min

Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 120 DWG C-320.2

Input Summary

Start Coordinate (0.00, 0.00, 121.03) ft End Coordinate (1470.00, 0.00, 122.91) ft

Project Length 1470.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Clay (C), CH

Depth: 25.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #2 USCS, Silt (M), MH

Depth: 20.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

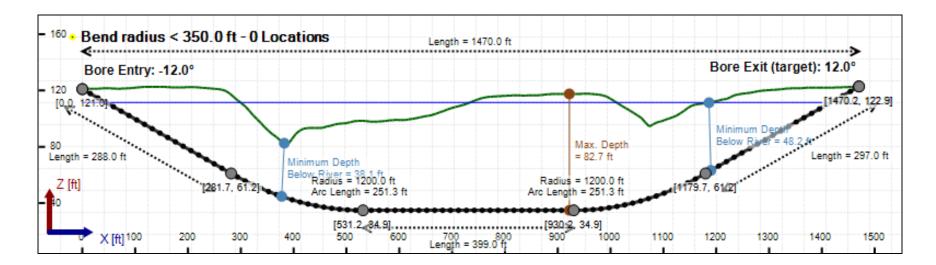
Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

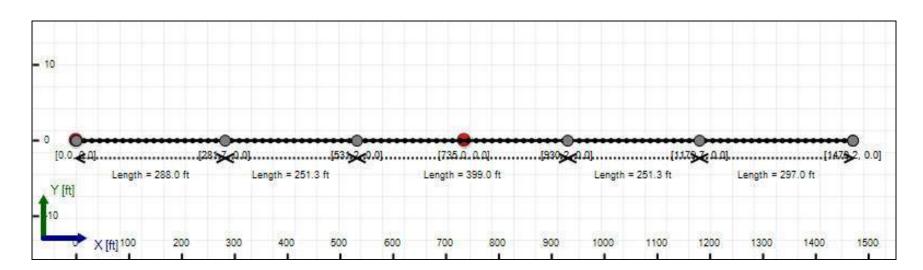
Depth: 10.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 38.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.9	48.0
Water Pressure	33.2	33.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	37.0	81.2
Deflection		
Earth Load Deflection	3.588	8.842
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	3.648	8.901
Compressive Stress [psi]		
Compressive Wall Stress	333.3	730.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17741.1	17741.1
Pullback Stress [psi]	1446.8	1446.8
Pullback Strain	3.617E-3	3.617E-3
Bending Stress [psi]	0.0	119.8
Bending Strain	0	2.995E-4
Tensile Stress [psi]	1446.8	1557.5
Tensile Strain	3.617E-3	4.193E-3

Net External Pressure = 49.5 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	3.648	7.5	2.1	OK
Unconstrained Collapse [psi]	59.0	177.6	3.0	OK
Compressive Wall Stress [psi]	333.3	3200.0	9.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	69.0	161.8	2.3	OK
Tensile Stress [psi]	1557.5	2800.0	1.8	OK

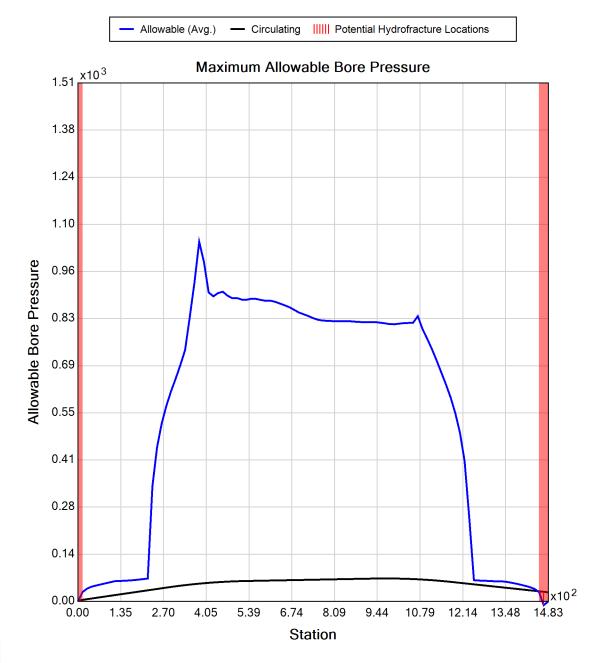
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1050.059 psi	1375.763 psi
1	8.75 in	12.00 in	1049.885 psi	1375.717 psi
2	12.00 in	12.94 in	1049.825 psi	1375.701 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

HDD 120

DWG C-320.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 120 DWG C-320.2

Input Summary

Start Coordinate (0.00, 0.00, 121.03) ft End Coordinate (1470.00, 0.00, 122.91) ft

Project Length 1470.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Clay (C), CH

Depth: 25.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #2 USCS, Silt (M), MH

Depth: 20.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

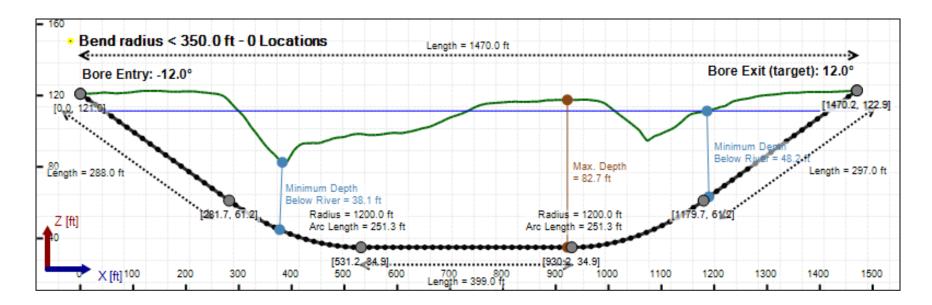
Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks

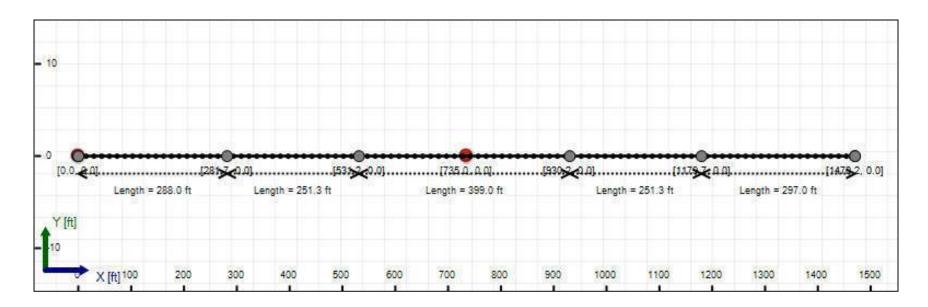
Depth: 10.00 ft

Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

Depth: 38.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	19.5	48.0
Water Pressure	16.1	33.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	35.6	81.2
Deflection		
Earth Load Deflection	5.304	13.070
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	5.347	13.113
Compressive Stress [psi]		
Compressive Wall Stress	160.2	365.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	2939.3	2939.3
Pullback Stress [psi]	773.3	773.3
Pullback Strain	1.345E-2	1.345E-2
Bending Stress [psi]	0.0	7.0
Bending Strain	0	1.215E-4
Tensile Stress [psi]	773.3	777.1
Tensile Strain	1.345E-2	1.364E-2

Net External Pressure = 51.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.347	7.5	1.4	OK
Unconstrained Collapse [psi]	59.0	130.3	2.2	OK
Compressive Wall Stress [psi]	160.2	1150.0	7.2	OK

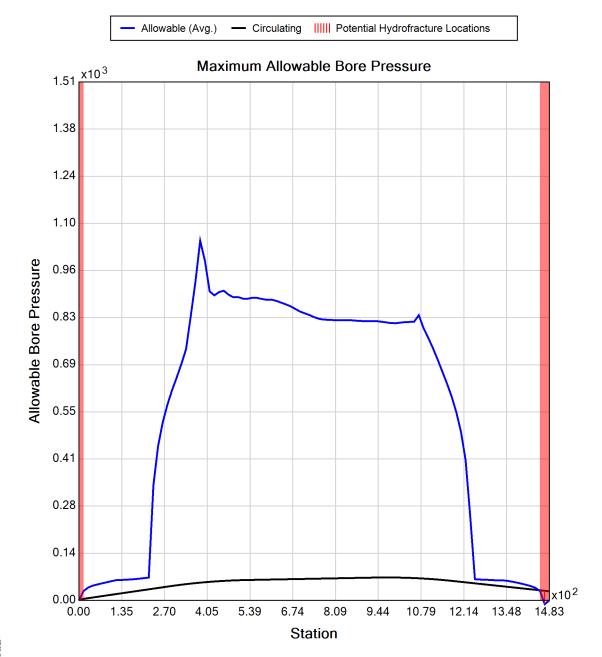
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	69.0	210.2	3.0	OK
Tensile Stress [psi]	777.1	1200.0	1.5	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1050.059 psi	1375.763 psi
1	8.75 in	12.00 in	1049.885 psi	1375.717 psi
2	12.00 in	12.94 in	1049.825 psi	1375.701 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 120 DWG C-320.2

Input Summary

Start Coordinate (0.00, 0.00, 121.03) ft End Coordinate (1470.00, 0.00, 122.91) ft

Project Length 1470.00 ft
Pipe Type PVC
OD Classification IPS

Pipe OD 12.750 in
Pipe DR 25.0
Pipe Thickness 0.51 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 12" (12.75")

Pipe DR: 25

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.59400002161662 ft

Silo Width: 1.59400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.7	48.0
Water Pressure	33.2	33.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	38.9	81.2
Deflection		
Earth Load Deflection	10.096	24.878
Buoyant Deflection	0.237	0.237
Reissner Effect	0	0
Net Deflection	10.333	25.115
Compressive Stress [psi]		
Compressive Wall Stress	486.0	1014.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16016.5	16016.5
Pullback Stress [psi]	816.7	816.7
Pullback Strain	2.042E-3	2.042E-3
Bending Stress [psi]	0.0	177.1
Bending Strain	0	4.427E-4
Tensile Stress [psi]	816.7	992.0
Tensile Strain	2.042E-3	2.923E-3

Net External Pressure = 23.9 [psi]

Buoyant Deflection = 0.2

Hydrokinetic Force = 798.4 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.237	7.5	31.7	OK
Unconstrained Collapse [psi]	29.7	60.1	2.0	OK
Tensile Stress [psi]	992.0	2800.0	2.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 121 DWG C-321

Input Summary

Start Coordinate (0.00, 0.00, 95.95) ft End Coordinate (1740.00, 0.00, 90.57) ft

Project Length 1740.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Powered by BoreAid

Soil Summary

Number of Layers: 9

Soil Layer #1 USCS, Gravel (G), GM

Depth: 2.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Clay (C), CH

Depth: 5.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #6 USCS, Clay (C), CH

Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #7 USCS, Clay (C), CL

Depth: 5.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

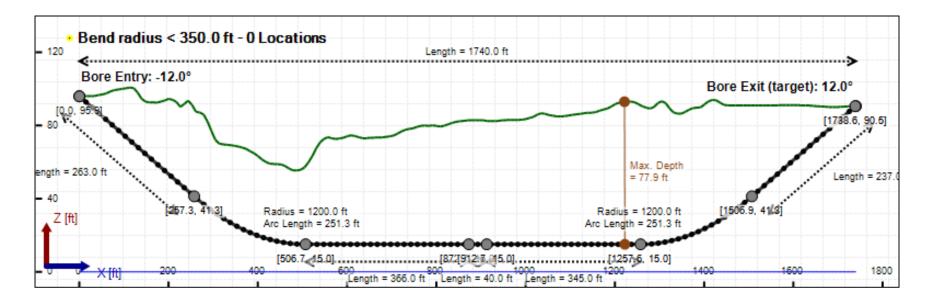
Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #8 USCS, Clay (C), CH

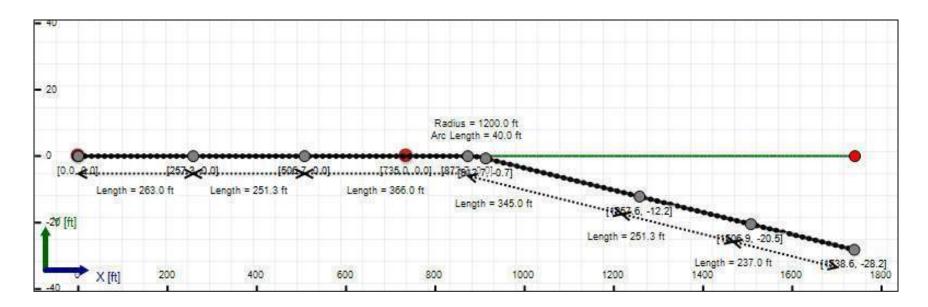
Depth: 15.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #9 Rock, Geological Classification, Sedimentary Rocks

Depth: 40.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1755.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	25.5	54.6
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	25.5	54.6
Deflection		
Earth Load Deflection	4.706	10.066
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	4.766	10.126
Compressive Stress [psi]		
Compressive Wall Stress	229.9	491.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	20139.5	20139.5
Pullback Stress [psi]	1642.4	1642.4
Pullback Strain	4.106E-3	4.106E-3
Bending Stress [psi]	0.0	119.8
Bending Strain	0	2.995E-4
Tensile Stress [psi]	1642.4	1754.2
Tensile Strain	4.106E-3	4.685E-3

Net External Pressure = 44.5 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.766	7.5	1.6	OK
Unconstrained Collapse [psi]	52.6	175.1	3.3	OK
Compressive Wall Stress [psi]	229.9	3200.0	13.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	62.5	157.6	2.5	OK
Tensile Stress [psi]	1754.2	2800.0	1.6	OK

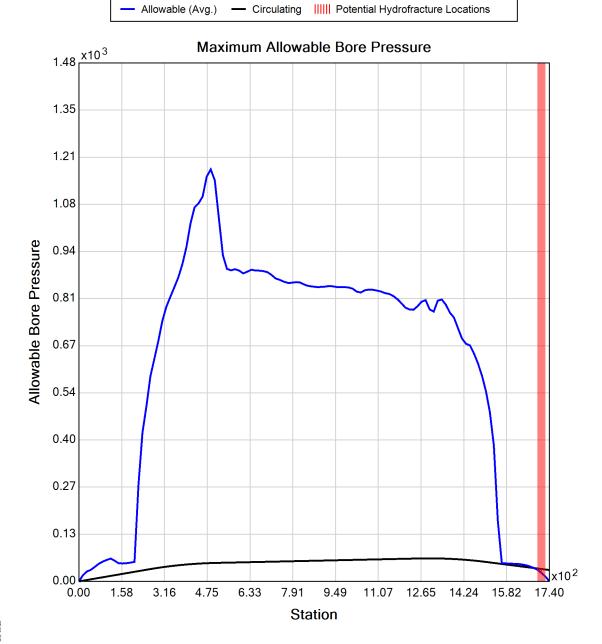
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	1178.678 psi	1348.113 psi
1	8.75 in	12.00 in	1178.499 psi	1348.061 psi
2	12.00 in	12.94 in	1178.438 psi	1348.043 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

HDD 121 DWG C-321

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 121 DWG C-321.2

Input Summary

Start Coordinate (0.00, 0.00, 96.04) ft End Coordinate (1740.00, 0.00, 91.39) ft

Project Length 1740.00 ft PVC Pipe Type **OD** Classification **IPS** Pipe OD 8.625 in Pipe DR 18.0 Pipe Thickness 0.48 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 9

Soil Layer #1 USCS, Gravel (G), GM

Depth: 2.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Clay (C), CH

Depth: 5.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #6 USCS, Clay (C), CH

Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

HDD 121

DWG C-321.2

Soil Layer #7 USCS, Clay (C), CL

Depth: 5.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

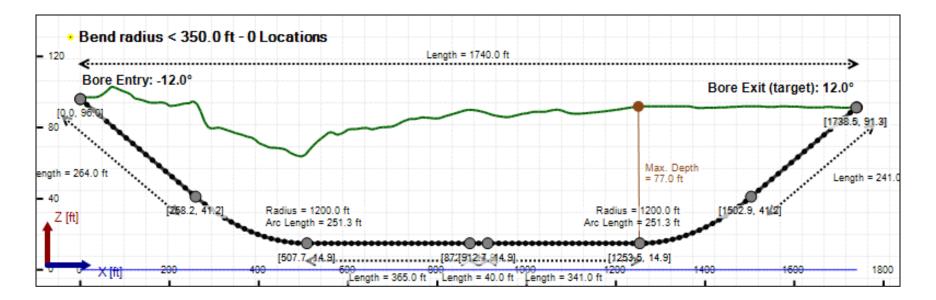
Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #8 USCS, Clay (C), CH

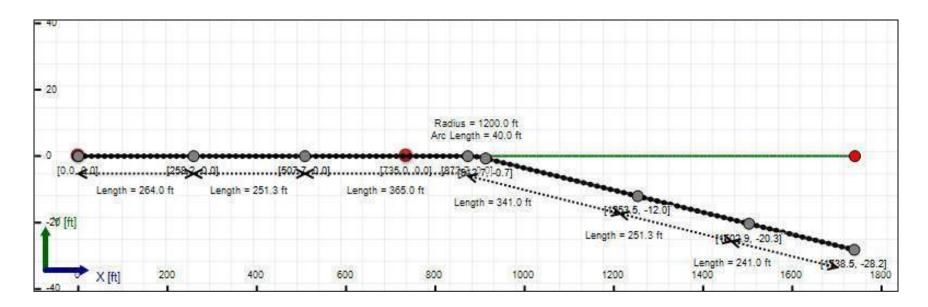
Depth: 15.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #9 Rock, Geological Classification, Sedimentary Rocks

Depth: 40.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625")

Pipe DR: 18

Pipe Length: 1755.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.07799990971883 ft

Silo Width: 1.07799990971883 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	26.2	53.9
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	26.2	53.9
Deflection		
Earth Load Deflection	4.835	9.923
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	4.895	9.983
Compressive Stress [psi]		
Compressive Wall Stress	236.2	484.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	20172.6	20172.6
Pullback Stress [psi]	1645.1	1645.1
Pullback Strain	4.113E-3	4.113E-3
Bending Stress [psi]	0.0	119.8
Bending Strain	0	2.995E-4
Tensile Stress [psi]	1645.1	1757.4
Tensile Strain	4.113E-3	4.693E-3

Net External Pressure = 44.5 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.895	7.5	1.5	OK
Unconstrained Collapse [psi]	52.7	175.2	3.3	OK
Compressive Wall Stress [psi]	236.2	3200.0	13.5	OK

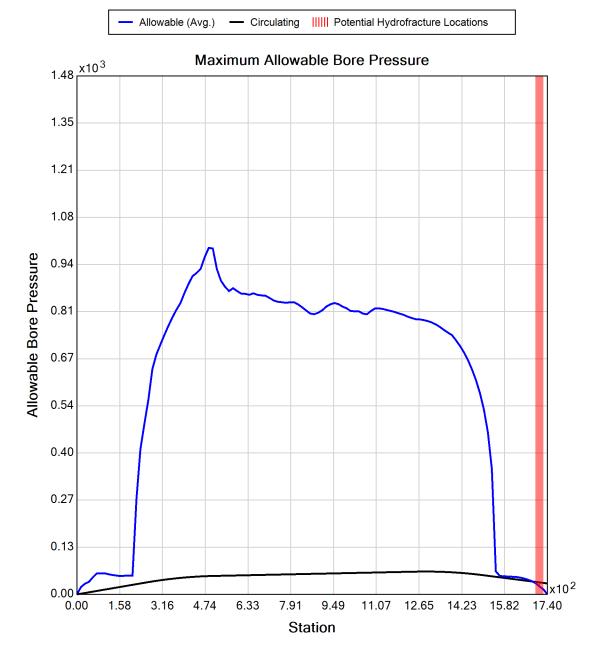
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	62.6	157.5	2.5	OK
Tensile Stress [psi]	1757.4	2800.0	1.6	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	990.680 psi	1347.467 psi
1	8.75 in	12.00 in	990.576 psi	1347.414 psi
2	12.00 in	12.94 in	990.541 psi	1347.395 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 594.1

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 121 DWG C-321.2

Input Summary

Start Coordinate (0.00, 0.00, 96.04) ft End Coordinate (1740.00, 0.00, 91.39) ft

Project Length 1740.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 9

Soil Layer #1 USCS, Gravel (G), GM

Depth: 2.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Silt (M), ML

Depth: 4.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML

Depth: 2.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #5 USCS, Clay (C), CH

Depth: 5.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

Soil Layer #6 USCS, Clay (C), CH

Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]

HDD 121

DWG C-321.2

Soil Layer #7 USCS, Clay (C), CL

Depth: 5.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

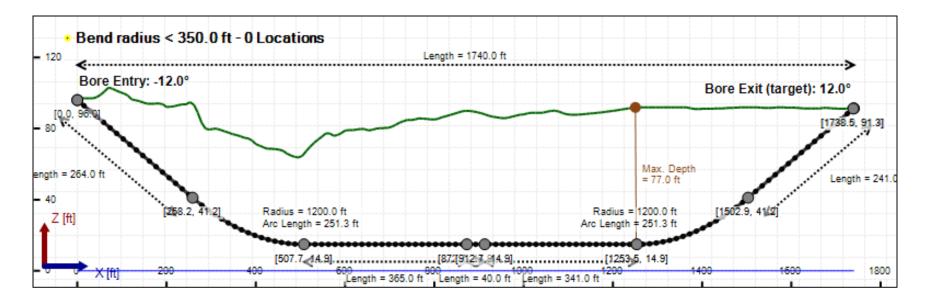
Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #8 USCS, Clay (C), CH

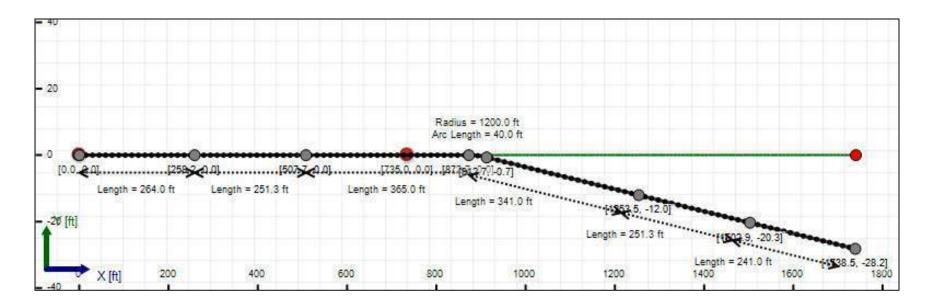
Depth: 15.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #9 Rock, Geological Classification, Sedimentary Rocks

Depth: 40.00 ft


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 1755.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	26.2	53.9
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	26.2	53.9
Deflection		
Earth Load Deflection	7.133	14.668
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	7.176	14.711
Compressive Stress [psi]		
Compressive Wall Stress	117.9	242.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	3314.4	3314.4
Pullback Stress [psi]	872.0	872.0
Pullback Strain	1.517E-2	1.517E-2
Bending Stress [psi]	0.0	7.0
Bending Strain	0	1.215E-4
Tensile Stress [psi]	872.0	876.1
Tensile Strain	1.517E-2	1.536E-2

Net External Pressure = 44.5 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	7.176	7.5	1.0	OK
Unconstrained Collapse [psi]	52.7	128.8	2.4	OK
Compressive Wall Stress [psi]	117.9	1150.0	9.8	OK

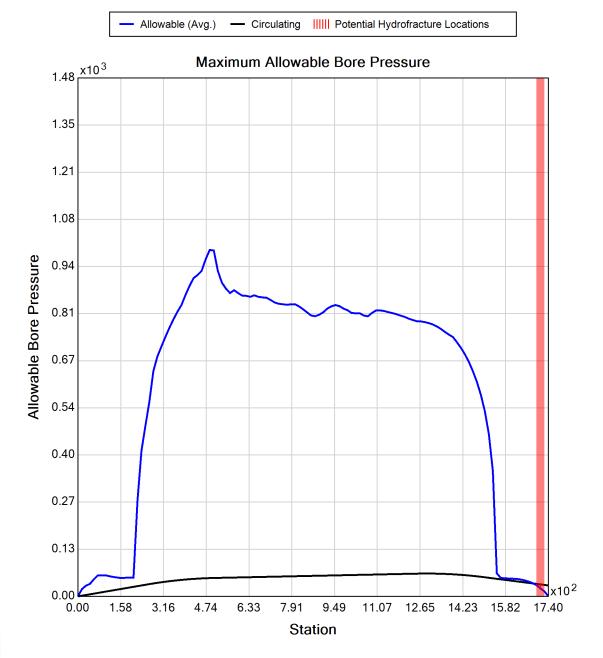
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	62.6	203.1	3.2	OK
Tensile Stress [psi]	876.1	1200.0	1.4	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	990.680 psi	1347.467 psi
1	8.75 in	12.00 in	990.576 psi	1347.414 psi
2	12.00 in	12.94 in	990.541 psi	1347.395 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 594.1

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 121 DWG C-321.2

Input Summary

Start Coordinate (0.00, 0.00, 96.04) ft End Coordinate (1740.00, 0.00, 91.39) ft

Project Length 1740.00 ft
Pipe Type PVC
OD Classification IPS

Pipe OD 12.750 in
Pipe DR 25.0
Pipe Thickness 0.51 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: PVC Classification: IPS Pipe OD: 12" (12.75")

Pipe DR: 25

Pipe Length: 1755.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.59400002161662 ft

Silo Width: 1.59400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38

Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi

Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	26.4	53.9
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	26.4	53.9
Deflection		
Earth Load Deflection	13.662	27.921
Buoyant Deflection	0.237	0.237
Reissner Effect	0	0
Net Deflection	13.899	28.158
Compressive Stress [psi]		
Compressive Wall Stress	329.4	673.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17956.9	17956.9
Pullback Stress [psi]	915.7	915.7
Pullback Strain	2.289E-3	2.289E-3
Bending Stress [psi]	0.0	177.1
Bending Strain	0	4.427E-4
Tensile Stress [psi]	915.7	1091.4
Tensile Strain	2.289E-3	3.171E-3

Net External Pressure = 21.5 [psi]

Buoyant Deflection = 0.2

Hydrokinetic Force = 798.4 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.237	7.5	31.7	OK
Unconstrained Collapse [psi]	27.6	59.4	2.2	OK
Tensile Stress [psi]	1091.4	2800.0	2.6	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 122 DWG C-322

Input Summary

Start Coordinate (0.00, 0.00, 90.52) ft

End Coordinate (1100.00, 0.00, 106.00) ft

Project Length 1100.00 ft

Pipe Type HDPE

OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

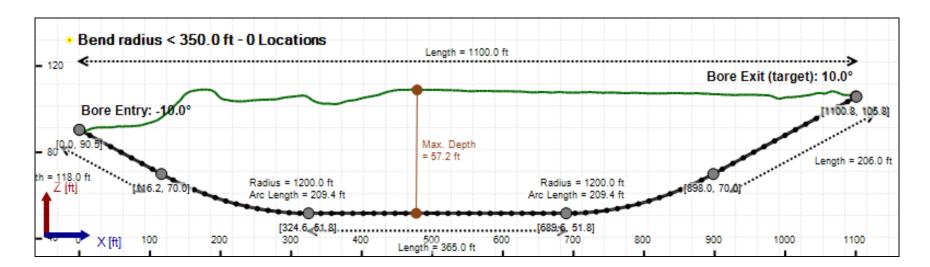
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

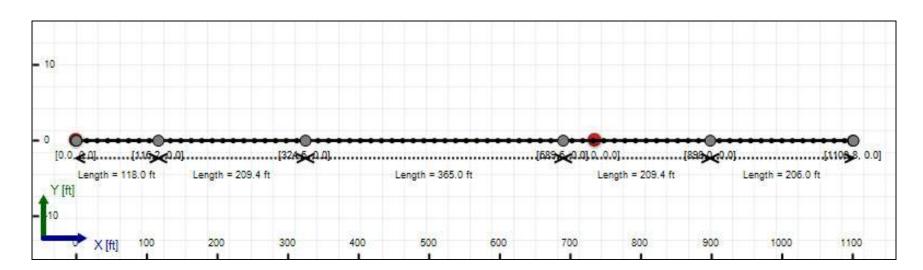
From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1110.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	20.7	37.1
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	20.7	37.1
Deflection		
Earth Load Deflection	5.651	10.115
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	5.783	10.247
Compressive Stress [psi]		
Compressive Wall Stress	93.4	167.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	19078.4	19078.4
Pullback Stress [psi]	532.1	532.1
Pullback Strain	9.253E-3	9.253E-3
Bending Stress [psi]	0.0	21.5
Bending Strain	0	3.733E-4
Tensile Stress [psi]	532.1	552.5
Tensile Strain	9.253E-3	9.983E-3

Net External Pressure = 32.0 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.783	7.5	1.3	OK
Unconstrained Collapse [psi]	35.4	116.4	3.3	OK
Compressive Wall Stress [psi]	93.4	1150.0	12.3	OK

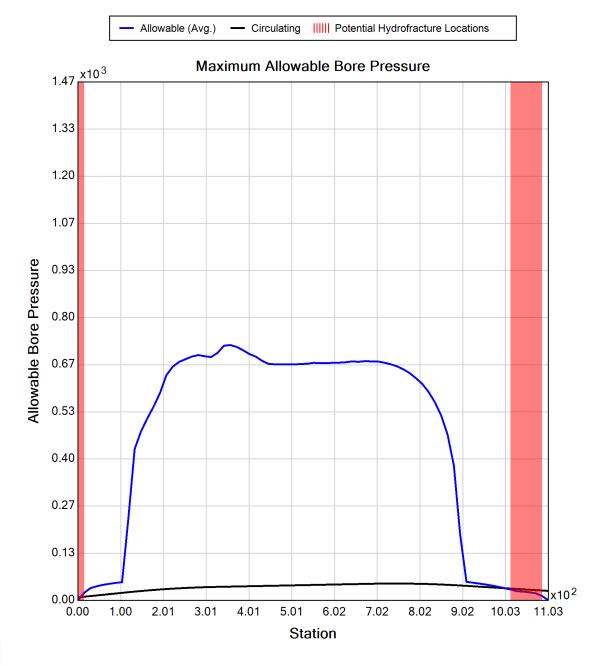
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	45.3	224.0	4.9	OK
Tensile Stress [psi]	552.5	1200.0	2.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	722.692 psi	1333.508 psi
1	8.75 in	12.00 in	722.621 psi	1333.411 psi
2	12.00 in	16.13 in	722.500 psi	1333.244 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 122 DWG C-322.2

Input Summary

Start Coordinate (0.00, 0.00, 92.66) ft End Coordinate (1100.00, 0.00, 105.98) ft

Project Length 1100.00 ft

Pipe Type HDPE

OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

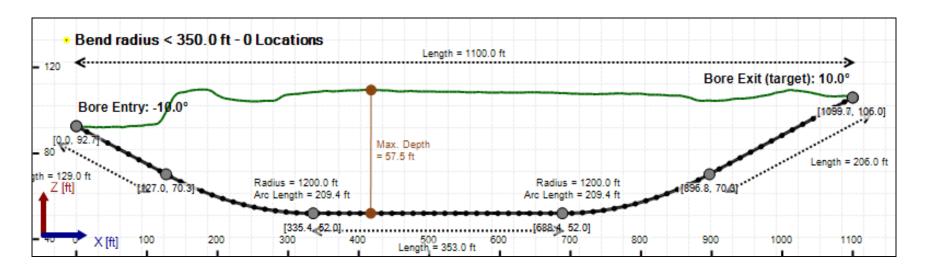
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

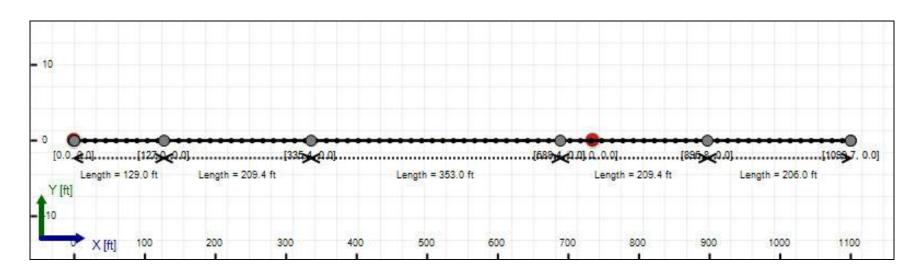
From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1110.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	19.6	37.3
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.6	37.3
Deflection		
Earth Load Deflection	5.343	10.145
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	5.475	10.277
Compressive Stress [psi]		
Compressive Wall Stress	88.3	167.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	19032.4	19032.4
Pullback Stress [psi]	530.8	530.8
Pullback Strain	9.231E-3	9.231E-3
Bending Stress [psi]	0.0	21.5
Bending Strain	0	3.733E-4
Tensile Stress [psi]	530.8	550.5
Tensile Strain	9.231E-3	9.947E-3

Net External Pressure = 32.6 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.475	7.5	1.4	OK
Unconstrained Collapse [psi]	35.5	116.3	3.3	OK
Compressive Wall Stress [psi]	88.3	1150.0	13.0	OK

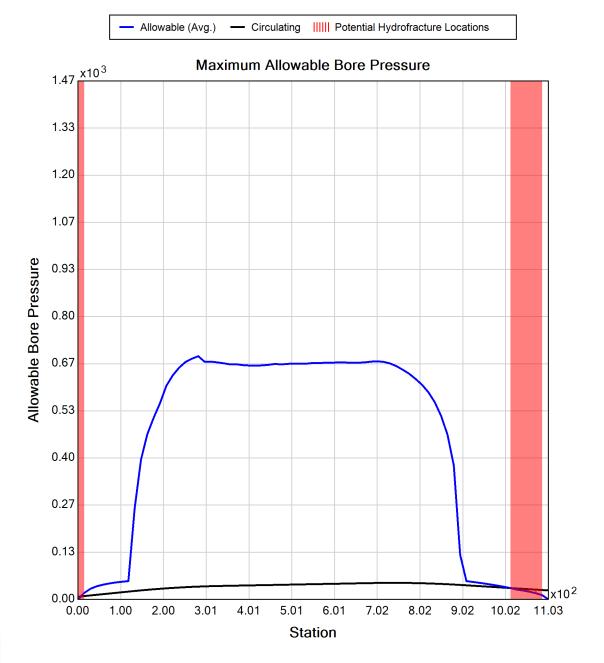
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	45.4	224.2	4.9	OK
Tensile Stress [psi]	550.5	1200.0	2.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	688.347 psi	1333.601 psi
1	8.75 in	12.00 in	688.281 psi	1333.504 psi
2	12.00 in	16.13 in	688.169 psi	1333.339 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 122 DWG C-322.2

Input Summary

Start Coordinate (0.00, 0.00, 92.66) ft End Coordinate (1100.00, 0.00, 105.98) ft

Project Length 1100.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Silt (M), MH

From Assistant

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

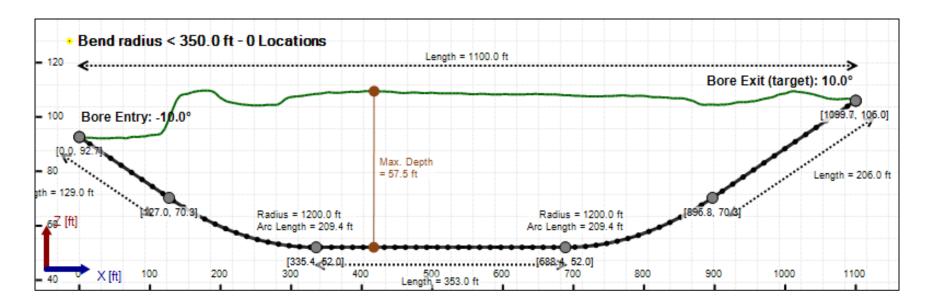
Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Clay (C), CH

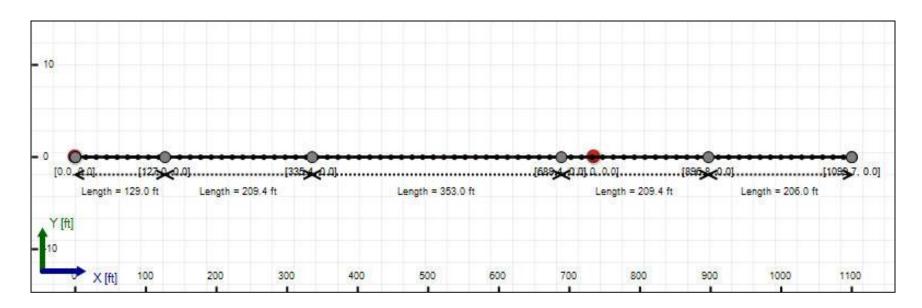
From Assistant

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 400.00, Coh: 8.30 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 1110.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	19.2	37.3
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.2	37.3
Deflection		
Earth Load Deflection	5.236	10.145
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	5.279	10.188
Compressive Stress [psi]		
Compressive Wall Stress	86.5	167.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	2130.1	2130.1
Pullback Stress [psi]	560.4	560.4
Pullback Strain	9.746E-3	9.746E-3
Bending Stress [psi]	0.0	7.0
Bending Strain	0	1.215E-4
Tensile Stress [psi]	560.4	565.6
Tensile Strain	9.746E-3	9.959E-3

Net External Pressure = 32.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	5.279	7.5	1.4	OK
Unconstrained Collapse [psi]	35.5	127.7	3.6	OK
Compressive Wall Stress [psi]	86.5	1150.0	13.3	OK

Installation Analysis

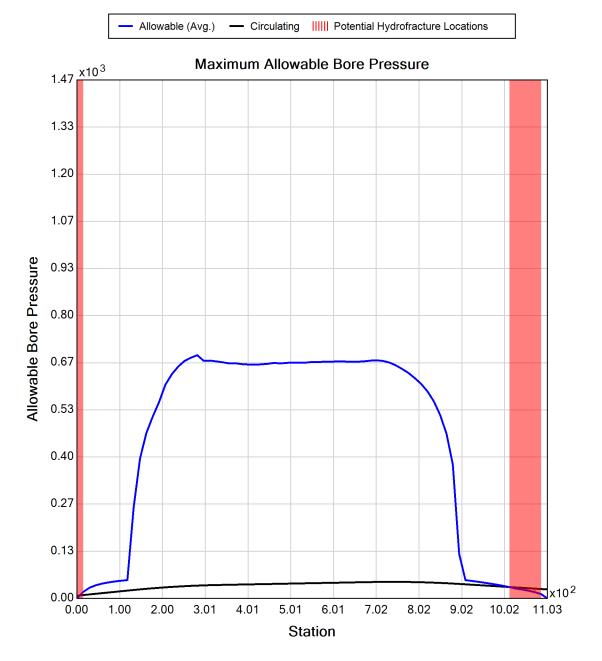
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	45.4	224.0	4.9	OK
Tensile Stress [psi]	565.6	1200.0	2.1	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	688.347 psi	1333.601 psi
1	8.75 in	12.00 in	688.281 psi	1333.504 psi
2	12.00 in	16.13 in	688.169 psi	1333.339 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min

Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 366.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 122 DWG C-322.2

Input Summary

Start Coordinate (0.00, 0.00, 92.66) ft End Coordinate (1100.00, 0.00, 105.98) ft

Project Length 1100.00 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 14.000 in

Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 1110.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	19.9	37.3
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.9	37.3
Deflection		
Earth Load Deflection	24.921	46.617
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	25.610	47.307
Compressive Stress [psi]		
Compressive Wall Stress	142.4	266.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15785.6	15785.6
Pullback Stress [psi]	394.2	394.2
Pullback Strain	6.855E-3	6.855E-3
Bending Stress [psi]	0.0	28.0
Bending Strain	0	4.861E-4
Tensile Stress [psi]	394.2	421.9
Tensile Strain	6.855E-3	7.824E-3

Net External Pressure = 17.5 [psi]

Buoyant Deflection = 0.3

Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	21.8	49.1	2.2	OK
Tensile Stress [psi]	421.9	1200.0	2.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 1 HDD 123 DWG C-323

Input Summary

Start Coordinate (0.00, 0.00, 108.39) ft End Coordinate (850.00, 0.00, 113.09) ft

Project Length 850.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

Depth: 3.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 1.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #3 USCS, Silt (M), MH

Depth: 11.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

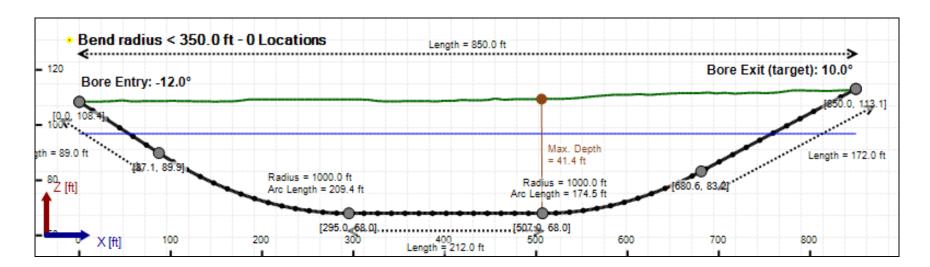
Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Soil Layer #4 USCS, Clay (C), CH

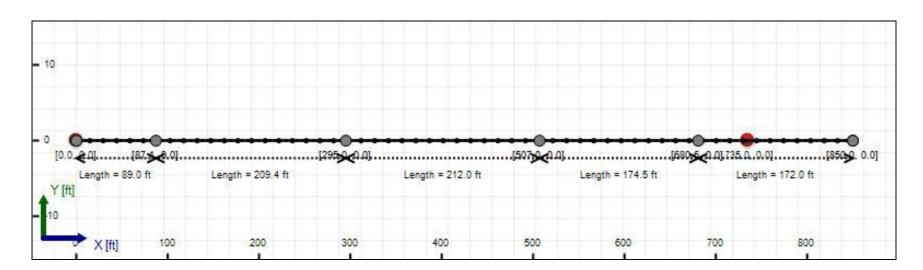
Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]


Soil Layer #5 USCS, Silt (M), MH

Depth: 35.00 ft


Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 870.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	9.8	18.2
Water Pressure	12.5	12.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	22.3	30.7
Deflection		
Earth Load Deflection	2.677	5.070
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.809	5.202
Compressive Stress [psi]		
Compressive Wall Stress	100.5	138.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15258.9	15258.9
Pullback Stress [psi]	425.5	425.5
Pullback Strain	7.401E-3	7.401E-3
Bending Stress [psi]	25.8	25.8
Bending Strain	4.479E-4	4.479E-4
Tensile Stress [psi]	451.3	451.3
Tensile Strain	8.297E-3	8.297E-3

Net External Pressure = 26.7 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.809	7.5	2.7	OK
Unconstrained Collapse [psi]	30.8	107.4	3.5	OK
Compressive Wall Stress [psi]	100.5	1150.0	11.4	OK

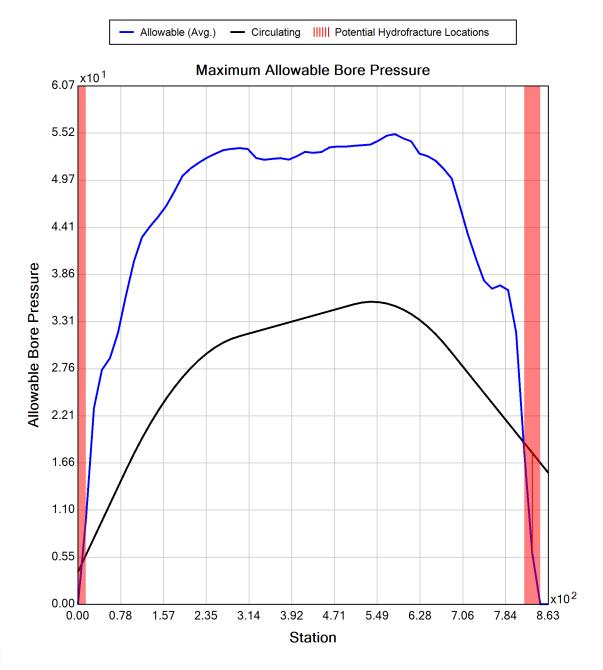
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	40.7	230.5	5.7	OK
Tensile Stress [psi]	451.3	1200.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	55.168 psi	48.335 psi
1	8.75 in	12.00 in	55.128 psi	48.160 psi
2	12.00 in	16.13 in	55.060 psi	47.872 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 HDD 123 DWG C-323.2

Input Summary

Start Coordinate (0.00, 0.00, 108.68) ft End Coordinate (850.00, 0.00, 112.75) ft

Project Length 850.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in
Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

Depth: 3.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 1.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #3 USCS, Silt (M), MH

Depth: 11.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

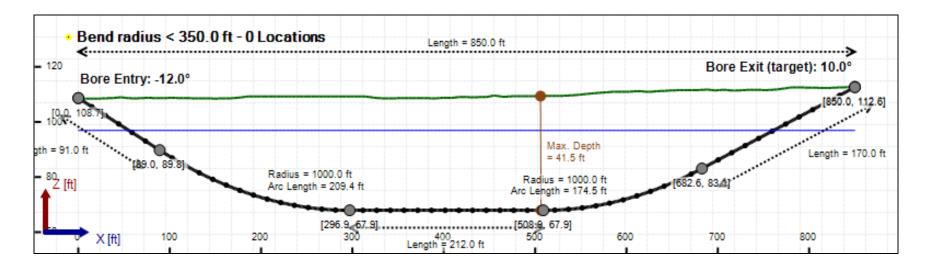
Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Soil Layer #4 USCS, Clay (C), CH

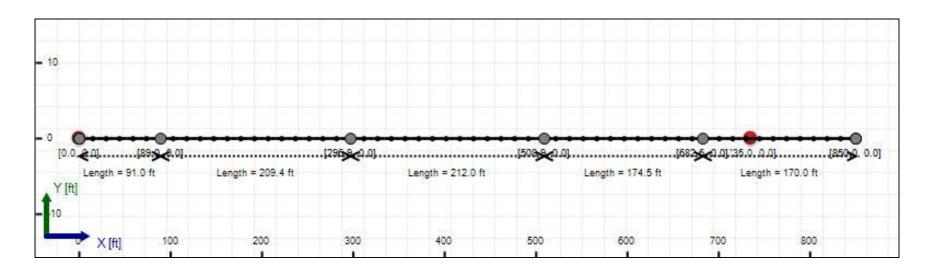
Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]


Soil Layer #5 USCS, Silt (M), MH

Depth: 35.00 ft


Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 870.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	10.2	18.2
Water Pressure	12.6	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	22.8	30.7
Deflection		
Earth Load Deflection	2.785	5.069
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.917	5.201
Compressive Stress [psi]		
Compressive Wall Stress	102.6	138.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15233.9	15233.9
Pullback Stress [psi]	424.9	424.9
Pullback Strain	7.389E-3	7.389E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	424.9	448.9
Tensile Strain	7.389E-3	8.255E-3

Net External Pressure = 26.2 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.917	7.5	2.6	OK
Unconstrained Collapse [psi]	30.5	106.4	3.5	OK
Compressive Wall Stress [psi]	102.6	1150.0	11.2	OK

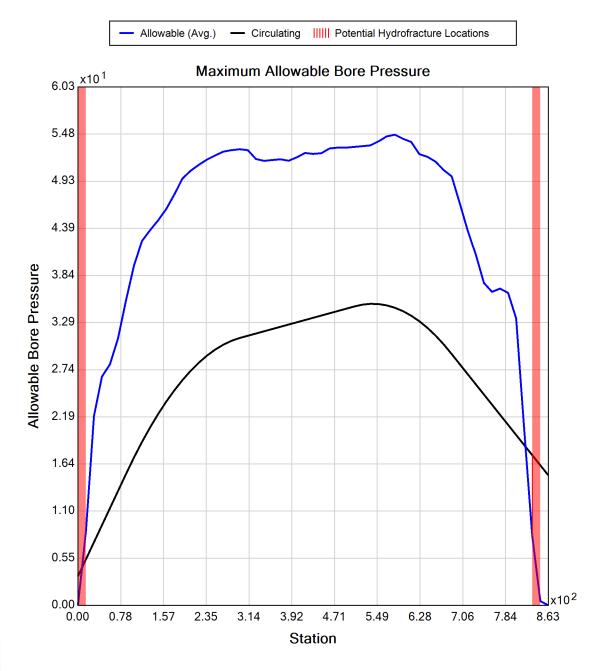
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	40.5	230.7	5.7	OK
Tensile Stress [psi]	448.9	1200.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	54.849 psi	46.360 psi
1	8.75 in	12.00 in	54.810 psi	46.154 psi
2	12.00 in	16.13 in	54.744 psi	45.815 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 3 HDD 123 DWG C-323.2

Input Summary

Start Coordinate (0.00, 0.00, 108.68) ft End Coordinate (850.00, 0.00, 112.75) ft

Project Length 850.00 ft **HDPE** Pipe Type **OD** Classification **IPS** Pipe OD 3.500 in Pipe DR 9.0 Pipe Thickness 0.39 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

Depth: 3.00 ft

Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

Depth: 1.00 ft

Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #3 USCS, Silt (M), MH

Depth: 11.00 ft

Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

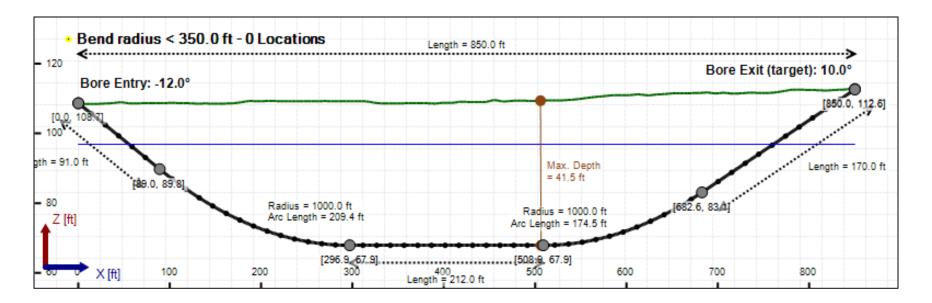
Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Soil Layer #4 USCS, Clay (C), CH

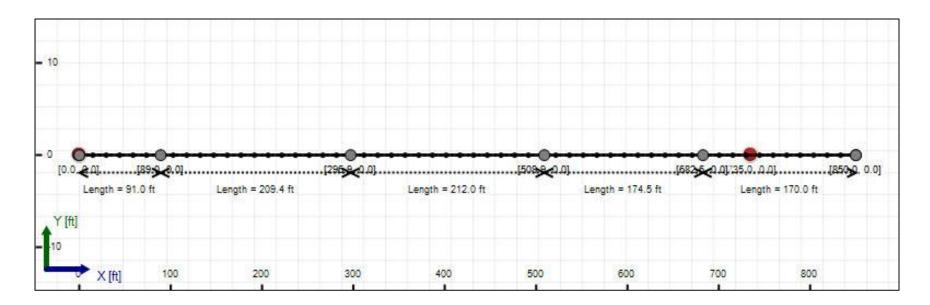
Depth: 10.00 ft

Unit Weight: 11.9889 (dry), 15.2922 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]


Soil Layer #5 USCS, Silt (M), MH

Depth: 35.00 ft


Unit Weight: 10.9956 (dry), 14.5068 (sat) [lb/US (liquid) gallon]

Phi: 0.00, S.M.: 145.00, Coh: 3.10 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 9

Pipe Length: 870.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.3	18.2
Water Pressure	12.6	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.9	30.7
Deflection		
Earth Load Deflection	1.719	5.069
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	1.762	5.112
Compressive Stress [psi]		
Compressive Wall Stress	85.0	138.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1727.5	1727.5
Pullback Stress [psi]	454.5	454.5
Pullback Strain	7.904E-3	7.904E-3
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	454.5	461.2
Tensile Strain	7.904E-3	8.166E-3

Net External Pressure = 26.2 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.762	7.5	4.3	OK
Unconstrained Collapse [psi]	30.5	117.9	3.9	OK
Compressive Wall Stress [psi]	85.0	1150.0	13.5	OK

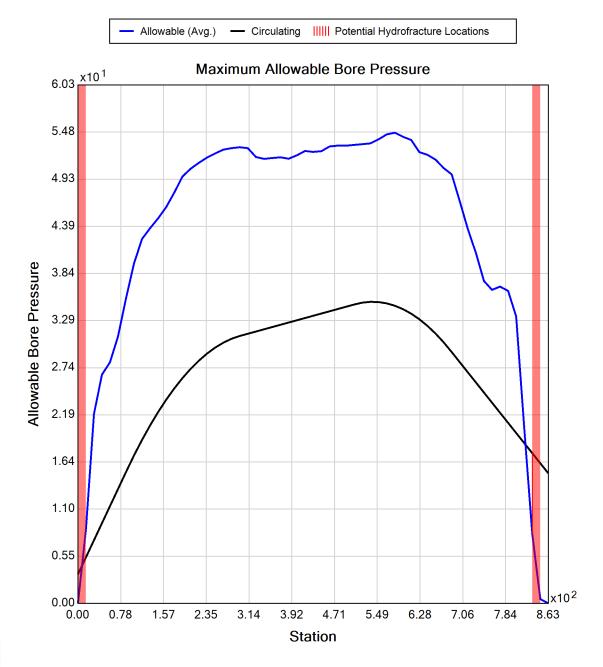
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	40.5	230.8	5.7	OK
Tensile Stress [psi]	461.2	1200.0	2.6	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.75 in	54.849 psi	46.360 psi
1	8.75 in	12.00 in	54.810 psi	46.154 psi
2	12.00 in	16.13 in	54.744 psi	45.815 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 70.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon

Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53 Yield Point (YP): 16.49

Effective Viscosity (cP): 1000.2

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: Kiewit - CHPE

Ref: New York

204-3701

Start Date: 04-29-2022 End Date: 06-19-2023

Designer: Aaron Coady

Tetra Tech Rooney

115 Inverness Drive East, Suite 300

Englewood, Colorado United States 80112

aaron.coady@tetratech.com

Description: Segment 11 (Package 7A)

Conduit 2 & 3 Equivalent Pipe Bundle

HDD 123 DWG C-323.2

Input Summary

Start Coordinate (0.00, 0.00, 108.68) ft End Coordinate (850.00, 0.00, 112.75) ft

Project Length 850.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 14.000 in
Pipe DR 14.3
Pipe Thickness 0.98 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3

Pipe Length: 870.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft

Silo Width: 1.75 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45

Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 12.51801 lb/US (liquid) gallon

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

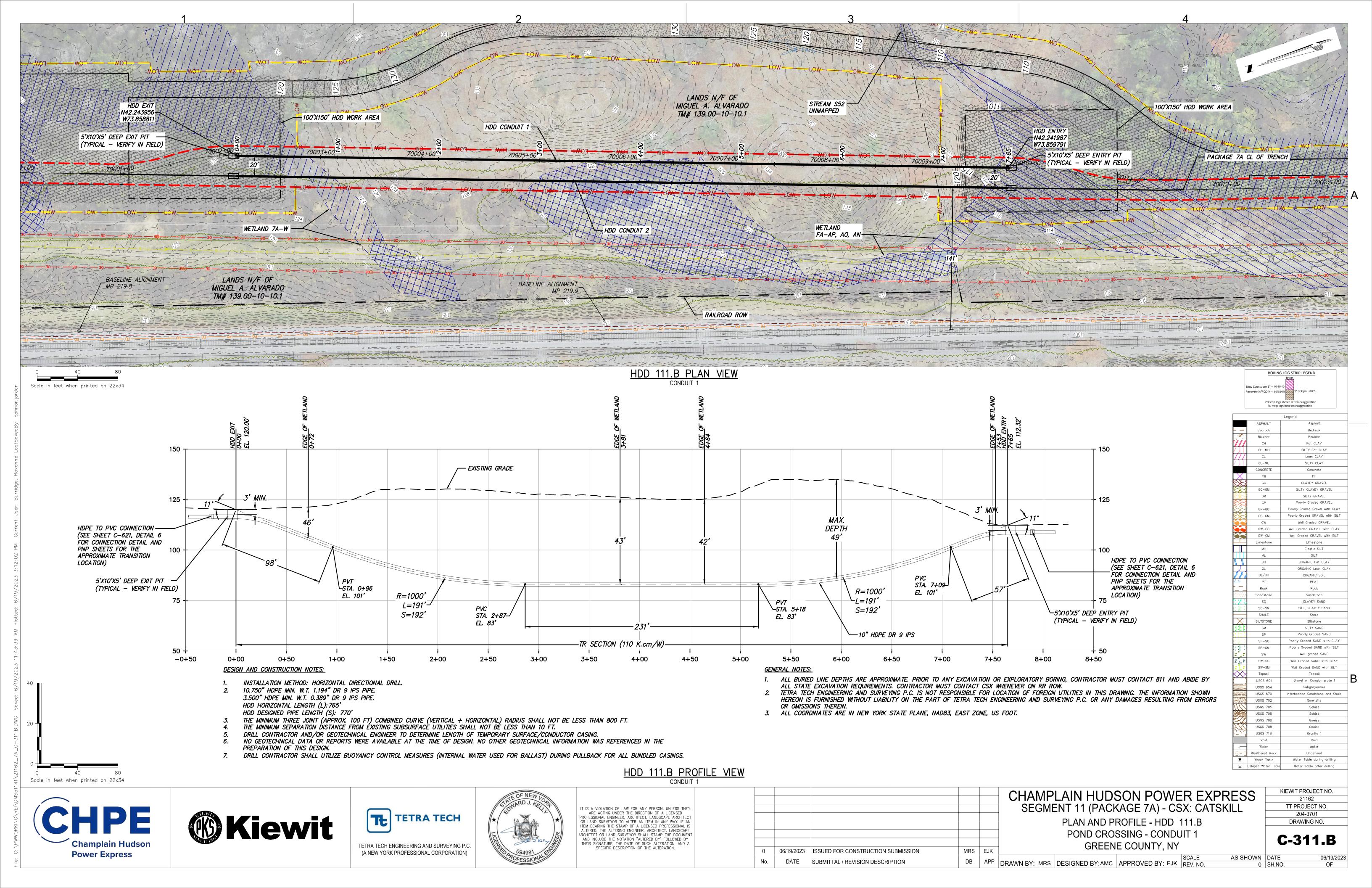
Pressure [psi]	Deformed	Collapsed
Earth Pressure	11.5	18.2
Water Pressure	12.6	12.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	24.0	30.7
Deflection		
Earth Load Deflection	14.339	23.290
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	15.029	23.980
Compressive Stress [psi]		
Compressive Wall Stress	171.8	219.7

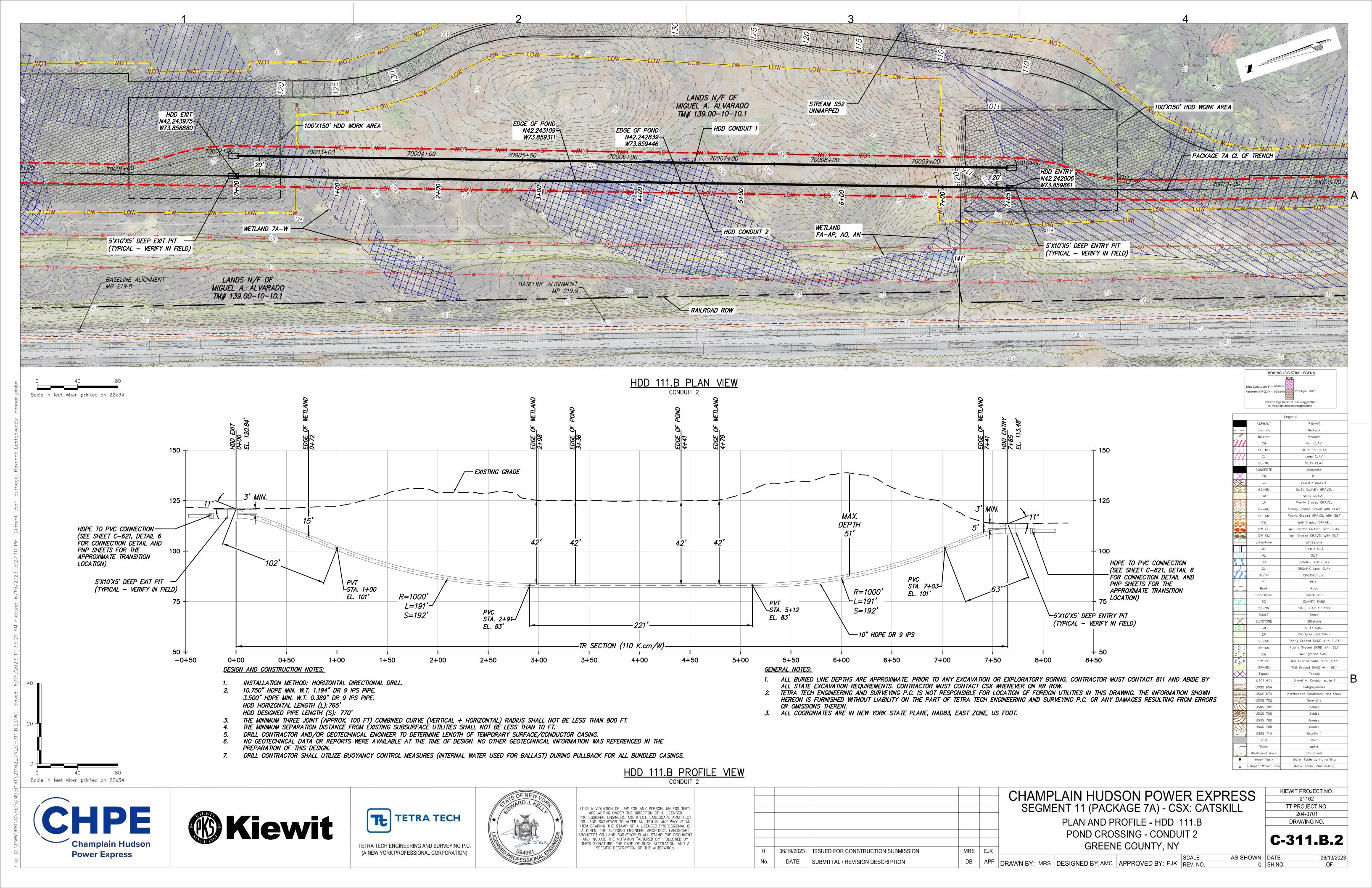
Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12724.5	12724.5
Pullback Stress [psi]	317.7	317.7
Pullback Strain	5.526E-3	5.526E-3
Bending Stress [psi]	0.0	33.5
Bending Strain	0	5.833E-4
Tensile Stress [psi]	317.7	351.1
Tensile Strain	5.526E-3	6.690E-3

Net External Pressure = 15.4 [psi]

Buoyant Deflection = 0.3


Hydrokinetic Force = 962.1 lb


Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	20.2	50.0	2.5	OK
Tensile Stress [psi]	351.1	1200.0	3.4	OK

Appendix D

HDD Design Drawings

