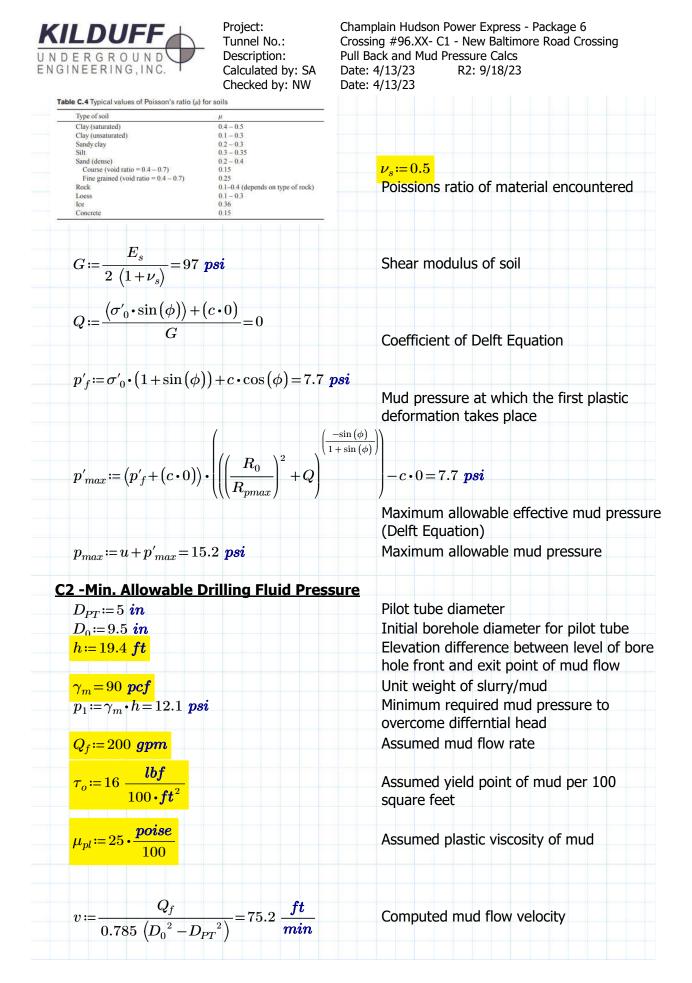


Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

## **<u>C</u> - Allowable Mud Pressures:**


| <u>C1 -</u> | Max. | Allowable | Driling | Fluid | Pressure |
|-------------|------|-----------|---------|-------|----------|
|             |      |           |         |       |          |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| $H_w \coloneqq 17.4 \cdot ft$                                                                                                    | Depth of the bore below groundwater<br>elevation                                    |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $H_c \coloneqq 17.4 \ ft$                                                                                                        | Vertical separation distance between critic structure and pipe (Stream S-22; ~6+50) |
| $\gamma \coloneqq 100 \ pcf$                                                                                                     | Assumed unit weight very soft clay                                                  |
| $\gamma_w \coloneqq 62.4 \ pcf$                                                                                                  | Unit weight of water                                                                |
| $\gamma_w^{\gamma_w} = \gamma_w = 37.6 \ pcf$                                                                                    | Effective unit weight                                                               |
|                                                                                                                                  |                                                                                     |
| $u := \gamma_w \cdot H_w = 8 psi$                                                                                                | Initial pore water pressure                                                         |
| $\phi \coloneqq 0 \ deg$                                                                                                         | Assumed friction Angle                                                              |
| c:=450 <b>psf</b> =3.13 <b>psi</b>                                                                                               | Assumed cohesion of encountered materia                                             |
| $R_0 := \frac{D_{rod}}{2} = 1.75$ in                                                                                             | Initial radius of the borehole                                                      |
| $R_{pmax} \coloneqq \frac{1}{2} \cdot H_c = 9 \ \mathbf{ft}$                                                                     | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                              |
| Table C.2 Typical values of modulus of elasticity ( $E_s$ ) for different type           Type of Soil $E_s$ (N/mm <sup>2</sup> ) | s of soils                                                                          |
| Clay<br>Very soft 2–15                                                                                                           |                                                                                     |
| Soft 5–25                                                                                                                        |                                                                                     |
| Medium 15–50                                                                                                                     | F = 2 $N = 200$ mm                                                                  |
| Hard 50–100                                                                                                                      | $E_s \coloneqq 2 \frac{N}{mm^2} \equiv 290 \ psi$                                   |
| Sandy 25-250<br>Glacial till                                                                                                     |                                                                                     |
| Loose 10–153                                                                                                                     | Assumed modulus of elasticity                                                       |
| Dense 144-720                                                                                                                    | Assumed modulus of clustery                                                         |
| Very dense 478-1,440                                                                                                             |                                                                                     |
| Loess 1457                                                                                                                       |                                                                                     |
| Sand<br>Silty 721                                                                                                                |                                                                                     |
| Loose 10-24                                                                                                                      |                                                                                     |
| Dense 48-81                                                                                                                      |                                                                                     |
| Sand and gravel                                                                                                                  |                                                                                     |
| Loose 48–148<br>Dense 96–192                                                                                                     |                                                                                     |
| Shale 144–14,400                                                                                                                 |                                                                                     |
| Silt 2-20                                                                                                                        |                                                                                     |
|                                                                                                                                  |                                                                                     |
|                                                                                                                                  |                                                                                     |
|                                                                                                                                  |                                                                                     |



| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                        | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: SA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #96.XX- C1 - New Baltimore Road Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R2: 9/18/23<br>Date: 4/13/23   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L_{structure} \coloneqq 650 \ ft$                                                                                                 |                                                                                | Length to sturcture                                                                                                                                                                 |
| $p_{2} := L_{structure} \cdot \left( \left( \frac{\mu_{1}}{(D_{0} - p_{1})} \right) + p_{2} = 14.1 \right) + p_{2} = 14.1 \right)$ |                                                                                | Length to sturcture<br>$\left(\frac{D_{D_{PT}}}{D_{PT}}\right) = 1.9 \ psi$<br>Minimum required mud pressure to create<br>flow inside the borehole<br>Minimum required mud pressure |
| $check \coloneqq$ if $(p_{max} > p_{min})$                                                                                         | $_{n_{\cdot}},$ "okay", "not ok                                                | xay") = "okay"                                                                                                                                                                      |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |
|                                                                                                                                    |                                                                                |                                                                                                                                                                                     |



Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

| D1.1 - Overburden Pressure (Considering D                                                                                                                                                             | eformed Borehole with Arching Mobilized)                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $H_c \coloneqq H_{max} = 79.8 \ ft$                                                                                                                                                                   | Depth of cover                                                                   |
| $\phi = 0 \ deg$                                                                                                                                                                                      | Friction angle of soil                                                           |
| $B := D_r = 18$ in                                                                                                                                                                                    | "Silo" width, conservative value =                                               |
| $\langle \rangle^2$                                                                                                                                                                                   | reamed hole diameter                                                             |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                                  | Earth pressure coefficient                                                       |
| $\gamma = 100 \ pcf$                                                                                                                                                                                  | Unit weight of soil, assumed                                                     |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = ? k \coloneqq 1$ | Arching factor (Eq. 6, p.432, PPI)                                               |
|                                                                                                                                                                                                       |                                                                                  |
| $P_E \coloneqq k \cdot (\gamma - \gamma_w) \cdot (H_c) = 21 \ psi  P_E = 3000 \ g$                                                                                                                    | <i>psf</i> Effective overburden pressure                                         |
| D1.2 Earth Load Deflection (Short Term)                                                                                                                                                               |                                                                                  |
|                                                                                                                                                                                                       | Apparent modulus of elasticity for                                               |
| $E_{short} \coloneqq 57500 \cdot psi$                                                                                                                                                                 | PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading |
|                                                                                                                                                                                                       | (Table X1.1 ASTM F 1962)                                                         |
| $E_{short} = 0.26$ mai                                                                                                                                                                                | Variable in earth load deflection equation                                       |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \ \textbf{psi}$                                                                                                        |                                                                                  |
|                                                                                                                                                                                                       |                                                                                  |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 2.8\%$                                                                                                                          | Pipe deflection to diameter as per                                               |
| $k_{short}$                                                                                                                                                                                           | PPI Equ. 10 (Chp 12, p 437, PPI Handboo                                          |
| D1.3 Earth Load Deflection (Long Term)                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                       | Apparent modulus of elasticity for PE4710                                        |
| $E_{long} \coloneqq 28200 \bullet psi$                                                                                                                                                                | Base Temperature of 73 Fahrenheit at 50                                          |
|                                                                                                                                                                                                       | years of sustained loading (Table X1.1                                           |
| $E_{long}$                                                                                                                                                                                            | ASTM F 1962)                                                                     |
| $k \coloneqq \frac{E_{long}}{12 \cdot \left(DR_1 - 1\right)^3} = 4.6 \ psi$                                                                                                                           | Variable in earth load deflection equation                                       |
| $12 \cdot (DR_1 - 1)$                                                                                                                                                                                 | Dipo deflection to dispectance and                                               |
| $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k} = 5.7\%$                                                                                                                                   | Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437)                |
| $\Delta y_{ELD\_long} = \frac{1}{k} = 0.1\%$                                                                                                                                                          | 111 Equ. 10 (Crip 12, p 137)                                                     |
|                                                                                                                                                                                                       |                                                                                  |
|                                                                                                                                                                                                       |                                                                                  |
|                                                                                                                                                                                                       |                                                                                  |
|                                                                                                                                                                                                       |                                                                                  |



Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

| D2.1 Buoyant Deflection (Short Term)                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 = 10.75 \ in$                                                                                                                                                                                                                                                                                                                                      | Outside diameter of casing pipe                                                                                                                                                                                                                                                                                                                         |
| $t := T_{p1} = 1.194 \ in$                                                                                                                                                                                                                                                                                                                              | Thickness of casing pipe                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                         | Apparent modulus of elasticity for                                                                                                                                                                                                                                                                                                                      |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                               | PE4710, Base Temperature of 73                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                         | Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                                                                                                |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                                                                                                                                                                                   | Assumed unit weight of fluid in                                                                                                                                                                                                                                                                                                                         |
| 43                                                                                                                                                                                                                                                                                                                                                      | borehole (Slurry unit weight)                                                                                                                                                                                                                                                                                                                           |
| $I \coloneqq \frac{\iota}{1} = 0.14 \frac{\iota}{1}$                                                                                                                                                                                                                                                                                                    | Moment of inertia of pipe wall cross                                                                                                                                                                                                                                                                                                                    |
| 12 in $(D_{\star})^4$                                                                                                                                                                                                                                                                                                                                   | section                                                                                                                                                                                                                                                                                                                                                 |
| $0.1169 \cdot \gamma_m \cdot \left  \frac{D_1}{2} \right $                                                                                                                                                                                                                                                                                              | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                                                                                                   |
| $\Delta u_{1} = (2) = 0.1\%$                                                                                                                                                                                                                                                                                                                            | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                                                                                             |
| $\gamma_m = 90 \text{ pcf}$ $I \coloneqq \frac{t^3}{12} = 0.14 \frac{in^4}{in}$ $\Delta y_{bouyant} \coloneqq \frac{0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{2}\right)^4}{E_{short} \cdot I} = 0.1\%$                                                                                                                                               | ····· ··· (                                                                                                                                                                                                                                                                                                                                             |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
| Please note that long term buoyant deflectio                                                                                                                                                                                                                                                                                                            | n was assumed negibile, since grout is                                                                                                                                                                                                                                                                                                                  |
| assumed to be cured after a 1-week period f                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
| <u> 3 - Reissner Effect Deflection (Short Terr</u>                                                                                                                                                                                                                                                                                                      | m)                                                                                                                                                                                                                                                                                                                                                      |
| <u>D3.1 - Reissner Effect Deflection (Short Term</u>                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                         | 1)                                                                                                                                                                                                                                                                                                                                                      |
| D3.1 Reissner Enect Denection (Short Term                                                                                                                                                                                                                                                                                                               | <u>n)</u>                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
| $\mu_{short} \coloneqq 0.35$                                                                                                                                                                                                                                                                                                                            | Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                                                                                                 |
| $\mu_{short} = 0.35$                                                                                                                                                                                                                                                                                                                                    | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                         | Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                                                                                                 |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                            | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                               |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                            | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                            | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $\mu_{short} = 0.35$                                                                                                                                                                                                                                                                                                                                    | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending                                                                                                                                                                                                           |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn                                                                                                                                                                 |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$                                                                                    | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect                                                                                                                                                       |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect                                                                                                                                                       |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term                                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect                                                                                                                                                       |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$                                                                                    | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect                                                                                                                                                       |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)                                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$ $R = 1000 \ ft$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect                                                                                                                                                       |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$ $R = 1000 \ ft$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$ $R = 1000 \ ft$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$ $R = 1000 \ ft$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)                                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$ $R = 1000 \ ft$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnn<br>Effect<br>))<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |



Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

| <u> D4 - Net Ring</u>                     | Deflection                                                  |                                                                                 |
|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\Delta y_{lim} \coloneqq 7.5\%$          | 6                                                           | Deflection limit for DR 9 non pressuriz<br>pipe (Table 2 , p. 437, PPI Handbook |
| <u>D4.1 - Net S</u>                       | Short Term                                                  |                                                                                 |
| $\Delta y_{short\_net}$ :=                | $\Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y_{F}$ | $R_{a_{short}} = 2.8\%$ Percent ring deflection in sho<br>term analysis         |
| $Check := \mathbf{if} \left( A \right)$   | $\Delta y_{short\_net} {<} \Delta y_{lim},$ "okay", "r      | not okay") = "okay"                                                             |
| <u>D4.2 - Net I</u>                       | Long Term                                                   |                                                                                 |
| $\Delta y_{long\_net}$ := .               | $\Delta y_{ELD\_long} + \Delta y_{R\_long} = 5.7\%$         | Percent ring deflection in long term analysis (50 years)                        |
| $Check \coloneqq \mathbf{if}(\mathbf{z})$ | $\Delta y_{long\_net} {<} \Delta y_{lim},$ "okay", "n       | ot okay") = "okay"                                                              |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |
|                                           |                                                             |                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

| D5.1 - Unconstrained Ring Buckling, Levy                                                                                 | <u>y's Equation (Short Term-During Pull)</u>                               |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Note that constraining the pipe will incre                                                                               | ase the pipe's buckling strength, therefore                                |
| considering an unconstrained condition v                                                                                 | vill produce a conservative value.                                         |
| N := 2.0                                                                                                                 | Factor of Safety                                                           |
| $\mu_{short} \coloneqq 0.35$                                                                                             | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)  |
| $E_{short} = 57500 \ psi$                                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.  |
| % Deflection                                                                                                             | Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)      |
| 0 2 4 6 8 10 12                                                                                                          |                                                                            |
| 0.0                                                                                                                      |                                                                            |
| 0.2                                                                                                                      | Ovality compensation factor, Figure                                        |
| to 0.4                                                                                                                   | 3 (PPI Chp. 12). Calculated                                                |
| 0.6                                                                                                                      | deflection limit in section D4.1                                           |
| 0.8                                                                                                                      | $f_{o \ short} \coloneqq 0.80$                                             |
| $P_{UC \ short} \coloneqq \left(\frac{2 \cdot E_{short}}{2}\right) \cdot \left(\frac{1}{2}\right)^3 \cdot \frac{f_o}{2}$ | $\frac{-short}{N} = 102.4 \ psi$ Allowable unconstrained buckling pressure |
| $\left(1-\mu_{short}^2\right)\left(DR_1-1\right)$                                                                        | N buckling pressure                                                        |
| $H = 16.8 \ ft$                                                                                                          | Elevation difference between the lowest                                    |
|                                                                                                                          | point in borehole and entry or exit pit                                    |
| $P_{mud} \coloneqq \gamma_m \cdot H = 10.5 \ psi$                                                                        | Pressure of drilling slurry                                                |
| $P_{net} \coloneqq P_{mud} = 10.5 \ psi$                                                                                 | Net external loading with open borehole                                    |
| $Check \coloneqq if (P_{UC\_short} > P_{net}, "okay", "not$                                                              | tokay") = "okay"                                                           |
|                                                                                                                          |                                                                            |
| D5.2 - Unconstrained Ring Buckling, Levy                                                                                 | <u>r's Equation (Long Term)</u>                                            |
|                                                                                                                          |                                                                            |
| Note that constraining the pipe will incre<br>considering an unconstrained condition v                                   |                                                                            |
| Note that constraining the pipe will increase considering an unconstrained condition v $N \coloneqq 2.0$                 |                                                                            |
| considering an unconstrained condition v                                                                                 | vill produce a conservative value.                                         |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                       | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: SA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #96.XX- C1 - New Baltimore Road Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R2: 9/18/23<br>Date: 4/13/23 |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} \!=\! 28200 \; psi$                                                     |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                              |
| $f_{o\_long} \coloneqq 0.45$                                                      |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                        |
| $P_{UC\_long} \coloneqq \left( \frac{2 \cdot E_{long}}{1 - \mu_{long}^2} \right)$ | $\left( \frac{1}{DR_1 - 1} \right)^3 \cdot \frac{f_o}{d}$                      | $\frac{1}{N} = 31.1 \ psi$<br>Allowable unconstrained buckling pressure                                                                                                           |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 7.54$                                      | psi                                                                            | Groundwater head pressure                                                                                                                                                         |
| $P_{net} \coloneqq P_{GW}$                                                        |                                                                                | Net external loading with open borehole                                                                                                                                           |
| $Check := if (P_{UC\_long} >$                                                     | P "okay" "no                                                                   | (a + a + a + a + a + a + a + a + a + a +                                                                                                                                          |
|                                                                                   | <u>I <sub>net</sub>, Okay , IIC</u>                                            | tokay ) – Okay                                                                                                                                                                    |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |
|                                                                                   |                                                                                |                                                                                                                                                                                   |



Champlain Hudson Power Express - Package 6 Crossing #96.XX- C1 - New Baltimore Road Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R2: 9/18/23 Date: 4/13/23

# **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill

96.A & 96.B



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

| ning Parameters of Horizontal Direction<br>D <sub>1</sub> := 10.75 <i>in</i>                                                                                                                                                                                                                                                                                                         | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_2 := 2.375 \ in$                                                                                                                                                                                                                                                                                                                                                                  | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_{rod} \coloneqq 3.5 \ in$                                                                                                                                                                                                                                                                                                                                                         | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $DR_1 := 9$                                                                                                                                                                                                                                                                                                                                                                          | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $DR_2 := 11$                                                                                                                                                                                                                                                                                                                                                                         | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                                                                                                                                                   | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                                                                                                                                            | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_1 \coloneqq \boldsymbol{\pi} \cdot D_1 = 33.8 \ \boldsymbol{in}$                                                                                                                                                                                                                                                                                                                  | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_1 \coloneqq \pi \cdot D_1 = 00.0 \text{ in}$ $C_2 \coloneqq \pi \cdot D_2 = 7.5 \text{ in}$                                                                                                                                                                                                                                                                                       | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bore/pipepath                                                                                                                                                                                                                                                                                                                                                                        | pipe entry                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| drill rig B                                                                                                                                                                                                                                                                                                                                                                          | A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                      | Janahounna fannannan                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pipe exit C                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $L_4$ $L_3$                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L <sub>4</sub> L <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L <sub>4</sub> L <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • L <sub>bore</sub>                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Illustration 1 - Schematic of I                                                                                                                                                                                                                                                                                                                                                      | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $L_{\text{bore}}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \text{ rad}$                                                                                                                                                                                                                                                             | Drive Cross-section<br>Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} L_{\text{bore}} \\ Illustration \ 1 - \ \text{Schematic of I} \\ \alpha \coloneqq 10 \\ \beta \coloneqq 14 \\ \beta \coloneqq \alpha_{in} \coloneqq \alpha = 0.1745 \\ \beta_{exit} \coloneqq \beta = 0.2443 \\ rad \end{array}$                                                                                                                                   | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                 |
| $\alpha := 10 \circ \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 79.2 \text{ ft}$                                                                                                                                                                                                     | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} \textbf{L}_{\text{tore}} \\ \textbf{Illustration 1 - Schematic of I} \\ \alpha \coloneqq 10 \\ \beta \coloneqq 14 \\ \beta \coloneqq 14 \\ \textbf{D}_r \coloneqq 18 \cdot \textbf{in} \end{array}$                                                                                                                                                                | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                                                   |
| $L_{\text{bore}}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \text{ rad}$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \text{ rad}$<br>$D_r := 18 \cdot in$<br>$H_{max} := 79.2 \text{ ft}$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 79.95 \text{ ft}$                                                                   | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                             |
| $\alpha := 10 \circ \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 79.2 \text{ ft}$                                                                                                                                                                                                     | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See                                                                                                                                        |
| $L_{tore}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 79.2 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 79.95 \ ft$<br>$L_{total} := 1498.6 \ ft$                                                                    | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                                                              |
| $L_{tore}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 79.2 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 79.95 \ ft$<br>$L_{total} := 1498.6 \ ft$<br>$L_1 := 150 \ ft$<br>$L_2 := 637.7 \ ft$                        | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                |
| $L_{tore}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 79.2 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 79.95 \ ft$<br>$L_{total} := 1498.6 \ ft$<br>$L_1 := 150 \ ft$<br>$L_2 := 637.7 \ ft$<br>$L_3 := 560.8 \ ft$ | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section |
| $L_{tore}$ Illustration 1 - Schematic of I<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 79.2 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 79.95 \ ft$<br>$L_{total} := 1498.6 \ ft$<br>$L_1 := 150 \ ft$<br>$L_2 := 637.7 \ ft$                        | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                |

|                                                                             | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Cros<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/17/23 |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                                |                                                                                | Friction coefficient before pipe enters<br>(rollers assumed)                                                                                                                                     |
| $v_b = 0.3$                                                                 |                                                                                | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                                                        |
| $ \rho_w \coloneqq 62.4 \ pcf $                                             |                                                                                | Unit weight of water                                                                                                                                                                             |
| $\gamma_a \coloneqq 0.965$                                                  |                                                                                | Specific gravity of pipe                                                                                                                                                                         |
| $\gamma_m \coloneqq 70 \ pcf$                                               |                                                                                | Assumed unit weight of slurry                                                                                                                                                                    |
| $\gamma_b \coloneqq \frac{\gamma_m}{\rho_w} = 1.1$ $\gamma_c \coloneqq 1.0$ |                                                                                | Specific gravity of slurry, assumed unit weight                                                                                                                                                  |
| $\gamma_c \coloneqq 1.0$                                                    |                                                                                | Specific gravity of water to fill the pipe                                                                                                                                                       |
| $\Delta P \coloneqq 10 \ psi$                                               |                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                                                             |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                           |                                                                                | Gravitational Constant                                                                                                                                                                           |
| Axial Bending Stress                                                        | <u>:</u>                                                                       |                                                                                                                                                                                                  |
| $R_{avg.\_in}$ :=1000 <b>ft</b>                                             |                                                                                | Radius of curvature at the entry, provided by Contractor                                                                                                                                         |
| $R_{avg.\_out} \coloneqq 1000 \ ft$                                         |                                                                                | Radius of curvature at the exit, provided by Contractor                                                                                                                                          |
| $R \coloneqq \frac{R_{avg.\_in} + R_{avg.\_on}}{2}$                         | $\frac{t}{t} = 1000 \; ft$                                                     | Average radius of curvature at entry                                                                                                                                                             |
| $r_{rod} := 1200 \cdot D_{rod} = 35$                                        | 50 <b>ft</b>                                                                   | ASTM F 1962-99, Equation 1, p7                                                                                                                                                                   |
| $Check \coloneqq 	ext{if} \left( R_{avg.\_in} >  ight)$                     | <i>m</i> "oltort" "not                                                         | (alter ?) = (alter ?)                                                                                                                                                                            |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$           | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{12hr} \coloneqq 57500 \cdot psi$                     | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \coloneqq e_a \cdot E_{12hr} = 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

| <u>1 - Empty Pipe</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| B1.1 - Effective Weight of Empty Pipe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| $w_{a} \coloneqq \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - \left( D_{2} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2} \right) + \left( D_{p1}^{2} - \left( D_{p1} - T_{p1} \right)^{2}$ | $\left(-T_{p2} ight)^{2} ight)\!\!\left)\!\cdot\! ho_{w}\!\cdot\!\gamma_{a}\!=\!8.3\;plf$                      |
| B1.2 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Effective weight                                                                                               |
| $w_{b} \coloneqq \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 38 pl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f Upward buoyant force of empty pipe                                                                           |
| B1.3 - Hydrokinetic Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
| $\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>bf</i> Hydrokinetic force                                                                                   |
| B1.4 - Pullback Force Point A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
| $T_a \coloneqq e^{v_a \cdot \alpha_{in}} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1390 <i>lbf</i>                                                                                                |
| <i>u</i> ( <i>u u</i> (1 2 3 ±//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pullback force when pipe enters the grou                                                                       |
| <u>B1.5 - Pullback Force Point B:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |
| $T_b \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_a + v_b \cdot  w_b  \cdot L_2 + w_b \cdot H_{max} - v_b \cdot H_$                                                                                                                                                                                                                                                                            | $v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot lpha_{in})} = 11727 \ lbf$                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pullback force increase with depth                                                                             |
| B1.6 - Pullback Force Point C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
| $T_c \coloneqq T_b + \left( v_b \cdot w_b \cdot L_3 \right) - e^{\left( v_b \cdot \alpha_{in} \right)} \cdot \left( v_a \cdot w_a \cdot L_3 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $_{3} \cdot e^{(v_a \cdot \alpha_{in})} = 17619 \ lbf$                                                         |
| B1.7 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| $T := o^{(v_b \cdot \beta_{exit})} (T + a + av_b) + I = av_b + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= - e^{(v_a \cdot lpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot lpha_{in})})) = 19125 \ lbf$ |
| $I_d := e^{-\frac{1}{c}} \cdot \left(I_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-e^{-e^{-i}}\left(\left(u_a\cdot u_a\cdot L_4\cdot e^{-i}\right)\right)=19123 \ ioj$                          |
| B1.8 - Maximum Pullback Force - Empty P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipe:                                                                                                           |
| $P_{max\_empty} \coloneqq \max\left(T_a, T_b, T_c, T_d\right) + \Delta T = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19921 <i>lbf</i>                                                                                               |
| $= max\_empty \qquad = = (-a, -b, -c, -a) = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum Pullback Force                                                                                         |
| 2 - Filled Dipe with Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |
| <u>2 - Filled Pipe with Water</u><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(2,1)^2$                                                                                                      |
| $w_{bfilled} \coloneqq \left(\frac{\left(\boldsymbol{\pi} \cdot \boldsymbol{D}_{1}^{2}\right)}{4}\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{D}\right)\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left  \frac{2}{R_1} \right  \left  -w_a = 12 \ \boldsymbol{plf} \right $                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Upward buoyant force of pipe filled with                                                                       |

 $T_{afilled} \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 1390 \ lbf$  Pullback force enter ground



Project:

Tunnel No.:

Description:

Calculated by: DA

Checked by: NW

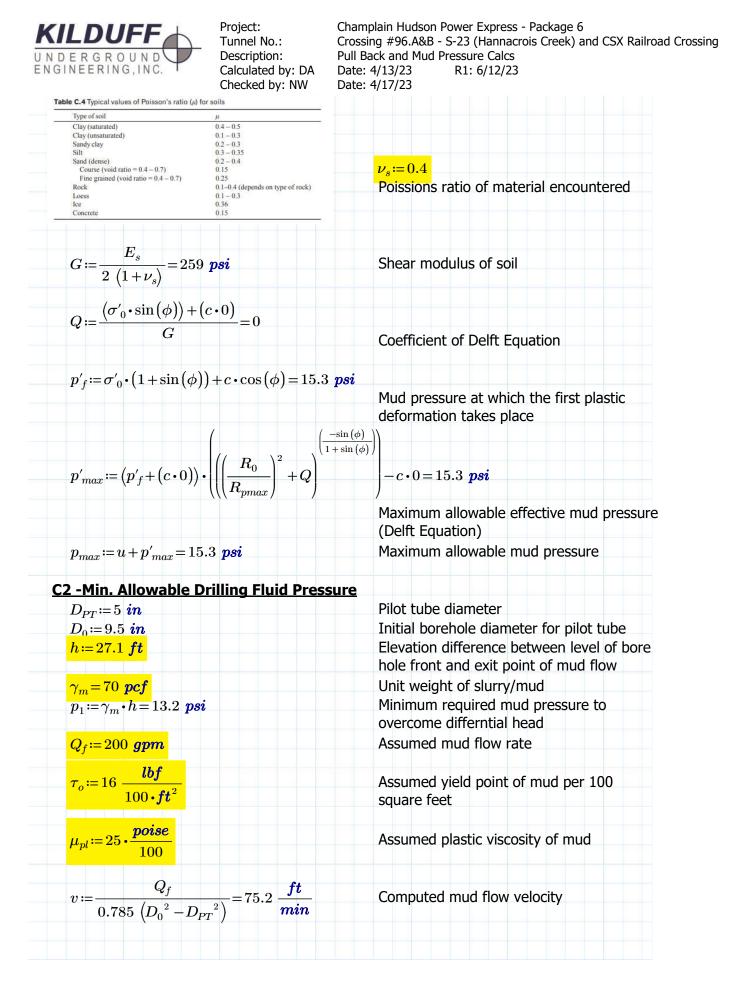
Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

|                                                                                                               | - Pullback Force Point B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $+v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 5464 \ lbf$<br>force increase and decrease with | $c_{cd} := e^{v_b \cdot \alpha_{in}} \left( T_{afilled} + v_b \cdot  w_{bfilled}  \cdot L_2 + v_b \cdot  w_{bf$ |
| $\cdot e^{(v_a \cdot \alpha_{in})} = 6991 \ lbf$                                                              | $\boldsymbol{w}_{d} \coloneqq \boldsymbol{T}_{bfilled} + \left( \boldsymbol{v}_{b} \boldsymbol{\cdot} \left  \boldsymbol{w}_{bfilled} \right  \boldsymbol{\cdot} \boldsymbol{L}_{3} \right) - \boldsymbol{e}^{\left( \boldsymbol{v}_{b} \boldsymbol{\cdot} \boldsymbol{\alpha}_{inj} \right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                               | - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $_{u} \cdot w_{a} \cdot L_{4} \cdot e^{\langle v_{a} \cdot \alpha_{in} \rangle})) = 8413 \ lbf$               | $e_{d} \coloneqq e^{\langle v_{b} \cdot \beta_{exil} \rangle} \cdot (T_{cfilled} + v_{b} \cdot  w_{bfilled}  \cdot L_{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                                                                         | - Maximum Pullback Force - Filled Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n Pullback Force                                                                                              | $\coloneqq \max\left(T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>:k:</u>                                                                                                    | <u>fe Pull Strength / Ultimate Tensile</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | Safe Pullback Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ctional area of Pipe 1                                                                                        | $\frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ctional area of Pipe 2                                                                                        | $\frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) \!=\! 0.8  \boldsymbol{in}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| forces acting on Pipe 1 (Empty)                                                                               | $=\frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 19148 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| forces acting on Pipe 2 (Empty)                                                                               | $=\frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 773 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| forces acting on Pipe 1 (Ballast)                                                                             | $=\frac{A_1 \cdot P_{max}}{A_1 + A_2} = 8086 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| forces acting on Pipe 2 (Ballast)                                                                             | $=\frac{A_2 \cdot P_{max}}{A_1 + A_2} = 326 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| back forces Pipe 1 (Table %,<br>PPI)                                                                          | :=41214 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| back forces Pipe 2 (Table %,<br>PPI)                                                                          | ₂:=1683 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                               | $k \coloneqq \mathbf{if} \left( P_{SPF1} > P_{11}, \text{``okay''}, \text{``not okay''} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                               | $\mathbf{c} \coloneqq \mathbf{if} \left( P_{SPF2} > P_{21}, \text{``okay''}, \text{``not okay''} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                               | $k \coloneqq \mathbf{if}(P_{SPF1} > P_{12}, \text{``okay''}, \text{``not okay''})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                               | $\mathbf{c} \coloneqq \mathbf{if} \left( P_{SPF2} > P_{21}, \text{``okay''}, \text{``not okay''} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

### **C - Allowable Mud Pressures:**


| <u>C1 -</u> | Max. | Allow | able | Driling | Fluid | Pressure |
|-------------|------|-------|------|---------|-------|----------|
|             |      |       |      |         |       |          |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| $H_w \coloneqq 0 \cdot ft$ $H_c \coloneqq 17.5 ft$ $\gamma \coloneqq 100 pcf$ $\gamma_w \coloneqq 62.4 pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth of the bore below groundwater<br>elevation<br>Vertical separation distance between critica<br>structure and pipe<br>Assumed unit weight very soft clay |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma \coloneqq 100 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | structure and pipe                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assumed unit weight very soft clay                                                                                                                           |
| $\gamma_{u} := 62.4 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit weight of water                                                                                                                                         |
| $\gamma' = \gamma - \gamma_w = 37.6 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Effective unit weight                                                                                                                                        |
| $u \coloneqq \gamma_w \cdot H_w = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initial pore water pressure                                                                                                                                  |
| $\frac{\phi := 0}{\phi} \frac{\phi = 0}{\phi} \phi$ | Assumed friction Angle                                                                                                                                       |
| <i>c</i> ≔ 450 <i>psf</i> = 3.13 <i>psi</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assumed cohesion of encountered materia                                                                                                                      |
| $R_0 := \frac{D_{rod}}{2} = 1.75$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial radius of the borehole                                                                                                                               |
| $R_{pmax} \coloneqq \frac{1}{2} \cdot H_c = 9  ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                                                                       |
| $\sigma'_{0} \coloneqq \left( \left( \gamma \cdot \left( H_{c} - H_{w} \right) \right) + \gamma' \cdot H_{w} \right) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 <i>psi</i> Initial effective stress                                                                                                                        |
| Table C.2 Typical values of modulus of elasticity ( $E_s$ ) for different typ       Type of Soil $E_s$ (N/mm <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es of soils                                                                                                                                                  |
| Table C.2 Typical values of modulus of elasticity ( $E_S$ ) for different type         Type of Soil $E_s$ (N/mm <sup>2</sup> )         Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es of soils                                                                                                                                                  |
| Type of Soil         E <sub>y</sub> (N/mm <sup>2</sup> )           Clay         Very soft         2–15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es of soils                                                                                                                                                  |
| Type of Soil $E_s$ (N/mm <sup>2</sup> )<br>Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |
| Type of Soil $E_s$ (N/mm <sup>2</sup> )           Clay         2–15           Very soft         5–25           Medium         15–50           Hard         50–100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |
| Type of Soil $E_{\rm g}$ (N/mm <sup>2</sup> )           Clay         2–15           Soft         5–25           Medium         15–50           Hard         50–100           Sandy         25–250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $E_s := 5 \frac{N}{mm^2} = 725 psi$                                                                                                                          |
| Type of Soil $E_{\nu}$ (N/mm <sup>2</sup> )           Clay         2–15           Soft         5–25           Medium         15–50           Hard         50–100           Sandy         25–250           Glacial till         50–100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| Type of Soil $E_{\rm g}$ (N/mm <sup>2</sup> )           Clay         2–15           Soft         5–25           Medium         15–50           Hard         50–100           Sandy         25–250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |
| $\begin{tabular}{ c c c c c } \hline Type of Soil & E_s (N/mm^2) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| $\begin{tabular}{ c c c c c } \hline Type of Soil & E_{*} (N/mm^{2}) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ Loess & 14-57 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| $\begin{tabular}{ c c c c c } \hline Type of Soil & E_s (N/mm^2) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| $\begin{tabular}{ c c c c c } \hline Type of Soil & E_{v} (N/mm^{2}) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ Loess & 14-57 \\ Sand & & \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| $\begin{tabular}{ c c c c } \hline Type of Soil & E_s (N/mm^2) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ Loess & 14-57 \\ Sand & & \\ Silty & 7-21 \\ Loose & 10-24 \\ Dense & 48-81 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| Type of Soil $E_{\nu}$ (N/mm <sup>2</sup> )           Clay         2–15           Soft         5–25           Medium         15–50           Hard         50–100           Sandy         25–250           Glacial till         10–153           Dense         144–720           Very dense         478–1,440           Loess         14–57           Sand         501           Silty         7–21           Loose         10–24           Dense         48–81           Sand and gravel         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| $\begin{tabular}{ c c c c } \hline Type of Soil & E_s (N/mm^2) \\ \hline Clay & & & \\ Very soft & 2-15 \\ Soft & 5-25 \\ Medium & 15-50 \\ Hard & 50-100 \\ Sandy & 25-250 \\ \hline Glacial till & & \\ Loose & 10-153 \\ Dense & 144-720 \\ Very dense & 478-1,440 \\ Loess & 14-57 \\ Sand & & \\ Silty & 7-21 \\ Loose & 10-24 \\ Dense & 48-81 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 \ psi$                                                                                                                 |
| Type of Soil $E_{\nu}$ (N/mm <sup>2</sup> )           Clay         2–15           Soft         5–25           Medium         15–50           Hard         50–100           Sandy         25–250           Glacial till         10–153           Loose         10–153           Dense         144–720           Very dense         478–1,440           Looss         14–57           Sand         10–24           Dense         10–24           Dense         48–81           Sand and gravel         10–24           Loose         48–81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_s \coloneqq 5 \frac{N}{mm^2} = 725 psi$                                                                                                                   |



Champlain Hudson Power Express - Package 6 Project: KILDUF Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Tunnel No.: Pull Back and Mud Pressure Calcs Description: UNDERGROUND ENGINEERING, INC. Calculated by: DA Date: 4/13/23 R1: 6/12/23 Checked by: NW Date: 4/17/23  $L_{structure} \coloneqq 125 \ ft$ Length to sturcture  $p_2 \coloneqq L_{structure} \cdot \left( \left( \frac{\mu_{pl} \cdot v}{\left( D_0 - D_{PT} \right)^2} \right) + \left( \frac{\tau_o}{\left( D_0 - D_{PT} \right)} \right)$ =0.4 **psi** Minimum required mud pressure to create flow inside the borehole Minimum required mud pressure  $p_{min.} \coloneqq p_1 + p_2 = 13.5 \ psi$  $check := if(p_{max} > p_{min.}, "okay", "not okay") = "okay"$ 



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

| D1.1 - Overburden Pressure (Considering E                                                                                                                                                          | Deformed Borehole with Arching Mobilized)                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_c \coloneqq H_{max} = 79.2 \ ft$                                                                                                                                                                | Depth of cover                                                                                                                                 |
| $\phi = 0  deg$                                                                                                                                                                                    | Friction angle of soil                                                                                                                         |
| $B \coloneqq D_r = 18 \ in$                                                                                                                                                                        | "Silo" width, conservative value =                                                                                                             |
| $\left( \begin{array}{c} 1 \end{array} \right)^2$                                                                                                                                                  | reamed hole diameter                                                                                                                           |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                               | Earth pressure coefficient                                                                                                                     |
| $\gamma = 100 \ pcf$                                                                                                                                                                               | Unit weight of soil, assumed                                                                                                                   |
| $1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{m} \cdot \tan\left(\frac{\phi}{\phi}\right)\right)$                                                                                                     |                                                                                                                                                |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)}  k \coloneqq 1$ | Arching factor (Eq. 6, p.432, PPI)                                                                                                             |
| $P_E \coloneqq k \cdot (\gamma - \gamma_w) \cdot (H_c) = 21 \ psi \ P_E = 2978$                                                                                                                    | <i>psf</i> Effective overburden pressure                                                                                                       |
| D1.2 Earth Load Deflection (Short Term)                                                                                                                                                            |                                                                                                                                                |
|                                                                                                                                                                                                    | Apparent modulus of elasticity for                                                                                                             |
| $E_{short} \coloneqq 57500 \cdot psi$                                                                                                                                                              | PE4710, Base Temperature of 73 deg.                                                                                                            |
|                                                                                                                                                                                                    | Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)                                                                          |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \ psi$                                                                                                              | Variable in earth load deflection equation                                                                                                     |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 2.8\%$                                                                                                                       | Pipe deflection to diameter as per                                                                                                             |
| 31011                                                                                                                                                                                              | PPI Equ. 10 (Chp 12, p 437, PPI Handbool                                                                                                       |
| D1.3 Earth Load Deflection (Long Term)                                                                                                                                                             |                                                                                                                                                |
| $E_{long} \coloneqq 28200 \cdot psi$                                                                                                                                                               | Apparent modulus of elasticity for PE4710<br>Base Temperature of 73 Fahrenheit at 50<br>years of sustained loading (Table X1.1<br>ASTM F 1962) |
| $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$                                                                                                                                   | Variable in earth load deflection equation                                                                                                     |
| $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k} = 5.6\%$                                                                                                                                | Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437)                                                                              |
|                                                                                                                                                                                                    |                                                                                                                                                |



Project:

Tunnel No.:

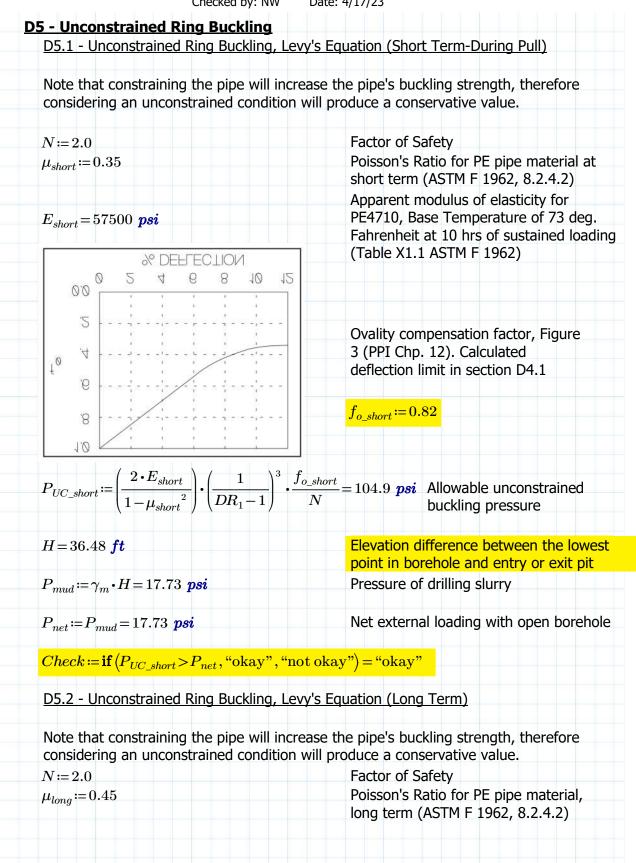
Description:

Calculated by: DA

Checked by: NW

Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

| D2.1 Buoyant Deflection (Short Term)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 = 10.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Outside diameter of casing pipe                                                                                                                                                                                                                                                                                                                              |
| $t := T_{p1} = 1.194 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thickness of casing pipe                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apparent modulus of elasticity for                                                                                                                                                                                                                                                                                                                           |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE4710, Base Temperature of 73                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                                                                                                     |
| $\gamma_m = 70 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Assumed unit weight of fluid in                                                                                                                                                                                                                                                                                                                              |
| $t^3$ in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | borehole (Slurry unit weight)                                                                                                                                                                                                                                                                                                                                |
| $I := \frac{1}{12} = 0.14 \frac{i}{in}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moment of inertia of pipe wall cross                                                                                                                                                                                                                                                                                                                         |
| $(D_1)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | section                                                                                                                                                                                                                                                                                                                                                      |
| $0.1169 \cdot \gamma_m \cdot \left( \frac{1}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                                                                                                        |
| $\gamma_{m} = 70 \text{ pcf}$ $I \coloneqq \frac{t^{3}}{12} = 0.14 \frac{in^{4}}{in}$ $0.1169 \cdot \gamma_{m} \cdot \left(\frac{D_{1}}{2}\right)^{4}$ $\Delta y_{bouyant} \coloneqq \frac{E_{short} \cdot I}{E_{short}} = 0.0$                                                                                                                                                                                                                                                                                                          | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                                                                                                  |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |
| Please note that long term buoyant deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on was assumed negibile, since grout is                                                                                                                                                                                                                                                                                                                      |
| assumed to be cured after a 1-week period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |
| <u> 3 - Reissner Effect Deflection (Short Ter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m)                                                                                                                                                                                                                                                                                                                                                           |
| 3 - Reissner Effect Deflection (Short Ter<br>D3.1 - Reissner Effect Deflection (Short Terr                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                            |
| 3 - Reissner Effect Deflection (Short Ter<br>D3.1 - Reissner Effect Deflection (Short Terr                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                            |
| D3.1 - Reissner Effect Deflection (Short Terr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>n)</u>                                                                                                                                                                                                                                                                                                                                                    |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} := 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                            |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} := 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>n)</u><br>Poisson's Ratio for PE pipe material a                                                                                                                                                                                                                                                                                                          |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$<br>$R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                         | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                            |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$<br>$R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                         | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                            |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$<br>$R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                         | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                            |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending                                                                                                                                                                                                           |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$<br>$R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                         | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$                                                                                                                                                                                     | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> </ul>                                                                                                                      |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                                                                                                                                     | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> </ul>                                                                                                                      |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Terr}$                                                                                                                                           | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> </ul>                                                                                                          |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$                                                                                                                                                                                     | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a</li> </ul>                                                          |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Terr})$ $\mu_{long} \coloneqq 0.45$                                                                                                  | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)</li> </ul>                         |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Terr<br>$\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a</li> </ul>                                                          |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Terr<br>$\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> </ul> |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Terr<br>$\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)</li> </ul>                         |
| D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Terr<br>$\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> </ul> |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Terr})$ $\mu_{long} \coloneqq 0.45$                                                                                                  | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnr Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> </ul> |




Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

| D4 - Net Ring Deflection                                                                                                    |                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\Delta y_{lim} \coloneqq 7.5\%$                                                                                            | Deflection limit for DR 9 non pressurized pipe (Table 2 , p. 437, PPI Handbook) |
| D4.1 - Net Short Term                                                                                                       |                                                                                 |
| $\Delta y_{short\_net} \coloneqq \Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y$                                     | $P_{R\_short} = 2.8\%$ Percent ring deflection in short term analysis           |
| $Check\!\coloneqq\!\mathbf{if}\left(\! \varDelta y_{short\_net} \!<\! \varDelta y_{lim}, \text{``okay''}, \text{``}\right.$ | not okay") = "okay"                                                             |
| D4.2 - Net Long Term                                                                                                        |                                                                                 |
| $\Delta y_{long\_net} \coloneqq \Delta y_{ELD\_long} + \Delta y_{R\_long} = 5.6\%$                                          | Percent ring deflection in long term analysis (50 years)                        |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{lim}, \text{``okay''}, \text{``n} \right)$             | not okay") = "okay"                                                             |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |
|                                                                                                                             |                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23



|                                                                      | Tunnel No.:CrDescription:PuCalculated by: DADa                                    | hamplain Hudson Power Express - Package 6<br>rossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing<br>III Back and Mud Pressure Calcs<br>ate: 4/13/23 R1: 6/12/23<br>ate: 4/17/23 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} {=} 28200~{psi}$                                           |                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                                            |
| $f_{o\_long} \coloneqq 0.45$                                         |                                                                                   | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                                      |
| $(2 \cdot E_{long})$                                                 | ) $(1)^3 f_{o\_long}$                                                             | 9 01 1                                                                                                                                                                                          |
| $P_{UC\_long} \coloneqq \left( \frac{1}{1 - \mu_{long}^2} \right)^2$ | $\left  \cdot \left( \frac{DR_1 - 1}{DR_1 - 1} \right) \right  \cdot \frac{1}{N}$ | <sup>g</sup> =31.1 <b>psi</b><br>Allowable unconstrained buckling<br>pressure                                                                                                                   |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 0 \ ps_w$                     | <i>i</i>                                                                          | Groundwater head pressure                                                                                                                                                                       |
| $P_{net} \coloneqq P_{GW}$                                           |                                                                                   | Net external loading with open borehole                                                                                                                                                         |
| $Check := \mathbf{if} \left\langle P_{UC\_long} \right\rangle$       | $P_{net}$ , "okay", "not ol                                                       | kay") = "okay"                                                                                                                                                                                  |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |
|                                                                      |                                                                                   |                                                                                                                                                                                                 |

12



Champlain Hudson Power Express - Package 6 Crossing #96.A&B - S-23 (Hannacrois Creek) and CSX Railroad Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/17/23

## **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

|                                                                                                                                                                                                                                                            | ional Drilling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                        | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_2 := 2.375 \ in$                                                                                                                                                                                                                                        | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_{rod} := 3.5 in$                                                                                                                                                                                                                                        | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $DR_1 := 9$                                                                                                                                                                                                                                                | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $DR_2 \coloneqq 11$                                                                                                                                                                                                                                        | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{split} T_{p1} &\coloneqq \frac{D_{1}}{DR_{1}} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_{2}}{DR_{2}} {=} 0.216 ~\textit{in} \end{split}$                                                                                                 | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                  | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_1 := \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                         | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_2 \coloneqq \boldsymbol{\pi} \cdot D_2 = 7.5 \ \boldsymbol{in}$                                                                                                                                                                                         | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bore/pipepath                                                                                                                                                                                                                                              | pipe entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                            | pipeandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| drill rig B                                                                                                                                                                                                                                                | A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                            | - running tunning tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H,                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pipe exit C                                                                                                                                                                                                                                                | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L <sub>4</sub> L <sub>3</sub>                                                                                                                                                                                                                              | · L <sub>2</sub> L <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Loore                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Illustration 1 - Schematic of                                                                                                                                                                                                                              | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\alpha := 8^{\circ}$ $\alpha_{in} := \alpha = 0.1396 \ rad$                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 616                                                                                                                                                                                                                                                        | Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\beta \coloneqq 8$ $\beta_{exit} \coloneqq \beta = 0.1396 \ rad$                                                                                                                                                                                          | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c} \beta \coloneqq 8 & \beta_{exit} \coloneqq \beta \equiv 0.1396 \ \textbf{rad} \\ D_r \coloneqq 18 \cdot \textbf{in} \\ H_{max} \coloneqq 23.6 \ \textbf{ft} \end{array} $                                                               | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c} \beta \coloneqq 8 & \circ \\ B_{exit} \coloneqq \beta \equiv 0.1396 \ rad \\ D_r \coloneqq 18 \cdot in \end{array} $                                                                                                                    | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c} \beta \coloneqq 8 & \beta_{exit} \coloneqq \beta \equiv 0.1396 \ \textbf{rad} \\ D_r \coloneqq 18 \cdot \textbf{in} \\ H_{max} \coloneqq 23.6 \ \textbf{ft} \end{array} $                                                               | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from                                                                                                                                                                                                                                                                                       |
| $\beta := 8 \circ \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 445.0 \text{ ft}$ $L_1 := 150 \text{ ft}$                           | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                                                                                     |
| $\beta := 8 \circ \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 445.0 \text{ ft}$                                                   | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See                                                                                                                                                                                               |
| $\beta := 8 \circ \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 445.0 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 185.5 \text{ ft}$ | <ul> <li>Borehole entry angle (degrees, radians)</li> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bo</li> <li>diameter</li> <li>Max depth to bore hole springline from</li> <li>ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See</li> <li>Illustration 1</li> <li>Horizontal length to achieve depth -</li> </ul>                                                      |
| $\beta := 8 \circ \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 445.0 \text{ ft}$ $L_1 := 150 \text{ ft}$                           | <ul> <li>Borehole entry angle (degrees, radians)</li> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bor</li> <li>diameter</li> <li>Max depth to bore hole springline from</li> <li>ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See</li> <li>Illustration 1</li> <li>Horizontal length to achieve depth -</li> <li>provided by Contractor, See Illustration 1</li> </ul> |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                             | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #97- State Rte 144/ CSX Structure Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/13/23 |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                                                                                            |                                                                                | Friction coefficient before pipe enters (rollers assumed)                                                                                                                           |
| $v_b := 0.3$                                                                                                                            |                                                                                | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                                           |
| $ ho_w \coloneqq 62.4 \ pcf$                                                                                                            |                                                                                | Unit weight of water                                                                                                                                                                |
| $\gamma_a \coloneqq 0.965$                                                                                                              |                                                                                | Specific gravity of pipe                                                                                                                                                            |
| $\gamma_m \coloneqq 90 \ pcf$                                                                                                           |                                                                                | Assumed unit weight of slurry                                                                                                                                                       |
| $\gamma_b \! \coloneqq \! \frac{\gamma_m}{\rho_w} \! = \! 1.4$                                                                          |                                                                                | Specific gravity of slurry, assumed unit weight                                                                                                                                     |
| $\gamma_c \coloneqq 1.0$                                                                                                                |                                                                                | Specific gravity of water to fill the pipe                                                                                                                                          |
| $\Delta P \coloneqq 10 \ psi$                                                                                                           |                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                                                |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                                                                                       |                                                                                | Gravitational Constant                                                                                                                                                              |
| <u>A - Axial Bending Stress</u>                                                                                                         | <u>:</u>                                                                       |                                                                                                                                                                                     |
| $R_{avg.\_in}$ :=1000 $ft$                                                                                                              |                                                                                | Radius of curvature at the entry, provided by Contractor                                                                                                                            |
| $R_{avg\_out} \coloneqq 1000 \ ft$                                                                                                      |                                                                                | Radius of curvature at the exit, provided by Contractor                                                                                                                             |
| $ \qquad \qquad$ | $\frac{t}{t} = 1000 \ ft$                                                      | Average radius of curvature at entry                                                                                                                                                |
| $r_{rod} := 1200 \cdot D_{rod} = 35$                                                                                                    | 50 <b>f</b> t                                                                  | ASTM F 1962-99, Equation 1, p7                                                                                                                                                      |
| $Check \coloneqq$ if $\left( R_{avg.\_in} > \right)$                                                                                    | r <sub>rod</sub> , "okay", "not                                                | cokay") = "okay"                                                                                                                                                                    |
| $Check \coloneqq \mathbf{if} \left( R_{avg.\_out} > \right)$                                                                            | $r_{rod}$ , "okay", "no                                                        | ot okay") = "okay"                                                                                                                                                                  |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$           | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>12hr</sub> := 57500 • <b>psi</b>                  | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \coloneqq e_a \cdot E_{12hr} = 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| B1.1 - Effective Weight of Empty Pipe:<br>$w_{a} := \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p_{1}} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p_{2}} \right)^{2} \right) \right) \cdot \rho_{w} \cdot \gamma_{a} = 8.3 \text{ plf}$ B1.2 - Upward Buoyant Force:<br>Effective weight<br>$w_{b} := \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2 \text{ plf}$ Upward buoyant force of empty pipe<br>B1.3 - Hydrokinetic Pressure:<br>$\Delta T := \Delta P \cdot \left( \frac{\pi}{8} \right) \left( D_{r}^{2} - \left( D_{1}^{2} + D_{2}^{2} \right) \right) = 796 \text{ lbf}$ Hydrokinetic force<br>B1.4 - Pullback Force Point A:<br>$T_{a} := e^{v_{a} \cdot \alpha_{w}} \cdot \left( v_{a} \cdot w_{a} \cdot \left( L_{1} + L_{2} + L_{3} + L_{4} \right) \right) = 500 \text{ lbf}$ Pullback force when pipe enters the gro<br>B1.5 - Pullback Force Point B:<br>$T_{b} := e^{v_{b} \cdot \alpha_{w}} \left( T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{w})} \right) = 4591 \text{ lbf}$ Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_{c} := T_{b} + \left( v_{b} \cdot w_{b} \cdot L_{3} \right) - e^{(v_{b} \cdot \alpha_{w})} \cdot \left( v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{w})} \right) = 5434 \text{ lbf}$ B1.7 - Pullback Force at D:<br>$T_{d} := e^{(v_{b} \cdot \beta_{w})} \cdot \left( T_{c} + v_{b} \cdot  w_{b} \right) \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{w})} \cdot \left( v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{w})} \right) \right) = 7452 \text{ lbf}$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max \left( T_{a}, T_{b}, T_{c}, T_{d} \right) + \Delta T = 8248 \text{ lbf}$ Maximum Pullback Force<br>E2 - Filled Pipe with Water<br>B2.1 - Upward Buoyant Force:<br>$w_{bfilled} := \left( \frac{\left( \pi \cdot D_{1}^{2} \right)}{4} \right) \cdot \rho_{w} \cdot \left( \gamma_{b} - \gamma_{c} \cdot \left( 1 - \left( \frac{2}{DR_{1}} \right) \right)^{2} \right) - w_{a} = 24.6 \text{ plf}$                                                                                     | <b><u>1 - Empty Pipe</u></b>                                                                                                                                               |                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| B1.2 - Upward Buoyant Force:Effective weight $w_b := \left(\frac{\pi \cdot (D_1^2 + D_2^2)}{4}\right) \rho_w \cdot \gamma_b - w_a = 51.2 \ plf$ Upward buoyant force of empty pipeB1.3 - Hydrokinetic Pressure: $\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) (D_r^2 - (D_1^2 + D_2^2)) = 796 \ lbf$ Hydrokinetic forceB1.4 - Pullback Force Point A: $T_a := e^{v_a \cdot \alpha_m} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) = 500 \ lbf$ Pullback force when pipe enters the groB1.5 - Pullback Force Point B: $T_b := e^{v_a \cdot \alpha_m} (T_a + v_b \cdot  w_b  \cdot L_2 + w_b \cdot H_{max} - v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_m)}) = 4591 \ lbf$ $T_b := e^{v_a \cdot \alpha_m} (T_a + v_b \cdot  w_b  \cdot L_2 + w_b \cdot H_{max} - v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_m)}) = 4591 \ lbf$ B1.6 - Pullback Force Point C: $T_c := T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_m)} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_m)}) = 5434 \ lbf$ B1.7 - Pullback Force at D: $T_d := e^{(v_b \cdot \beta_{em})} \cdot (T_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_m)} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_m)})) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe: $P_{max\_empty} := \max(T_a, T_b, T_c, T_d) + \Delta T = 8248 \ lbf$ Maximum Pullback Force <b>2 - Filled Pipe with Water</b> B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1.1 - Effective weight of Empty Pipe:                                                                                                                                     |                                                                                                                            |
| $w_{b} := \left(\frac{\pi \cdot (D_{1}^{2} + D_{2}^{2})}{4}\right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2 \ plf $ Upward buoyant force of empty pipe<br><b>B1.3 - Hydrokinetic Pressure:</b><br>$\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_{r}^{2} - (D_{1}^{2} + D_{2}^{2})\right) = 796 \ lbf $ Hydrokinetic force<br><b>B1.4 - Pullback Force Point A:</b><br>$T_{a} := e^{v_{a} \cdot \alpha_{m}} \cdot \left(v_{a} \cdot w_{a} \cdot (L_{1} + L_{2} + L_{3} + L_{4})\right) = 500 \ lbf $ Pullback force when pipe enters the gro<br><b>B1.5 - Pullback Force Point B:</b><br>$T_{b} := e^{v_{b} \cdot \alpha_{m}} \left(T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{m})}\right) = 4591 \ lbf$ Pullback force increase with depth<br><b>B1.6 - Pullback Force Point C:</b><br>$T_{c} := T_{b} + (v_{b} \cdot w_{b} \cdot L_{3}) - e^{(v_{b} \cdot \alpha_{m})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{m})}\right) = 5434 \ lbf$<br><b>B1.7 - Pullback Force at D:</b><br>$T_{d} := e^{(v_{b} \cdot \beta_{stal})} \cdot \left(T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{m})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{m})}\right)\right) = 7452 \ lbf$<br><b>B1.8 - Maximum Pullback Force - Empty Pipe:</b><br>$P_{max\_empty} := \max \left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf$<br>Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br><b>B2.1 - Upward Buoyant Force:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $w_{a} \coloneqq \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p1} \right)^{2} \right) \right)$ | $\leftT_{p2} ight angle ^{2} ight)  angle oldsymbol{\cdot}  ho_{w}oldsymbol{\cdot} \gamma_{a}  ightarrow 8.3 ~ plf$        |
| B1.3 - Hydrokinetic Pressure:<br>$\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ lbf$ Hydrokinetic force<br>B1.4 - Pullback Force Point A:<br>$T_a := e^{v_a \cdot \alpha_m} \cdot \left(v_a \cdot w_a \cdot \left(L_1 + L_2 + L_3 + L_4\right)\right) = 500 \ lbf$ Pullback force when pipe enters the gro<br>B1.5 - Pullback Force Point B:<br>$T_b := e^{v_b \cdot \alpha_m} \left(T_a + v_b \cdot  w_b  \cdot L_2 + w_b \cdot H_{max} - v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_m)}\right) = 4591 \ lbf$ Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_c := T_b + \left(v_b \cdot w_b \cdot L_3\right) - e^{(v_b \cdot \alpha_m)} \cdot \left(v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_m)}\right) = 5434 \ lbf$ B1.7 - Pullback Force at D:<br>$T_d := e^{(v_b \cdot \beta_{em})} \cdot \left(T_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_m)} \cdot \left(v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_m)}\right)\right) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max \left(T_a, T_b, T_c, T_d\right) + \Delta T = 8248 \ lbf$ Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1.2 - Upward Buoyant Force:                                                                                                                                               | Effective weight                                                                                                           |
| $\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ lbf \ \text{Hydrokinetic force}$ $B1.4 - \text{Pullback Force Point A:}$ $T_a := e^{v_a \cdot a_m} \cdot \left(v_a \cdot w_a \cdot \left(L_1 + L_2 + L_3 + L_4\right)\right) = 500 \ lbf \ Pullback force when pipe enters the groen between the probability of the second seco$                                                                                                                      | $w_{b} \coloneqq \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2 \text{ g}$                               | <i>plf</i> Upward buoyant force of empty pipe                                                                              |
| B1.4 - Pullback Force Point A:<br>$T_{a} := e^{v_{a} \cdot \alpha_{m}} \cdot (v_{a} \cdot w_{a} \cdot (L_{1} + L_{2} + L_{3} + L_{4})) = 500 \ lbf$ Pullback force when pipe enters the gro<br>B1.5 - Pullback Force Point B:<br>$T_{b} := e^{v_{b} \cdot \alpha_{m}} (T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{m})}) = 4591 \ lbf$ Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_{c} := T_{b} + (v_{b} \cdot w_{b} \cdot L_{3}) - e^{(v_{b} \cdot \alpha_{m})} \cdot (v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{m})}) = 5434 \ lbf$ B1.7 - Pullback Force at D:<br>$T_{d} := e^{(v_{b} \cdot \beta_{crit})} \cdot (T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{m})} \cdot (v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{m})})) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf$ Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1.3 - Hydrokinetic Pressure:                                                                                                                                              |                                                                                                                            |
| $\begin{split} T_{a} &:= e^{v_{a} \cdot \alpha_{m}} \cdot \left(v_{a} \cdot w_{a} \cdot \left(L_{1} + L_{2} + L_{3} + L_{4}\right)\right) = 500 \ \textit{lbf} \\ & Pullback force when pipe enters the grown of the set of $                                                                                                                                                     | $\Delta T \coloneqq \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796$                                                       | <i>lbf</i> Hydrokinetic force                                                                                              |
| Pullback force when pipe enters the gro<br>B1.5 - Pullback Force Point B:<br>$T_{b} := e^{v_{b} \cdot \alpha_{in}} (T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{in})}) = 4591 \ lbf$ Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_{c} := T_{b} + (v_{b} \cdot w_{b} \cdot L_{3}) - e^{(v_{b} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{in})}) = 5434 \ lbf$ B1.7 - Pullback Force at D:<br>$T_{d} := e^{(v_{b} \cdot \beta_{cail})} \cdot (T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})})) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf$ Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1.4 - Pullback Force Point A:                                                                                                                                             |                                                                                                                            |
| Pullback force when pipe enters the gro<br>B1.5 - Pullback Force Point B:<br>$T_{b} := e^{v_{b} \cdot \alpha_{in}} \left(T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{in})}\right) = 4591 \ lbf$ Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_{c} := T_{b} + \left(v_{b} \cdot w_{b} \cdot L_{3}\right) - e^{(v_{b} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{in})}\right) = 5434 \ lbf$ B1.7 - Pullback Force at D:<br>$T_{d} := e^{(v_{b} \cdot \beta_{cxtl})} \cdot \left(T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{m})}\right)\right) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max\left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf$ Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T := e^{v_a \cdot \alpha_{in}} (a  a  (T + T + T + T))$                                                                                                                   | 500 lbf                                                                                                                    |
| $\begin{array}{l} \underline{B1.5 - Pullback \ Force \ Point \ B:} \\ T_{b} \coloneqq e^{v_{b} \cdot \alpha_{in}} \left(T_{a} + v_{b} \cdot  w_{b}  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{in})}\right) = 4591 \ lbf \\ Pullback \ force \ increase \ with \ depth \\ \underline{B1.6 - Pullback \ Force \ Point \ C:} \\ T_{c} \coloneqq T_{b} + \left(v_{b} \cdot w_{b} \cdot L_{3}\right) - e^{(v_{b} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{in})}\right) = 5434 \ lbf \\ \underline{B1.7 - Pullback \ Force \ at \ D:} \\ T_{d} \coloneqq e^{(v_{b} \cdot \beta_{cxil})} \cdot \left(T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})}\right)\right) = 7452 \ lbf \\ \underline{B1.8 - Maximum \ Pullback \ Force \ - \ Empty \ Pipe:} \\ P_{max\_empty} \coloneqq \max \left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf \\ Maximum \ Pullback \ Force \\ \underline{2 - Filled \ Pipe \ with \ Water} \\ \underline{B2.1 - Upward \ Buoyant \ Force:} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $L_a := e^{-1} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) = 5$                                                                                                    |                                                                                                                            |
| Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_c := T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 5434 \ lbf$<br>B1.7 - Pullback Force at D:<br>$T_d := e^{(v_b \cdot \beta_{exil})} \cdot (T_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})})) = 7452 \ lbf$<br>B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max (T_a, T_b, T_c, T_d) + \Delta T = 8248 \ lbf$<br>Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1.5 - Pullback Force Point B:                                                                                                                                             |                                                                                                                            |
| Pullback force increase with depth<br>B1.6 - Pullback Force Point C:<br>$T_c := T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 5434 \ lbf$<br>B1.7 - Pullback Force at D:<br>$T_d := e^{(v_b \cdot \beta_{exil})} \cdot (T_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})})) = 7452 \ lbf$<br>B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} := \max (T_a, T_b, T_c, T_d) + \Delta T = 8248 \ lbf$<br>Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            | $I = (v_{\cdot}, \alpha_{\cdot}) $ Apple $I = 0$                                                                           |
| B1.6 - Pullback Force Point C:<br>$T_{c} \coloneqq T_{b} + (v_{b} \cdot w_{b} \cdot L_{3}) - e^{(v_{b} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{3} \cdot e^{(v_{a} \cdot \alpha_{in})}) = 5434 \ lbf$ B1.7 - Pullback Force at D:<br>$T_{d} \coloneqq e^{(v_{b} \cdot \beta_{exil})} \cdot (T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})})) = 7452 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:<br>$P_{max\_empty} \coloneqq \max (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf$ Maximum Pullback Force<br><b>2 - Filled Pipe with Water</b><br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_b \coloneqq e^{-v}   w_b  \cdot L_2 + w_b \cdot H_{max} - v$                                                                                                            |                                                                                                                            |
| $\begin{array}{l} \underline{B1.7 - Pullback \ Force \ at \ D:} \\ T_{d} \coloneqq e^{(v_{b} \cdot \beta_{exit})} \cdot \left(T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})}\right)\right) = 7452 \ lbf \\ \underline{B1.8 - Maximum \ Pullback \ Force \ - \ Empty \ Pipe:} \\ P_{max\_empty} \coloneqq \max \left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf \\ Maximum \ Pullback \ Force \\ \underline{P_{max\_empty}} \coloneqq \max \left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf \\ \underline{B1.1 - Upward \ Buoyant \ Force} \\ \underline{P_{max\_empty}} = \sum_{(x_{a}, x_{b}, x_{c}, $ | B1.6 - Pullback Force Point C:                                                                                                                                             |                                                                                                                            |
| $\begin{array}{l} \underline{B1.7 - Pullback \ Force \ at \ D:} \\ T_{d} \coloneqq e^{(v_{b} \cdot \beta_{exit})} \cdot \left(T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})}\right)\right) = 7452 \ lbf \\ \underline{B1.8 - Maximum \ Pullback \ Force \ - \ Empty \ Pipe:} \\ P_{max\_empty} \coloneqq \max \left(T_{a}, T_{b}, T_{c}, T_{d}\right) + \Delta T = 8248 \ lbf \\ Maximum \ Pullback \ Force \\ \underline{2 - Filled \ Pipe \ with \ Water} \\ \underline{B2.1 - Upward \ Buoyant \ Force:} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                            |
| $T_{d} \coloneqq e^{(v_{b} \cdot \beta_{exit})} \cdot (T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})})) = 7452 \ lbf$ $\underline{B1.8 - Maximum Pullback Force - Empty Pipe:}_{P_{max\_empty} \coloneqq max} (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf_{Maximum Pullback Force}$ $\underline{P_{max\_empty} \coloneqq max} (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf_{Maximum Pullback Force}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T_c \coloneqq T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3)$                                                              | $(\cdot e^{(v_a \cdot \alpha_{in})}) = 5434 \ lbf$                                                                         |
| $T_{d} \coloneqq e^{(v_{b} \cdot \beta_{exit})} \cdot (T_{c} + v_{b} \cdot  w_{b}  \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot \alpha_{in})} \cdot (v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot \alpha_{in})})) = 7452 \ lbf$ $\underline{B1.8 - Maximum Pullback Force - Empty Pipe:}_{P_{max\_empty} \coloneqq max} (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf_{Maximum Pullback Force}$ $\underline{P_{max\_empty} \coloneqq max} (T_{a}, T_{b}, T_{c}, T_{d}) + \Delta T = 8248 \ lbf_{Maximum Pullback Force}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1.7 - Pullback Force at D:                                                                                                                                                |                                                                                                                            |
| B1.8 - Maximum Pullback Force - Empty Pipe: $P_{max\_empty} \coloneqq max (T_a, T_b, T_c, T_d) + \Delta T = 8248$ <i>Ibf</i> Maximum Pullback Force <b>2 - Filled Pipe with Water</b> B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                            |
| $P_{max\_empty} \coloneqq \max (T_a, T_b, T_c, T_d) + \Delta T = 8248 \ lbf$ Maximum Pullback Force $\frac{2 - Filled Pipe with Water}{B2.1 - Upward Buoyant Force}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_d \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot \left(T_c + v_b \cdot  w_b  \cdot L_4 - w_b \cdot H_{max}\right)$                                                        | $-e^{(v_a \cdot \alpha_{in})} \cdot \left( v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})} \right) = 7452 \ lbf$ |
| $P_{max\_empty} \coloneqq \max (T_a, T_b, T_c, T_d) + \Delta T = 8248 \ lbf$ Maximum Pullback Force $\frac{2 - Filled Pipe with Water}{B2.1 - Upward Buoyant Force}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R1 8 - Maximum Pullback Force - Empty Pi                                                                                                                                   | no:                                                                                                                        |
| 2 - Filled Pipe with Water     Maximum Pullback Force       B2.1 - Upward Buoyant Force:     Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DI.0 - Maximum Pulback Force - Empty Pi                                                                                                                                    | <u>pe.</u>                                                                                                                 |
| 2 - Filled Pipe with Water<br>B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $P_{max\_empty} \coloneqq \max \left( T_a, T_b, T_c, T_d \right) + \Delta T = 8$                                                                                           | 3248 <i>lbf</i>                                                                                                            |
| B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | Maximum Pullback Force                                                                                                     |
| B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 - Filled Pine with Water                                                                                                                                                 |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            |                                                                                                                            |
| $w_{bfilled} \coloneqq \left(\frac{(\gamma \cdot D_1)}{4}\right) \cdot \rho_w \cdot \left(\gamma_b - \gamma_c \cdot \left(1 - \left(\frac{2}{DR_1}\right)\right)\right) - w_a = 24.6 \ plf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            | $(2 \times 1)^2$                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $w_{bfilled} \coloneqq \left(\frac{\gamma \cdot \nu_1}{4}\right) \cdot \rho_w \cdot \left(\gamma_b - \gamma_c \cdot \left(1 - \left(\frac{2}{D}\right)\right)\right)$      | $\left  -w_a = 24.6 \ plf \right $                                                                                         |
| Unward buoyant force of pino filled with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            | Upward buoyant force of pipe filled with v                                                                                 |



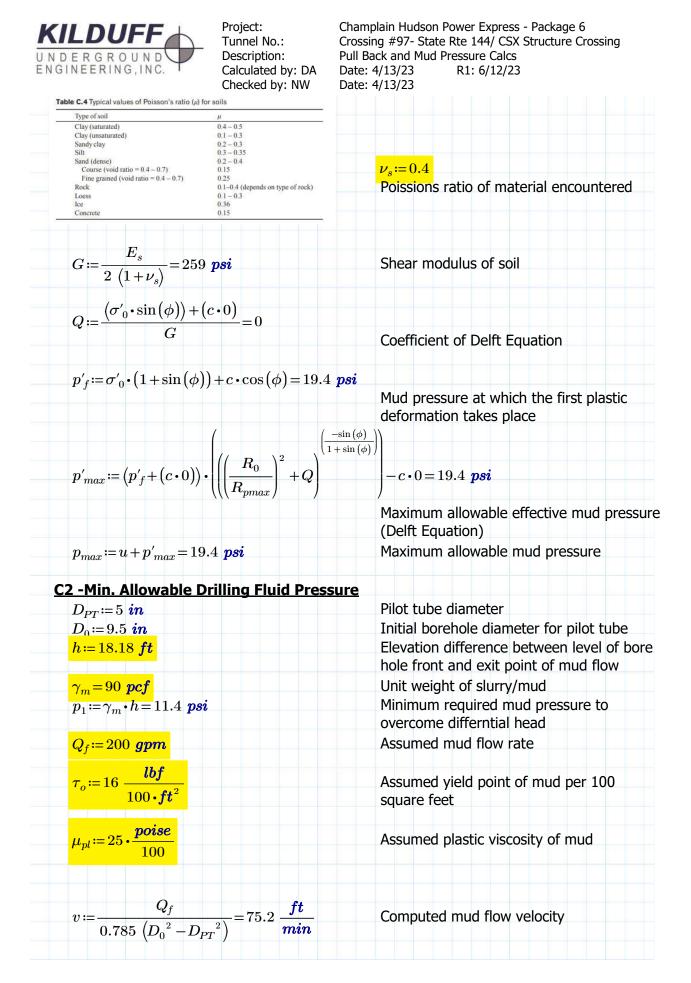
Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| B2.3 - Pullback Force Point B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| $T_{bfilled} := e^{v_b \cdot \alpha_{in}} \left( T_{afilled} + v_b \cdot \left  w_{bfilled} \right  \cdot L_2 + \frac{1}{2} \right)$<br>B2.4 - Pullback Force Point C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot lpha_{in})} = 2721$<br>Pullback force increase and decrease<br>depth |
| $T_{cfilled} \coloneqq T_{bfilled} + (v_b \cdot  w_{bfilled}  \cdot L_3) - e^{(v_b \cdot lpha_{ib})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{n} \cdot \left( v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})} \right) = 3100 \ lbf$                                            |
| B2.5 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               |
| $T_{dfilled} \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot (T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-e^{(v_a \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})})) = 4606 \ lb$                                 |
| <u>B2.6 - Maximum Pullback Force - Filled Pip</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e with Water:                                                                                                                                 |
| $P_{max} \coloneqq \max\left(T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled}, T_{$ | $l) = 4606 \ lbf$<br>Maximum Pullback Force                                                                                                   |
| 3 - Safe Pull Strength / Ultimate Tensil<br>B3.1 Safe Pullback Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>e Load Check:</u>                                                                                                                          |
| $A_1 := \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cross-sectional area of Pipe 1                                                                                                                |
| $A_2 \coloneqq \frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) = 0.8 \ in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cross-sectional area of Pipe 2                                                                                                                |
| $P_{11} := \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 7928 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pullback forces acting on Pipe 1 (Em                                                                                                          |
| $P_{21} := \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 320 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pullback forces acting on Pipe 2 (Em                                                                                                          |
| $P_{12} \coloneqq \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 4427 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pullback forces acting on Pipe 1 (Bal                                                                                                         |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 179 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pullback forces acting on Pipe 2 (Bal                                                                                                         |
| <i>P</i> <sub>SPF1</sub> :=41214 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Safe pullback forces Pipe 1 (Table % p. 448, PPI)                                                                                             |
| <i>P</i> <sub><i>SPF</i>2</sub> :=1683 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Safe pullback forces Pipe 2 (Table % p. 448, PPI)                                                                                             |
| $check \coloneqq if(P_{SPF1} > P_{11}, "okay", "not okay$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                               |
| $check \coloneqq if(P_{SPF2} > P_{21}, "okay", "not okay)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |
| $check \coloneqq if (P_{SPF1} > P_{12}, "okay", "not okay check \coloneqq if (P_{SPF2} > P_{22}, "okay", "not okay $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

## <u>C - Allowable Mud Pressures:</u>


| <u>C1 -</u> | Max. | Allowable | Driling | Fluid | Pressure |
|-------------|------|-----------|---------|-------|----------|
|             |      |           |         |       |          |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| <ul> <li>Depth of the bore below groundwater elevation</li> <li>Vertical separation distance between critica structure and pipe (State Rte 144, ~2+00)</li> <li>Assumed unit weight very soft clay</li> <li>Unit weight of water</li> <li>Effective unit weight</li> <li>Initial pore water pressure</li> <li>Assumed friction Angle</li> <li>Assumed cohesion of encountered material</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| structure and pipe (State Rte 144, ~2+00)<br>Assumed unit weight very soft clay<br>Unit weight of water<br>Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                         |
| Assumed unit weight very soft clay<br>Unit weight of water<br>Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                                                                      |
| Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                                                                                                                                    |
| Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                                                                                                                                    |
| Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                                                                                                                                                             |
| Initial pore water pressure<br>Assumed friction Angle                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| Initial radius of the borehole                                                                                                                                                                                                                                                                                                                                                                    |
| Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| $E_s \coloneqq 5 \frac{N}{mm^2} = 725 psi$                                                                                                                                                                                                                                                                                                                                                        |
| $E_s \coloneqq 5 \xrightarrow{2} = 725 \text{ pst}$                                                                                                                                                                                                                                                                                                                                               |
| mm                                                                                                                                                                                                                                                                                                                                                                                                |
| Assumed modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                     |
| Assumed modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   |



| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                       | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #97- State Rte 144/ CSX Structure Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/13/23 |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L_{structure} \coloneqq 200 \; ft$                                               |                                                                                | Length to sturcture                                                                                                                                                                 |
| $p_2 \coloneqq L_{structure} \cdot \left( \left( - \frac{\mu}{2} \right) \right)$ | $\left(\frac{u_{pl} \cdot v}{2}\right) + \left(\frac{\tau_{c}}{D}\right)$      | Length to sturcture<br>$\left(\frac{D_{PT}}{D_{PT}}\right) = 0.6 \ psi$                                                                                                             |
| $\bigcup (D_0$                                                                    | $(D_{PT})^2$                                                                   | $(\mathcal{D}_{PT})$ )<br>Minimum required mud pressure to create                                                                                                                   |
| $p_{min} \coloneqq p_1 + p_2 = 12 \ p$                                            | ei.                                                                            | flow inside the borehole<br>Minimum required mud pressure                                                                                                                           |
| $p_{min.} - p_1 + p_2 - 12 p$                                                     | 51                                                                             | Filmman required mad pressure                                                                                                                                                       |
| $check \coloneqq \mathbf{if} \left( p_{max} > p_m \right)$                        | <sub>in.</sub> , "okay", "not ok                                               | ay") = "okay"                                                                                                                                                                       |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |
|                                                                                   |                                                                                |                                                                                                                                                                                     |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

|                                                                                                                                                                                                                                                                                                                                                                          | <u>):</u>                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                          | Deformed Borehole with Arching Mobilized)                                                                                                                                                                                                                                                                                                                                                                           |
| $H_c \coloneqq H_{max} = 23.6 \ ft$                                                                                                                                                                                                                                                                                                                                      | Depth of cover                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\phi = 0  deg$                                                                                                                                                                                                                                                                                                                                                          | Friction angle of soil                                                                                                                                                                                                                                                                                                                                                                                              |
| $B \coloneqq D_r = 18 \text{ in}$                                                                                                                                                                                                                                                                                                                                        | "Silo" width, conservative value =<br>reamed hole diameter                                                                                                                                                                                                                                                                                                                                                          |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                                                                                                                                                                                                     | Earth pressure coefficient                                                                                                                                                                                                                                                                                                                                                                                          |
| $\gamma = 100 \ pcf$                                                                                                                                                                                                                                                                                                                                                     | Unit weight of soil, assumed                                                                                                                                                                                                                                                                                                                                                                                        |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = ? k \coloneqq 1$                                                                                                                                                                    | 1 Arching factor (Eq. 6, p.432, PPI)                                                                                                                                                                                                                                                                                                                                                                                |
| $P_L \approx 300 \ psf$                                                                                                                                                                                                                                                                                                                                                  | Live loading for E80 (RR at 23-feet                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                          | depth; use 20-ft to be conservative)                                                                                                                                                                                                                                                                                                                                                                                |
| $P_E \coloneqq (k \cdot (\gamma - \gamma_w) \cdot (H_c)) + P_L \equiv 8 psi$ $P_E \equiv 1187 psf$                                                                                                                                                                                                                                                                       | Effective overburden pressure (psi)<br>Effective overburden pressure (psf)                                                                                                                                                                                                                                                                                                                                          |
| 20 loads due to soil cover > 8-feet.                                                                                                                                                                                                                                                                                                                                     | pected for the crossing. (i.e. no HS                                                                                                                                                                                                                                                                                                                                                                                |
| 20 loads due to soil cover > 8-feet.                                                                                                                                                                                                                                                                                                                                     | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading                                                                                                                                                                                                                                                                                              |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} = 57500 \cdot psi$                                                                                                                                                                                                                                                         | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.                                                                                                                                                                                                                                                                                                                                           |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{3} = 9.36 \ psi$                                                                                                                                                                                       | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading                                                                                                                                                                                                                                                                                              |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$                                                                                                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)<br>Variable in earth load deflection equation                                                                                                                                                                                                                    |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$<br>$\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 1.1\%$                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)                                                                                                                                                                                                                                                                  |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$                                                                                                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)<br>Variable in earth load deflection equation<br>Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handboo                                                                                                                                   |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$<br>$\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 1.1\%$<br>D1.3 Earth Load Deflection (Long Term)<br>$E_{long} \coloneqq 28200 \cdot psi$ | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)<br>Variable in earth load deflection equation<br>Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handboo                                                                                                                                   |
| 20 loads due to soil cover > 8-feet.<br>D1.2 Earth Load Deflection (Short Term)<br>$E_{short} \coloneqq 57500 \cdot psi$<br>$k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$<br>$\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 1.1\%$                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)<br>Variable in earth load deflection equation<br>Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handboo<br>Apparent modulus of elasticity for PE4710<br>Base Temperature of 73 Fahrenheit at 50<br>years of sustained loading (Table X1.1 |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| D2 - Buoyant Deflection                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|
| D2.1 Buoyant Deflection (Short Term)                                                                                      |
| $D_1 = 10.75 \ in$                                                                                                        |
| $t := T_{p1} = 1.194$ in                                                                                                  |
| $E_{short} \!=\! 57500  \mathbf{psi}$                                                                                     |
| $\gamma_m = 90 \ pcf$                                                                                                     |
| $I := \frac{t^3}{12} = 0.14 \frac{in^4}{in}$                                                                              |
| $\Delta y_{bouyant} \coloneqq \frac{0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{2}\right)^4}{E_{short} \cdot I} = 0.1\%$ |

Outside diameter of casing pipe Thickness of casing pipe Apparent modulus of elasticity for PE4710, Base Temperature of 73 Fahrenheit (Table B.1.1) Assumed unit weight of fluid in borehole (Slurry unit weight) Moment of inertia of pipe wall cross section Pipe ring deflection to buoyant force ASTM F 1962 (Eq. X2.6, p.6)

D2.1 Buoyant Deflection (Long Term)

Please note that long term buoyant deflection was assumed negibile, since grout is assumed to be cured after a 1-week period from installation/pumping.

#### D3 - Reissner Effect Deflection (Short Term)

D3.1 - Reissner Effect Deflection (Short Term)

| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                               | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                            |                                                                                                     |
| $z \coloneqq \frac{\frac{3}{2} \cdot \left(1 - \mu_{short}^{2}\right) \left(D_{1} - t\right)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ | Deflection due to longitudinal bending                                                              |
| $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                               | Pipe ring deflection due to the Reisnner<br>Effect                                                  |
| D3.2 - Reissner Effect Deflection (Long Term                                                                                               | <u>)</u>                                                                                            |
| $\mu_{long} \coloneqq 0.45$                                                                                                                | Poisson's Ratio for PE pipe material at long term (ASTM F 1962, 8.2.4.2)                            |
| R=1000 ft                                                                                                                                  | Radius of curvature                                                                                 |
| $z \coloneqq \frac{\frac{3}{2} \cdot \left(1 - \mu_{long}^{2}\right) \left(D_{1} - t\right)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.000003$   | Deflection due to longitudinal bending                                                              |
| $16 \cdot t^2 \cdot R^2$                                                                                                                   |                                                                                                     |
| $\Delta y_{R\_long} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                         | Pipe ring deflection due to the Reisnner<br>Effect, long term                                       |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| $\Delta y_{lim} \coloneqq 7.5\%$                                                                | ,<br>)                                                                     | Deflection limit for DR 9 non press                         |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|
| <u>D4.1 - Net S</u>                                                                             | Short Term                                                                 | pipe (Table 2 , p. 437, PPI Handbo                          |
|                                                                                                 |                                                                            |                                                             |
| $\Delta y_{short\_net} \coloneqq$                                                               | $\Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y_{R\_short}$         | $p_{ort} = 1.2\%$ Percent ring deflection in term analysis  |
| $\frac{Check := \mathbf{if} \left( \angle \right)}{Check := \mathbf{if} \left( \angle \right)}$ | $\Delta y_{short\_net} {<} \Delta y_{lim}, { m ``okay"}, { m ``not}$       | okay") = "okay"                                             |
| <u>D4.2 - Net L</u>                                                                             | ong Term                                                                   |                                                             |
| $\Delta y_{long\_net}$ := 2                                                                     | $\Delta y_{ELD\_long} + \Delta y_{R\_long} = 2.2\%$                        | Percent ring deflection in long tern<br>analysis (50 years) |
| Check := if ()                                                                                  | $\Delta y_{long\_net} \! < \! \Delta y_{lim}, 	ext{``okay''}, 	ext{``not}$ | okay'' = "okay"                                             |
|                                                                                                 | $2g_{long_net} < 2g_{lim}, on a g_{i}$                                     | okay ) – okay                                               |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |
|                                                                                                 |                                                                            |                                                             |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| DJ.1 - Onconstrained King Buckling, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | evy's Equation (Short Term-During Pull)                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note that constraining the pipe will inc<br>considering an unconstrained conditio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | crease the pipe's buckling strength, therefore<br>n will produce a conservative value.                                                                                                                                                                              |
| N:=2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Factor of Safety                                                                                                                                                                                                                                                    |
| $\mu_{short} \coloneqq 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                           |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading                                                                                                                                              |
| 0.0<br>0 2 4 6 8 10 12<br>% Deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Table X1.1 ASTM F 1962)                                                                                                                                                                                                                                            |
| 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |
| fo 0.6 O.6 O.4 O.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Calculated<br>deflection limit in section D4.1                                                                                                                                                              |
| 1.0<br>TERM<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{o\_short} \coloneqq 0.98$                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f                                                                                                                                                                                                                                                                   |
| $P_{UC\_short} \coloneqq \left(\frac{1}{1-\mu_{short}}\right) \cdot \left(\frac{1}{DR_1-1}\right) \cdot \left(\frac{1}{DR_$ | $\frac{f_{o\_short}}{N}$ = 125.4 <b>psi</b> Allowable unconstrained buckling pressure                                                                                                                                                                               |
| $P_{UC\_short} \coloneqq \left(\frac{1}{1-\mu_{short}^{2}}\right) \cdot \left(\frac{1}{DR_{1}-1}\right) \cdot H = 4.2 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elevation difference between the lowest                                                                                                                                                                                                                             |
| ( · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{50\_snort}{N} = 125.4 \text{ psi}$ Allowable unconstrained<br>buckling pressure<br>Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry                                                         |
| H=4.2 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry                                                                                                                                                   |
| $H = 4.2 ft$ $P_{mud} \coloneqq \gamma_m \cdot H = 2.63 psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry<br>Net external loading with open borehole                                                                                                        |
| $H = 4.2 ft$ $P_{mud} \coloneqq \gamma_m \cdot H = 2.63 psi$ $P_{net} \coloneqq P_{mud} = 2.63 psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry<br>Net external loading with open borehole<br>not okay") = "okay"                                                                                 |
| $H = 4.2 ft$ $P_{mud} \coloneqq \gamma_m \cdot H = 2.63 psi$ $P_{net} \coloneqq P_{mud} = 2.63 psi$ $Check \coloneqq if (P_{UC\_short} > P_{net}, \text{``okay''}, \text{``})$ $D5.2 - \text{Unconstrained Ring Buckling, L}$ Note that constraining the pipe will income                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry<br>Net external loading with open borehole<br>not okay") = "okay"<br>evy's Equation (Long Term)<br>crease the pipe's buckling strength, therefore |
| $H = 4.2 ft$ $P_{mud} \coloneqq \gamma_m \cdot H = 2.63 psi$ $P_{net} \coloneqq P_{mud} = 2.63 psi$ $Check \coloneqq if \left( P_{UC\_short} > P_{net}, \text{``okay''}, \text{``start''} \right)$ $D5.2 - \text{Unconstrained Ring Buckling, Links}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elevation difference between the lowest<br>point in borehole and entry or exit pit<br>Pressure of drilling slurry<br>Net external loading with open borehole<br>not okay") = "okay"<br>evy's Equation (Long Term)<br>crease the pipe's buckling strength, therefore |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                     | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #97- State Rte 144/ CSX Structure Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/13/23 |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} {=} 28200 \; psi$                                                     |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                                |
| $f_{o\_long} \coloneqq 0.45$                                                    |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                          |
| $P_{UC\_long} \coloneqq \left(\frac{2 \cdot E_{long}}{1 - \mu_{long}}\right)^2$ | $\left(\frac{1}{DR_1-1}\right)^3 \cdot \frac{f_1}{f_1}$                        | $\frac{b\_long}{N} = 31.1 \text{ psi}$ Allowable unconstrained buckling pressure                                                                                                    |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 0 \ ps$                                  | <i>i</i>                                                                       | Groundwater head pressure                                                                                                                                                           |
| $P_{net} \coloneqq P_{GW}$                                                      |                                                                                | Net external loading with open borehole                                                                                                                                             |
| $Check := if (P_{UC\_long})$                                                    | <u>⊳P "okay" "n</u>                                                            | (a + a + a) = (a + a)                                                                                                                                                               |
|                                                                                 | <sup>&gt;1</sup> <sub>net</sub> , Okay, II                                     | Stokay ) – Okay                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |



Champlain Hudson Power Express - Package 6 Crossing #97- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

# **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill

97.A



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                       | ional Drilling :<br>Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $D_1 = 10.75 \ in$<br>$D_2 = 2.375 \ in$                                                                                                                                                                                                                                                                                                                                                                                                  | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $D_{2} = 2.575 \text{ in}$ $D_{rod} = 3.5 \text{ in}$                                                                                                                                                                                                                                                                                                                                                                                     | Assumed drill rod diameter<br>Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $\frac{D_{rod} = 3.5 \ th}{DR_1 = 9}$                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $DR_1 = 9$ $DR_2 = 11$                                                                                                                                                                                                                                                                                                                                                                                                                    | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                                                                                                                                                                                                        | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $T_{p2} \coloneqq \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                                                                                                                                                                                          | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $C_1 \coloneqq \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $C_2 \coloneqq \pi \cdot D_2 = 7.5 \ in$                                                                                                                                                                                                                                                                                                                                                                                                  | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| bore/pipepath                                                                                                                                                                                                                                                                                                                                                                                                                             | pipe entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| rillrig B D                                                                                                                                                                                                                                                                                                                                                                                                                               | A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| pipeexit                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | L) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| - L <sub>bore</sub>                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 4 L <sub>bor</sub>                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Illustration 1 - Schematic of                                                                                                                                                                                                                                                                                                                                                                                                             | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $L_{\text{bose}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \text{ rad}$                                                                                                                                                                                                                                                                                                                       | Drive Cross-section<br>Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\begin{array}{c} & \qquad $                                                                                                                                                                                                                                                                                       | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| $\mathbf{L}_{\text{tose}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$                                                                                                                                                                                                            | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\mathbf{L}_{\text{tore}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$                                                                                                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $\mathbf{L}_{\text{tore}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$                                                                                                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from                                                                                                                                                                                                                                                                                                |  |  |
| $L_{\text{tore}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$                                                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                                                                                              |  |  |
| $\mathbf{L}_{\text{torse}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$                                                                                      | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing                                                                                                                                                                                                                                              |  |  |
| $L_{\text{torse}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$                                                                                                                              | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See                                                                                                                                                                                                         |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$ $L_1 := 150 \text{ ft}$                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1                                                                                                                                                                                       |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$ $L_1 := 150 \text{ ft}$                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                                                                                                                               |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \ ft$ $L_{total} := 1770 \ ft$ $L_1 := 150 \ ft$ $L_2 := 437.8 \ ft$                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                                                                                 |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 437.8 \text{ ft}$ $L_3 := 820.9 \text{ ft}$                           | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section                                                                  |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 437.8 \text{ ft}$ $L_3 := 820.9 \text{ ft}$ $L_4 := 511.3 \text{ ft}$ | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                                                                                 |  |  |
| $L_{tore}$ Illustration 1 - Schematic of<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 12^{\circ}$ $\beta_{exit} := \beta = 0.2094 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 60.5 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \ ft$<br>$L_{total} := 1770 \ ft$<br>$L_1 := 150 \ ft$<br>$L_2 := 437.8 \ ft$<br>$L_3 := 820.9 \ ft$<br>$L_4 := 511.3 \ ft$                                   | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section<br>Horizontal distance to rise to surface, See                   |  |  |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 12^{\circ} \qquad \beta_{exit} := \beta = 0.2094 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 60.5 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 61.25 \text{ ft}$ $L_{total} := 1770 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 437.8 \text{ ft}$ $L_3 := 820.9 \text{ ft}$                           | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section<br>Horizontal distance to rise to surface, See<br>Illustration 1 |  |  |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                             | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #97.A- Stream S-25 and Ravine Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/13/23 |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                                                                                            |                                                                                | Friction coefficient before pipe enters<br>(rollers assumed)                                                                                                                    |
| $v_b := 0.3$                                                                                                                            |                                                                                | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                                       |
| $ ho_w \coloneqq 62.4 \ pcf$                                                                                                            |                                                                                | Unit weight of water                                                                                                                                                            |
| $\gamma_a := 0.965$                                                                                                                     |                                                                                | Specific gravity of pipe                                                                                                                                                        |
| $\gamma_m := 90 \; pcf$                                                                                                                 |                                                                                | Assumed unit weight of slurry                                                                                                                                                   |
| $\gamma_b \! \coloneqq \! \frac{\gamma_m}{\rho_w} \! = \! 1.4$                                                                          |                                                                                | Specific gravity of slurry, assumed unit weight                                                                                                                                 |
| $\gamma_c \coloneqq 1.0$                                                                                                                |                                                                                | Specific gravity of water to fill the pipe                                                                                                                                      |
| $\Delta P \coloneqq 10 \ psi$                                                                                                           |                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                                            |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                                                                                       |                                                                                | Gravitational Constant                                                                                                                                                          |
| <u>A - Axial Bending Stress</u>                                                                                                         | <u>11</u>                                                                      |                                                                                                                                                                                 |
| $R_{avg.\_in}$ := 1000 $ft$                                                                                                             |                                                                                | Radius of curvature at the entry, provided by Contractor                                                                                                                        |
| $R_{avg\_out} \coloneqq 1000 \ ft$                                                                                                      |                                                                                | Radius of curvature at the exit, provided by Contractor                                                                                                                         |
| $ \qquad \qquad$ | $\frac{dt}{dt} = 1000 \; ft$                                                   | Average radius of curvature at entry                                                                                                                                            |
| $r_{rod} := 1200 \cdot D_{rod} = 35$                                                                                                    | 50 <b>f</b> t                                                                  | ASTM F 1962-99, Equation 1, p7                                                                                                                                                  |
| $Check \coloneqq$ if $\left( R_{avg.\_in} > \right)$                                                                                    | r <sub>rod</sub> , "okay", "not                                                | okay") = "okay"                                                                                                                                                                 |
| $Check \coloneqq \mathbf{if} \left( R_{avg\_out} \right)$                                                                               | $r_{rod}$ , "okay", "no                                                        | tokay") = "okay"                                                                                                                                                                |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$                             | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{12hr} \coloneqq 57500 \cdot psi$                                       | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \! \coloneqq \! e_a \! \cdot \! E_{12hr} \! = \! 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

**B - Site Specific Analyses: Pullback Force: B1 - Empty Pipe** B1.1 - Effective Weight of Empty Pipe:  $w_{a} \coloneqq \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p2} \right)^{2} \right) \right) \cdot \rho_{w} \cdot \gamma_{a} = 8.3 \ plf$ B1.2 - Upward Buoyant Force: Effective weight  $w_b \coloneqq \left(\frac{\pi \cdot \left(D_1^2 + D_2^2\right)}{4}\right) \rho_w \cdot \gamma_b - w_a = 51.2 \ plf \quad \text{Upward buoyant force of empty pipe}$ B1.3 - Hydrokinetic Pressure:  $\Delta T \coloneqq \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ lbf \text{ Hydrokinetic force}$ B1.4 - Pullback Force Point A:  $T_a := e^{v_a \cdot \alpha_{in}} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) = 1619 \ lbf$ Pullback force when pipe enters the ground B1.5 - Pullback Force Point B:  $T_{b} := e^{v_{b} \cdot \alpha_{in}} \left( T_{a} + v_{b} \cdot |w_{b}| \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{in})} \right) = 11669 \ \textit{lbf}$ Pullback force increase with depth B1.6 - Pullback Force Point C:  $T_c \coloneqq T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 23551 \ lbf$ B1.7 - Pullback Force at D:  $T_d \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot \left(T_c + v_b \cdot |w_b| \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_{in})} \cdot \left(v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})}\right)\right) = 29676 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:  $P_{max\ empty} \coloneqq \max\left(T_a, T_b, T_c, T_d\right) + \Delta T = 30472 \ lbf$ Maximum Pullback Force **B2 - Filled Pipe with Water** B2.1 - Upward Buovant Force:  $w_{bfilled} \coloneqq \left( \frac{\left( \boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{D}_{1}^{-2} \right)}{4} \right) \boldsymbol{\cdot} \rho_{w} \boldsymbol{\cdot} \left( \gamma_{b} - \gamma_{c} \boldsymbol{\cdot} \left( 1 - \left( \frac{2}{DR_{1}} \right) \right)^{2} \right) - w_{a} = 24.6 \ \boldsymbol{plf}$ Upward buoyant force of pipe filled with water B2.2 - Pullback Force Point A:

$$T_{afilled} \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 1619 \ \textit{lbf} \quad \text{Pullback force enter ground}$$



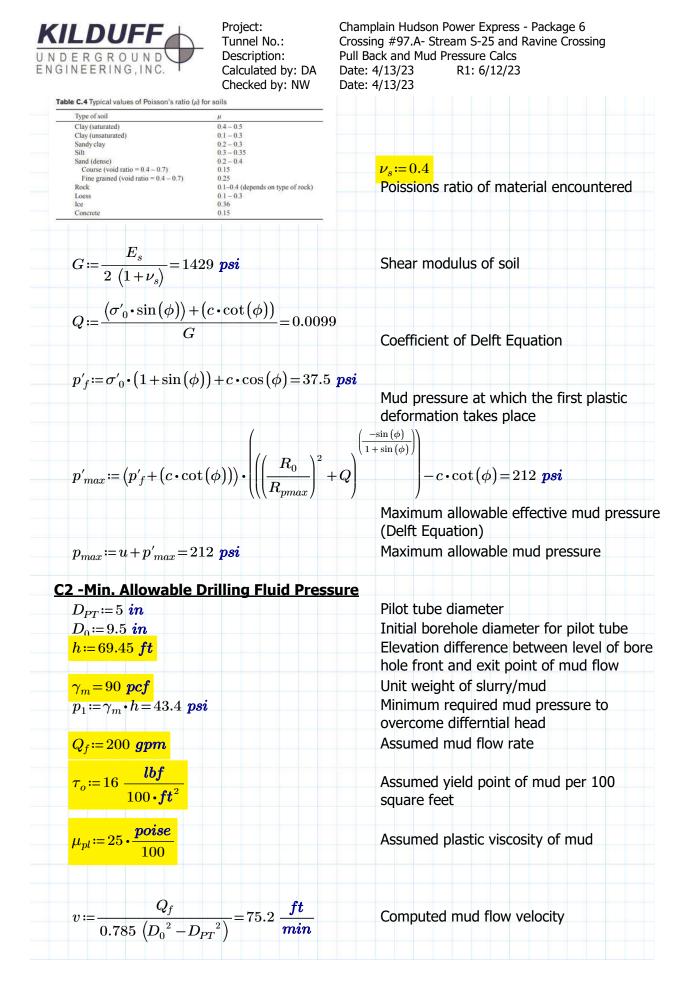
Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| B2.3 - Pullback Force Point B:                                                                                                             | Jale: 4/13/23                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                            |                                                                                                                                                     |
| $T_{bfilled} \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_{afilled} + v_b \cdot  w_{bfilled}  \cdot L_2 + u_b \cdot  w_{bfilled}  \right)$ | $-w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 7078 \ l_{max}$<br>Pullback force increase and decrease w |
| B2.4 - Pullback Force Point C:                                                                                                             | depth                                                                                                                                               |
| $T_{cfilled} \coloneqq T_{bfilled} + \left( v_b \cdot \left  w_{bfilled} \right  \cdot L_3 \right) - e^{\left( v_b \cdot c_b \right)}$     | $(\alpha_{in}) \cdot \left( v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})} \right) = 12418 \ lbf$                                        |
| B2.5 - Pullback Force at D:                                                                                                                |                                                                                                                                                     |
| $T_{dfilled} \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot \left(T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L_{cfilled}\right)$            | $\left(v_4 - e^{(v_a \cdot \alpha_{in})} \cdot \left(v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})}\right)\right) = 16782 \ lb_3$        |
| B2.6 - Maximum Pullback Force - Filled Pi                                                                                                  | pe with Water:                                                                                                                                      |
| $P_{max} \coloneqq \max \left( T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled} \right)$                                                 | $_{ed}) = 16782 \ lbf$<br>Maximum Pullback Force                                                                                                    |
| 3 - Safe Pull Strength / Ultimate Tensi                                                                                                    | ile Load Check:                                                                                                                                     |
| B3.1 Safe Pullback Check                                                                                                                   |                                                                                                                                                     |
| $A_1 := \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                    | Cross-sectional area of Pipe 1                                                                                                                      |
| $A_2 := \frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) = 0.8 \ \boldsymbol{in}^2$                                      | Cross-sectional area of Pipe 2                                                                                                                      |
| $P_{11} := \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 29290 \ \textit{lbf}$                                                              | Pullback forces acting on Pipe 1 (Empt                                                                                                              |
| $P_{21} := \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 1182 \ \textit{lbf}$                                                               | Pullback forces acting on Pipe 2 (Empt                                                                                                              |
| $P_{12} := \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 16131 \ \textit{lbf}$                                                                     | Pullback forces acting on Pipe 1 (Ballas                                                                                                            |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 651 \ \textit{lbf}$                                                                       | Pullback forces acting on Pipe 2 (Ballas                                                                                                            |
| <i>P</i> <sub>SPF1</sub> :=41214 <i>lbf</i>                                                                                                | Safe pullback forces Pipe 1 (Table %, p. 448, PPI)                                                                                                  |
| <i>P</i> <sub><i>SPF</i>2</sub> := 1683 <i>lbf</i>                                                                                         | Safe pullback forces Pipe 2 (Table %, p. 448, PPI)                                                                                                  |
| $check := if(P_{SPF1} > P_{11}, "okay", "not okay")$                                                                                       |                                                                                                                                                     |
| $check \coloneqq if(P_{SPF2} > P_{21}, "okay", "not okay")$                                                                                |                                                                                                                                                     |
|                                                                                                                                            |                                                                                                                                                     |
|                                                                                                                                            | y") = "okay"<br>y") = "okay"                                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

#### **<u>C</u> - Allowable Mud Pressures:**


| <u>C1 -</u> | Max. | Allowabl | e Driling | Fluid | Pressure |
|-------------|------|----------|-----------|-------|----------|
|             |      |          |           |       |          |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| $H_w := 0 \cdot ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth of the bore below groundwater<br>elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>c</sub> ≔24.08 <b>ft</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vertical separation distance between critic<br>structure and pipe (wetlands S37, ~3+79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| γ:=140 <b>pcf</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assumed unit weight interbedded sandstone and shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\gamma_m \coloneqq 62.4 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit weight of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\gamma' \coloneqq \gamma - \gamma_w = 77.6 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effective unit weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $u := \gamma_w \cdot H_w = 0 psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Initial pore water pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{\phi} = 37 \frac{deg}{deg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assumed friction Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $c \coloneqq 0 \ psf = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $R_0 := \frac{D_{rod}}{2} = 1.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial radius of the borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $R_{pmax} \coloneqq \frac{2}{3} \cdot H_c = 16 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\gamma_{0} \coloneqq (\gamma \cdot (H_{c} - H_{w})) + \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gamma' \cdot H_w = 23.4 \ psi$ Initial effective stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C.2 Typical values of modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (E <sub>s</sub> ) for different types of soils           E <sub>y</sub> (N/mm <sup>2</sup> )           2-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (E <sub>s</sub> ) for different types of soils           E <sub>s</sub> (N/mm <sup>2</sup> )           2-15           5-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C.2 Typical values of modulus of elasticity of<br>Type of Soil Clay Very soft Soft Medium Hard Sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (E <sub>s</sub> ) for different types of soils           E <sub>s</sub> (N/mm <sup>2</sup> )           2-15           5-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C.2 Typical values of modulus of elasticity of<br>Type of Soil Clay Very soft Soft Medium Hard Sandy Glacial till Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{5-25}} = \frac{1}{27.579} \frac{N}{mm^{2}} = 4000 \text{ psi} $ 10-153 Assumed modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     \underbrace{E_{s} \text{ for different types of soils}}_{E_{s}(N/mm^{2})} = E_{s} := 27.579 \frac{N}{mm^{2}} = 4000  psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C.2 Typical values of modulus of elasticity of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \frac{(E_{s}) \text{ for different types of soils}}{E_{i} (N/mm^{2})}     \frac{2-15}{5-25}     \frac{5-25}{15-50}     \frac{10-153}{25-250}     E_{s} := 27.579 \frac{N}{mm^{2}} = 4000 \text{ psi}     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{5-25}} = \frac{N}{E_{s} := 27.579} \frac{N}{mm^{2}} = 4000  psi}$ $\frac{10-153}{144-720}$ $\frac{10-153}{478-1,440}$ $\frac{14-57}{14-57}$ Assumed modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| e <b>C.2</b> Typical values of modulus of elasticity in Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{15-50}} = \frac{1}{E_{s}:=27.579} \frac{N}{mm^{2}} = 4000  psi}$ $\frac{10-153}{144-720}$ Assumed modulus of elasticity $\frac{144-720}{478-1,440}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e <b>C.2</b> Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{5-25}} = \frac{N}{E_{s}:=27.579} \frac{N}{mm^{2}} = 4000 \text{ psi}} $ $ \frac{10-153}{144-720} \\ \frac{14-720}{478-1,440} \\ \frac{14-57}{7-21} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| e C.2 Typical values of modulus of elasticity i<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{15-50}} = \frac{1}{27.579} \frac{N}{mm^{2}} = 4000 \text{ psi}}$ $\frac{10-153}{144-720} \text{ Assumed modulus of elasticity}}$ $\frac{144-720}{478-1,440} = \frac{1}{10-24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand and gravel<br>Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{15-50}} = \frac{N}{mm^{2}} = 4000 \text{ psi}$ $\frac{10-153}{144-720}$ $\frac{10-153}{144-720}$ $\frac{10-153}{144-720}$ $\frac{10-153}{14-57}$ $\frac{10-15}{14-57}$ $10-$ |
| e C.2 Typical values of modulus of elasticity i<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{15-50}} = \frac{1}{27.579} \frac{N}{mm^{2}} = 4000 \text{ psi}}$ $\frac{10-153}{144-720} \text{ Assumed modulus of elasticity}}$ $\frac{144-720}{478-1,440} = \frac{1}{10-24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e <b>C.2</b> Typical values of modulus of elasticity of<br>Type of Soil<br>Clay Very soft Soft Medium Hard Sandy Glacial till Loose Dense Very dense Loess Sand Silty Loose Dense Sand and gravel Loose Sand and gravel Loose Sand and gravel San | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/mm^{2})}{15-50}} = \frac{N}{mm^{2}} = 4000 \text{ psi}$ $\frac{10-153}{14-720} \text{ Assumed modulus of elasticity}}{14-57}$ $\frac{7-21}{10-24}$ $48-148$ $96-192$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand gravel<br>Loose<br>Dense<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/\text{nm}^{2})}{15-50}} = \frac{N}{mn^{2}} = 4000 \text{ psi}$ $\frac{E_{s} := 27.579 \frac{N}{mn^{2}} = 4000 \text{ psi}}{\frac{N}{mn^{2}}} = 4000 \text{ psi}$ $\frac{10-153}{144-720}$ $\frac{14-720}{478-1,440}$ $\frac{14-57}{7-21}$ $\frac{10-24}{48-81}$ $\frac{48-148}{96-192}$ $14-14,400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| e C.2 Typical values of modulus of elasticity of<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand gravel<br>Loose<br>Dense<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{(E_{s}) \text{ for different types of soils}}{\frac{E_{s}(N/\text{nm}^{2})}{15-50}} = \frac{N}{mn^{2}} = 4000 \text{ psi}$ $\frac{E_{s} := 27.579 \frac{N}{mn^{2}} = 4000 \text{ psi}}{\frac{N}{mn^{2}}} = 4000 \text{ psi}$ $\frac{10-153}{144-720}$ $\frac{14-720}{478-1,440}$ $\frac{14-57}{7-21}$ $\frac{10-24}{48-81}$ $\frac{48-148}{96-192}$ $14-14,400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                     | Tunnel No.:CDescription:PCalculated by: DAD | hamplain Hudson Power Express - Package 6<br>rossing #97.A- Stream S-25 and Ravine Crossing<br>ull Back and Mud Pressure Calcs<br>ate: 4/13/23 R1: 6/12/23<br>ate: 4/13/23 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $egin{aligned} & L_{structure} \coloneqq 200 \; \textit{ft} \ & p_2 \coloneqq L_{structure} \cdot \left( \left( rac{\mu_p}{(D_0 - p_{min.})}  ight) + p_2 & = 44 \; \textit{ps} \end{aligned}$ |                                             | Length to sturcture<br>$\overline{p_{T}}$ ) = 0.6 <i>psi</i><br>Minimum required mud pressure to create<br>flow inside the borehole<br>Minimum required mud pressure       |
| $check \coloneqq if(p_{max} > p_{min})$                                                                                                                                                         | <sub>ı.</sub> , "okay" , "not okay          | (") = (okay")                                                                                                                                                              |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |
|                                                                                                                                                                                                 |                                             |                                                                                                                                                                            |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| $\gamma = 140 \ pcf$ $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)$ $P_E := k \cdot (\gamma - \gamma_w) \cdot (H_c) = 2 \ psi$ $P_E = 250 \ psf$ Effective overburden pressure D1.2 Earth Load Deflection (Short Term) $E_{short} := \frac{57500 \cdot psi}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$ $\Delta y_{ELD\_short} := \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PPI Handt) D1.3 Earth Load Deflection (Long Term) $E_{long} := 28200 \cdot psi$ $dy_{ELD\_short} := \frac{28200 \cdot psi}{k_{short}}$ Unit weight of soil, assumed $dx_{ching} = 28200 \cdot psi$ Unit weight of soil, assumed $dx_{ching} = 0.053$ $dy_{ELD\_short} := \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PPI Handt) Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D1.1 - Overburden Pressure (Considering Defo                                                                                                   | rmed Borehole with Arching Mobilized)      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $B := D_r = 18 in$ $F := \tan \left( 45 - \frac{\phi}{2} \right)^2$ $Y = 140 pcf$ $I = \exp \left( -2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right) \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan \left( \frac{\phi}{2} \right)$ $A rching factor (Eq. 6, p.432, PPI)$ $A rching factor (Eq. 6, p.43, $ | $H_c \coloneqq H_{max} = 60.5 \; ft$                                                                                                           | Depth of cover                             |
| $K := \tan\left(45 - \frac{\phi}{2}\right)^{2}$ Earth pressure coefficient $\gamma = 140 \text{ pcf}$ $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ Arching factor (Eq. 6, p.432, PPI) $2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)$ $P_{E} := k \cdot (\gamma - \gamma_{w}) \cdot (H_{c}) = 2 \text{ psi}  P_{E} = 250 \text{ psf}$ Effective overburden pressure D1.2 Earth Load Deflection (Short Term) $E_{short} := 57500 \cdot psi$ $Fahrenheit at 10 hrs of sustained loadi (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $4y_{ELD\_short} := \frac{0.0125 \cdot P_{E}}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PPI Handt) D1.3 Earth Load Deflection (Long Term) $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $12 \cdot (DR_{1} - 1)^{3} = 4.6 \text{ psi}$ Dine deflection to diameter as per D1.2 Comparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati D1.3 Earth Load Deflection (Long Term) $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati D1.4 CDR_{1} - 1 Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustai$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\phi = 37 \ deg$                                                                                                                              | Friction angle of soil                     |
| $K := \tan\left(45 - \frac{\phi}{2}\right)^{2}$ Earth pressure coefficient $\gamma = 140 \text{ pcf}$ $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ Arching factor (Eq. 6, p.432, PPI) $2 \cdot \frac{K \cdot H_{c}}{B} \cdot \tan\left(\frac{\phi}{2}\right)$ $P_{E} := k \cdot (\gamma - \gamma_{w}) \cdot (H_{c}) = 2 \text{ psi}  P_{E} = 250 \text{ psf}$ Effective overburden pressure D1.2 Earth Load Deflection (Short Term) $E_{short} := 57500 \cdot psi$ $Fahrenheit at 10 hrs of sustained loadi (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $4y_{ELD\_short} := \frac{0.0125 \cdot P_{E}}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PPI Handt) D1.3 Earth Load Deflection (Long Term) $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $12 \cdot (DR_{1} - 1)^{3} = 4.6 \text{ psi}$ Dine deflection to diameter as per D1.2 Comparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati D1.3 Earth Load Deflection (Long Term) $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)$ Variable in earth load deflection equati $Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati D1.4 CDR_{1} - 1 Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962) Variable in earth load deflection equati Apparent modulus of elasticity for PE47 Base Temperature of 73 Fahrenheit at years of sustai$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $B \coloneqq D_r = 18$ in                                                                                                                      | "Silo" width, conservative value =         |
| $\gamma = 140 \text{ pcf}$ Unit weight of soil, assumed $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ Arching factor (Eq. 6, p.432, PPI) $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)$ P_E := $k \cdot (\gamma - \gamma_w) \cdot (H_c) = 2 \text{ psi}$ P_E = 250 psf Effective overburden pressure D1.2 Earth Load Deflection (Short Term) $E_{short} := \frac{57500 \cdot psi}{12 \cdot (DR_1 - 1)^3} = 9.36 \text{ psi}$ D1.3 Earth Load Deflection (Long Term) $k_{short} := \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PPI Handth D1.3 Earth Load Deflection (Long Term) $k := \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ Dino deflection to diameter as per Dino deflection to diameter as per Dino deflection equation Dino deflection equation Dino deflection equation Dino deflection to diameter as per Dino deflection equation Dino deflection equation Dino deflection equation Dino deflection to diameter as per Dino deflection equation Dino deflection to diameter as per Dino deflection equation Dinformed equation Dino deflection equation Dino deflection equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\left( 1\right)^{2}$                                                                                                                          | reamed hole diameter                       |
| $k := \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ $2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)$ $P_E := k \cdot (\gamma - \gamma_w) \cdot (H_c) = 2 \text{ psi}  P_E = 250 \text{ psf}$ Effective overburden pressure D1.2 Earth Load Deflection (Short Term) $E_{short} := 57500 \cdot psi$ $E_{short} := \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \text{ psi}$ $\Delta y_{ELD\_short} := \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PI Equ. 10 (Chp 12, p 437, PI Handt) D1.3 Earth Load Deflection (Long Term) $E_{long} := 28200 \cdot psi$ $k := \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ Dime deflection to diameter as per Pipe deflectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)$                                                                                             | Earth pressure coefficient                 |
| $P_{E} := k \cdot (\gamma - \gamma_{w}) \cdot (H_{c}) = 2 \text{ psi}  P_{E} = 250 \text{ psf}$ Effective overburden pressure $D1.2 \text{ Earth Load Deflection (Short Term)}$ $E_{short} := 57500 \cdot psi$ $k_{short} := \frac{E_{short}}{12 \cdot (DR_{1} - 1)^{3}} = 9.36 \text{ psi}$ $\Delta y_{ELD\_short} := \frac{0.0125 \cdot P_{E}}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PFI Equ. 10 (Chp 12, p 437, PFI Handt) $D1.3 \text{ Farth Load Deflection (Long Term)}$ $E_{long} := 28200 \cdot psi$ $k := \frac{E_{long}}{12 \cdot (DR_{1} - 1)^{3}} = 4.6 \text{ psi}$ $12 \cdot (DR_{1} - 1)^{3}$ $= 4.6 \text{ psi}$ Dime deflection to diameter as per PFI Equ. 10 and the presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\gamma = 140 \ pcf$                                                                                                                           | Unit weight of soil, assumed               |
| $P_{E} := k \cdot (\gamma - \gamma_{w}) \cdot (H_{c}) = 2 \text{ psi}  P_{E} = 250 \text{ psf}$ Effective overburden pressure $D1.2 \text{ Earth Load Deflection (Short Term)}$ $E_{short} := 57500 \cdot psi$ $k_{short} := \frac{E_{short}}{12 \cdot (DR_{1} - 1)^{3}} = 9.36 \text{ psi}$ $Apparent modulus of elasticity for PE4710, Base Temperature of 73 deg. Fahrenheit at 10 hrs of sustained loadi (Table X1.1 ASTM F 1962) Variable in earth load deflection equati \Delta y_{ELD\_short} := \frac{0.0125 \cdot P_{E}}{k_{short}} = 0.2\% Pipe deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handt D1.3 Earth Load Deflection (Long Term) E_{long} := 28200 \cdot psi k := \frac{E_{long}}{12 \cdot (DR_{1} - 1)^{3}} = 4.6 \text{ psi} Variable in earth load deflection equati Dine deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handter) Dine deflection equati Dine deflection equati Dine deflection equati Dine deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handter) Dine deflection equati Dine deflection equati Dine deflection equati Dine deflection equati Dine deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handter) Dine deflection equati Din$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{R} \cdot \tan\left(\frac{\phi}{R}\right)\right)$                                                    |                                            |
| $P_{E} := k \cdot (\gamma - \gamma_{w}) \cdot (H_{c}) = 2 \text{ psi} P_{E} = 250 \text{ psf}$ Effective overburden pressure $D1.2 \text{ Earth Load Deflection (Short Term)}$ $E_{short} := 57500 \cdot psi$ $k_{short} := \frac{E_{short}}{12 \cdot (DR_{1} - 1)^{3}} = 9.36 \text{ psi}$ $\Delta y_{ELD\_short} := \frac{0.0125 \cdot P_{E}}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handt) $D1.3 \text{ Earth Load Deflection (Long Term)}$ $k_{i} := \frac{E_{long}}{12 \cdot (DR_{1} - 1)^{3}} = 4.6 \text{ psi}$ $k_{i} := \frac{E_{long}}{12 \cdot (DR_{1} - 1)^{3}} = 4.6 \text{ psi}$ Diameter of the presence of the presenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $k \coloneqq \frac{\left(\begin{array}{c}B\\2\end{array}\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.053$ | Arching factor (Eq. 6, p.432, PPI)         |
| $E_{short} := 57500 \cdot psi$ Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loadi<br>(Table X1.1 ASTM F 1962) $k_{short} := \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$ Variable in earth load deflection equati $\Delta y_{ELD\_short} := \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI HandhD1.3 Earth Load Deflection (Long Term)Apparent modulus of elasticity for PE47<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962) $k := \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                | Effective overburden pressure              |
| $E_{short} \coloneqq 57500 \cdot psi$ PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loadi<br>(Table X1.1 ASTM F 1962) $k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$ Variable in earth load deflection equation $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>Dase Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1 $D1.3$ Earth Load Deflection (Long Term)Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1) $E_{long} \coloneqq 28200 \cdot psi$ Astronometric probability $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equationDiam deflection to diameter as per<br>PPI Equ. 10Variable in earth load deflection equation $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equationDiam deflection to diameter as per<br>PPI Equ. 10Pipe deflection equation $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equation $k \vdash \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equation $k \vdash \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equation $k \vdash \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D1.2 Earth Load Deflection (Short Term)                                                                                                        |                                            |
| shortFahrenheit at 10 hrs of sustained loadi<br>(Table X1.1 ASTM F 1962) $k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \ psi$ Fahrenheit at 10 hrs of sustained loadi<br>(Table X1.1 ASTM F 1962) $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handb<br>D1.3 Earth Load Deflection (Long Term) $D1.3$ Earth Load Deflection (Long Term)Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962) $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                                            |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \text{ psi}$ $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ $D1.3 \text{ Earth Load Deflection (Long Term)}$ $E_{long} \coloneqq 28200 \cdot psi$ $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ $12 \cdot (DR_1 - 1)^3 = 4.6 \text{ psi}$ $Diag deflection to diameter as per PPI Equ. 10 (Chp 12, p 437, PPI Handle Discrete to the second seco$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_{short} \coloneqq 57500 \cdot psi$                                                                                                          |                                            |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot (DR_1 - 1)^3} = 9.36 \text{ psi}$ $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>D1.3 Earth Load Deflection (Long Term)<br>$E_{long} \coloneqq 28200 \cdot psi$ Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1)<br>ASTM F 1962)<br>$k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ Dina deflection to diameter as per<br>PVI Equ. 10 (Chp 12, p 437, PVI Handle<br>Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1)<br>ASTM F 1962)<br>Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                            |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>D1.3 Earth Load Deflection (Long Term)<br>$E_{long} \coloneqq 28200 \cdot psi$ Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962)<br>$k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Dine deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962)<br>Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eshort                                                                                                                                         |                                            |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.2\%$ Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>D1.3 Earth Load Deflection (Long Term)<br>$E_{long} \coloneqq 28200 \cdot psi$ Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962)<br>$k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Dipa deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handle<br>Apparent modulus of elasticity for PE42<br>Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962)<br>Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k_{short} \coloneqq \frac{12 \cdot \left(DR_1 - 1\right)^3}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \ psi$                                   | variable in earth load deflection equation |
| $\frac{D1.3 \text{ Earth Load Deflection (Long Term)}}{E_{long} \coloneqq 28200 \cdot psi}$ $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ $\text{Apparent modulus of elasticity for PE42}$ $\text{Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1 ASTM F 1962)}$ $Variable in earth load deflection equation of the second s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.0125 \cdot P_E = 0.0\%$                                                                                                                     | Dine deflection to dispector as now        |
| D1.3 Earth Load Deflection (Long Term)Apparent modulus of elasticity for PE42 $E_{long} \coloneqq 28200 \cdot psi$ Apparent modulus of elasticity for PE42 $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Apparent modulus of elasticity for PE42Disc deflection (Long Term)Apparent modulus of elasticity for PE42Base Temperature of 73 Fahrenheit at years of sustained loading (Table X1.1)ASTM F 1962)Variable in earth load deflection equationDisc deflection to diameter as per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta y_{ELD\_short} \coloneqq \underbrace{k_{short}}_{k_{short}} \equiv 0.2\%$                                                              |                                            |
| $E_{long} \coloneqq 28200 \cdot psi$ Apparent modulus of elasticity for PE42 $Base Temperature of 73 Fahrenheit atyears of sustained loading (Table X1.1ASTM F 1962)ASTM F 1962)k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psiVariable in earth load deflection equation$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                | FFI Equ. 10 (Chp 12, p 437, FFI Handboo    |
| $E_{long} := 28200 \cdot psi$ Base Temperature of 73 Fahrenheit at<br>years of sustained loading (Table X1.1<br>ASTM F 1962) $k := \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \ psi$ Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                | Apparent modulus of elasticity for PE4710  |
| $k := \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$<br>years of sustained loading (Table X1.1<br>ASTM F 1962)<br>Variable in earth load deflection equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_{$                                                                                                                                          | •••                                        |
| $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6 \text{ psi}$ ASTM F 1962) Variable in earth load deflection equation Displayed and the prime deflection is a per-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>Ellong</i> - 28200 • <b>ps</b>                                                                                                              | · · · · · · · · · · · · · · · · · · ·      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k = \frac{E_{long}}{-4.6}$ nsi                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $12 \cdot (DR - 1)^3$ = 1.0 pet                                                                                                                |                                            |
| $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k} = 0.5\%$ PPI Equ. 10 (Chp 12, p 437)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                | Pipe deflection to diameter as per         |
| k k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta y_{ELD long} \coloneqq \frac{0.0125 \cdot P_E}{=} = 0.5\%$                                                                             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -seeding k                                                                                                                                     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |                                            |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| D2.1 Buoyant Deflection (Short Term)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 = 10.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside diameter of casing pipe                                                                                                                                                                                                                                                                                                                         |
| $t = T_{p1} = 1.194$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thickness of casing pipe                                                                                                                                                                                                                                                                                                                                |
| <i>p</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Apparent modulus of elasticity for                                                                                                                                                                                                                                                                                                                      |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                              | PE4710, Base Temperature of 73                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                                                                                                |
| $\sim -00$ maf                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assumed unit weight of fluid in                                                                                                                                                                                                                                                                                                                         |
| $\gamma_m = 90 \ \mathbf{pcj}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | borehole (Slurry unit weight)                                                                                                                                                                                                                                                                                                                           |
| $t^{3}$ of $t^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |
| $I \coloneqq \frac{1}{12} = 0.14 \frac{1}{in}$                                                                                                                                                                                                                                                                                                                                                                                                                         | Moment of inertia of pipe wall cross                                                                                                                                                                                                                                                                                                                    |
| $(D_1)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | section                                                                                                                                                                                                                                                                                                                                                 |
| $0.1169 \cdot \gamma_m \cdot (-2)$                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                                                                                                   |
| $\Delta y_{bouyant} \coloneqq \frac{\langle 2 \rangle}{E} = 0.1\%$                                                                                                                                                                                                                                                                                                                                                                                                     | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                                                                                             |
| $\gamma_{m} = 90 \text{ pcf}$ $I \coloneqq \frac{t^{3}}{12} = 0.14 \frac{in^{4}}{in}$ $\Delta y_{bouyant} \coloneqq \frac{0.1169 \cdot \gamma_{m} \cdot \left(\frac{D_{1}}{2}\right)^{4}}{E_{short} \cdot I} = 0.1\%$                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |
| Please note that long term buoyant deflection                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                         |
| assumed to be cured after a 1-week period f                                                                                                                                                                                                                                                                                                                                                                                                                            | rom installation/pumping.                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |
| - Reissner Effect Deflection (Short Terr                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>n)</u>                                                                                                                                                                                                                                                                                                                                               |
| D3.1 - Reissner Effect Deflection (Short Term                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>n</u>                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                                                                                                 |
| $\mu_{short} \coloneqq 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                               |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                           | Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                                                                                                 |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                           | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                               |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                           | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) \ (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$                                                                                                                                                                                                                                                                                                                            | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                               |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                           | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                                     |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$                                                                                                                                                                                                                                                                                                                              | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending                                                                                                                                                                                                           |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$                                                                                                                                                                                                                                                                                                                              | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne                                                                                                                                                                |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                                                                                                                                                                                                                 | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect                                                                                                                                                      |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                                                                                                                                                                                                                 | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect                                                                                                                                                      |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term                                                                                                                                                        | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect                                                                                                                                                      |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term                                                                                                                                                        | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect                                                                                                                                                      |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term $\mu_{long} := 0.45$                                                                                                                                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)                                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term $\mu_{long} := 0.45$                                                                                                                                   | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect                                                                                                                                                      |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$                                                                                                         | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)                                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$                                                                                                         | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)                                                                  |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$                                                                         | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$                                                                         | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |
| $\mu_{short} := 0.35$ $R = 1000 ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{long}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.000003$ | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$                                                                         | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnne<br>Effect<br>)<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                           |

Created with PTC Mathcad Express. See www.mathcad.com for more information.



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| <u>D4 - Net Ring Deflection</u>                                                                                    |                                                                                 |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\Delta y_{lim} = 7.5\%$                                                                                           | Deflection limit for DR 9 non pressurized pipe (Table 2 , p. 437, PPI Handbook) |
| D4.1 - Net Short Term                                                                                              |                                                                                 |
| $\Delta y_{short\_net} \coloneqq \Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y_{R\_short}$                 | $_{hort} = 0.3\%$ Percent ring deflection in short term analysis                |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{short\_net} < \Delta y_{lim}, \text{``okay''}, \text{``not} \right)$ | tokay") = "okay"                                                                |
| D4.2 - Net Long Term                                                                                               |                                                                                 |
| $\Delta y_{long\_net} \! \coloneqq \! \Delta y_{ELD\_long} \! + \Delta y_{R\_long} \! = \! 0.5\%$                  | Percent ring deflection in long term analysis (50 years)                        |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{lim}, \text{``okay''}, \text{``not} \right)$  | okay") = "okay"                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |
|                                                                                                                    |                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

| D5.1 - Unconstrained Ring Buckling,                                            | Levy's Equation (Short Term-During Pull)                                                 |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Note that constraining the pipe will in considering an unconstrained condition | ncrease the pipe's buckling strength, therefore<br>on will produce a conservative value. |
| N≔2.0                                                                          | Factor of Safety                                                                         |
| $\mu_{short} \coloneqq 0.35$                                                   | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                |
|                                                                                | Apparent modulus of elasticity for                                                       |
| $E_{short} = 57500 \ psi$                                                      | PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading         |
| 0 2 4 6 8 10 12<br>% Deflection                                                | (Table X1.1 ASTM F 1962)                                                                 |
| 0.0                                                                            |                                                                                          |
| 0.2                                                                            |                                                                                          |
| fo 0.4                                                                         | Ovality compensation factor, Figure 3 (PPI Chp. 12). Calculated                          |
| 0.6<br>0F7.5%                                                                  | deflection limit in section D4.1                                                         |
| ASSUME LONG TERM<br>DEFLECTION AT LIMIT                                        |                                                                                          |
| 1.0 TERM<br>0.8                                                                | $f_{o\_short} \coloneqq 0.98$                                                            |
|                                                                                | $\cdot \frac{f_{o\_short}}{N} = 125.4 \ psi$ Allowable unconstrained buckling pressure   |
| $(1-\mu_{short})$ $(DR_1-1)$                                                   | N buckling pressure                                                                      |
| $H = 4.2 \ ft$                                                                 | Elevation difference between the lowest                                                  |
| $P_{mud} \coloneqq \gamma_m \cdot H = 2.63 \ psi$                              | point in borehole and entry or exit pit<br>Pressure of drilling slurry                   |
| $1 mud - 7m^{-11} - 2.00 pst$                                                  |                                                                                          |
| $P_{net} \coloneqq P_{mud} = 2.63 \ psi$                                       | Net external loading with open borehole                                                  |
| $Check \coloneqq if(P_{UC\_short} > P_{net}, "okay","$                         | "not okay") = "okay"                                                                     |
| D5.2 - Unconstrained Ring Buckling,                                            |                                                                                          |
| DS.2 - Onconstrained King Ducking,                                             | Levy's Equation (Long Term)                                                              |
|                                                                                | ncrease the pipe's buckling strength, therefore<br>on will produce a conservative value. |
| considering an anconstrained condition                                         | Factor of Safety                                                                         |
| N := 2.0                                                                       |                                                                                          |
|                                                                                | Poisson's Ratio for PE pipe material,<br>long term (ASTM F 1962, 8.2.4.2)                |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                     | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #97.A- Stream S-25 and Ravine Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/13/23 R1: 6/12/23<br>Date: 4/13/23 |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} = 28200 \ psi$                                                        |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                            |
| $f_{o\_long} \coloneqq 0.45$                                                    |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                      |
| $P_{UC\_long} \coloneqq \left( \frac{2 \cdot E_{long}}{1 - \mu_{long}} \right)$ | $\left(\frac{1}{DR_1-1}\right)^3 \cdot \left(\frac{f_d}{dR_1-1}\right)^3$      | $\frac{D_{a}long}{N} = 31.1 \ psi$<br>Allowable unconstrained buckling<br>pressure                                                                                              |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 0 \ ps$                                  | si                                                                             | Groundwater head pressure                                                                                                                                                       |
| $P_{net} \coloneqq P_{GW}$                                                      |                                                                                | Net external loading with open borehole                                                                                                                                         |
| $Check := \mathbf{if} \left( P_{UC\_long} \right)$                              | $>P_{net},$ "okay", "no                                                        | ot okay") = "okay"                                                                                                                                                              |
| (                                                                               |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |
|                                                                                 |                                                                                |                                                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #97.A- Stream S-25 and Ravine Crossing Pull Back and Mud Pressure Calcs Date: 4/13/23 R1: 6/12/23 Date: 4/13/23

# **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| ining Parameters of Horizontal Directi                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                         | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                       |
| $D_1 = 2.375 \text{ in}$                                                                                                                                                                                                                                    | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                       |
| $D_{2i} = 2.516$ in<br>$D_{rod} = 3.5$ in                                                                                                                                                                                                                   | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                  |
| $DR_1 \coloneqq 9$                                                                                                                                                                                                                                          | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                   |
| $DR_2 \coloneqq 11$                                                                                                                                                                                                                                         | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                          | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                         |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                   | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_1 \coloneqq \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                   | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_2 \coloneqq \boldsymbol{\pi} \cdot D_2 = 7.5 \ \boldsymbol{in}$                                                                                                                                                                                          | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bore/pipepath                                                                                                                                                                                                                                               | pipeentry                                                                                                                                                                                                                                                                                                                                                                                                                   |
| drill rig 8                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| p D                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CI                                                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pipeexit                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • •                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L L L                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Illustration 1 - Schematic of                                                                                                                                                                                                                               | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\alpha \coloneqq 10^{\circ}$ $\alpha_{in} \coloneqq \alpha = 0.1745 \ rad$                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             | Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                             | Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{l} \beta \coloneqq 14 \ ^{\circ} \qquad \beta_{exit} \coloneqq \beta \equiv 0.2443 \ rad \\ D_r \coloneqq 18 \cdot in \\ H_{max} \coloneqq 48.4 \ ft \end{array}$                                                                            | Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} \beta \coloneqq 14  & \beta_{exit} \coloneqq \beta \equiv 0.2443 \ rad \\ D_r \coloneqq 18 \cdot in \end{array}$                                                                                                                          | Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo                                                                                                                                                                                                                                                                                                           |
| $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 48.4 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 49.15 \ ft$                                                                                                     | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bo</li> <li>diameter</li> <li>Max depth to bore hole springline from</li> <li>ground surface</li> </ul>                                                                                                                                                                                 |
| $\begin{array}{l} \beta \coloneqq 14 \circ & \beta_{exit} \coloneqq \beta \equiv 0.2443 \ rad \\ D_r \coloneqq 18 \cdot in \\ H_{max} \coloneqq 48.4 \ ft \end{array}$                                                                                      | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bo<br/>diameter</li> <li>Max depth to bore hole springline from<br/>ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See</li> </ul>                                                                                                          |
| $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 48.4 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 49.15 \text{ ft}$ $L_{total} := 883.2 \text{ ft}$ $L_1 := 150 \text{ ft}$                           | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bordiameter</li> <li>Max depth to bore hole springline from ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See Illustration 1</li> </ul>                                                                                                   |
| $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 48.4 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 49.15 \ ft$ $L_{total} := 883.2 \ ft$                                                                           | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bo<br/>diameter</li> <li>Max depth to bore hole springline from<br/>ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See</li> </ul>                                                                                                          |
| $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 48.4 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 49.15 \text{ ft}$ $L_{total} := 883.2 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 433.7 \text{ ft}$ | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bordiameter</li> <li>Max depth to bore hole springline from ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See</li> <li>Illustration 1</li> <li>Horizontal length to achieve depth - provided by Contractor, See Illustration 1</li> </ul> |
| $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 48.4 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 49.15 \text{ ft}$ $L_{total} := 883.2 \text{ ft}$ $L_1 := 150 \text{ ft}$                           | <ul> <li>Borehole exit angle (degrees, radians)</li> <li>Final reamed bore diameter</li> <li>Max depth of bore hole to final reamed bordiameter</li> <li>Max depth to bore hole springline from ground surface</li> <li>Total length of HDD crossing</li> <li>Assumed pipe drag on surface, See Illustration 1</li> <li>Horizontal length to achieve depth -</li> </ul>                                                     |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                             | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #98- State Rte 144/ CSX Structure Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                                                                                            |                                                                                | Friction coefficient before pipe enters (rollers assumed)                                                                                                                           |
| $v_b := 0.3$                                                                                                                            |                                                                                | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                                           |
| $ ho_w \coloneqq 62.4 \ pcf$                                                                                                            |                                                                                | Unit weight of water                                                                                                                                                                |
| $\gamma_a \coloneqq 0.965$                                                                                                              |                                                                                | Specific gravity of pipe                                                                                                                                                            |
| $\gamma_m \coloneqq 90 \ pcf$                                                                                                           |                                                                                | Assumed unit weight of slurry                                                                                                                                                       |
| $\gamma_b \! \coloneqq \! \frac{\gamma_m}{\rho_w} \! = \! 1.4$                                                                          |                                                                                | Specific gravity of slurry, assumed unit weight                                                                                                                                     |
| $\gamma_c \coloneqq 1.0$                                                                                                                |                                                                                | Specific gravity of water to fill the pipe                                                                                                                                          |
| $\Delta P \coloneqq 10 \ psi$                                                                                                           |                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                                                |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                                                                                       |                                                                                | Gravitational Constant                                                                                                                                                              |
| <u>A - Axial Bending Stress</u>                                                                                                         | <u>.</u>                                                                       |                                                                                                                                                                                     |
| $R_{avg.\_in}$ :=1000 $ft$                                                                                                              |                                                                                | Radius of curvature at the entry, provided by Contractor                                                                                                                            |
| $R_{avg\_out} \coloneqq 1000 \ ft$                                                                                                      |                                                                                | Radius of curvature at the exit, provided by Contractor                                                                                                                             |
| $ \qquad \qquad$ | $\frac{dt}{dt} = 1000 \; ft$                                                   | Average radius of curvature at entry                                                                                                                                                |
| $r_{rod} := 1200 \cdot D_{rod} = 35$                                                                                                    | 0 <b>ft</b>                                                                    | ASTM F 1962-99, Equation 1, p7                                                                                                                                                      |
| $\underline{Check}\!\coloneqq\!\mathbf{if}\left(\!R_{avg.\_in}\!\!>\!$                                                                  | r <sub>rod</sub> , "okay", "not                                                | (vokay") = "okay"                                                                                                                                                                   |
| $Check \coloneqq \mathbf{if} \left( R_{avg\_out} > \right)$                                                                             | ≻r <sub>rod</sub> , "okay", "no                                                | tokay") = "okay"                                                                                                                                                                    |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$           | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>12hr</sub> := 57500 • <b>psi</b>                  | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \coloneqq e_a \cdot E_{12hr} = 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| Checked by: NW Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e: 4/15/23                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Site Specific Analyses: Pullback Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |
| <u>1 - Empty Pipe</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |
| B1.1 - Effective Weight of Empty Pipe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| $w_a := \frac{\pi}{4} \left( \left( D_1^{2} - \left( D_1 - T_{p1} \right)^2 \right) + \left( D_2^{2} - \left( D_2 - T_{p1} \right)^2 \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left.T_{p2}\right\rangle^{2}\left)\left)\cdot ho_{w}\cdot\gamma_{a}\!=\!8.3 \; plf$                                      |
| B1.2 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effective weight                                                                                                           |
| $w_{b} \coloneqq \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2 \ pl_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f Upward buoyant force of empty pipe                                                                                       |
| B1.3 - Hydrokinetic Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |
| $\Delta T := \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ low{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bf Hydrokinetic force                                                                                                      |
| B1.4 - Pullback Force Point A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| $T = v_a \cdot \alpha_m \left( \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11.6                                                                                                                     |
| $T_a \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 <i>lof</i><br>Pullback force when pipe enters the ground                                                                 |
| B1.5 - Pullback Force Point B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| $T_{b} \coloneqq e^{v_{b} \cdot \alpha_{in}} \left( T_{a} + v_{b} \cdot \left  w_{b} \right  \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pullback force increase with depth                                                                                         |
| B1.6 - Pullback Force Point C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| $T_c \coloneqq T_b + \left( v_b \cdot w_b \cdot L_3 \right) - e^{\left( v_b \cdot \alpha_{in} \right)} \cdot \left( v_a \cdot w_a \cdot L_3 \cdot e^{\left( v_b \cdot \alpha_{in} \right)} \cdot \left( v_a \cdot w_a \cdot L_3 \cdot e^{\left( v_b \cdot \alpha_{in} \right)} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e^{(v_a \cdot \alpha_{in})} = 11456 \ lbf$                                                                                |
| B1.7 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| $T_d \coloneqq e^{\left(v_b \cdot \beta_{exit}\right)} \cdot \left(T_c + v_b \cdot \left w_b\right  \cdot L_4 - w_b \cdot H_{max} - \frac{1}{2} \left(T_c + v_b \cdot \left w_b\right  + \frac{1}{2} \left(T_c +$ | $e^{(v_a \cdot \alpha_{in})} \cdot \left( v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})} \right) = 16676 \ lbf$ |
| B1.8 - Maximum Pullback Force - Empty Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>e:</u>                                                                                                                  |
| $P_{max\_empty} \coloneqq \max\left(T_a, T_b, T_c, T_d\right) + \Delta T = 174$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 472 <i>lbf</i>                                                                                                             |
| max_empty = ( a, b, c, a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum Pullback Force                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| 2 - Filled Pipe with Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |
| B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                                                                                                                         |
| $w_{bfilled} \coloneqq \left(\frac{\left(\boldsymbol{\pi} \cdot \boldsymbol{D}_{1}^{2}\right)}{4}\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\left(\frac{1}{1}\right)^{2} - w_{a} = 24.6 \ plf$                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upward buoyant force of pipe filled with wa                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | opriara babyane force of pipe finea with we                                                                                |

| $T_{afilled} \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 942 \ lbf \qquad \text{Pullback force enter ground}$ |                 |                                       |                           |                        |                 |                      |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|---------------------------|------------------------|-----------------|----------------------|--------|
|                                                                                                                                                                                       | $T_{afilled}$ : | $= e^{v_a \cdot \alpha_{in}} \cdot ($ | $(v_a \cdot w_a \cdot (L$ | $_1 + L_2 + L_3 + L_4$ | $) = 942 \ lbf$ | Pullback force enter | ground |



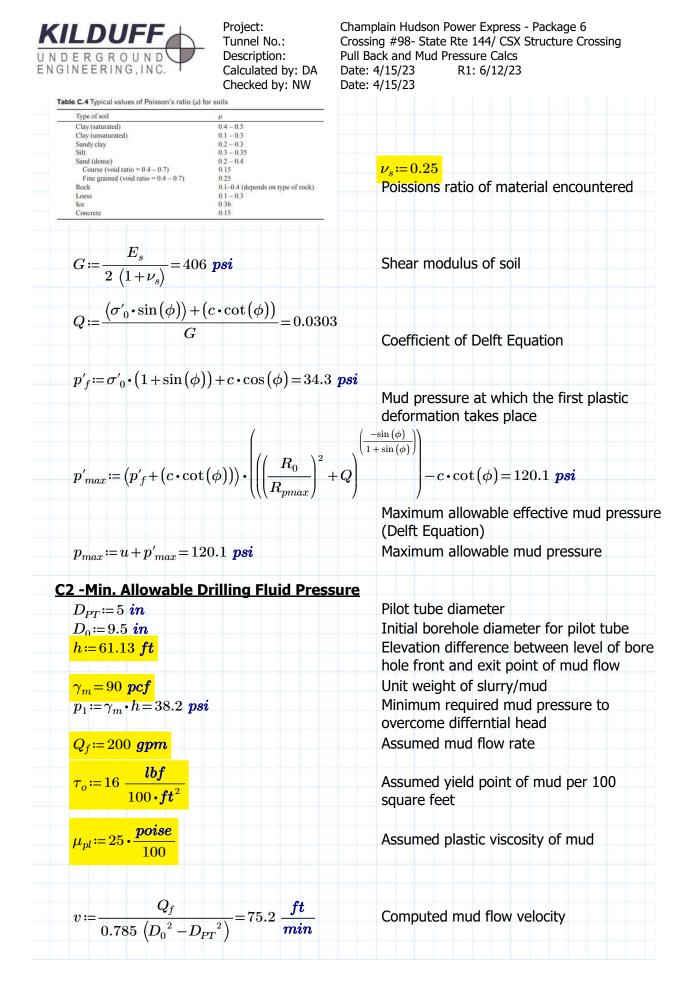
Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| B2.3 - Pullback Force Point B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_{bfilled} \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_{afilled} + v_b \cdot \left  w_{bfilled} \right  \cdot L_2 + \frac{1}{2} + \frac{1}$ | $w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 6014 \ lbf$<br>Pullback force increase and decrease with depth   |
| $T_{cfilled} \coloneqq T_{bfilled} + \left(v_b \cdot \left  w_{bfilled} \right  \cdot L_3\right) - e^{\left(v_b \cdot \alpha\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 6561 \ lbf$                                                                                |
| B2.5 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |
| $T_{dfilled} \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot (T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L_{dfilled})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{4} - e^{\left(v_{a} \cdot lpha_{in} ight)} \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{\left(v_{a} \cdot lpha_{in} ight)} ight) = 10221 \; lbf$ |
| B2.6 - Maximum Pullback Force - Filled Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | be with Water:                                                                                                                                            |
| $P_{max} \coloneqq \max \left( T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $_{d}) = 10221 \ lbf$<br>Maximum Pullback Force                                                                                                           |
| <u> B3 - Safe Pull Strength / Ultimate Tensi</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le Load Check:                                                                                                                                            |
| B3.1 Safe Pullback Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           |
| $A_{1} := \frac{\pi}{4} \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) = 19 \ in^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cross-sectional area of Pipe 1                                                                                                                            |
| $A_2 := rac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2  ight) = 0.8 \; in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cross-sectional area of Pipe 2                                                                                                                            |
| $P_{11} \coloneqq \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 16794 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pullback forces acting on Pipe 1 (Empty)                                                                                                                  |
| $P_{21} := \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 678 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pullback forces acting on Pipe 2 (Empty)                                                                                                                  |
| $P_{12} \coloneqq \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 9825 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pullback forces acting on Pipe 1 (Ballast)                                                                                                                |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 397 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pullback forces acting on Pipe 2 (Ballast)                                                                                                                |
| $P_{SPF1} \coloneqq 41214 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Safe pullback forces Pipe 1 (Table %, p. 448, PPI)                                                                                                        |
| <i>P</i> <sub><i>SPF</i>2</sub> :=1683 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Safe pullback forces Pipe 2 (Table %, p. 448, PPI)                                                                                                        |
| $= \frac{check := \mathbf{if}(P_{SPF1} > P_{11}, \text{``okay''}, \text{``not okay''})}{(P_{SPF1} > P_{11}, \text{``okay''}, \text{``not okay''})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |
| $= check := if(P_{SPF2} > P_{21}, "okay", "not okay$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                           |
| $check := if (P_{SPF1} > P_{12}, "okay", "not okay")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |
| $check \coloneqq if(P_{SPF2} > P_{22}, "okay", "not okay")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / / - UKay                                                                                                                                                |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

#### <u>C - Allowable Mud Pressures:</u>


| <u>C1 -</u> | Max. | Allowable | Driling | Fluid | Pressure |
|-------------|------|-----------|---------|-------|----------|
|             |      |           |         |       |          |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| <ul> <li>elevation</li> <li>Vertical separation distance between critical structure and pipe (Stream S-28, ~3+88)</li> <li>Assumed unit weight very soft clay</li> <li>Unit weight of water</li> <li>Effective unit weight</li> <li>Initial pore water pressure</li> <li>Assumed friction Angle</li> <li>Assumed cohesion of encountered materia</li> <li>Initial radius of the borehole</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| structure and pipe (Stream S-28, ~3+88)<br>Assumed unit weight very soft clay<br>Unit weight of water<br>Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                  |
| Assumed unit weight very soft clay<br>Unit weight of water<br>Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                             |
| Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                           |
| Effective unit weight<br>Initial pore water pressure<br>Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                           |
| Initial pore water pressure<br>Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                                                    |
| Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                                                                                   |
| Assumed friction Angle<br>Assumed cohesion of encountered materia                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| Initial radius of the borehole                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| $E_s \coloneqq 7 \frac{N}{mm^2} \equiv 1015 \ psi$                                                                                                                                                                                                                                                                                                                                                  |
| 116116                                                                                                                                                                                                                                                                                                                                                                                              |
| Assumed modulus of elasticity                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |



| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                     | Tunnel No.:CrosDescription:PullCalculated by: DADate                           | nplain Hudson Power Express - Package 6<br>sing #98- State Rte 144/ CSX Structure Crossing<br>Back and Mud Pressure Calcs<br>: 4/15/23 R1: 6/12/23<br>: 4/15/23 |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L_{structure} \coloneqq 388 \; ft$ $p_2 \coloneqq L_{structure} \cdot \left( \left( \frac{\mu_1}{(D_0 - D_0)} \right) \right)$ | $v \rightarrow (\tau_o)$                                                       | Length to sturcture                                                                                                                                             |
| $p_2 \coloneqq L_{structure} \bullet \left[ \left  \frac{1}{(D_0 - D_0)} \right  \right]$                                       | $\left[-D_{PT}\right]^2 + \left[\overline{\left(D_0 - D_{PT}\right)}\right]^2$ | $\left  \right  = 1.2 psi$                                                                                                                                      |
|                                                                                                                                 |                                                                                | Minimum required mud pressure to create flow inside the borehole                                                                                                |
| $p_{min.} \coloneqq p_1 + p_2 = 39.4$                                                                                           | psi                                                                            | Minimum required mud pressure                                                                                                                                   |
| $check \coloneqq \mathbf{if}\left(p_{max} > p_{min}\right)$                                                                     | $_{n.},$ "okay", "not okay")                                                   | ="okay"                                                                                                                                                         |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |
|                                                                                                                                 |                                                                                |                                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| Mobilized)    | ormed Borehole with Arching Mobili:                                                                                        |                                                            | <u>- Ring Deflection (Sho</u><br>D1.1 - Overburden Pressu                                                                                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Depth of cover                                                                                                             |                                                            | $H_c \coloneqq H_{max} = 48.4 \ ft$                                                                                                                                   |
|               | Friction angle of soil                                                                                                     |                                                            | $\phi = 34 \ deg$                                                                                                                                                     |
| lue =         | "Silo" width, conservative value = reamed hole diameter                                                                    |                                                            | $B \coloneqq D_r = 18 $ <i>in</i>                                                                                                                                     |
|               | Earth pressure coefficient                                                                                                 |                                                            | $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                  |
|               | Unit weight of soil, assumed                                                                                               |                                                            | $\gamma = 125 \ pcf$                                                                                                                                                  |
|               |                                                                                                                            | $\cdot H_c$ $\cdot \tan\left(\frac{\phi}{2}\right)$        | $1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{\ldots} \cdot \right)$                                                                                                     |
| PPI)          | Arching factor (Eq. 6, p.432, PPI)                                                                                         | $\frac{B}{\cdots} \tan\left(\frac{\phi}{2}\right) = 0.066$ | $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot 1\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(-\frac{K \cdot H_c}{B} \cdot 1\right)}$ |
| re            | Effective overburden pressure                                                                                              |                                                            |                                                                                                                                                                       |
|               |                                                                                                                            | eflection (Short Term)                                     | D1.2 Earth Load Deflection                                                                                                                                            |
| ty for        | Apparent modulus of elasticity for                                                                                         |                                                            |                                                                                                                                                                       |
| of 73 deg.    | PE4710, Base Temperature of 73<br>Fahrenheit at 10 hrs of sustained<br>(Table X1.1 ASTM F 1962)                            |                                                            | E <sub>short</sub> := 57500 • <b>psi</b>                                                                                                                              |
| tion equation | Variable in earth load deflection e                                                                                        | $(-1)^{3} = 9.36 \ psi$                                    | $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} =$                                                                                            |
| as per        | Pipe deflection to diameter as per                                                                                         |                                                            | $\Delta y_{ELD\_short} \coloneqq rac{0.0125 \cdot P_E}{k_{short}}$                                                                                                   |
| PPI Handboo   | PPI Equ. 10 (Chp 12, p 437, PPI H                                                                                          |                                                            |                                                                                                                                                                       |
|               |                                                                                                                            | eflection (Long Term)                                      | D1.3 Earth Load Deflection                                                                                                                                            |
| renheit at 50 | Apparent modulus of elasticity for<br>Base Temperature of 73 Fahrenhe<br>years of sustained loading (Table<br>ASTM F 1962) |                                                            | $E_{long} \coloneqq 28200 \cdot psi$                                                                                                                                  |
| tion equation | Variable in earth load deflection e                                                                                        | -=4.6 <i>psi</i>                                           | $k \coloneqq \frac{E_{long}}{12 \cdot (DR_1 - 1)^3} = 4.6$                                                                                                            |
|               | Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437)                                                          |                                                            |                                                                                                                                                                       |
|               |                                                                                                                            | $\frac{25 \cdot P_E}{k} = 0.4\%$                           | $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k}$                                                                                                           |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| D2.1 Buoyant Deflection (Short Term)                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 = 10.75 \ in$                                                                                                                                                                                                                                                                                                                                               | Outside diameter of casing pipe                                                                                                                                                                                                                                                                                                                |
| $t := T_{p1} = 1.194$ in                                                                                                                                                                                                                                                                                                                                         | Thickness of casing pipe                                                                                                                                                                                                                                                                                                                       |
| <i>p</i> 1                                                                                                                                                                                                                                                                                                                                                       | Apparent modulus of elasticity for                                                                                                                                                                                                                                                                                                             |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                                        | PE4710, Base Temperature of 73                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                  | Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                                                                                       |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                                                                                                                                                                                            | Assumed unit weight of fluid in                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                  | borehole (Slurry unit weight)                                                                                                                                                                                                                                                                                                                  |
| $I := \frac{t^3}{1} = 0.14 \frac{in^4}{1}$                                                                                                                                                                                                                                                                                                                       | Moment of inertia of pipe wall cross                                                                                                                                                                                                                                                                                                           |
| 12 in $(D)^4$                                                                                                                                                                                                                                                                                                                                                    | section                                                                                                                                                                                                                                                                                                                                        |
| $0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{d_1}\right)$                                                                                                                                                                                                                                                                                                       | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                                                                                          |
| $\Delta u_{1} = \frac{1}{2} = 0.1\%$                                                                                                                                                                                                                                                                                                                             | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                                                                                    |
| $\gamma_m = 90 \text{ pcf}$ $I \coloneqq \frac{t^3}{12} = 0.14 \frac{in^4}{in}$ $\Delta y_{bouyant} \coloneqq \frac{0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{2}\right)^4}{E_{short} \cdot I} = 0.1\%$                                                                                                                                                        | ·····                                                                                                                                                                                                                                                                                                                                          |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                |
| Please note that long term buoyant deflectio                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                |
| assumed to be cured after a 1-week period f                                                                                                                                                                                                                                                                                                                      | from installation/pumping.                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                |
| 3 - Reissner Effect Deflection (Short Ter                                                                                                                                                                                                                                                                                                                        | m)                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                              |
| D3.1 - Reissner Effect Deflection (Short Tern                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                              |
| D3.1 - Reissner Effect Deflection (Short Tern                                                                                                                                                                                                                                                                                                                    | <u>n)</u>                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                  | n)<br>Poisson's Ratio for PE pipe material                                                                                                                                                                                                                                                                                                     |
| $\mu_{short} = 0.35$                                                                                                                                                                                                                                                                                                                                             | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material                                                                                                                                                                                                                                                                                                     |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                         |
| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                                                                                                                                                                                                                     | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                                         |
| $\mu_{short} = 0.35$                                                                                                                                                                                                                                                                                                                                             | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                                |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                              | n)<br>Poisson's Ratio for PE pipe material<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bendir                                                                                                                                                                                                |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                              | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn</li> </ul>                                                                                                                   |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                                                                                     | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> </ul>                                                                                                            |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                                                                                                                                                                                                              | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisr Effect</li> </ul>                                                                                                            |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term                                                  | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> </ul>                                                                                                    |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                                                                                     | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material</li> </ul>                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$                            | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2)</li> </ul>                     |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material</li> </ul>                                                  |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> </ul> |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> </ul> |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term) $\mu_{long} := 0.45$                            | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> </ul> |
| $\mu_{short} := 0.35$ $R = 1000 \ ft$ $z := \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) \ (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term})$ $\mu_{long} := 0.45$ $R = 1000 \ ft$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bendin</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2)</li> </ul>                     |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| $\Delta y_{lim} = 7.5\%$                                                                                          | Deflection limit for DR 9 non pressuriz                             |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| D4.1 - Net Short Term                                                                                             | pipe (Table 2 , p. 437, PPI Handbook)                               |
| $\Delta y_{short\_net} \coloneqq \Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y$                           | $R_{R\_short} = 0.2\%$ Percent ring deflection in sho term analysis |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{short\_net} {<} \Delta y_{lim}, \text{``okay''}, \text{``} \right)$ | "not okay") = "okay"                                                |
| D4.2 - Net Long Term                                                                                              |                                                                     |
| $\Delta y_{long\_net} \coloneqq \Delta y_{ELD\_long} + \Delta y_{R\_long} = 0.4\%$                                | Percent ring deflection in long term analysis (50 years)            |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{lim}, \text{``okay''}, \text{``n} \right)$   | not okay") = "okay"                                                 |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |
|                                                                                                                   |                                                                     |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

|                                                                                                                      | g, Levy's Equation (Short Term-During Pull)                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | increase the pipe's buckling strength, therefore ition will produce a conservative value.                                                          |
| N := 2.0                                                                                                             | Factor of Safety                                                                                                                                   |
| $\mu_{short} \coloneqq 0.35$                                                                                         | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                          |
| E <sub>short</sub> =57500 <b>рsi</b><br>% DELГЕСТЮИ                                                                  | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962) |
| 0.0<br>0.2<br>0<br>0<br>0<br>2<br>4<br>6<br>8<br>10                                                                  | 42                                                                                                                                                 |
| 2                                                                                                                    | Ovality compensation factor, Figure                                                                                                                |
| fo 6                                                                                                                 | 3 (PPI Chp. 12). Calculated<br>deflection limit in section D4.1                                                                                    |
| 8                                                                                                                    | $f_{o\_short} \coloneqq 0.98$                                                                                                                      |
| $P_{UC\_short} \coloneqq \left(\frac{2 \cdot E_{short}}{1 - \mu_{s}}\right) \cdot \left(\frac{1}{DB_{s} - 1}\right)$ | $\int_{0-1}^{3} \cdot \frac{f_{o\_short}}{N} = 125.4 \text{ psi}$ Allowable unconstrained buckling pressure                                        |
|                                                                                                                      |                                                                                                                                                    |
| $H = 61.13 \; ft$                                                                                                    | Elevation difference between the lowest<br>point in borehole and entry or exit pit                                                                 |
| $P_{mud} \coloneqq \gamma_m \cdot H = 38.21 \ psi$                                                                   | Pressure of drilling slurry                                                                                                                        |
| $P_{net} \coloneqq P_{mud} = 38.21 \ psi$                                                                            | Net external loading with open borehole                                                                                                            |
| $Check \coloneqq \mathbf{if} \left( P_{UC\_short} > P_{net}, \text{``okay''} \right)$                                | ', "not okay") = "okay"                                                                                                                            |
| D5.2 - Unconstrained Ring Buckling                                                                                   | <u>, Levy's Equation (Long Term)</u>                                                                                                               |
|                                                                                                                      | l increase the pipe's buckling strength, therefore                                                                                                 |
|                                                                                                                      |                                                                                                                                                    |
| Note that constraining the pipe will considering an unconstrained cond $N := 2.0$                                    | Factor of Safety                                                                                                                                   |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                     | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #98- State Rte 144/ CSX Structure Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} = 28200 \; psi$                                                       |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                                |
| $f_{o\_long} \coloneqq 0.45$                                                    |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                          |
| $P_{UC\_long} \coloneqq \left(\frac{2 \cdot E_{long}}{1 - \mu_{long}^2}\right)$ | $\left \cdot\left(\frac{1}{DR_1-1} ight)^3\cdot \frac{f_c}{d} ight $           | $\frac{D_{a}long}{N} = 31.1 \ psi$<br>Allowable unconstrained buckling pressure                                                                                                     |
| $P_{GW} := \gamma_w \cdot H_w = 0 \ psi$                                        |                                                                                | Groundwater head pressure                                                                                                                                                           |
| $P_{net} \coloneqq P_{GW}$                                                      |                                                                                | Net external loading with open borehole                                                                                                                                             |
| $Check \coloneqq \mathbf{if} \left( P_{UC\_long} > \right.$                     | $P_{net}$ , "okay", "no                                                        | ot okay") = "okay"                                                                                                                                                                  |
| ( 00_00.09                                                                      |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |
|                                                                                 |                                                                                |                                                                                                                                                                                     |



Champlain Hudson Power Express - Package 6 Crossing #98- State Rte 144/ CSX Structure Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

## **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| fining Parameters of Horizontal Directi                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                         | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $D_2 := 2.375 in$                                                                                                                                                                                                                                                                                                                                                                                                                           | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $D_{rod} \approx 3.5 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                  | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $DR_1 \coloneqq 9$                                                                                                                                                                                                                                                                                                                                                                                                                          | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $DR_2 \coloneqq 11$                                                                                                                                                                                                                                                                                                                                                                                                                         | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                                                                                                                                                                                                          | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                                                                                                                                                                                                   | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $C_1 \coloneqq \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                                                                                                                                                                                                   | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $C_2 \coloneqq \pi \cdot D_2 = 7.5 \ in$                                                                                                                                                                                                                                                                                                                                                                                                    | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| bora/ninanath                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| bore/pipepath                                                                                                                                                                                                                                                                                                                                                                                                                               | pipeentry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| drill rig B                                                                                                                                                                                                                                                                                                                                                                                                                                 | \ /a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| PD                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| CI                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| pipe exit                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| La La                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| L <sub>4</sub> L <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| • L <sub>bore</sub>                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Illustration 1 - Schematic of                                                                                                                                                                                                                                                                                                                                                                                                               | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Illustration 1 - Schematic of $\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745$ rad                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $L_{bore}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad$                                                                                                                                                                                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| $\mathbf{\alpha} := 10 \circ \mathbf{\alpha}_{in} := \alpha = 0.1745 \ \mathbf{rad}$ $\beta := 14 \circ \mathbf{\beta}_{exit} := \beta = 0.2443 \ \mathbf{rad}$ $D_r := 18 \cdot \mathbf{in}$ $H_{max} := 23.6 \ \mathbf{ft}$                                                                                                                                                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $\mathbf{L}_{\text{torse}}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$                                                                                                                                                                                | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\begin{array}{c} & \qquad \qquad \mathbf{L}_{bose} \\ & \qquad \qquad \mathbf{Illustration \ 1 - Schematic \ of} \\ & \alpha_{in} \coloneqq \alpha = 0.1745 \ \textbf{rad} \\ & \beta_{exit} \coloneqq \beta = 0.2443 \ \textbf{rad} \\ & D_r \coloneqq 18 \cdot \textbf{in} \end{array}$                                                                                                                                                  | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from                                                                                                                                                                                                                                                                                                |  |  |
| $L_{toos}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$                                                                                                                                                                                                 | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter                                                                                                                                                                                                                                                                                                                                          |  |  |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 10 \circ \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14 \circ \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft$ $L_{total} := 1608.5 \ ft$                                                                                                                                      | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing                                                                                                                                                                                                                                              |  |  |
| $L_{tors}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 1608.5 \text{ ft}$ $L_1 := 150 \text{ ft}$                                                                               | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                                                                                              |  |  |
| $L_{tors}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad \\ \beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad \\ D_r := 18 \cdot in \\ H_{max} := 23.6 \ ft \\ H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft \\ L_{total} := 1608.5 \ ft \\ L_1 := 150 \ ft$                                                                                                             | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1                                                                                                                                                                                       |  |  |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 10 \circ \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14 \circ \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft$ $L_{total} := 1608.5 \ ft$                                                                                                                                      | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                                                                                                                               |  |  |
| $L_{tors}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 1608.5 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 531.4 \text{ ft}$                                                     | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                                                                                 |  |  |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft$ $L_{total} := 1608.5 \ ft$ $L_1 := 150 \ ft$ $L_2 := 531.4 \ ft$ $L_3 := 748.7 \ ft$                                                                        | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section                                                                  |  |  |
| $L_{tors}$ Illustration 1 - Schematic of $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \text{ ft}$ $L_{total} := 1608.5 \text{ ft}$ $L_1 := 150 \text{ ft}$ $L_2 := 531.4 \text{ ft}$ $L_3 := 748.7 \text{ ft}$ $L_4 := 328.4 \text{ ft}$ | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                                                                                |  |  |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 23.6 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft$ $L_{total} := 1608.5 \ ft$ $L_1 := 150 \ ft$ $L_2 := 531.4 \ ft$ $L_3 := 748.7 \ ft$                                                                        | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section<br>Horizontal distance to rise to surface, See                  |  |  |
| $L_{tors}$ Illustration 1 - Schematic of<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \ rad$<br>$D_r := 18 \cdot in$<br>$H_{max} := 23.6 \ ft$<br>$H_{max1} := H_{max} + \frac{D_r}{2} = 24.35 \ ft$<br>$L_{total} := 1608.5 \ ft$<br>$L_1 := 150 \ ft$<br>$L_2 := 531.4 \ ft$<br>$L_3 := 748.7 \ ft$<br>$L_4 := 328.4 \ ft$                                   | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section<br>Horizontal distance to rise to surface, See<br>Illustration 1 |  |  |

| DERGROUND<br>GINEERING, INC.                                                    | oject:<br>Innel No.:<br>escription:<br>Iculated by: DA<br>Iecked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #99- CSX Tracks Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                                    |                                                                         | Friction coefficient before pipe enters (rollers assumed)                                                                                                         |
| $v_b := 0.3$                                                                    |                                                                         | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                         |
| $ \rho_w := 62.4 \ pcf $                                                        |                                                                         | Unit weight of water                                                                                                                                              |
| $\gamma_a \coloneqq 0.965$                                                      |                                                                         | Specific gravity of pipe                                                                                                                                          |
| $\gamma_m \coloneqq 90 \ pcf$                                                   |                                                                         | Assumed unit weight of slurry                                                                                                                                     |
| $\gamma_b \coloneqq \frac{\gamma_m}{\rho_w} = 1.4$                              |                                                                         | Specific gravity of slurry, assumed unit weight                                                                                                                   |
| $\gamma_c \coloneqq 1.0$                                                        |                                                                         | Specific gravity of water to fill the pipe                                                                                                                        |
| $\Delta P \coloneqq 10 \ psi$                                                   |                                                                         | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                              |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                               |                                                                         | Gravitational Constant                                                                                                                                            |
| Axial Bending Stress:                                                           |                                                                         |                                                                                                                                                                   |
| $R_{avg.\_in} \coloneqq 1000 \; ft$                                             |                                                                         | Radius of curvature at the entry, provided by Contractor                                                                                                          |
| $R_{avg.out} \coloneqq 1000 \ ft$                                               |                                                                         | Radius of curvature at the exit, provided by Contractor                                                                                                           |
| $R \coloneqq \frac{R_{avg\_in} + R_{avg\_out}}{2} = 1$                          | 1000 <b>ft</b>                                                          | Average radius of curvature at entry                                                                                                                              |
| $r_{rod} := 1200 \cdot D_{rod} = 350 \ ft$                                      | t                                                                       | ASTM F 1962-99, Equation 1, p7                                                                                                                                    |
| $Check \coloneqq \mathbf{if} \left\langle R_{avg.\_in} \! > \! r_{rod} \right.$ | ,"okay","not                                                            | okay") = "okay"                                                                                                                                                   |
| $Check \coloneqq \mathbf{if} \left( R_{avg\_out} > r_{rot} \right)$             | . "okay", "no                                                           | t okay") = "okay"                                                                                                                                                 |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$  | Strain within the casing pipe                                                                                                                      |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{12hr} \coloneqq 57500 \cdot psi$            | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \coloneqq e_a \cdot E_{12hr} = 25.8 \ psi$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

B - Site Specific Analyses: Pullback Force:  
B1 - Empty Pipe  
B1.1 - Effective Weight of Empty Pipe:  

$$w_{a} := \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p2} \right)^{2} \right) \right), \rho_{u} \cdot \gamma_{a} = 8.3 \text{ plf}$$
B1.2 - Upward Buoyant Force:  
Effective weight  

$$w_{b} := \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2 \text{ plf}$$
Upward buoyant force of empty pipe  
B1.3 - Hydrokinetic Pressure:  

$$\Delta T := \Delta P \cdot \left( \frac{\pi}{8} \right) \left( D_{r}^{2} - \left( D_{1}^{2} + D_{2}^{2} \right) \right) = 796 \text{ lbf}$$
Hydrokinetic force  
B1.4 - Pullback Force Point A:  

$$T_{a} := e^{v_{a} \cdot a_{w}} \cdot \left( v_{a} \cdot w_{a} \cdot \left( L_{1} + L_{2} + L_{3} + L_{4} \right) \right) = 1483 \text{ lbf}$$
Pullback force when pipe enters the ground  
B1.5 - Pullback Force Point B:  

$$T_{b} := e^{v_{a} \cdot a_{w}} \left( T_{a} + v_{b} \cdot |w_{b}| \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot a_{w})} \right) = 10966 \text{ lbf}$$
Pullback force point C:  

$$T_{c} := T_{b} + \left( v_{b} \cdot w_{b} \cdot L_{3} \right) - e^{(v_{a} \cdot a_{w})} \cdot \left( v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot a_{w})} \right) = 27286 \text{ lbf}$$
B1.8 - Maximum Pullback Force a D:  

$$T_{d} := e^{(v_{a} \cdot a_{w})} \cdot \left( T_{c} + v_{b} \cdot |w_{b}| \cdot L_{4} - w_{b} \cdot H_{max} - e^{(v_{a} \cdot a_{w})} \cdot \left( v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{(v_{a} \cdot a_{w})} \right) \right) = 27286 \text{ lbf}$$
B1.8 - Maximum Pullback Force - Empty Pipe:  

$$P_{max,cmpty} := \max \left( T_{a}, T_{b}, T_{c}, T_{d} \right) + \Delta T = 28083 \text{ lbf}$$
Maximum Pullback Force  
B2.1 - Upward Buoyant Force:  

$$w_{bfitted} := \left( \frac{\left( \left( \tau \cdot D_{r}^{2} \right)}{4} \right) \cdot \rho_{w} \cdot \left( \tau_{a} - \gamma_{c} \cdot \left( 1 - \left( \frac{2}{DR_{1}} \right) \right)^{2} \right) - w_{a} = 24.6 \text{ plf}$$
Upward buoyant force of pipe filled with water  
B2.2 - Pullback Force Point A:

 $T_{afilled} \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 1483 \ \textit{lbf} \quad \text{Pullback force enter ground}$ 



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| $T \rightarrow e^{v_b \cdot \alpha_{in}} (T \rightarrow u) = u$                                                                                                                                                                        | $+ w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot lpha_{in})} = 6788$                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| $I \ bfilled \leftarrow \mathcal{E} \qquad (I \ afilled \leftarrow \mathcal{V}_b \bullet   \mathcal{W}_b filled   \bullet \mathcal{L}_2 \neg$                                                                                          | Pullback force increase and decrease                                                                                                     |
| B2.4 - Pullback Force Point C:                                                                                                                                                                                                         | depth                                                                                                                                    |
| $T_{cfilled} \coloneqq T_{bfilled} + \left( v_b \cdot \left  w_{bfilled} \right  \cdot L_3 \right) - e^{\left( v_b \cdot v_b \right)}$                                                                                                 | $(\alpha_{an}) \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 11659 \ lbf$                                          |
| B2.5 - Pullback Force at D:                                                                                                                                                                                                            |                                                                                                                                          |
| $T_{dfilled} := e^{(v_b \cdot \beta_{exit})} \cdot \left( T_{cfilled} + v_b \cdot \left  w_{bfilled} \right  \cdot I_{cfilled} \right)$                                                                                                | $\left(v_{a} \cdot a_{in}\right) \cdot \left(v_{a} \cdot w_{a} \cdot L_{4} \cdot e^{\left(v_{a} \cdot a_{in}\right)}\right) = 14855 \ l$ |
| <u>B2.6 - Maximum Pullback Force - Filled Pi</u>                                                                                                                                                                                       | pe with Water:                                                                                                                           |
| $P_{max} \coloneqq \max \left( T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfill} \right)$                                                                                                                                               | $(ad) = 14855 \ lbf$                                                                                                                     |
| mux ( ujuicu > ojuicu > cjiiicu > ujui                                                                                                                                                                                                 | Maximum Pullback Force                                                                                                                   |
| <u> 3 - Safe Pull Strength / Ultimate Tens</u>                                                                                                                                                                                         | ile Load Check:                                                                                                                          |
| B3.1 Safe Pullback Check                                                                                                                                                                                                               |                                                                                                                                          |
| $A_1 := \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                                                                                                                | Cross-sectional area of Pipe 1                                                                                                           |
| $A_2 := \frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) = 0.8 \ in^2$                                                                                                                                               | Cross-sectional area of Pipe 2                                                                                                           |
| $P_{11} \coloneqq \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 26993 \ lbf$                                                                                                                                                            | Pullback forces acting on Pipe 1 (Emp                                                                                                    |
| $P_{21} \coloneqq \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 1090 \ \textit{lbf}$                                                                                                                                                    | Pullback forces acting on Pipe 2 (Emp                                                                                                    |
| $P_{12} := \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 14279 \ \textit{lbf}$                                                                                                                                                                 | Pullback forces acting on Pipe 1 (Ball                                                                                                   |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 576 \ lbf$                                                                                                                                                                            | Pullback forces acting on Pipe 2 (Ball                                                                                                   |
| $P_{SPF1} \coloneqq 41214 \ \textit{lbf}$                                                                                                                                                                                              | Safe pullback forces Pipe 1 (Table % p. 448, PPI)                                                                                        |
| <i>P</i> <sub><i>SPF</i>2</sub> :=1683 <i>lbf</i>                                                                                                                                                                                      | Safe pullback forces Pipe 2 (Table % p. 448, PPI)                                                                                        |
| $check \coloneqq if(P_{SPF1} > P_{11}, "okay", "not oka$                                                                                                                                                                               |                                                                                                                                          |
| $check := if(P_{SPF2} > P_{21}, "okay", "not oka$                                                                                                                                                                                      |                                                                                                                                          |
| $\begin{aligned} check &\coloneqq \mathbf{if} \left( P_{SPF1} > P_{12}, \text{``okay''}, \text{``not okay} \right) \\ check &\coloneqq \mathbf{if} \left( P_{SPF2} > P_{22}, \text{``okay''}, \text{``not okay} \right) \end{aligned}$ |                                                                                                                                          |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

#### **<u>C</u> - Allowable Mud Pressures:**

| <u>C1 -</u> | Max. | Allow | able | Driling | Fluid | <b>Pressure</b> |
|-------------|------|-------|------|---------|-------|-----------------|
|             |      |       |      |         |       |                 |

Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| <i>H<sub>w</sub></i> := 26.7 • <i>ft</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth of the bore below groundwater elevation                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $H_c \coloneqq 26.7 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vertical separation distance between critica structure and pipe (Ravine, Sta 13+50)                       |
| $\gamma \coloneqq 120 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assumed unit weight stiff clay                                                                            |
| $\gamma_w \coloneqq 62.4 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit weight of water                                                                                      |
| $\gamma' \coloneqq \gamma - \gamma_w = 57.6 \ \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ocf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Effective unit weight                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| $u \coloneqq \gamma_w \cdot H_w = 12 \ ps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initial pore water pressure                                                                               |
| $\phi \coloneqq 0 \ deg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assumed friction Angle                                                                                    |
| $c := 1200 \ psf = 8.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assumed cohesion of encountered material<br>(Comment W7, Wei Tu suggests 400-500p<br>for med. stiff silt) |
| $R_0 \coloneqq \frac{D_{rod}}{2} = 1.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial radius of the borehole                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |
| $R_{pmax} \coloneqq \frac{1}{2} \cdot H_c = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                    |
| $R_{pmax} \coloneqq \frac{1}{2} \cdot H_c = 13$ $\sigma'_0 \coloneqq \left( \left( \gamma \cdot \left( H_c - H_u \right) \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\beta ft \\ (b) + \gamma' \cdot H_w = 11 psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| $\sigma'_{0} \coloneqq (\langle \gamma ullet \langle H_{c} - H_{u}  ullet$ le C.2 Typical values of modulus of el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(y_{s}) + \gamma' ullet H_w ) = 11   psi$ lasticity (E_s) for different types of soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/3 H in sands)                                                                                           |
| $\sigma'_0 \coloneqq (\langle \gamma \cdot (H_c - H_u) \rangle)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left( , \right) \left( + \gamma' \boldsymbol{\cdot} H_w \right) = 11   \boldsymbol{psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)                                                                                           |
| $\sigma'_{0} \coloneqq \left( \left( \gamma \cdot \left( H_{c} - H_{u} \right) \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\gamma_{s}) + \gamma' \cdot H_w = 11 \text{ psi}$ $(E_s) \text{ for different types of soils}$ $(E_s (N/mm^2))$ $(2-15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)                                                                                           |
| $\sigma'_{0} \coloneqq \left( \left( \gamma \cdot \left( H_{c} - H_{u} \right) \right) \right)$ $ = C.2 \text{ Typical values of modulus of elements} $ $ = \frac{Type \text{ of Soil}}{Clay} \\ \text{Very soft} \\ \text{Soft} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(y_{s}) + \gamma' \cdot H_w = 11 \text{ psi}$ $(E_s) \text{ for different types of soils}$ $(E_s) = 11 \text{ psi}$ $(E_s) = 11 \text{ psi}$ $(E_s) = 11 \text{ psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/3 H in sands)<br>Initial effective stress                                                               |
| $\sigma'_{0} \coloneqq \left( \left( \gamma \cdot \left( H_{c} - H_{u} \right) \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\gamma_{s}) + \gamma' \cdot H_w = 11 \text{ psi}$ $(E_s) \text{ for different types of soils}$ $(E_s (N/mm^2))$ $(2-15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)<br>Initial effective stress                                                               |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left( H_{c} - H_{u} \right) \right\rangle \right)$ He C.2 Typical values of modulus of elements of modulus of elements of Soil $\frac{\text{Type of Soil}}{\text{Clay}}$ Very soft Soft Medium Hard Sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(y_{s}) + \gamma' \cdot H_w) = 11 \ psi$ $(E_s) \text{ for different types of soils}$ $(E_s, (N/mm^2))$ $(2-15)$ $(S-25)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$ $(1-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)                                                                                           |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right\rangle \right. \right.$ If <b>C.2</b> Typical values of modulus of elements of Soil $\boxed{\text{Clay}} \\ \text{Very soft} \\ \text{Soft} \\ \text{Medium} \\ \text{Hard} \\ \text{Sandy} \\ \text{Glacial till}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\gamma' \cdot H_w = 11 \ psi$ $                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/3 H in sands)<br>Initial effective stress $E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                     |
| $\sigma'_{0} := \left( \left( \gamma \cdot \left( H_{c} - H_{u} \right) \right) \right)$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2 \text{ Typical values of modulus of elements}$ $= C.2  Typical value of elements of elements$                                                                                                                                | $\gamma(\mathbf{y}) + \gamma' \cdot H_w = 11 \ psi$ $\underline{\text{lasticity } (E_s) \text{ for different types of soils}}_{E_y (N/mm^2)}$ $\frac{2-15}{5-25}$ $15-50$ $50-100$ $25-250$ $10-153$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/3 H in sands)<br>Initial effective stress                                                               |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right\rangle \right. \right. \\ \left. \frac{Type of Soil}{Clay} \right _{Very soft} \\ \left. \frac{Soft}{Medium} \right _{Hard} \\ \left. \frac{Sandy}{Glacial till} \right _{Sandy} \\ \left. \frac{Glacial till}{Soft} \right _{Soft} \\ \left. \frac{Soft}{Soft} \right $ | $\gamma' \cdot H_w = 11 \ psi$ $                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/3 H in sands)<br>Initial effective stress $E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                     |
| $\sigma'_{0} := \langle \langle \gamma \cdot \langle H_{c} - H_{u} \rangle \rangle$ If <b>C</b> .2 Typical values of modulus of elements of modulus of elements of the formula                                                                                                                                                                                                                                                                                   | $\gamma(\mathbf{v},\mathbf{h}) + \gamma' \cdot \mathbf{h}_w) = 11 \ \mathbf{psi}$ $\underline{\mathbf{asticity}} \ (E_s) \text{ for different types of soils}$ $\underline{E_i (N/mn^2)}$ 2-15 5-25 15-50 50-100 25-250 10-153 144-720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/3 H in sands)<br>Initial effective stress $E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                     |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right\rangle \right. \right.$<br>If C.2 Typical values of modulus of elements of soil<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \frac{1}{12} + \frac{1}{$ | 2/3 H in sands)<br>Initial effective stress $E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                     |
| $\sigma'_{0} := \langle \langle \gamma \cdot \langle H_{c} - H_{u} \rangle \rangle$ If <b>C</b> .2 Typical values of modulus of elements of modulus of elements of the formula                                                                                                                                                                                                                                                                                   | $\gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{2-15}$ $\frac{1}{5-25}$ $\frac{1}{5-50}$ $\frac{1}{5-25}$ $\frac{1}{5-50}$ $\frac{1}{50-100}$ $\frac{1}{25-250}$ $10-153$ $144-720$ $478-1,440$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                  |
| $\sigma'_{0} := \left( \left( \gamma \cdot \left( H_{c} - H_{u} \right) \right) \right)$ $rac{Type of Soil}{Clay}$ Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $y_{s}(y_{s}) + \gamma' \cdot H_{w} = 11 \text{ psi}$ $(E_{s}) \text{ for different types of soils}$ $E_{x} (N/mm^{2})$ $2-15$ $5-25$ $15-50$ $50-100$ $25-250$ $10-153$ $144-720$ $478-1,440$ $14-57$ $7-21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                  |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right\rangle \right. \right.$ In the C.2 Typical values of modulus of elements of the form of the soft of t                                                                                                                                                                                                                                                                         | $\gamma' \cdot H_w = 11 \text{ psi}$ lasticity (E <sub>s</sub> ) for different types of soils $E_* (N/mm^2)$ 2-15 5-25 15-50 50-100 25-250 10-153 144-720 478-1,440 14-57 7-21 10-24 48-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 50 \frac{N}{mm^2} = 7252 \ psi$                    |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right. \right. \right. \right.$<br>If c.2 Typical values of modulus of elements of soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand and gravel<br>Loose<br>Sand and gravel<br>Loose<br>Sand and gravel<br>Loose<br>Sand and gravel<br>Loose<br>Sand Silty<br>Sonse<br>Sand and gravel<br>Loose<br>Sand and gravel<br>Loose<br>Sand Silty<br>Sand and gravel<br>Loose<br>Sand and gravel<br>Loose<br>Sand Sand Sand Sand Sand Sand Sand Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$ $\frac{1}{12} + \gamma' \cdot H_w = 11 \text{ psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/3 H in sands)<br>Initial effective stress $E_s := 50 \ \frac{N}{mm^2} = 7252 \ psi$                     |
| $\sigma'_{0} := \left( \left\langle \gamma \cdot \left\langle H_{c} - H_{u} \right\rangle \right. \right.$ In the C.2 Typical values of modulus of elements of the form of the soft of t                                                                                                                                                                                                                                                                         | $\gamma' \cdot H_w = 11 \text{ psi}$ lasticity (E <sub>s</sub> ) for different types of soils $E_* (N/mm^2)$ 2-15 5-25 15-50 50-100 25-250 10-153 144-720 478-1,440 14-57 7-21 10-24 48-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 50 \frac{N}{mm^2} = 7252 \ psi$                    |

| KILDUFF       Project:         N D E R G R O U N D       Description:         Description:       Calculated by: DA         Checked by: NW |                                                                                 | Champlain Hudson Power Express - Package 6<br>Crossing #99- CSX Tracks Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>Table C.4</b> Typical values of Poisson's ratio (µ)                                                                                    | for soils                                                                       |                                                                                                                                                                   |  |  |
| Type of soil                                                                                                                              | μ                                                                               |                                                                                                                                                                   |  |  |
| Clay (saturated)                                                                                                                          | 0.4 - 0.5                                                                       |                                                                                                                                                                   |  |  |
| Clay (unsaturated)<br>Sandy clay                                                                                                          | 0.1 - 0.3<br>0.2 - 0.3                                                          |                                                                                                                                                                   |  |  |
| Silt<br>Sand (dense)                                                                                                                      | 0.3 - 0.35<br>0.2 - 0.4                                                         |                                                                                                                                                                   |  |  |
| Course (void ratio = $0.4 - 0.7$ )                                                                                                        | 0.15                                                                            | $\nu_s = 0.3$                                                                                                                                                     |  |  |
| Fine grained (void ratio = $0.4 - 0.7$ )<br>Rock                                                                                          | 0.25<br>0.1-0.4 (depends on type of rock)                                       | Poissions ratio of material encountered                                                                                                                           |  |  |
| Loess                                                                                                                                     | 0.1-0.3<br>0.36                                                                 |                                                                                                                                                                   |  |  |
| Concrete                                                                                                                                  | 0.15                                                                            |                                                                                                                                                                   |  |  |
| $G \coloneqq \frac{E_s}{2 (1 + \nu_s)} = 278$                                                                                             | 89 <i>psi</i>                                                                   | Shear modulus of soil                                                                                                                                             |  |  |
|                                                                                                                                           |                                                                                 |                                                                                                                                                                   |  |  |
| $Q \coloneqq \frac{(\sigma'_0 \cdot \sin(\phi)) + C}{C}$                                                                                  | $\frac{(c \cdot 0)}{c} = 0$                                                     |                                                                                                                                                                   |  |  |
| G                                                                                                                                         |                                                                                 | Coefficient of Delft Equation                                                                                                                                     |  |  |
| $p'_f \coloneqq \sigma'_0 \cdot (1 + \sin(\phi))$                                                                                         | $))+c\cdot\cos(\phi)=19$                                                        | psi                                                                                                                                                               |  |  |
|                                                                                                                                           |                                                                                 | Mud pressure at which the first plastic deformation takes place                                                                                                   |  |  |
|                                                                                                                                           | (                                                                               | $-\sin(\phi)$                                                                                                                                                     |  |  |
|                                                                                                                                           | $\left  \left( 1 - 1 \right)^{1} \right\rangle$                                 | $1 + \sin(\phi)$                                                                                                                                                  |  |  |
| $p'_{max} \coloneqq \left( p'_f \! + \! \left( c \! \cdot \! 0  ight)  ight)$                                                             | $\cdot \left( \left( \left( \frac{R_0}{R_{pmax}} \right)^2 + Q \right) \right)$ | $ \left. \begin{array}{c} -\sin\left(\phi\right) \\ 1+\sin\left(\phi\right) \end{array} \right) - c \cdot 0 = 19 \ psi $                                          |  |  |
|                                                                                                                                           |                                                                                 | Maximum allowable effective mud pressur<br>(Delft Equation)                                                                                                       |  |  |
| $p_{max} \coloneqq u + p'_{max} \equiv 30$                                                                                                | 0.6 <b>psi</b>                                                                  | Maximum allowable mud pressure                                                                                                                                    |  |  |
| <u>C2 -Min. Allowable [</u>                                                                                                               | Drilling Fluid Pres                                                             | <u>sure</u>                                                                                                                                                       |  |  |
| $D_{PT} = 5 in$                                                                                                                           |                                                                                 | Pilot tube diameter                                                                                                                                               |  |  |
| $D_0 := 9.5 in$                                                                                                                           |                                                                                 | Initial borehole diameter for pilot tube                                                                                                                          |  |  |
| $h \coloneqq 41.4 \ ft$                                                                                                                   |                                                                                 | Elevation difference between level of bore<br>hole front and exit point of mud flow                                                                               |  |  |
| $\gamma_m = 90 \ pcf$                                                                                                                     |                                                                                 | Unit weight of slurry/mud                                                                                                                                         |  |  |
| $p_1 \coloneqq \gamma_m \cdot h = 25.9 \ ps$                                                                                              | <i>vi</i>                                                                       | Minimum required mud pressure to overcome differntial head                                                                                                        |  |  |
| $Q_f \coloneqq 200 \ gpm$                                                                                                                 |                                                                                 | Assumed mud flow rate                                                                                                                                             |  |  |
|                                                                                                                                           |                                                                                 | Assumed yield point of mud per 100                                                                                                                                |  |  |
| $\tau_o \coloneqq 16 \ \frac{lbf}{100 \cdot ft^2}$                                                                                        |                                                                                 | square feet                                                                                                                                                       |  |  |
| $\mu_{pl} \coloneqq 25 \cdot \frac{poise}{100}$                                                                                           |                                                                                 | Assumed plastic viscosity of mud                                                                                                                                  |  |  |
| $\mu_{pl} = 25 \cdot \frac{100}{100}$                                                                                                     |                                                                                 | Assumed plastic viscosity of mud                                                                                                                                  |  |  |
|                                                                                                                                           |                                                                                 |                                                                                                                                                                   |  |  |
|                                                                                                                                           |                                                                                 |                                                                                                                                                                   |  |  |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW                                               | Champlain Hudson Power Express - Package 6<br>Crossing #99- CSX Tracks Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v \coloneqq rac{Q_f}{0.785 (D_0^2 - D_f)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left(\frac{ft}{p_T}\right) = 75.2 \frac{ft}{min}$                                                                          | Computed mud flow velocity                                                                                                                                        |
| $\frac{L_{structure} \coloneqq 1350 \ ft}{\prime \prime}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | Length to sturcture                                                                                                                                               |
| $p_2 \! \coloneqq \! L_{structure} \! \cdot \! \left( \! \left( \! \frac{1}{(D_0)} \right) \! \right) \! \cdot \! \left( \! \frac{1}{(D_0)} \right) \! \cdot \! \left($ | $\left( \frac{\mu_{pl} \cdot v}{\left( p - D_{PT} \right)^2} \right) + \left( \frac{\tau}{\left( D_0 - v \right)^2} \right)$ | $\left  \frac{\sigma}{D_{PT}} \right\rangle = 4 \ psi$                                                                                                            |
| $p_{min.} \coloneqq p_1 + p_2 = 29.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) nei                                                                                                                        | <ul> <li>Minimum required mud pressure to create</li> <li>flow inside the borehole</li> <li>Minimum required mud pressure</li> </ul>                              |
| $p_{min} - p_1 + p_2 - 23.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , psi                                                                                                                        |                                                                                                                                                                   |
| $check := if(p_{max} > p_r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sub>nin.</sub> , "okay" , "not o                                                                                            | kay") = "okay"                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                   |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| D1.1 - Overburden Pressure (Considering                                                                                                                                                             | Deformed Borehole with Arching Mobilized)                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_c \coloneqq H_{max} = 23.6 \ ft$                                                                                                                                                                 | Depth of cover                                                                                                                                  |
| $\phi = 0 \ deg$                                                                                                                                                                                    | Friction angle of soil                                                                                                                          |
| $B := D_r = 18$ in                                                                                                                                                                                  | "Silo" width, conservative value =                                                                                                              |
| $\left( \right)^{2}$                                                                                                                                                                                | reamed hole diameter                                                                                                                            |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                                | Earth pressure coefficient                                                                                                                      |
| $\gamma = 120 \ pcf$                                                                                                                                                                                | Unit weight of soil, assumed                                                                                                                    |
| $1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{R} \cdot \tan\left(\frac{\phi}{2}\right)\right)$                                                                                                         |                                                                                                                                                 |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = ? k \coloneqq$ | Arching factor (Eq. 6, p.432, PPI)                                                                                                              |
| $P_E \coloneqq k \cdot (\gamma - \gamma_w) \cdot (H_c) = 9 \ psi \qquad P_E = 135$                                                                                                                  |                                                                                                                                                 |
| D1.2 Earth Load Deflection (Short Term)                                                                                                                                                             |                                                                                                                                                 |
|                                                                                                                                                                                                     | Apparent modulus of elasticity for                                                                                                              |
| $E_{short} \coloneqq 57500 \cdot psi$                                                                                                                                                               | PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)                                    |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \text{ psi}$                                                                                                         | Variable in earth load deflection equation                                                                                                      |
| $\frac{12}{0.0125 \cdot P_E}$                                                                                                                                                                       |                                                                                                                                                 |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 1.3\%$                                                                                                                        | Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437, PPI Handbool                                                                  |
| D1.3 Earth Load Deflection (Long Term)                                                                                                                                                              |                                                                                                                                                 |
| $E_{long} \coloneqq 28200 \cdot psi$                                                                                                                                                                | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 Fahrenheit at 50<br>years of sustained loading (Table X1.1<br>ASTM F 1962) |
| $k \coloneqq \frac{E_{long}}{12 \cdot \left(DR_1 - 1\right)^3} = 4.6 \ psi$                                                                                                                         | Variable in earth load deflection equation                                                                                                      |
|                                                                                                                                                                                                     | Pipe deflection to diameter as per                                                                                                              |
| $\Delta y_{ELD\_long} \! \coloneqq \! \frac{0.0125 \cdot P_E}{k} \! = \! 2.6\%$                                                                                                                     | PPI Equ. 10 (Chp 12, p 437)                                                                                                                     |
|                                                                                                                                                                                                     |                                                                                                                                                 |
|                                                                                                                                                                                                     |                                                                                                                                                 |
|                                                                                                                                                                                                     |                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| $D_1 = 10.75 \ in$                                                                                                                                                                          | Outside diameter of casing pipe     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| $t := T_{p1} = 1.194 \ in$                                                                                                                                                                  | Thickness of casing pipe            |
|                                                                                                                                                                                             | Apparent modulus of elasticity for  |
| $E_{short} = 57500 \ psi$                                                                                                                                                                   | PE4710, Base Temperature of 73      |
|                                                                                                                                                                                             | Fahrenheit (Table B.1.1)            |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                       | Assumed unit weight of fluid in     |
| <b>4</b> <sup>3</sup> in <sup>4</sup>                                                                                                                                                       | borehole (Slurry unit weight)       |
| $I \coloneqq \frac{l}{12} = 0.14 \frac{in}{i}$                                                                                                                                              | Moment of inertia of pipe wall cro  |
| $(D_1)^4$                                                                                                                                                                                   | section                             |
| $0.1169 \cdot \gamma_m \cdot \left  \frac{\Sigma_1}{2} \right $                                                                                                                             | Pipe ring deflection to buoyant for |
| $\gamma_m = 90 \text{ pcf}$ $I := \frac{t^3}{12} = 0.14 \frac{in^4}{in}$ $\Delta y_{bouyant} := \frac{0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{2}\right)^4}{E_{short} \cdot I} = 0.1\%$ | ASTM F 1962 (Eq. X2.6, p.6)         |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                         |                                     |

### D3 - Reissner Effect Deflection (Short Term)

D3.1 - Reissner Effect Deflection (Short Term)

| $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$                                                                                                                     | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $z \coloneqq \frac{\frac{3}{2} \cdot \left(1 - \mu_{short}^{2}\right) \left(D_{1} - t\right)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$                       | Deflection due to longitudinal bending                                                              |
| $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ D3.2 - Reissner Effect Deflection (Long Term | Pipe ring deflection due to the Reisnner<br>Effect                                                  |
| $\mu_{long} \coloneqq 0.45$ $R = 1000 \ ft$                                                                                                                      | Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature  |
| $z \coloneqq \frac{\frac{3}{2} \cdot \left(1 - \mu_{long}^{2}\right) \left(D_{1} - t\right)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.000003$                         | Deflection due to longitudinal bending                                                              |
| $\Delta y_{R\_long} := \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$                                                      | Pipe ring deflection due to the Reisnner<br>Effect, long term                                       |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| <b>D4 - Net Ring Deflection</b> |  |
|---------------------------------|--|
|---------------------------------|--|

| $\Delta y_{lim} = 7.5\%$ | Deflection limit for DR 9 non pressurized |
|--------------------------|-------------------------------------------|
|                          | pipe (Table 2 , p. 437, PPI Handbook)     |

D4.1 - Net Short Term

 $\Delta y_{short\_net} \coloneqq \Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y_{R\_short} = 1.3\%$  Percent ring deflection in short term analysis

 $Check \coloneqq if (\Delta y_{short net} < \Delta y_{lim}, "okay", "not okay") = "okay"$ 

D4.2 - Net Long Term

 $\Delta y_{long\_net} \! \coloneqq \! \Delta y_{ELD\_long} \! + \! \Delta y_{R\_long} \! = \! 2.6\%$ 

Percent ring deflection in long term analysis (50 years)

 $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{lim}, \text{``okay''}, \text{``not okay''} \right) = \text{``okay''}$ 



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| D.1 Onconstrained King Ducking                                                                                                                                                   | , Levy's Equation (Short Term-During Pull)                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  | increase the pipe's buckling strength, therefore tion will produce a conservative value.                                                               |
| N := 2.0                                                                                                                                                                         | Factor of Safety                                                                                                                                       |
| $\mu_{short} \coloneqq 0.35$                                                                                                                                                     | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                              |
| E <sub>short</sub> =57500 <b>psi</b>                                                                                                                                             | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)     |
| 2                                                                                                                                                                                |                                                                                                                                                        |
| f <sub>0</sub> .6                                                                                                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Calculated<br>deflection limit in section D4.1                                                 |
| 8                                                                                                                                                                                | $f_{o\_short} \coloneqq 0.88$                                                                                                                          |
| $P_{UC\_short} \coloneqq \left(\frac{2 \cdot E_{short}}{1 - \mu_{short}^2}\right) \cdot \left(\frac{1}{DR_1 - 1}\right)$                                                         | $\frac{f_{o\_short}}{N} = 112.6 \text{ psi}$ Allowable unconstrained buckling pressure                                                                 |
| $H = 4.1 \; ft$                                                                                                                                                                  | Elevation difference between the lowest                                                                                                                |
|                                                                                                                                                                                  | point in borehole and entry or exit pit                                                                                                                |
| $P_{mud} \coloneqq \gamma_m \cdot H = 2.56 \ psi$                                                                                                                                | Pressure of drilling slurry                                                                                                                            |
| $P_{mud} \coloneqq \gamma_m \cdot H = 2.56 \ psi$<br>$P_{net} \coloneqq P_{mud} = 2.56 \ psi$                                                                                    |                                                                                                                                                        |
|                                                                                                                                                                                  | Net external loading with open borehole                                                                                                                |
| $P_{net} \coloneqq P_{mud} = 2.56 \ psi$                                                                                                                                         | Net external loading with open borehole<br>, "not okay") = "okay"                                                                                      |
| $P_{net} \coloneqq P_{mud} = 2.56 \ psi$<br>$Check \coloneqq if (P_{UC\_short} > P_{net}, "okay")$<br>D5.2 - Unconstrained Ring Buckling<br>Note that constraining the pipe will | Net external loading with open borehole<br>, "not okay") = "okay"<br>, Levy's Equation (Long Term)<br>increase the pipe's buckling strength, therefore |
| $P_{net} \coloneqq P_{mud} = 2.56 \ psi$<br>$Check \coloneqq if (P_{UC\_short} > P_{net}, "okay")$<br>D5.2 - Unconstrained Ring Buckling<br>Note that constraining the pipe will | Net external loading with open borehole<br>, "not okay") = "okay"<br>, Levy's Equation (Long Term)                                                     |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                     | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Crossir<br>Pull Ba<br>Date: 4 | lain Hudson Power Express - Package 6<br>Ig #99- CSX Tracks Crossing<br>ck and Mud Pressure Calcs<br>H/15/23 R1: 6/12/23<br>H/15/23                |      |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $E_{long} {=} 28200 \; psi$                                                     |                                                                                |                               | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 de<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962) | g.   |
| $f_{o\_long} \coloneqq 0.45$                                                    |                                                                                |                               | Ovality compensation factor, Figure 3 (PPI Chp. 12). Use deflection limit calculated in Section D4.2                                               |      |
| $P_{UC\_long} \coloneqq \left(\frac{2 \cdot E_{long}}{1 - \mu_{long}^2}\right)$ | $- \left( \frac{1}{DR_1 - 1} \right)^3 \cdot \frac{f_c}{dc}$                   | $\frac{D_long}{N} = 3$        | 31.1 <i>psi</i><br>Allowable unconstrained buckling<br>pressure                                                                                    |      |
| $P_{GW} \coloneqq \gamma_w \bullet H_w = 11.5$                                  | 7 <b>psi</b>                                                                   |                               | Groundwater head pressure                                                                                                                          |      |
| $P_{net} \coloneqq P_{GW}$                                                      |                                                                                |                               | Net external loading with open bore                                                                                                                | hole |
| $Check := if (P_{UC\_long})$                                                    | >P"okay", "no                                                                  | ot okav                       | $^{\prime}$ = "okay"                                                                                                                               |      |
|                                                                                 | net, onay, ne                                                                  | je onaj                       | ) ondy                                                                                                                                             |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |
|                                                                                 |                                                                                |                               |                                                                                                                                                    |      |



Champlain Hudson Power Express - Package 6 Crossing #99- CSX Tracks Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

# **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill

99.A



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                                                                                                             | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_2 := 2.375 \ in$                                                                                                                                                                                                                                                                                                                             | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $D_{rod} = 3.5 \ in$                                                                                                                                                                                                                                                                                                                            | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $DR_1 := 9$                                                                                                                                                                                                                                                                                                                                     | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $DR_2 := 11$                                                                                                                                                                                                                                                                                                                                    | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                                                                                                              | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                                                                                                       | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_1 := \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                                                                                                              | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_2 \coloneqq \pi \cdot D_2 = 7.5 \ in$                                                                                                                                                                                                                                                                                                        | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| bore/pipepath                                                                                                                                                                                                                                                                                                                                   | pipe entry                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rillrig B D                                                                                                                                                                                                                                                                                                                                     | A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                 | Juning anna ann ann ann                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pipe exit C                                                                                                                                                                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $L_4$ $L_3$                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $L_4$ ! $L_3$                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L <sub>4</sub> : L <sub>3</sub>                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • L <sub>bore</sub>                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Illustration 1 - Schematic of                                                                                                                                                                                                                                                                                                                   | Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $L_{\text{bore}}$ Illustration 1 - Schematic of $\alpha := 8^{\circ}$ $\alpha_{in} := \alpha = 0.1396 \ rad$                                                                                                                                                                                                                                    | Drive Cross-section<br>Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                                                          |
| $L_{\text{tore}}$ Illustration 1 - Schematic of $\alpha := 8 \overset{\circ}{} \qquad \alpha_{in} := \alpha = 0.1396 \text{ rad}$ $\beta := 8 \overset{\circ}{} \qquad \beta_{exit} := \beta = 0.1396 \text{ rad}$                                                                                                                              | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                |
| $L_{bore}$ Illustration 1 - Schematic of $\alpha := 8 ^{\circ} \qquad \alpha_{in} := \alpha = 0.1396 \ rad$ $\beta := 8 ^{\circ} \qquad \beta_{exit} := \beta = 0.1396 \ rad$ $D_r := 18 \cdot in$                                                                                                                                              | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                                                  |
| $L_{\text{tore}}$ Illustration 1 - Schematic of $\alpha := 8 \overset{\circ}{} \qquad \alpha_{in} := \alpha = 0.1396 \text{ rad}$ $\beta := 8 \overset{\circ}{} \qquad \beta_{exit} := \beta = 0.1396 \text{ rad}$                                                                                                                              | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo                                                                                                                                                                                                                                                                                     |
| $\mathbf{L}_{\text{bore}}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \text{ rad}$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \text{ ft}$                                                                                           | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from                                                                                                                                                                                                                               |
| $L_{toore}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$                                                                         | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                             |
| $L_{bore}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \ ft$                                                                                                                             | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from                                                                                                                                                                                                                               |
| $L_{toore}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$                                                                         | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                                                             |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$ $L_{total} := 2724.7 \ ft$ $L_{1} := 150 \ ft$                        | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1                                                                                                                      |
| $L_{toos}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \text{ rad}$ $\beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 87.3 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \text{ ft}$ $L_{total} := 2724.7 \text{ ft}$                 | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                                                              |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad \\ \beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad \\ D_r := 18 \cdot in \\ H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$ $L_{total} := 2724.7 \ ft$ $L_1 := 150 \ ft$ $L_2 := 566.6 \ ft$      | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                |
| $L_{total}$ $Illustration 1 - Schematic of$ $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad \qquad \beta_{exit} := \beta = 0.1396 \ rad \qquad D_r := 18 \cdot in$ $H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$ $L_{total} := 2724.7 \ ft$ $L_1 := 150 \ ft$ $L_2 := 566.6 \ ft$ $L_3 := 1678 \ ft$ | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1<br>Straight horizontal section |
| $L_{tore}$ Illustration 1 - Schematic of $\alpha := 8 \circ \qquad \alpha_{in} := \alpha = 0.1396 \ rad \\ \beta := 8 \circ \qquad \beta_{exit} := \beta = 0.1396 \ rad \\ D_r := 18 \cdot in \\ H_{max} := 87.3 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 88.05 \ ft$ $L_{total} := 2724.7 \ ft$ $L_1 := 150 \ ft$ $L_2 := 566.6 \ ft$      | Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bo<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1                                |

| <b>KILDUFF</b><br>INDERGROUND<br>NGINEERING, INC.<br>Project:<br>Tunnel No.:<br>Description:<br>Calculated by<br>Checked by: |                                                                           |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $v_a = 0.1$                                                                                                                  | Friction coefficient before pipe enters (rollers assumed)                 |
| $v_b := 0.3$                                                                                                                 | Friction coefficient for the bundle within borehole (lubrication assumed) |
| $ \rho_w \coloneqq 62.4 \ pcf $                                                                                              | Unit weight of water                                                      |
| $\gamma_a \coloneqq 0.965$                                                                                                   | Specific gravity of pipe                                                  |
| $\gamma_m := 90 \ pcf$                                                                                                       | Assumed unit weight of slurry                                             |
| $\gamma_b \coloneqq \frac{\gamma_m}{\rho_w} = 1.4$                                                                           | Specific gravity of slurry, assumed unit weight                           |
| $\gamma_c \coloneqq 1.0$                                                                                                     | Specific gravity of water to fill the pipe                                |
| $\Delta P \coloneqq 10 \ psi$                                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                      |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                                                                            | Gravitational Constant                                                    |
| - Axial Bending Stress:                                                                                                      |                                                                           |
| $R_{avg.\_in} \coloneqq 1000 \; ft$                                                                                          | Radius of curvature at the entry, provided by Contractor                  |
| $R_{avg.out} \coloneqq 1000 \ ft$                                                                                            | Radius of curvature at the exit, provided by Contractor                   |
| $R \coloneqq \frac{R_{avg\_in} + R_{avg\_out}}{2} = 1000 \ ft$                                                               | Average radius of curvature at entry                                      |
| $r_{rod} := 1200 \cdot D_{rod} = 350 \; ft$                                                                                  | ASTM F 1962-99, Equation 1, p7                                            |
| $Check \coloneqq \mathbf{if} \left( R_{avg.\_in} > r_{rod}, \text{``okay''} \right)$                                         | , "not okay") = "okay"                                                    |
| $Check \coloneqq 	ext{if} ig ( R_{avg.out} \! > \! r_{rod}, 	ext{``okay'}$                                                   |                                                                           |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$                             | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{12hr} \coloneqq 57500 \cdot psi$                                       | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \! \coloneqq \! e_a \! \cdot \! E_{12hr} \! = \! 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

**B** - Site Specific Analyses: Pullback Force: **B1 - Empty Pipe** B1.1 - Effective Weight of Empty Pipe:  $w_{a} \coloneqq \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p2} \right)^{2} \right) \right) \cdot \rho_{w} \cdot \gamma_{a} = 8.3 \ plf$ B1.2 - Upward Buoyant Force: Effective weight  $w_b \coloneqq \left(\frac{\pi \cdot \left(D_1^2 + D_2^2\right)}{\Lambda}\right) \rho_w \cdot \gamma_b - w_a = 51.2 \ plf \quad \text{Upward buoyant force of empty pipe}$ B1.3 - Hydrokinetic Pressure:  $\Delta T \coloneqq \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ lbf \text{ Hydrokinetic force}$ B1.4 - Pullback Force Point A:  $T_a := e^{v_a \cdot \alpha_{in}} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) = 2416 \ lbf$ Pullback force when pipe enters the ground B1.5 - Pullback Force Point B:  $T_b \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_a + v_b \cdot \left| w_b \right| \cdot L_2 + w_b \cdot H_{max} - v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} \right) = 15761 \ \textit{lbf}$ Pullback force increase with depth B1.6 - Pullback Force Point C:  $T_c \coloneqq T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 40069 \ lbf$ B1.7 - Pullback Force at D:  $T_d \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot \left(T_c + v_b \cdot |w_b| \cdot L_4 - w_b \cdot H_{max} - e^{(v_a \cdot \alpha_{in})} \cdot \left(v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})}\right)\right) = 44386 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:  $P_{max\ empty} \coloneqq \max\left(T_a, T_b, T_c, T_d\right) + \Delta T = 45182 \ lbf$ Maximum Pullback Force **B2 - Filled Pipe with Water** B2.1 - Upward Buovant Force:  $w_{bfilled} \coloneqq \left( \frac{\left( \boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{D}_{1}^{-2} \right)}{4} \right) \boldsymbol{\cdot} \rho_{w} \boldsymbol{\cdot} \left( \gamma_{b} - \gamma_{c} \boldsymbol{\cdot} \left( 1 - \left( \frac{2}{DR_{1}} \right) \right)^{2} \right) - w_{a} = 24.6 \ \boldsymbol{plf}$ Upward buoyant force of pipe filled with water B2.2 - Pullback Force Point A:

$$T_{afilled} \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 2416 \ \textit{lbf} \quad \text{Pullback force enter ground}$$



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

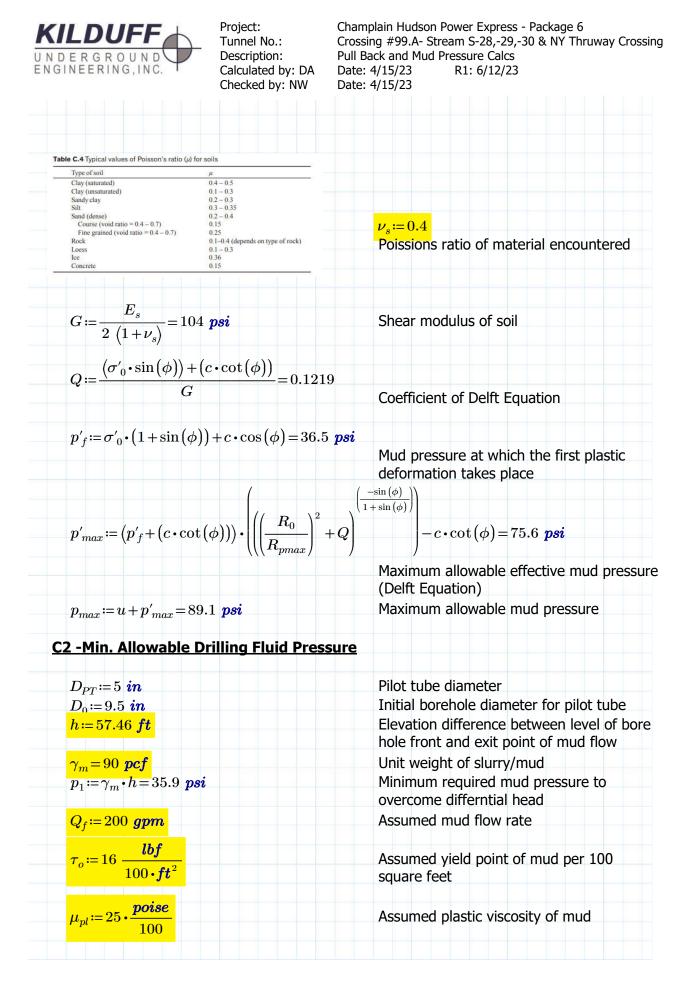
|                                                                                                                                                                                                      | $-w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 9628 \ ll_{max}$<br>Pullback force increase and decrease w |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 - Pullback Force Point C:                                                                                                                                                                          | depth                                                                                                                                                |
| $= T_{bfilled} + (v_b \cdot  w_{bfilled}  \cdot L_3) - e^{(v_b \cdot c_b)}$                                                                                                                          | $(x_{in}) \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 20565 \ lbf$                                                           |
| <u>.5 - Pullback Force at D:</u>                                                                                                                                                                     |                                                                                                                                                      |
| $\mathcal{U}_{illed} \coloneqq e^{\langle v_b \cdot v_{exil} \rangle} \cdot (T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L)$                                                                         | $(v_4 - e^{(v_a \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot \alpha_{in})})) = 24720 $ lbf                                 |
| <u>.6 - Maximum Pullback Force - Filled Pi</u>                                                                                                                                                       | pe with Water:                                                                                                                                       |
| $ax \coloneqq \max\left(T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled}\right)$                                                                                                                   | $_{ed}) = 24720 \ lbf$                                                                                                                               |
|                                                                                                                                                                                                      | Maximum Pullback Force                                                                                                                               |
| <u>Safe Pull Strength / Ultimate Tensi</u>                                                                                                                                                           | ile Load Check:                                                                                                                                      |
| <u>1 Safe Pullback Check</u>                                                                                                                                                                         |                                                                                                                                                      |
| $= \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                                                                                   | Cross-sectional area of Pipe 1                                                                                                                       |
| $= \frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) = 0.8 \ in^2$                                                                                                                  | Cross-sectional area of Pipe 2                                                                                                                       |
| $:=\frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 43429 \ lbf$                                                                                                                                         | Pullback forces acting on Pipe 1 (Empty                                                                                                              |
|                                                                                                                                                                                                      |                                                                                                                                                      |
| $:=\frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 1753 \ lbf$                                                                                                                                          | Pullback forces acting on Pipe 2 (Empty                                                                                                              |
| $A_1 + A_2$                                                                                                                                                                                          |                                                                                                                                                      |
| $\underline{A} := \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 23761 \ lbf$                                                                                                                                 | Pullback forces acting on Pipe 1 (Ballas                                                                                                             |
| $A_1 + A_2$                                                                                                                                                                                          |                                                                                                                                                      |
| $\underline{A} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 959 \ lbf$                                                                                                                                   | Pullback forces acting on Pipe 2 (Ballas                                                                                                             |
| $A_1 + A_2$ $b_{F1} \coloneqq 41214 \ lbf$                                                                                                                                                           | Safe pullback forces Pipe 1 (Table %,                                                                                                                |
| <i>p</i> <sub>1</sub> − 11211 <i>00</i>                                                                                                                                                              | p. 448, PPI)                                                                                                                                         |
| $_{PF2} := 1683 \ lbf$                                                                                                                                                                               | Safe pullback forces Pipe 2 (Table %,<br>p. 448, PPI)                                                                                                |
| $eck \coloneqq if(P_{SPF1} > P_{11}, \text{``okay''}, \text{``not okay''})$                                                                                                                          |                                                                                                                                                      |
| $eck \coloneqq \mathbf{if} \left( P_{SPF2} > P_{21}, \text{``okay''}, \text{``not okay} \right)$<br>$eck \coloneqq \mathbf{if} \left( P_{SPF1} > P_{12}, \text{``okay''}, \text{``not okay} \right)$ |                                                                                                                                                      |
| $eck \coloneqq \mathbf{if} \left( P_{SPF2} > P_{22}, \text{``okay''}, \text{``not okay''} \right)$                                                                                                   |                                                                                                                                                      |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| <u>C - Al</u> | lowable | e Mud P | ressures: |
|---------------|---------|---------|-----------|
|               |         |         |           |

| <u>C1 -</u> | Max. | Allow | able | Driling | Fluid | <b>Pressure</b> |  |
|-------------|------|-------|------|---------|-------|-----------------|--|
|             |      |       |      |         |       |                 |  |


Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

- Geologic conditiosn will vary through alignment

| $f_w \coloneqq 31.2 \cdot ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                             | Depth of the bore below groundwater<br>elevation                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| T <sub>c</sub> ≔31.2 <b>ft</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             | Vertical separation distance between critica structure and pipe (Stream S-30 ~16+76)                             |
| ≔110 <b>pcf</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             | Assumed unit weight Med. dense silt                                                                              |
| w ≔ 62.4 <b>pcf</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | Unit weight of water                                                                                             |
| $\tilde{r} = \gamma - \gamma_w = 47.6 \ \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ocf                                                                                                                                                                                                         | Effective unit weight                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                  |
| $= \gamma_w \cdot H_w = 14  ps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                                                                                                                                                                                          | Initial pore water pressure                                                                                      |
| <mark>≔32 <b>deg</b></mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                             | Assumed friction Angle                                                                                           |
| =0 <b>psf</b> =0 <b>psi</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                             | Assumed cohesion of encountered material                                                                         |
| $_{0} := \frac{D_{rod}}{2} = 1.75 \ i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                                                                                                                                                           | Initial radius of the borehole                                                                                   |
| $_{pmax} \coloneqq \frac{2}{3} \cdot H_c = 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <i>ft</i>                                                                                                                                                                                                 | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                  |
| $V_0 \coloneqq \gamma \cdot H_c = 24 \ ps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ri 👘                                                                                                                                                                                                        | Initial effective stress                                                                                         |
| $Y_0 \coloneqq \gamma \cdot H_c = 24 \ ps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tiasticity ( $E_{s}$ ) for different types of soils                                                                                                                                                         | Initial effective stress                                                                                         |
| $Y_0 \coloneqq \gamma \cdot H_c = 24 \ ps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                             | Initial effective stress                                                                                         |
| ${\cal Y}_0\!:=\!\gamma\!ullet\!H_c\!=\!24{\it ps}$ 2 Typical values of modulus of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | elasticity ( $E_s$ ) for different types of soils                                                                                                                                                           | Initial effective stress                                                                                         |
| $Y_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elasticity ( $E_s$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15                                                                                                                     | Initial effective stress                                                                                         |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | elasticity ( $E_5$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25                                                                                                             | Initial effective stress                                                                                         |
| $Y_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | elasticity ( $E_s$ ) for different types of soils<br>$E_s (N/mm^2)$ 2–15<br>5–25<br>15–50                                                                                                                   | Initial effective stress                                                                                         |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elasticity ( $E_S$ ) for different types of soils<br>$ \frac{E_s (N/mm^2)}{2-15} $ 5-25<br>15-50<br>50-100                                                                                                  | Initial effective stress                                                                                         |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elasticity ( $E_s$ ) for different types of soils<br>$E_s (N/mm^2)$ 2–15<br>5–25<br>15–50                                                                                                                   | Initial effective stress                                                                                         |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elasticity ( $E_S$ ) for different types of soils<br>$ \frac{E_s (N/mm^2)}{2-15} $ 5-25<br>15-50<br>50-100                                                                                                  | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$                                          |
| $V_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plasticity ( $E_s$ ) for different types of soils<br>$E_i (N/mm^2)$<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250                                                                                            | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plasticity ( $E_s$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153                                                                      | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$                                          |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Plasticity ( $E_5$ ) for different types of soils<br>$E_4$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720                                                           | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{E_s(\text{N/mm}^2)}{2-15}$ 2-15 5-25 15-50 50-100 25-250 10-153 144-720 478-1,440                                                                                                                    | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plasticity ( $E_5$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21                             | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plasticity ( $E_5$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21<br>10–24                    | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plasticity ( $E_5$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21                             | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $J_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>Sand<br>S | Plasticity ( $E_5$ ) for different types of soils<br>$E_i (N/mm^2)$<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21<br>10–24<br>48–81                       | Initial effective stress<br>$E_{s} := 2 \frac{N}{mm^{2}} = 290 \text{ psi}$ Assumed modulus of elasticity; lower |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand gravel<br>Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plasticity ( $E_s$ ) for different types of soils<br>$E_i$ (N/mm <sup>2</sup> )<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21<br>10–24<br>48–81<br>48–148 | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loese<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand and gravel<br>Loose<br>Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plasticity $(E_5)$ for different types of soils<br>$E_i (N/mm^2)$<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21<br>10–24<br>48–81<br>48–148<br>96–192     | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |
| $\gamma_0 := \gamma \cdot H_c = 24 \ ps$<br>2 Typical values of modulus of e<br>Type of Soil<br>Clay<br>Very soft<br>Soft<br>Medium<br>Hard<br>Sandy<br>Glacial till<br>Loose<br>Dense<br>Very dense<br>Loess<br>Sand<br>Silty<br>Loose<br>Dense<br>Sand gravel<br>Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plasticity ( $E_s$ ) for different types of soils<br>$E_i (N/mm^2)$<br>2–15<br>5–25<br>15–50<br>50–100<br>25–250<br>10–153<br>144–720<br>478–1,440<br>14–57<br>7–21<br>10–24<br>48–81<br>48–148             | Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \text{ psi}$ Assumed modulus of elasticity; lower     |



**FUNCTION**  
**Project:** No:  
**Description:**  
Catalized by: DA  
Created by: NW  

$$v := \frac{Q_f}{0.785 (D_0^2 - D_{FT}^2)} = 75.2 \frac{ft}{min}$$
  
**Computed mud flow velocity**  
 $u := \frac{Q_f}{0.785 (D_0^2 - D_{FT}^2)} = 75.2 \frac{ft}{min}$   
**Computed mud flow velocity**  
**Length to sturcture**  
 $p_2 := L_{atvacture} \cdot \left( \left( \frac{\mu_{pt} \cdot v}{(D_0 - D_{FT})^2} \right) + \left( \frac{\tau_o}{(D_0 - D_{FT})} \right) \right) = 7.2 \text{ psi}$   
Minimum required mud pressure to create flow index mud pressure flow index mud pressure flow index mud pressure to create flow index mud pressure flow index mud pressure to create flow index mud pressure flow



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| D1.1 - Overburden Pressure (Considering Def                                                                                                                                                 | ormed Borehole with Arching Mobilized)                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_c \coloneqq H_{max} = 87.3 \ ft$                                                                                                                                                         | Depth of cover                                                                                                                                  |
| $\phi = 32 \ deg$                                                                                                                                                                           | Friction angle of soil                                                                                                                          |
| $B \coloneqq D_n = 18 in$                                                                                                                                                                   | "Silo" width, conservative value =<br>reamed hole diameter                                                                                      |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                        | Earth pressure coefficient                                                                                                                      |
| $\gamma = 110 \ pcf$                                                                                                                                                                        | Unit weight of soil, assumed                                                                                                                    |
| $1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)$                                                                                                 |                                                                                                                                                 |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = 0.036$ | Arching factor (Eq. 6, p.432, PPI)                                                                                                              |
| $P_E \coloneqq k \cdot (\gamma - \gamma_w) \cdot (H_c) = 1 \ psi$ $P_E = 150 \ psf$                                                                                                         | Effective overburden pressure                                                                                                                   |
| D1.2 Earth Load Deflection (Short Term)                                                                                                                                                     |                                                                                                                                                 |
|                                                                                                                                                                                             | Apparent modulus of elasticity for                                                                                                              |
| $E_{short} \coloneqq 57500 \cdot psi$                                                                                                                                                       | PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962)                                    |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \text{ psi}$                                                                                                 | Variable in earth load deflection equation                                                                                                      |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 0.1\%$                                                                                                                | Pipe deflection to diameter as per                                                                                                              |
|                                                                                                                                                                                             | PPI Equ. 10 (Chp 12, p 437, PPI Handbook                                                                                                        |
| D1.3 Earth Load Deflection (Long Term)                                                                                                                                                      |                                                                                                                                                 |
| $E_{long} \coloneqq 28200 \cdot psi$                                                                                                                                                        | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 Fahrenheit at 50<br>years of sustained loading (Table X1.1<br>ASTM F 1962) |
| $k \coloneqq \frac{E_{long}}{12 \cdot \left(DR_1 - 1\right)^3} = 4.6 \ psi$                                                                                                                 | Variable in earth load deflection equation                                                                                                      |
| $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k} = 0.3\%$                                                                                                                         | Pipe deflection to diameter as per<br>PPI Equ. 10 (Chp 12, p 437)                                                                               |
|                                                                                                                                                                                             |                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| D2.1 Buoyant Deflection (Short Term)                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 = 10.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outside diameter of casing pipe                                                                                                                                                                                                                                                                                                    |
| $t := T_{p1} = 1.194 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thickness of casing pipe                                                                                                                                                                                                                                                                                                           |
| $E_{short} = 57500 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73<br>Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                   |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                            | Assumed unit weight of fluid in borehole (Slurry unit weight)                                                                                                                                                                                                                                                                      |
| $I := \frac{t^3}{12} = 0.14 \frac{in^4}{in}$                                                                                                                                                                                                                                                                                                                                                                                                                     | Moment of inertia of pipe wall cross section                                                                                                                                                                                                                                                                                       |
| $\gamma_m = 90 \text{ pcf}$ $I := \frac{t^3}{12} = 0.14 \frac{in^4}{in}$ $\Delta y_{bouyant} := \frac{0.1169 \cdot \gamma_m \cdot \left(\frac{D_1}{2}\right)^4}{E_{short} \cdot I} = 0.1\%$                                                                                                                                                                                                                                                                      | Pipe ring deflection to buoyant force<br>ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                               |
| D2.1 Buoyant Deflection (Long Term)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                    |
| <u>B - Reissner Effect Deflection (Short Ter</u><br><u>D3.1 - Reissner Effect Deflection (Short Terr</u>                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                  |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} \coloneqq 0.35$                                                                                                                                                                                                                                                                                                                                                                             | <u>n)</u>                                                                                                                                                                                                                                                                                                                          |
| <b>3 - Reissner Effect Deflection (Short Ter</b><br>D3.1 - Reissner Effect Deflection (Short Terr<br>$\mu_{short} \coloneqq 0.35$<br>$R = 1000 \ ft$                                                                                                                                                                                                                                                                                                             | n)<br>Poisson's Ratio for PE pipe material a                                                                                                                                                                                                                                                                                       |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} \approx 0.35$<br>R = 1000 ft                                                                                                                                                                                                                                                                                                                                                                | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                                  |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} \coloneqq 0.35$<br>R = 1000 ft                                                                                                                                                                                                                                                                                                                                                              | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                           |
| $\underline{D3.1 - \text{Reissner Effect Deflection (Short Terr}}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4}{16 \cdot t^2 \cdot R^2} = 0.0000033$                                                                                                                                                                                                                 | n)<br>Poisson's Ratio for PE pipe material a<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                                           |
| <u>D3.1 - Reissner Effect Deflection (Short Terr</u><br>$\mu_{short} := 0.35$                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendir</li> <li>Pipe ring deflection due to the Reisn Effect</li> </ul>                                                                                              |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - t\right)^4$ $z \coloneqq \frac{3}{16 \cdot t^2 \cdot R^2} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^2 = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term}$ $\mu_{long} \coloneqq 0.45$ | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendir</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material long term (ASTM F 1962, 8.2.4.2)</li> </ul>     |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$                                                                                                             | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendir</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a</li> </ul>                                  |
| $D3.1 - \text{Reissner Effect Deflection (Short Terr}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{3}{2} \cdot (1 - \mu_{short}^{2}) (D_{1} - t)^{4}$ $z \coloneqq \frac{3}{16 \cdot t^{2} \cdot R^{2}} = 0.0000033$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right) \cdot z^{2} = 0.0002\%$ $D3.2 - \text{Reissner Effect Deflection (Long Term}$ $\mu_{long} \coloneqq 0.45$           | <ul> <li>n)</li> <li>Poisson's Ratio for PE pipe material a short term (ASTM F 1962, 8.2.4.2)<br/>Radius of curvature</li> <li>Deflection due to longitudinal bendir</li> <li>Pipe ring deflection due to the Reisn Effect</li> <li>n)</li> <li>Poisson's Ratio for PE pipe material a long term (ASTM F 1962, 8.2.4.2)</li> </ul> |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| $\Delta y_{lim} \coloneqq 7.5\%$                                                                                  | Deflection limit for DR 9 non pressurize pipe (Table 2 , p. 437, PPI Handbook) |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| D4.1 - Net Short Term                                                                                             |                                                                                |
| $\Delta y_{short\_net} \coloneqq \Delta y_{ELD\_short} + \Delta y_{bouyant} + \Delta y_{R\_s}$                    | $_{short} = 0.2\%$ Percent ring deflection in short term analysis              |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{short\_net} < \Delta y_{lim}, \text{``okay''}, \text{``no} \right)$ | tokay") = "okay"                                                               |
| D4.2 - Net Long Term                                                                                              |                                                                                |
| $\Delta y_{long\_net} \! \coloneqq \! \Delta y_{ELD\_long} \! + \Delta y_{R\_long} \! = \! 0.3\%$                 | Percent ring deflection in long term analysis (50 years)                       |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{lim}, \text{``okay''}, \text{``not} \right)$ | tokay") = "okay"                                                               |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |
|                                                                                                                   |                                                                                |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

| Note that constraining the pipe wil                                                                                      | l increase the pipe's buckling strength, therefore                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | lition will produce a conservative value.                                                                                                          |
| N := 2.0                                                                                                                 | Factor of Safety                                                                                                                                   |
| $\mu_{short} \coloneqq 0.35$                                                                                             | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                          |
| E <sub>short</sub> =57500 <b>psi</b>                                                                                     | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962) |
| 2<br>0.0<br>0 2 4 6 8 10                                                                                                 | 12                                                                                                                                                 |
| 2                                                                                                                        |                                                                                                                                                    |
| f <sub>0</sub> 6                                                                                                         | 3 (PPI Chp. 12). Calculated<br>deflection limit in section D4.1                                                                                    |
| 8                                                                                                                        | $f_{o\_short} \coloneqq 0.98$                                                                                                                      |
| 1.0                                                                                                                      |                                                                                                                                                    |
| $P_{UC\_short} \coloneqq \left(\frac{2 \cdot E_{short}}{1 - \mu_{short}^2}\right) \cdot \left(\frac{1}{DR_1 - 1}\right)$ | $\int_{0}^{3} \cdot \frac{f_{o\_short}}{N} = 125.4 \text{ psi}$ Allowable unconstrained buckling pressure                                          |
| H=14.3 <b>ft</b>                                                                                                         | Elevation difference between the lowest point in borehole and entry or exit pit                                                                    |
| $P_{mud} \coloneqq \gamma_m \cdot H = 8.94 \ psi$                                                                        | Pressure of drilling slurry                                                                                                                        |
| $P_{net} \coloneqq P_{mud} = 8.94 \ psi$                                                                                 | Net external loading with open borehole                                                                                                            |
| $Check \coloneqq if \left( P_{UC\_short} > P_{net}, \text{``okay''} \right)$                                             | ", "not okay") = "okay"                                                                                                                            |
| D5.2 - Unconstrained Ring Buckling                                                                                       | <u>g, Levy's Equation (Long Term)</u>                                                                                                              |
|                                                                                                                          | l increase the pipe's buckling strength, therefore<br>lition will produce a conservative value.                                                    |
| considering an unconstrained cond                                                                                        |                                                                                                                                                    |
| considering an unconstrained cond<br>$N \coloneqq 2.0$<br>$\mu_{long} \coloneqq 0.45$                                    | Factor of Safety<br>Poisson's Ratio for PE pipe material,                                                                                          |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                        | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/15/23 R1: 6/12/23<br>Date: 4/15/23 |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long}\!=\!28200~{psi}$                                         |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                                      |
| $f_{o\_long} \coloneqq 0.4$                                        |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                                |
| $(2 \cdot E_{long})$                                               | $(1)^3 f$                                                                      |                                                                                                                                                                                           |
| $P_{UC\_long} \coloneqq \left(\frac{ung}{1 - \mu_{long}^2}\right)$ | $\cdot \left( \frac{1}{DR_1 - 1} \right) \cdot \frac{1}{DR_1 - 1}$             | $\frac{p_long}{N} = 27.6 \ psi$ Allowable unconstrained buckling pressure                                                                                                                 |
| $P_{GW} \coloneqq \gamma_w \bullet H_w \!=\! 13.52$                | psi                                                                            | Groundwater head pressure                                                                                                                                                                 |
| $P_{net} \coloneqq P_{GW}$                                         |                                                                                | Net external loading with open borehole                                                                                                                                                   |
| $Check \coloneqq \mathbf{if} \left( P_{UC\_long} > \right)$        | P <sub>net</sub> , "okay", "no                                                 | ot okay") = "okay"                                                                                                                                                                        |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |
|                                                                    |                                                                                |                                                                                                                                                                                           |



Champlain Hudson Power Express - Package 6 Crossing #99.A- Stream S-28,-29,-30 & NY Thruway Crossing Pull Back and Mud Pressure Calcs Date: 4/15/23 R1: 6/12/23 Date: 4/15/23

## **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| fining Parameters of Horizontal Direc                                                                                                                                                                                                                                                                                                                  | ctional Drilling :                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D_1 := 10.75 \ in$                                                                                                                                                                                                                                                                                                                                    | Pipe 1 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D_2 \coloneqq 2.375$ in                                                                                                                                                                                                                                                                                                                               | Pipe 2 outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D_{rod} := 3.5 in$                                                                                                                                                                                                                                                                                                                                    | Assumed drill rod diameter                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $DR_1 := 9$                                                                                                                                                                                                                                                                                                                                            | Dimension ratio of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $DR_2 \coloneqq 11$                                                                                                                                                                                                                                                                                                                                    | Dimension ratio of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{split} T_{p1} &\coloneqq \frac{D_1}{DR_1} {=} 1.194 ~\textit{in} \\ T_{p2} &\coloneqq \frac{D_2}{DR_2} {=} 0.216 ~\textit{in} \end{split}$                                                                                                                                                                                                     | Thickness of Pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{p2} := \frac{D_2}{DR_2} = 0.216 \ in$                                                                                                                                                                                                                                                                                                              | Thickness of Pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_1 := \pi \cdot D_1 = 33.8 \ in$                                                                                                                                                                                                                                                                                                                     | Pipe circumference of pipe 1                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_2 \coloneqq \boldsymbol{\pi} \cdot D_2 = 7.5 \ \boldsymbol{in}$                                                                                                                                                                                                                                                                                     | Pipe circumference of pipe 2                                                                                                                                                                                                                                                                                                                                                                                                                         |
| bore/pipepatl                                                                                                                                                                                                                                                                                                                                          | h pipe entry                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| drill rig B D                                                                                                                                                                                                                                                                                                                                          | A a                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pipe exit C                                                                                                                                                                                                                                                                                                                                            | B                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • • • • • •                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mathbf{L}_4$ : $\mathbf{L}_3$                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                        | boze                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                                                                                                                                                      | ecod                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                        | ecod                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                        | ecod                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Illustration 1 - Schematic c                                                                                                                                                                                                                                                                                                                           | bore<br>of Drive Cross-section                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Illustration 1 - Schematic c $\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \ rad$                                                                                                                                                                                                                                                             | bore<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)                                                                                                                                                                                                                                                                                                                                                                            |
| $\alpha := 10 \circ \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14 \circ \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 45.8 \text{ ft}$                                                                                                                                                                       | bore<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter                                                                                                                                                                                                                                                                                                    |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \text{ rad}$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \text{ rad}$<br>$D_r := 18 \cdot in$                                                                                                                                                      | bors<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor                                                                                                                                                                                                                                                      |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 45.8 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 46.55 \ ft$                                                                                    | bose<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface                                                                                                                                                                              |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ}$ $\alpha_{in} := \alpha = 0.1745 \text{ rad}$<br>$\beta := 14^{\circ}$ $\beta_{exit} := \beta = 0.2443 \text{ rad}$<br>$D_r := 18 \cdot in$<br>$H_{max} := 45.8 \text{ ft}$                                                                                                                      | bose<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See                                                                                                         |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 45.8 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 46.55 \text{ ft}$ $L_{total} := 1125.3 \text{ ft}$                           | bose<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                               |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \ rad$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \ rad$ $D_r := 18 \cdot in$ $H_{max} := 45.8 \ ft$ $H_{max1} := H_{max} + \frac{D_r}{2} = 46.55 \ ft$ $L_{total} := 1125.3 \ ft$ $L_1 := 150 \ ft$ $L_2 := 383.0 \ ft$                   | bose<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -<br>provided by Contractor, See Illustration 1 |
| Illustration 1 - Schematic c<br>$\alpha := 10^{\circ} \qquad \alpha_{in} := \alpha = 0.1745 \text{ rad}$ $\beta := 14^{\circ} \qquad \beta_{exit} := \beta = 0.2443 \text{ rad}$ $D_r := 18 \cdot in$ $H_{max} := 45.8 \text{ ft}$ $H_{max1} := H_{max} + \frac{D_r}{2} = 46.55 \text{ ft}$ $L_{total} := 1125.3 \text{ ft}$ $L_{1} := 150 \text{ ft}$ | bose<br>of Drive Cross-section<br>Borehole entry angle (degrees, radians)<br>Borehole exit angle (degrees, radians)<br>Final reamed bore diameter<br>Max depth of bore hole to final reamed bor<br>diameter<br>Max depth to bore hole springline from<br>ground surface<br>Total length of HDD crossing<br>Assumed pipe drag on surface, See<br>Illustration 1<br>Horizontal length to achieve depth -                                               |

Project: Tunnel No.:

Description:

Calculated by: DA

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                           | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101- Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a := 0.1$                                                          |                                                                                | Friction coefficient before pipe enters (rollers assumed)                                                                                                       |
| $v_b := 0.3$                                                          |                                                                                | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                       |
| $ \rho_w \coloneqq 62.4 \ pcf $                                       |                                                                                | Unit weight of water                                                                                                                                            |
| $\gamma_a \coloneqq 0.965$                                            |                                                                                | Specific gravity of pipe                                                                                                                                        |
| $\gamma_m := 90 \ pcf$                                                |                                                                                | Assumed unit weight of slurry                                                                                                                                   |
| $\gamma_b \coloneqq \frac{\gamma_m}{\rho_w} = 1.4$                    |                                                                                | Specific gravity of slurry, assumed unit weight                                                                                                                 |
| $\gamma_c \coloneqq 1.0$                                              |                                                                                | Specific gravity of water to fill the pipe                                                                                                                      |
| $\Delta P \coloneqq 10 \ psi$                                         |                                                                                | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                            |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                     |                                                                                | Gravitational Constant                                                                                                                                          |
| <u>A - Axial Bending Stress:</u>                                      |                                                                                |                                                                                                                                                                 |
| $R_{avg.\_in}$ :=1000 $ft$                                            |                                                                                | Radius of curvature at the entry, provided by Contractor                                                                                                        |
| $R_{avg.\_out} \coloneqq 1000 \ ft$                                   |                                                                                | Radius of curvature at the exit, provided by Contractor                                                                                                         |
| $R \coloneqq \frac{R_{avg\_in} + R_{avg\_out}}{2} = 100$              | 00 <i>ft</i>                                                                   | Average radius of curvature at entry                                                                                                                            |
| $r_{rod} := 1200 \cdot D_{rod} = 350 \; ft$                           |                                                                                | ASTM F 1962-99, Equation 1, p7                                                                                                                                  |
| $Check \coloneqq \mathbf{if} \left( R_{avg\_in} > r_{rod}, " \right)$ | okay", "not okay"                                                              | )="okay"                                                                                                                                                        |
| $Check \coloneqq$ if $(R_{avg\_out} > r_{rod}, S_{rod})$              |                                                                                |                                                                                                                                                                 |

Radius of curvature should exceed 40 times the pipe outside diameter to prevent ring collapse.

| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$                             | Strain within the casing pipe                                                                                                                      |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{12hr} \coloneqq 57500 \cdot psi$                                       | Apparent modulus of elasticity for PE4710,<br>Base Temperature of 73 deg. Fahrenheit at<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962) |
| $S_a \! \coloneqq \! e_a \! \cdot \! E_{12hr} \! = \! 25.8 \ \textbf{psi}$ | Axial bending stress within the casing pipe                                                                                                        |



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

**B** - Site Specific Analyses: Pullback Force: **B1 - Empty Pipe** B1.1 - Effective Weight of Empty Pipe:  $w_{a} \coloneqq \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{2} - T_{p2} \right)^{2} \right) \right) \cdot \rho_{w} \cdot \gamma_{a} = 8.3 \ plf$ B1.2 - Upward Buoyant Force: Effective weight  $w_b \coloneqq \left(\frac{\pi \cdot \left(D_1^2 + D_2^2\right)}{\Lambda}\right) \rho_w \cdot \gamma_b - w_a = 51.2 \ plf \quad \text{Upward buoyant force of empty pipe}$ B1.3 - Hydrokinetic Pressure:  $\Delta T \coloneqq \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 796 \ lbf \text{ Hydrokinetic force}$ B1.4 - Pullback Force Point A:  $T_a := e^{v_a \cdot \alpha_{in}} \cdot (v_a \cdot w_a \cdot (L_1 + L_2 + L_3 + L_4)) = 1075 \ lbf$ Pullback force when pipe enters the ground B1.5 - Pullback Force Point B:  $T_{b} \coloneqq e^{v_{b} \cdot \alpha_{in}} \left( T_{a} + v_{b} \cdot \left| w_{b} \right| \cdot L_{2} + w_{b} \cdot H_{max} - v_{a} \cdot w_{a} \cdot L_{2} \cdot e^{(v_{a} \cdot \alpha_{in})} \right) = 9464 \ lbf$ Pullback force increase with depth B1.6 - Pullback Force Point C:  $T_c \coloneqq T_b + (v_b \cdot w_b \cdot L_3) - e^{(v_b \cdot \alpha_{in})} \cdot (v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 15593 \ lbf$ B1.7 - Pullback Force at D:  $T_d \coloneqq e^{\langle v_b \cdot \beta_{exil} \rangle} \cdot \left( T_c + v_b \cdot |w_b| \cdot L_4 - w_b \cdot H_{max} - e^{\langle v_a \cdot \alpha_{in} \rangle} \cdot \left( v_a \cdot w_a \cdot L_4 \cdot e^{\langle v_a \cdot \alpha_{in} \rangle} \right) \right) = 19232 \ lbf$ B1.8 - Maximum Pullback Force - Empty Pipe:  $P_{max\ empty} \coloneqq \max\left(T_a, T_b, T_c, T_d\right) + \Delta T = 20029\ lbf$ Maximum Pullback Force **B2 - Filled Pipe with Water** B2.1 - Upward Buovant Force:  $w_{bfilled} := \left(\frac{\left(\pi \cdot D_{1}^{2}\right)}{4}\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{2}{DR_{1}}\right)\right)^{2}\right) - w_{a} = 24.6 \ plf$ Upward buoyant force of pipe filled with water B2.2 - Pullback Force Point A:

 $T_{afilled} := e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) = 1075 \ lbf$  Pullback force enter ground



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| <u>B2.3 - Pullback Force Point B:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_{bfilled} \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_{afilled} + v_b \cdot \left  w_{bfilled} \right  \cdot L_2 + v_b \cdot \left  w_{$ | $w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 5647$<br>Pullback force increase and decrease                                                                                          |
| B2.4 - Pullback Force Point C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | depth                                                                                                                                                                                                                           |
| $T_{cfilled} \coloneqq T_{bfilled} + \left(v_b \cdot \left w_{bfilled}\right  \cdot L_3\right) - e^{\left(v_b \cdot \alpha_{in}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(v_a \cdot w_a \cdot L_3 \cdot e^{(v_a \cdot \alpha_{in})}) = 8402 \ lbf$                                                                                                                                                      |
| B2.5 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |
| $T_{dfilled} \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot (T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-\boldsymbol{e}^{(v_a\boldsymbol{\cdot}\alpha_{in})}\boldsymbol{\cdot} \left(v_a\boldsymbol{\cdot}w_a\boldsymbol{\cdot}L_4\boldsymbol{\cdot}\boldsymbol{e}^{(v_a\boldsymbol{\cdot}\alpha_{in})}\right) = 11284 \boldsymbol{l}$ |
| <u> B2.6 - Maximum Pullback Force - Filled Pipe</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e with Water:                                                                                                                                                                                                                   |
| $P_{max} \coloneqq \max\left(T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) = 11284 <i>lbf</i><br>Maximum Pullback Force                                                                                                                                                                                  |
| 3 - Safe Pull Strength / Ultimate Tensil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Load Check:                                                                                                                                                                                                                   |
| B3.1 Safe Pullback Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |
| $A_1 \coloneqq \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ \boldsymbol{in}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cross-sectional area of Pipe 1                                                                                                                                                                                                  |
| $A_{2} \coloneqq \frac{\pi}{4} \left( D_{2}^{2} - \left( D_{2} - T_{p2} \right)^{2} \right) = 0.8 \ \boldsymbol{in}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cross-sectional area of Pipe 2                                                                                                                                                                                                  |
| $P_{11} \coloneqq \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 19251 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pullback forces acting on Pipe 1 (Emp                                                                                                                                                                                           |
| $P_{21} \coloneqq \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 777 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pullback forces acting on Pipe 2 (Emp                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |
| $P_{12} \coloneqq \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 10846 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pullback forces acting on Pipe 1 (Ball                                                                                                                                                                                          |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 438 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pullback forces acting on Pipe 2 (Ball                                                                                                                                                                                          |
| $P_{SPF1} \coloneqq 41214 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Safe pullback forces Pipe 1 (Table %, p. 448, PPI)                                                                                                                                                                              |
| <i>P</i> <sub>SPF2</sub> :=1683 <i>lbf</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Safe pullback forces Pipe 2 (Table %<br>p. 448, PPI)                                                                                                                                                                            |
| $check \coloneqq \mathbf{if} \left( P_{SPF1} > P_{11}, \text{``okay''}, \text{``not okay''} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |
| $check \coloneqq if(P_{SPF2} > P_{21}, "okay", "not okay")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |
| $check \coloneqq if (P_{SPF1} > P_{12}, "okay", "not okay")$ $check \coloneqq if (P_{SPF2} > P_{22}, "okay", "not okay")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

#### **C - Allowable Mud Pressures:**

| <u>C1 - Max</u> | Allowable | Driling | Fluid | <b>Pressure</b> |
|-----------------|-----------|---------|-------|-----------------|
|                 |           |         |       |                 |

#### Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| $H_w := 0 \cdot ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth of the bore below groundwater elevation                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <i>H<sub>c</sub></i> ≔17 <i>ft</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical separation distance between critical structure and pipe                     |
| $\gamma \coloneqq 100 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assumed unit weight soft to clay/silt<br>(zero blow count material)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| $\gamma_w \coloneqq 62.4 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit weight of water                                                                 |
| $\gamma' \coloneqq \gamma - \gamma_w = 37.6 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effective unit weight                                                                |
| $u \coloneqq \gamma_w \cdot H_w = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial pore water pressure                                                          |
| $\phi \coloneqq 0 \ deg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Assumed friction Angle                                                               |
| c≔450 psf=3.13 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assumed cohesion of encountered material                                             |
| $R_0 := \frac{D_{rod}}{2} = 1.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial radius of the borehole                                                       |
| $R_{pmax} \coloneqq \frac{1}{2} \cdot H_c = 8.5 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radius of plastic zone (H/2 in clays &                                               |
| $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |
| $\sigma'_0 \coloneqq \gamma \cdot H_c = 11.8 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_0 \coloneqq \gamma \cdot H_c = 11.8 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/3 H in sands)<br>Initial effective stress                                          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_{0} \coloneqq \gamma \cdot H_{c} = 11.8 \text{ psi}$ <b>C.2</b> Typical values of modulus of elasticity ( <i>E<sub>s</sub></i> ) for different types $\frac{Type \text{ of Soil}}{Clay}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_0 := \gamma \cdot H_c = 11.8 \ psi$<br><b>C.2</b> Typical values of modulus of elasticity ( <i>E<sub>s</sub></i> ) for different types $T_{i}$ (N/mm <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_{0} \coloneqq \gamma \bullet H_{c} = 11.8 \text{ psi}$ <b>C.2</b> Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types of Soil <i>E</i> <sub>s</sub> (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2-15<br>Soft 5-25<br>Medium 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_{0} \coloneqq \gamma \bullet H_{c} = 11.8 \text{ psi}$ <b>C.2</b> Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types. $\boxed{\frac{\text{Type of Soil} \qquad E_{s}(\text{N/mm}^{2})}{\text{Clay}}}_{\text{Very soft}}$ Soft 5–25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_{0} \coloneqq \gamma \bullet H_{c} = 11.8 \text{ psi}$ <b>C.2</b> Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types.           Type of Soil <i>E</i> <sub>s</sub> (N/mm <sup>2</sup> )           Clay         Very soft         2–15           Soft         5–25         Medium           Hard         50–100         Sandy           Glacial till         25–250         Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
| $\sigma'_{0} := \gamma \bullet H_{c} = 11.8 \text{ psi}$ <b>c.2</b> Typical values of modulus of elasticity ( <i>E<sub>s</sub></i> ) for different types of Soil $E_{i}$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2-15<br>Soft 5-25<br>Medium 15-50<br>Hard 50-100<br>Sandy 25-250<br>Glacial till<br>Loose 10-153<br>Dense 144-720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/3 H in sands)<br>Initial effective stress                                          |
| $\sigma'_{0} \coloneqq \gamma \bullet H_{c} = 11.8 \text{ psi}$ <b>c.2</b> Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types of Soil <i>E</i> <sub>s</sub> (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2-15<br>Soft 5-25<br>Medium 15-50<br>Hard 50-100<br>Sandy 25-250<br>Glacial till<br>Loose 10-153<br>Dense 144-720<br>Very dense 478-1,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
| $\sigma'_{0} := \gamma \cdot H_{c} = 11.8 \text{ psi}$ <b>c.2</b> Typical values of modulus of elasticity ( <i>E<sub>s</sub></i> ) for different types of the set of the s | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/3 H in sands)<br>Initial effective stress<br>$E_s := 2 \frac{N}{mm^2} = 290 \ psi$ |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101- Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table C.4 Typical values of Poisson's ratio (µ) for soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                 |
| The complete values of this soft state ( $\mu$ ) for softs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                                                                                                                 |
| Clay (saturated)         0.4 - 0.5           Clay (unsaturated)         0.1 - 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                                                                                 |
| Sandy clay 0.2 - 0.3<br>Silt 0.3 - 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
| Sand (dense) 0.2 - 0.4<br>Course (void ratio = 0.4 - 0.7) 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | $\nu_s := 0.5$                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ends on type of rock)                                                          |                                                                                                                                                                 |
| Loess 0.1 - 0.3<br>lce 0.36<br>Concrete 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | Poissions ratio of material encountered                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                 |
| $G = \frac{E_s}{-97}$ nsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Shear modulus of soil                                                                                                                                           |
| $G \coloneqq \frac{E_s}{2 (1 + \nu_s)} = 97 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                 |
| $(\sigma'_0 \cdot \sin(\phi)) + (c \cdot 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                 |
| $Q \coloneqq \frac{\left(\sigma'_{0} \cdot \sin(\phi)\right) + (c \cdot 0)}{G} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                              |                                                                                                                                                                 |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | Coefficient of Delft Equation                                                                                                                                   |
| $p'_f \coloneqq \sigma'_0 \cdot (1 + \sin(\phi)) + c \cdot \cos(\phi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\cos(\phi) = 14.9 \ psi$                                                      |                                                                                                                                                                 |
| 1 9 0 ( (, ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Mud pressure at which the first plastic                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | deformation takes place                                                                                                                                         |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(-\sin(\phi))$                                                                |                                                                                                                                                                 |
| 11 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1 + \sin(\phi)$                                                               |                                                                                                                                                                 |
| $p'_{max} \coloneqq \left(p'_f + (c \cdot 0)\right) \cdot \left( \left( \left( \frac{R_0}{R_{pm}} \right) \right) + \left( \left( \left( \frac{R_0}{R_{pm}} \right) + \left( \left( \left( \frac{R_0}{R_{pm}} \right) \right) + \left( \left( \left( \left( \frac{R_0}{R_{pm}} \right) + \left( \left( \left( \left( \frac{R_0}{R_{pm}} \right) + \left( $ | $\binom{0}{2} + 0$                                                             | $-c \cdot 0 - 14.9$ nsi                                                                                                                                         |
| $P_{max} = (P_f + (C - O))  (((R_{pm})))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nax ( )                                                                        |                                                                                                                                                                 |
| , , , , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Maximum allowable effective mud pressu                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | (Delft Equation)                                                                                                                                                |
| $p_{max} \coloneqq u + p'_{max} = 14.9 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Maximum allowable mud pressure                                                                                                                                  |
| $p_{max} - a + p_{max} - 14.5$ pst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                 |
| C2 -Min. Allowable Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluid Pressure                                                                 |                                                                                                                                                                 |
| $D_{PT} \coloneqq 5 in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | Pilot tube diameter                                                                                                                                             |
| $D_0 \coloneqq 9.5 in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | Initial borehole diameter for pilot tube                                                                                                                        |
| $\frac{D_0}{h \coloneqq 34.7 \ \mathbf{ft}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | Elevation difference between level of bor                                                                                                                       |
| 10-01.1 JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                | hole front and exit point of mud flow                                                                                                                           |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                | Unit weight of slurry/mud                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | Minimum required mud pressure to                                                                                                                                |
| $p_1 \coloneqq \gamma_m \cdot h = 21.7 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | overcome differntial head                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                                                                                 |
| $Q_f \coloneqq 200 \ gpm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Assumed mud flow rate                                                                                                                                           |
| $\tau_o \coloneqq 16 \ \frac{lbf}{100 \cdot ft^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Assumed yield point of mud per 100                                                                                                                              |
| $100 \cdot ft^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | square feet                                                                                                                                                     |
| $\mu_{pl} \coloneqq 25 \cdot \frac{poise}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                 |
| $\mu_{pl} \coloneqq 25 \cdot \frac{100}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Assumed plastic viscosity of mud                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                 |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                                                                                                                                                 |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW                                  | Champlain Hudson Power Express - Package 6<br>Crossing #101- Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v \coloneqq rac{Q_f}{0.785 \left({D_0}^2 - {D_{PT}}^2 ight)} = 75$                                                       | $5.2 \frac{ft}{min}$                                                                                            | Computed mud flow velocity                                                                                                                                      |
| $L_{structure} \coloneqq 1125 \; ft$                                                                                       |                                                                                                                 | Length to sturcture                                                                                                                                             |
| $p_2 \coloneqq L_{structure} \cdot \left( \left( \frac{\mu_{pl} \cdot v}{\left( D_0 - D_{PT} \right)^2} \right)^2 \right)$ | $\left(\frac{\tau_o}{\left(D_0 - D_{PT}\right)}\right) + \left(\frac{\tau_o}{\left(D_0 - D_{PT}\right)}\right)$ | Minimum required mud pressure to create flow inside the borehole                                                                                                |
| $p_{min.} \coloneqq p_1 + p_2 = 25.1 \ psi$                                                                                |                                                                                                                 | Minimum required mud pressure                                                                                                                                   |
| $check \coloneqq \mathbf{if} \left( p_{max} > p_{min.}, \text{``oka} \right)$                                              | ay", "not okay") =                                                                                              | = "not okay"                                                                                                                                                    |
| Crossing will require risk m                                                                                               | itigation of cond                                                                                               | ductor casing &/or relief wells.                                                                                                                                |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                            |                                                                                                                 |                                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| D1.1 - Overburden Pressure (Considering D                                                                                                                                                             | Peformed Borehole with Arching Mobilized)                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $H_c \coloneqq H_{max} = 45.8 \ ft$                                                                                                                                                                   | Depth of cover                                                        |
| $\phi = 0 \ deg$                                                                                                                                                                                      | Friction angle of soil                                                |
| $B \coloneqq D_r = 18 in$                                                                                                                                                                             | "Silo" width, conservative value =                                    |
|                                                                                                                                                                                                       | reamed hole diameter                                                  |
| $K \coloneqq \tan\left(45 - \frac{\phi}{2}\right)^2$                                                                                                                                                  | Earth pressure coefficient                                            |
| $\gamma = 100 \ pcf$                                                                                                                                                                                  | Unit weight of soil, assumed                                          |
| $1  \exp\left(-\frac{K \cdot H_c}{2} \tan\left(\phi\right)\right)$                                                                                                                                    |                                                                       |
| $\frac{1-\exp\left(-2\cdot\frac{1}{B}\cdot\tan\left(\frac{1}{2}\right)\right)}{B}$                                                                                                                    | Arching factor (Eq. 6, p. 422, DDI)                                   |
| $k \coloneqq \frac{1 - \exp\left(-2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)\right)}{2 \cdot \frac{K \cdot H_c}{B} \cdot \tan\left(\frac{\phi}{2}\right)} = ? k \coloneqq 1$ |                                                                       |
| $P_E \coloneqq k \cdot (\gamma - \gamma_w) \cdot (H_c) = 12 \ psi  P_E = 1722$                                                                                                                        | <i>psf</i> Effective overburden pressure                              |
| D1.2 Earth Load Deflection (Short Term)                                                                                                                                                               |                                                                       |
|                                                                                                                                                                                                       | Apparent modulus of elasticity for                                    |
| $\frac{E_{short} \coloneqq 57500 \cdot psi}{2}$                                                                                                                                                       | PE4710, Base Temperature of 73 deg.                                   |
|                                                                                                                                                                                                       | Fahrenheit at 10 hrs of sustained loading<br>(Table X1.1 ASTM F 1962) |
| $k_{short} \coloneqq \frac{E_{short}}{12 \cdot \left(DR_1 - 1\right)^3} = 9.36 \text{ psi}$                                                                                                           | Variable in earth load deflection equation                            |
|                                                                                                                                                                                                       |                                                                       |
| $\Delta y_{ELD\_short} \coloneqq \frac{0.0125 \cdot P_E}{k_{short}} = 1.6\%$                                                                                                                          | Pipe deflection to diameter as per                                    |
| $k_{short}$                                                                                                                                                                                           | PPI Equ. 10 (Chp 12, p 437, PPI Handboo                               |
| D1.3 Earth Load Deflection (Long Term)                                                                                                                                                                |                                                                       |
|                                                                                                                                                                                                       | Apparent modulus of elasticity for PE4710                             |
| $E_{long} \coloneqq 28200 \cdot psi$                                                                                                                                                                  | Base Temperature of 73 Fahrenheit at 50                               |
|                                                                                                                                                                                                       | years of sustained loading (Table X1.1                                |
| Elma                                                                                                                                                                                                  | ASTM F 1962)                                                          |
| $k \coloneqq \frac{-i \delta h g}{3} = 4.6 \ psi$                                                                                                                                                     | Variable in earth load deflection equation                            |
| $k \coloneqq \frac{E_{long}}{12 \cdot \left(DR_1 - 1\right)^3} = 4.6 \ psi$                                                                                                                           |                                                                       |
|                                                                                                                                                                                                       | Pipe deflection to diameter as per                                    |
| $\Delta y_{ELD\_long} \coloneqq \frac{0.0125 \cdot P_E}{k} = 3.3\%$                                                                                                                                   | PPI Equ. 10 (Chp 12, p 437)                                           |
|                                                                                                                                                                                                       |                                                                       |
|                                                                                                                                                                                                       |                                                                       |
|                                                                                                                                                                                                       |                                                                       |
|                                                                                                                                                                                                       |                                                                       |
|                                                                                                                                                                                                       |                                                                       |
|                                                                                                                                                                                                       |                                                                       |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW                                  | Champlain Hudson Power Express - Package 6<br>Crossing #101- Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D2 - Buoyant Deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                              |
| D2.1 Buoyant Deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Short Term)                                                                                                    |                                                                                                                                                                                                                                                                                                              |
| $\overline{D_1 = 10.75 \ in}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Outside diameter of casing pipe                                                                                                                                                                                                                                                                              |
| $t := T_{p1} = 1.194$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | Thickness of casing pipe                                                                                                                                                                                                                                                                                     |
| P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Apparent modulus of elasticity for                                                                                                                                                                                                                                                                           |
| $E_{short} \!=\! 57500  {\it psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | PE4710, Base Temperature of 73<br>Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                   |
| $\sim -90 \text{ maf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | Assumed unit weight of fluid in                                                                                                                                                                                                                                                                              |
| $\gamma_m = 30 \ pcj$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | borehole (Slurry unit weight)                                                                                                                                                                                                                                                                                |
| $I := \frac{t^3}{0.14} = 0.14 \frac{in^4}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Moment of inertia of pipe wall cross                                                                                                                                                                                                                                                                         |
| $\frac{1}{12} = 0.14$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $D \setminus 4$                                                                                                 | section                                                                                                                                                                                                                                                                                                      |
| $0.1169 \cdot \gamma_m \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{D_1}{2}$                                                                                                 | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                                                        |
| $\gamma_{m} = 90 \text{ pcf}$ $I := \frac{t^{3}}{12} = 0.14 \frac{in^{4}}{in}$ $0.1169 \cdot \gamma_{m} \cdot \left( \Delta y_{bouyant} := \frac{0.1169 \cdot \gamma_{m} \cdot \left( E_{short} \cdot I \right) \right)}{E_{short} \cdot I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{2}{2}$ = 0.1%                                                                                            | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                              |
| D2.1 Buoyant Deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Long Term)                                                                                                     |                                                                                                                                                                                                                                                                                                              |
| assumed to be cured afte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                              |
| D3 - Reissner Effect Defle<br>D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                               | ψ                                                                                                                                                                                                                                                                                                            |
| D3 - Reissner Effect Defle<br>D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                               | ψ                                                                                                                                                                                                                                                                                                            |
| <u>D3 - Reissner Effect Defle</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                               | D<br>Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                                                 |
| <b>D3 - Reissner Effect Defle</b><br>D3.1 - Reissner Effect De<br>$\mu_{short} := 0.35$<br>R = 1000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flection (Short Term)                                                                                           | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                 |
| D3 - Reissner Effect Defle<br>D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flection (Short Term)                                                                                           | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                                                 |
| <b>D3 - Reissner Effect Defle</b><br>D3.1 - Reissner Effect De<br>$\mu_{short} := 0.35$<br>R = 1000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{flection (Short Term)}{t}^{4} = 0.0000033$                                                               | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                                          |
| $D3 - Reissner Effect Defle D3.1 - Reissner Effect Defle \mu_{short} \coloneqq 0.35 R = 1000 \ ft z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - \frac{3}{16 \cdot t^2 \cdot R^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{f(t)^{4}}{t} = 0.000033$                                                                                 | <ul> <li>Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnner Effect</li> </ul>                                                                                   |
| D3 - Reissner Effect Defle<br>D3.1 - Reissner Effect Defle<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \vdash \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \vdash \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \vdash \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$ $z \vdash \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - d_1\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{f(t)^{4}}{t} = 0.000033$                                                                                 | <ul> <li>Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnner Effect</li> <li>Poisson's Ratio for PE pipe material at long term (ASTM F 1962, 8.2.4.2)</li> </ul> |
| $D3 - Reissner Effect Defle D3.1 - Reissner Effect Defle \mu_{short} \coloneqq 0.35 R = 1000 \ ft \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_{si}\right) z \mapsto \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) z $ | flection (Short Term)<br>$(\cdot t)^4$<br>= 0.0000033<br>$(\cdot) \cdot z^2 = 0.0002\%$<br>flection (Long Term) | <ul> <li>Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnner Effect</li> <li>Poisson's Ratio for PE pipe material at</li> </ul>                                  |
| <b>D3 - Reissner Effect Defle</b><br>D3.1 - Reissner Effect Defle<br>$\mu_{short} \coloneqq 0.35$ $R = 1000 \ ft$ $\frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_1 + \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right)\right) \left(D_1 - z_1 + \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right)\right)$ $\Delta y_{R_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right)$ D3.2 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | flection (Short Term)<br>$(\cdot t)^4$<br>= 0.0000033<br>$(\cdot) \cdot z^2 = 0.0002\%$<br>flection (Long Term) | <ul> <li>Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2) Radius of curvature</li> <li>Deflection due to longitudinal bending</li> <li>Pipe ring deflection due to the Reisnner Effect</li> <li>Poisson's Ratio for PE pipe material at long term (ASTM F 1962, 8.2.4.2)</li> </ul> |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                              | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson<br>Crossing #101- Cu<br>Pull Back and Mud<br>Date: 4/16/23<br>Date: 4/16/23 |                                                 |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|
| <u> D4 - Net Ring Deflection</u>                                                         |                                                                                |                                                                                              |                                                 |
| $\Delta y_{lim} \coloneqq 7.5\%$<br>D4.1 - Net Short Term                                |                                                                                |                                                                                              | or DR 9 non pressurized<br>. 437, PPI Handbook) |
| $\Delta y_{short\_net}$ := $\Delta y_{ELD\_short}$ + 2                                   | $\Delta y_{bouyant} + \Delta y_{R\_shor}$                                      | =1.7% Percent<br>term ar                                                                     | ring deflection in short<br>alysis              |
| $Check \coloneqq if \left( \Delta y_{short\_net} < \Delta y_{short\_net} \right)$        | J <sub>lim</sub> , "okay", "not o                                              | kay") = "okay"                                                                               |                                                 |
| <u>D4.2 - Net Long Term</u>                                                              |                                                                                |                                                                                              |                                                 |
| $\Delta y_{long\_net} \coloneqq \Delta y_{ELD\_long} + \Delta y_{ELD\_long}$             | $y_{R\_long} = 3.3\%$                                                          | Percent ring defl<br>analysis (50 yea                                                        | ection in long term<br>rs)                      |
| $Check \coloneqq \mathbf{if} \left( \Delta y_{long\_net} < \Delta y_{long\_net} \right)$ | <sub>lim</sub> , "okay", "not ol                                               | ay") = "okay"                                                                                |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |
|                                                                                          |                                                                                |                                                                                              |                                                 |



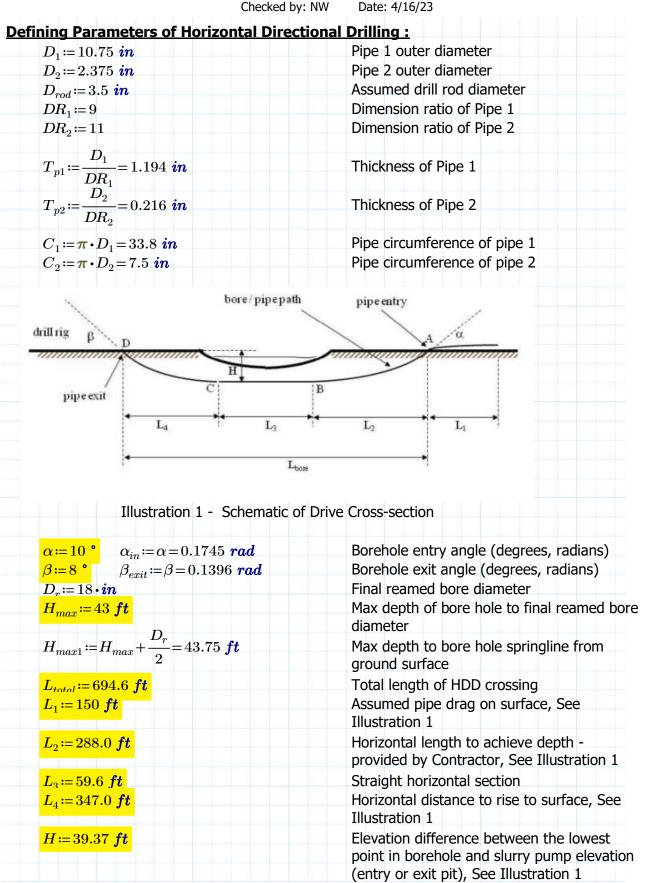
Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| D5.1 - Unconstrained Ring Buckling, Levy'                                                                                                           | s Equation (Short Term-During Pull)                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Note that constraining the pipe will increase considering an unconstrained condition wi                                                             |                                                                                                                        |
| N := 2.0                                                                                                                                            | Factor of Safety                                                                                                       |
| $\mu_{short} \coloneqq 0.35$                                                                                                                        | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                              |
| $E_{short} \!=\! 57500  \mathbf{psi}$                                                                                                               | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loading |
| % DEFLECTION                                                                                                                                        | (Table X1.1 ASTM F 1962)                                                                                               |
| 0.0 0 2 4 6 8 10 12                                                                                                                                 |                                                                                                                        |
| 2                                                                                                                                                   | Ovality compensation factor, Figure                                                                                    |
| fo 6                                                                                                                                                | 3 (PPI Chp. 12). Calculated deflection limit in section D4.1                                                           |
| 8                                                                                                                                                   | $f_{o\_short} := 0.85$                                                                                                 |
| 1.0                                                                                                                                                 |                                                                                                                        |
| $P_{UC\_short} \coloneqq \left(\frac{2 \cdot E_{short}}{1 - \mu_{short}^2}\right) \cdot \left(\frac{1}{DR_1 - 1}\right)^3 \cdot \frac{f_{o\_s}}{N}$ | $\frac{1}{N} = 108.8 \ psi$ Allowable unconstrained buckling pressure                                                  |
| H=49.45 <b>ft</b>                                                                                                                                   | Elevation difference between the lowest point in borehole and entry or exit pit                                        |
| $P_{mud} \coloneqq \gamma_m \cdot H = 30.91 \ psi$                                                                                                  | Pressure of drilling slurry                                                                                            |
| $P_{net} := P_{mud} = 30.91 \ psi$                                                                                                                  | Net external loading with open borehole                                                                                |
| $Check \coloneqq \mathbf{if} \left( P_{UC\_short} > P_{net}, \text{``okay''}, \text{``not} \right)$                                                 | okay") = "okay"                                                                                                        |
| D5.2 - Unconstrained Ring Buckling, Levy                                                                                                            | s Equation (Long Term)                                                                                                 |
| Note that constraining the pipe will increas<br>considering an unconstrained condition wi                                                           |                                                                                                                        |
| $N \coloneqq 2.0$                                                                                                                                   | Factor of Safety                                                                                                       |
| $\mu_{long} \coloneqq 0.45$                                                                                                                         | Poisson's Ratio for PE pipe material,<br>long term (ASTM F 1962, 8.2.4.2)                                              |
|                                                                                                                                                     |                                                                                                                        |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101- Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} = 28200 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)            |
| $f_{o\_long} \coloneqq 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                      |
| $P_{UC\_long} \coloneqq \left(\frac{2 \cdot E_{long}}{1 - \mu_{long}^{2}}\right) \cdot \left(\frac{1 - \mu_{long}^{2}}{1 - \mu_{long}^{2}}\right)$ | $\left(\frac{1}{DR_1-1}\right)^3 \cdot \frac{f_{o\_long}}{N} =$                | 31.1 <i>psi</i><br>Allowable unconstrained buckling<br>pressure                                                                                                 |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | Groundwater head pressure                                                                                                                                       |
| $P_{net} \coloneqq P_{GW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Net external loading with open borehole                                                                                                                         |
| $Check := \mathbf{if} \left( P_{UC\_long} > P_n \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{x}_{t},$ "okay", "not oka                                             | y") = "okay"                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                 |



Champlain Hudson Power Express - Package 6 Crossing #101- Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23


## **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill

101.A



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23



Project: Tunnel No.:

Description:

Calculated by: DA

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project:Champlain Hudson Power Express - Package 6Tunnel No.:Crossing #101.A - Stream S-33 & Culvert CrossingDescription:Pull Back and Mud Pressure CalcsCalculated by: DADate: 4/16/23Checked by: NWDate: 4/16/23 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $v_a = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Friction coefficient before pipe enters<br>(rollers assumed)                                                                                                                                                       |
| $v_b = 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Friction coefficient for the bundle within borehole (lubrication assumed)                                                                                                                                          |
| $ \rho_w \coloneqq 62.4 \ pcf $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit weight of water                                                                                                                                                                                               |
| $\gamma_a$ :=0.965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specific gravity of pipe                                                                                                                                                                                           |
| $\gamma_m \coloneqq 90 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assumed unit weight of slurry                                                                                                                                                                                      |
| $\gamma_b \coloneqq \frac{\gamma_m}{\rho_w} = 1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specific gravity of slurry, assumed unit weight                                                                                                                                                                    |
| $\gamma_c \coloneqq 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific gravity of water to fill the pipe                                                                                                                                                                         |
| $\Delta P \coloneqq 10 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydrokinetic Pressure (p. 443, Ch12 PPI<br>Handbook)                                                                                                                                                               |
| $g \coloneqq 32.2 \frac{ft}{s^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gravitational Constant                                                                                                                                                                                             |
| <u>A - Axial Bending Stress:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| $R_{avg.\_in} \coloneqq 1000 \; ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radius of curvature at the entry, provided<br>by Contractor                                                                                                                                                        |
| $R_{avg.out} \coloneqq 1000 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radius of curvature at the exit, provided<br>by Contractor                                                                                                                                                         |
| $R \coloneqq \frac{R_{avg\_in} + R_{avg\_out}}{2} = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>ft</i> Average radius of curvature at entry                                                                                                                                                                     |
| $r_{rod} := 1200 \cdot D_{rod} = 350 \; ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ASTM F 1962-99, Equation 1, p7                                                                                                                                                                                     |
| $Check \coloneqq \mathbf{if} \left( R_{avg.\_in} \! > \! r_{rod}, \text{``o'} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xay", "not okay") = "okay"                                                                                                                                                                                         |
| $Check \coloneqq \mathrm{if}\left(R_{avg.\_out} \! > \! r_{rod}, \text{``e}_{rod}, \text{``e}_{rod},$ | kay", "not okay") = "okay"                                                                                                                                                                                         |
| Radius of curvature should exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 times the pipe outside diameter to prevent ring collapse.                                                                                                                                                       |
| $e_a \coloneqq \frac{D_1}{2 \cdot R} = 0.0004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strain within the casing pipe                                                                                                                                                                                      |
| $\overline{E_{12hr}} \! \coloneqq \! 57500 \cdot psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apparent modulus of elasticity for PE4710<br>Base Temperature of 73 deg. Fahrenheit a<br>10 hrs of sustained loading (Table X1.1<br>ASTM F 1962)                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                    |

 $S_a := e_a \cdot E_{12hr} = 25.8 \ psi$  Axial bending stress within the casing pipe



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| Site Specific Analyses: Pullback Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <b>11 - Empty Pipe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| B1.1 - Effective Weight of Empty Pipe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| $w_{a} := \frac{\pi}{4} \left( \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{2}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right) + \left( D_{1}^{2} - \left( D_{1} - T_{p1} \right)^{2} \right$ | $\left( \rho_2 - T_{p2} \right)^2 \right) \cdot \rho_w \cdot \gamma_a = 8.3 \ plf$                                 |
| B1.2 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Effective weight                                                                                                   |
| $w_{b} \coloneqq \left( \frac{\pi \cdot \left( D_{1}^{2} + D_{2}^{2} \right)}{4} \right) \rho_{w} \cdot \gamma_{b} - w_{a} = 51.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 <i>plf</i> Upward buoyant force of empty pipe                                                                    |
| B1.3 - Hydrokinetic Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |
| $(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                    |
| $\Delta T \coloneqq \Delta P \cdot \left(\frac{\pi}{8}\right) \left(D_r^2 - \left(D_1^2 + D_2^2\right)\right) = 79$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06 <i>lbf</i> Hydrokinetic force                                                                                   |
| B1.4 - Pullback Force Point A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
| $T := c^{v_a \cdot \alpha_{in}} / c_{in} = c_{in} / T = T + T + T + T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 712 lbf                                                                                                          |
| $T_a \coloneqq e^{v_a \cdot \alpha_{in}} \cdot \left( v_a \cdot w_a \cdot \left( L_1 + L_2 + L_3 + L_4 \right) \right) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pullback force when pipe enters the ground                                                                         |
| B1.5 - Pullback Force Point B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i diback force when pipe chers the ground                                                                          |
| $T_b \coloneqq e^{v_b \cdot \alpha_{in}} \left( T_a + v_b \cdot  w_b  \cdot L_2 + w_b \cdot H_{max} - \frac{1}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-v_a \cdot w_a \cdot L_2 \cdot e^{(v_a \cdot \alpha_{in})} = 7477 \ lbf$                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>"</sup> Pullback force increase with depth                                                                    |
| B1.6 - Pullback Force Point C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |
| $T_c \coloneqq T_b + \left( v_b \cdot w_b \cdot L_3 \right) - e^{\left( v_b \cdot \alpha_{in} \right)} \cdot \left( v_a \cdot w_a \cdot L_3 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $L_3 \cdot e^{\langle v_a \cdot v_{mf} \rangle} = 8340 \ lbf$                                                      |
| B1.7 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |
| DI.7 TUBBACK FORCE at D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| $T_d := e^{(v_b \cdot \beta_{exit})} \cdot (T_c + v_b \cdot  w_b  \cdot L_d - w_b \cdot H_{mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $_{ax} - e^{(v_a \cdot lpha_{in})} \cdot (v_a \cdot w_a \cdot L_4 \cdot e^{(v_a \cdot lpha_{in})})) = 11649 \ lbf$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |
| B1.8 - Maximum Pullback Force - Empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pipe:                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |
| $P_{max\_empty} \coloneqq \max \left( T_a, T_b, T_c, T_d \right) + \Delta T =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum Pullback Force                                                                                             |
| 2 - Filled Pipe with Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
| B2.1 - Upward Buoyant Force:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)                                                                                                                |
| $w_{bfilled} \coloneqq \left(\frac{\left(\boldsymbol{\pi} \cdot \boldsymbol{D}_{1}^{2}\right)}{4}\right) \cdot \rho_{w} \cdot \left(\gamma_{b} - \gamma_{c} \cdot \left(1 - \left(\frac{1}{2}\right)\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\left(\frac{2}{DR_1}\right)\right) \left(-w_a = 24.6 \ plf\right)$                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Upward buoyant force of pipe filled with wa                                                                        |
| B2.2 - Pullback Force Point A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |

| <b>m</b> <i>v</i>                 | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Dullha al. favor anter survival |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|--|
| $T_{afilled} \coloneqq e^{\circ}$ | $a \circ \omega_{in} ullet (v_a ullet w_a ullet (L_1 ullet u_a ullet w_a ullet u_a ullet w_a ullet (L_1 ullet u_a ullet w_a ullet w_a ullet w_a ullet (L_1 ullet u_a ullet w_a $ | $+L_2+L_3+L_4)) = 712 \ lof$ | Pullback force enter ground     |  |



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| • bfilled • $C$ (* afilled $+ b_b \bullet  w_{bfilled}  \bullet L_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $w_{bfilled} \cdot H_{max} + v_a \cdot w_a \cdot L_2 \cdot e^{\langle v_a \cdot \alpha_{in} \rangle} = 4367$<br>Pullback force increase and decrease            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>B2.4 - Pullback Force Point C:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | depth                                                                                                                                                           |
| $T_{cfilled} \coloneqq T_{bfilled} + \left( v_b \cdot \left  w_{bfilled} \right  \cdot L_3 \right) - e^{\left( v_b \cdot \alpha_b \right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{\scriptscriptstyle{(n)}}\!\cdot\!\left(\!v_a\!\cdot\!w_a\!\cdot\!L_3\!\cdot\!e^{\left(\!v_a\cdotlpha_{\scriptscriptstyle{(n)}}\! ight)}\! ight)\!=\!4755lbf$ |
| B2.5 - Pullback Force at D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |
| $T_{dfilled} \coloneqq e^{(v_b \cdot \beta_{exit})} \cdot \left(T_{cfilled} + v_b \cdot  w_{bfilled}  \cdot L_{d}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{4}-e^{\left(v_{a}\cdotlpha_{in} ight)}\cdot\left(v_{a}\cdot w_{a}\cdot L_{4}\cdot e^{\left(v_{a}\cdotlpha_{in} ight)} ight) ight)=7323$ lbg                  |
| <u>B2.6 - Maximum Pullback Force - Filled Pip</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e with Water:                                                                                                                                                   |
| $P_{max} \coloneqq \max\left(T_{afilled}, T_{bfilled}, T_{cfilled}, T_{dfilled}, T_{$ |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum Pullback Force                                                                                                                                          |
| <u> 3 - Safe Pull Strength / Ultimate Tensi</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le Load Check:                                                                                                                                                  |
| B3.1 Safe Pullback Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
| $A_1 := \frac{\pi}{4} \left( D_1^2 - \left( D_1 - T_{p1} \right)^2 \right) = 19 \ in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cross-sectional area of Pipe 1                                                                                                                                  |
| $A_2 := \frac{\pi}{4} \left( D_2^2 - \left( D_2 - T_{p2} \right)^2 \right) = 0.8 \ in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cross-sectional area of Pipe 2                                                                                                                                  |
| $P_{11} \coloneqq \frac{A_1 \cdot P_{max\_empty}}{A_1 + A_2} = 11962 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pullback forces acting on Pipe 1 (Emp                                                                                                                           |
| $P_{21} \coloneqq \frac{A_2 \cdot P_{max\_empty}}{A_1 + A_2} = 483 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pullback forces acting on Pipe 2 (Emp                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
| $P_{12} := \frac{A_1 \cdot P_{max}}{A_1 + A_2} = 7039 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pullback forces acting on Pipe 1 (Balla                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
| $P_{22} := \frac{A_2 \cdot P_{max}}{A_1 + A_2} = 284 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pullback forces acting on Pipe 2 (Balla                                                                                                                         |
| $P_{SPF1} \coloneqq 41214 \ lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Safe pullback forces Pipe 1 (Table %, p. 448, PPI)                                                                                                              |
| $P_{SPF2} \coloneqq 1683 \ \textit{lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Safe pullback forces Pipe 2 (Table %, p. 448, PPI)                                                                                                              |
| $check \coloneqq if (P_{SPF1} > P_{11}, "okay", "not okay")$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ") = "okay"<br>") = "okay"                                                                                                                                      |



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

## **C - Allowable Mud Pressures:**

| <u>C1 - I</u> | Max. | Allow | able | Driling | g Fluid | Pressure |
|---------------|------|-------|------|---------|---------|----------|
|               |      |       |      |         |         |          |

## Assumptions:

-MathCAD calculations are used for a critical structure as identified for each crossing. If the HDD alignment crosses multiple structures the one with least cover was used. Provided hydrofracture graphs use equations, as detailed herein, to identify potential frac-out areas. Typically entry and exit areas are most susceptible to frac-out due to low cover.

-Where applicable, soil properties referenced from Kiewit's Proposed Soil Properties for CHPE Package 1, dated October 12, 2022.

| $H_w := 0 \cdot ft$                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth of the bore below groundwater elevation                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $H_c := 22.54 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vertical separation distance between critical structure and pipe (Stream S-33, ~3+50)                            |
| $\gamma \coloneqq 110 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assumed unit weight med. stiff clay                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (no geotechnical borings for crossing)                                                                           |
| $\gamma_w \coloneqq 62.4 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit weight of water                                                                                             |
| $\gamma' \coloneqq \gamma - \gamma_w = 47.6 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                             | Effective unit weight                                                                                            |
| $u \coloneqq \gamma_w \cdot H_w = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                     | Initial pore water pressure                                                                                      |
| $\phi := 0  deg$                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assumed friction Angle                                                                                           |
| $c := 800 \ psf = 5.56 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assumed cohesion of encountered materia                                                                          |
| $R_0 := \frac{D_{rod}}{2} = 1.75 \ in$                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial radius of the borehole                                                                                   |
| $R_{pmax} \coloneqq \frac{2}{3} \cdot H_c = 15 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                           | Radius of plastic zone (H/2 in clays & 2/3 H in sands)                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| $\sigma'_{0} \coloneqq \left( \left( \gamma \cdot \left( H_{c} - H_{w} \right) \right) + \gamma' \cdot H_{w} \right) = 17.2 \text{ psi}$                                                                                                                                                                                                                                                                                                                       | Initial effective stress (conservative assume all buoyant)                                                       |
| • C.2 Typical values of modulus of elasticity ( <i>E<sub>s</sub></i> ) for different types of soils                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                |
| C.2 Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types of soils      Type of Soil <i>E<sub>y</sub></i> (N/mm <sup>2</sup> )      Clay                                                                                                                                                                                                                                                                                       | -                                                                                                                |
| C.2 Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types of soils      Type of Soil <i>E<sub>s</sub></i> (N/mm <sup>2</sup> )                                                                                                                                                                                                                                                                                                 | assume all buoyant)                                                                                              |
| e C.2 Typical values of modulus of elasticity ( <i>E</i> <sub>s</sub> ) for different types of soils           Type of Soil <i>E</i> <sub>s</sub> (N/mm <sup>2</sup> )           Clay         Very soft         2–15                                                                                                                                                                                                                                           | assume all buoyant)                                                                                              |
| e C.2 Typical values of modulus of elasticity $(E_s)$ for different types of soils<br>Type of Soil $E_s$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250                                                                                                                                                                                                                                            | -                                                                                                                |
| e C.2 Typical values of modulus of elasticity $(E_s)$ for different types of soils<br>Type of Soil $E_s$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250<br>Glacial till<br>Loose 10–153                                                                                                                                                                                                            | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \ psi$                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | assume all buoyant)<br>$E_s := 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \ psi$                                            |
| e C.2 Typical values of modulus of elasticity ( $\mathcal{E}_{s}$ ) for different types of soils       Type of Soil $\mathcal{E}_{\nu}(N/mm^2)$ Clay     2–15       Soft     5–25       Medium     15–50       Hard     50–100       Sandy     25–250       Glacial till     Loose       Loose     10–153       Dense     144–720       Very dense     478–1,440       Loess     14–57       Sand     Silty                                                    | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |
| a C.2 Typical values of modulus of elasticity $(E_s)$ for different types of soils<br>Type of Soil $E_s$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250<br>Glacial till<br>Loose 10–153<br>Dense 144–720<br>Very dense 478–1,440<br>Loess 14–57<br>Sand                                                                                                                                            | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |
| a C.2 Typical values of modulus of elasticity ( $\mathcal{E}_{s}$ ) for different types of soils<br>Type of Soil $\mathcal{E}_{s}(Nimn^{3})$<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250<br>Glacial till<br>Loose 10–153<br>Dense 144–720<br>Very dense 478–1,440<br>Loess 14–57<br>Sand<br>Sitly 7–21<br>Loose 10–24<br>Dense 48–81<br>Sand and gravel                                                              | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |
| a C.2 Typical values of modulus of elasticity $(\mathcal{E}_{s})$ for different types of soils<br>Type of Soil $\mathcal{E}_{s}$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250<br>Glacial till<br>Loose 10–153<br>Dense 144–720<br>Very dense 478–1,440<br>Loess 14–57<br>Sand<br>Silty 7–21<br>Loose 10–24<br>Dense 48–81<br>Sand and gravel<br>Loose 48–148<br>Dense 96–192<br>Shale 144–14,400 | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | assume all buoyant)<br>$E_s := 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty        |
| a C.2 Typical values of modulus of elasticity $(\mathcal{E}_{s})$ for different types of soils<br>Type of Soil $\mathcal{E}_{s}$ (N/mm <sup>2</sup> )<br>Clay<br>Very soft 2–15<br>Soft 5–25<br>Medium 15–50<br>Hard 50–100<br>Sandy 25–250<br>Glacial till<br>Loose 10–153<br>Dense 144–720<br>Very dense 478–1,440<br>Loess 14–57<br>Sand<br>Silty 7–21<br>Loose 10–24<br>Dense 48–81<br>Sand and gravel<br>Loose 48–148<br>Dense 96–192<br>Shale 144–14,400 | assume all buoyant)<br>$E_s \coloneqq 15 \frac{N}{mm^2} = 2176 \text{ psi}$ Assumed modulus of elasticity; silty |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101.A - Stream S-33 & Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                  |
| Table C.4 Typical values of Poisson's ratio (μ) for soils           Type of soil         μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                       |                                                                                                                                                                                  |
| Clay (saturated)         0.4 - 0.5           Clay (unsaturated)         0.1 - 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                                                                                                  |
| Sandy clay 0.2 - 0.3<br>Silt 0.3 - 0.35<br>Sand (dense) 0.2 - 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | $\nu_s \coloneqq 0.4$                                                                                                                                                            |
| Course (void ratio = 0.4 - 0.7)         0.15           Fine grained (void ratio = 0.4 - 0.7)         0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 AC                                                                          | Poissions ratio of material encountered                                                                                                                                          |
| Rock         0.1–0.4 (depend           Loess         0.1 – 0.3           Ice         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s on type of rock)                                                             |                                                                                                                                                                                  |
| Concrete 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                                                                                                  |
| $G \coloneqq \frac{E_s}{2 (1 + \nu_s)} = 777 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | Shear modulus of soil                                                                                                                                                            |
| $(\sigma' \cdot \sin(\phi)) + (c \cdot 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                  |
| $Q \coloneqq \frac{\left(\sigma'_{0} \cdot \sin(\phi)\right) + (c \cdot 0)}{C} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                                                                                                                                                                  |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | Coefficient of Delft Equation                                                                                                                                                    |
| (1, -1, (1, -1, (1)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4) 22 2                                                                       |                                                                                                                                                                                  |
| $p'_f \coloneqq \sigma'_0 \cdot (1 + \sin(\phi)) + c \cdot \cos(\phi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\phi(\phi) = 22.8 \ psi$                                                      | Mud pressure at which the first plastic                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | deformation takes place                                                                                                                                                          |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(-\sin(\phi))$                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1 + \sin(\phi)$                                                               |                                                                                                                                                                                  |
| $p'_{max} \coloneqq \left(p'_f + (c \cdot 0)\right) \cdot \left( \left( \left( \frac{R_0}{R_{pma}} \right) \right) \cdot \left( \left( \frac{R_0}{R_{pma}} \right) \right) + \left( \left( \frac{R_0}{R_{pma}} \right) \right) \right) + \left( \frac{R_0}{R_{pma}} \right) \right) + \left( \frac{R_0}{R_{pma}} \right) + \left( \frac{R_0}{R_{pma}$ | - +Q                                                                           | $-c \cdot 0 = 22.8 \ psi$                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | /                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | Maximum allowable effective mud pressure (Delft Equation)                                                                                                                        |
| $p_{max} \coloneqq u + p'_{max} = 22.8 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Maximum allowable mud pressure                                                                                                                                                   |
| $p_{max} - a + p_{max} - 22.0$ ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                                                                                                  |
| <u>C2 -Min. Allowable Drilling F</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>luid Pressure</u>                                                           |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                  |
| $D_{PT} := 5 $ <i>in</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                | Pilot tube diameter                                                                                                                                                              |
| $D_0 := 9.5 in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | Initial borehole diameter for pilot tube                                                                                                                                         |
| $h \coloneqq 39.34 \ ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                | Elevation difference between level of bore                                                                                                                                       |
| $\gamma_m = 90 \ pcf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                | hole front and exit point of mud flow<br>Unit weight of slurry/mud                                                                                                               |
| $p_1 \coloneqq \gamma_m \cdot h = 24.6 \text{ psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | Minimum required mud pressure to                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | overcome differntial head                                                                                                                                                        |
| $Q_f \coloneqq 200 \ gpm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Assumed mud flow rate                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                  |
| $\tau_o \coloneqq 16 \ \frac{lbf}{100 \cdot ft^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Assumed yield point of mud per 100 square feet                                                                                                                                   |
| poise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                                                                                                                                                  |
| $\underline{\qquad } \mu_{pl} \coloneqq 25 \cdot \frac{poise}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | Assumed plastic viscosity of mud                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                  |
| $v \coloneqq \frac{Q_f}{0.785 \left(D_0^2 - D_{PT}^2\right)} = 75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .2 <u>ft</u>                                                                   | Computed mud flow velocity                                                                                                                                                       |
| $0.785 \left( {D_0}^2 - {D_{PT}}^2  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | min                                                                            |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                                                                                                  |

| <b>KILDUFF</b>                                          | Ь |
|---------------------------------------------------------|---|
| U N D E R G R O U N D<br>E N G I N E E R I N G , I N C. | P |

Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

 $L_{structure} \coloneqq 350 \ ft$ 

Length to sturcture

$$p_2 \coloneqq L_{structure} \cdot \left( \left( \frac{\mu_{pl} \cdot v}{\left( D_0 - D_{PT} \right)^2} \right) + \left( \frac{\tau_o}{\left( D_0 - D_{PT} \right)} \right) \right) = 1 \ psi$$

Minimum required mud pressure to create flow inside the borehole

 $p_{min.} = p_1 + p_2 = 25.6 \ psi$ 

Minimum required mud pressure

 $check := if(p_{max} > p_{min.}, "okay", "not okay") = "not okay"$ 

Crossing will require risk mitigation of conductor casing &/or relief wells.



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| ned Borehole with Arching Mobilized)<br>pepth of cover<br>riction angle of soil<br>Silo" width, conservative value =<br>eamed hole diameter<br>arth pressure coefficient<br>Init weight of soil, assumed<br>rching factor (Eq. 6, p.432, PPI) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| riction angle of soil<br>Silo" width, conservative value =<br>eamed hole diameter<br>arth pressure coefficient<br>nit weight of soil, assumed<br>rching factor (Eq. 6, p.432, PPI)                                                            |
| Silo" width, conservative value =<br>eamed hole diameter<br>arth pressure coefficient<br>Init weight of soil, assumed<br>rching factor (Eq. 6, p.432, PPI)                                                                                    |
| arth pressure coefficient<br>Init weight of soil, assumed<br>rching factor (Eq. 6, p.432, PPI)                                                                                                                                                |
| rching factor (Eq. 6, p.432, PPI)                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                               |
| ffective overburden pressure                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                               |
| pparent modulus of elasticity for<br>E4710, Base Temperature of 73 deg.<br>ahrenheit at 10 hrs of sustained loading<br>Table X1.1 ASTM F 1962)                                                                                                |
| ariable in earth load deflection equation                                                                                                                                                                                                     |
| ipe deflection to diameter as per<br>PI Equ. 10 (Chp 12, p 437, PPI Handboo                                                                                                                                                                   |
|                                                                                                                                                                                                                                               |
| pparent modulus of elasticity for PE4710<br>ase Temperature of 73 Fahrenheit at 50<br>ears of sustained loading (Table X1.1<br>STM F 1962)                                                                                                    |
| ariable in earth load deflection equation                                                                                                                                                                                                     |
| ipe deflection to diameter as per<br>PI Equ. 10 (Chp 12, p 437)                                                                                                                                                                               |
|                                                                                                                                                                                                                                               |

| U N D E R G R O U N D<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                          | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101.A - Stream S-33 & Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D2 - Buoyant Deflection                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                    |
| D2.1 Buoyant Deflection                                                                                                                                                                                                                                                                                                                                             | (Short Term)                                                                   |                                                                                                                                                                                                                                                                                    |
| $D_1 = 10.75$ in                                                                                                                                                                                                                                                                                                                                                    |                                                                                | Outside diameter of casing pipe                                                                                                                                                                                                                                                    |
| $t := T_{p1} = 1.194$ in                                                                                                                                                                                                                                                                                                                                            |                                                                                | Thickness of casing pipe                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Apparent modulus of elasticity for                                                                                                                                                                                                                                                 |
| $E_{short} \!=\! 57500  {\it psi}$                                                                                                                                                                                                                                                                                                                                  |                                                                                | PE4710, Base Temperature of 73                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Fahrenheit (Table B.1.1)                                                                                                                                                                                                                                                           |
| $\gamma_m = 90  pcf$                                                                                                                                                                                                                                                                                                                                                |                                                                                | Assumed unit weight of fluid in                                                                                                                                                                                                                                                    |
| $t^3$ $in^4$                                                                                                                                                                                                                                                                                                                                                        |                                                                                | borehole (Slurry unit weight)                                                                                                                                                                                                                                                      |
| $\gamma_{m} = 90 \text{ pcf}$ $I := \frac{t^{3}}{12} = 0.14 \frac{in^{4}}{in}$ $0.1169 \cdot \gamma_{m} \cdot \left(\frac{\Delta y_{bouyant}}{E_{short}} \cdot I\right)$                                                                                                                                                                                            | $(D_1)^4$                                                                      | Moment of inertia of pipe wall cross section                                                                                                                                                                                                                                       |
| $0.1169 \cdot \gamma_m \cdot$                                                                                                                                                                                                                                                                                                                                       |                                                                                | Pipe ring deflection to buoyant force                                                                                                                                                                                                                                              |
| $\Delta y_{bouyant} :=$                                                                                                                                                                                                                                                                                                                                             | =0.1%                                                                          | ASTM F 1962 (Eq. X2.6, p.6)                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                                                                                    |
| D2.1 Buoyant Deflection (                                                                                                                                                                                                                                                                                                                                           | (Long Term)                                                                    |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                                                                                    |
| D3 - Reissner Effect Defle<br>D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                             |                                                                                | -                                                                                                                                                                                                                                                                                  |
| D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                           |                                                                                | -                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Poisson's Ratio for PE pipe material at                                                                                                                                                                                                                                            |
| $D3.1 - Reissner Effect Det  \mu_{short} = 0.35$ $R = 1000 ft$                                                                                                                                                                                                                                                                                                      | flection (Short Term)                                                          | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                          |
| $D3.1 - Reissner Effect Det  \mu_{short} = 0.35$ $R = 1000 ft$                                                                                                                                                                                                                                                                                                      | flection (Short Term)                                                          | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                |
| D3.1 - Reissner Effect De                                                                                                                                                                                                                                                                                                                                           | flection (Short Term)                                                          | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                                                                                                                                                          |
| $D3.1 - \text{Reissner Effect Der}$ $\mu_{short} \coloneqq 0.35$ $R \equiv 1000 \text{ ft}$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_1\right)$ $16 \cdot t^2 \cdot R^2$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right)$                                                           | $\frac{t}{t}^{4} = 0.0000033$ $) \cdot z^{2} = 0.0002\%$                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature                                                                                                                                                                                |
| $D3.1 - \text{Reissner Effect Der}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - t_2)}{16 \cdot t^2 \cdot R^2}$                                                                                                                                                                               | $\frac{t}{t}^{4} = 0.0000033$ $) \cdot z^{2} = 0.0002\%$                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnner                                                                                          |
| $D3.1 - \text{Reissner Effect Der}$ $\mu_{short} \coloneqq 0.35$ $R \equiv 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - \mu_{short}^2)}{16 \cdot t^2 \cdot R^2}$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right)$ $D3.2 - \text{Reissner Effect Der}$ $\mu_{long} \coloneqq 0.45$ | $\frac{t}{t}^{4} = 0.0000033$ $) \cdot z^{2} = 0.0002\%$                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnner<br>Effect<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2) |
| $D3.1 - \text{Reissner Effect Der}$ $\mu_{short} \coloneqq 0.35$ $R = 1000 \text{ ft}$ $z \coloneqq \frac{3}{2} \cdot \left(1 - \mu_{short}^2\right) \left(D_1 - z_1\right)$ $16 \cdot t^2 \cdot R^2$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right)$ $D3.2 - \text{Reissner Effect Der}$                            | $\frac{t}{t}^{4} = 0.0000033$ $) \cdot z^{2} = 0.0002\%$                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnner<br>Effect<br>Poisson's Ratio for PE pipe material at                                     |
| $D3.1 - \text{Reissner Effect Der}$ $\mu_{short} \coloneqq 0.35$ $R \equiv 1000 \text{ ft}$ $z \coloneqq \frac{\frac{3}{2} \cdot (1 - \mu_{short}^2) (D_1 - \mu_{short}^2)}{16 \cdot t^2 \cdot R^2}$ $\Delta y_{R\_short} \coloneqq \left(\frac{2}{3}\right) \cdot z + \left(\frac{71}{135}\right)$ $D3.2 - \text{Reissner Effect Der}$ $\mu_{long} \coloneqq 0.45$ | $\frac{t}{t}^{4} = 0.0000033$ $) \cdot z^{2} = 0.0002\%$                       | Poisson's Ratio for PE pipe material at<br>short term (ASTM F 1962, 8.2.4.2)<br>Radius of curvature<br>Deflection due to longitudinal bending<br>Pipe ring deflection due to the Reisnner<br>Effect<br>Poisson's Ratio for PE pipe material at<br>long term (ASTM F 1962, 8.2.4.2) |

| ALDUFF                                                           | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package<br>Crossing #101.A - Stream S-33 & Culvert Cro<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |     |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <u> D4 - Net Ring Deflectio</u>                                  | <u>n</u>                                                                       |                                                                                                                                                                           |     |
| $\Delta y_{lim}$ := 7.5%                                         |                                                                                | Deflection limit for DR 9 non pressuriz                                                                                                                                   |     |
| D4.1 - Net Short Term                                            |                                                                                | pipe (Table 2 , p. 437, PPI Handbook)                                                                                                                                     | )   |
| $\Delta y_{short\_net}$ := $\Delta y_{ELD\_short}$               | $_{t}+ \Delta y_{bouyant}+ \Delta y_{R\_sho}$                                  | $_{rt} = 2.0\%$ Percent ring deflection in sho<br>term analysis                                                                                                           | ort |
| $Check \coloneqq 	ext{if} \left( \Delta y_{short\_net} <  ight)$ | $<\!\Delta y_{lim},$ "okay", "not of                                           | okay") = "okay"                                                                                                                                                           |     |
| D4.2 - Net Long Term                                             |                                                                                |                                                                                                                                                                           |     |
| $\Delta y_{long\_net} \coloneqq \Delta y_{ELD\_long}$            | $+\Delta y_{R\_long} = 3.9\%$                                                  | Percent ring deflection in long term<br>analysis (50 years)                                                                                                               |     |
| $Check \coloneqq 	ext{if} \left( \Delta y_{long\_net} <  ight)$  | $\Delta y_{lim},$ "okay", "not o                                               | okay") = "okay"                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |
|                                                                  |                                                                                |                                                                                                                                                                           |     |



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

| D5.1 - Unconstrained Ring Bucklin                                                                                                                                             | ng, Levy's Equation (Short Term-During Pull)                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                               | ill increase the pipe's buckling strength, therefore dition will produce a conservative value.                                                    |
| N:=2.0                                                                                                                                                                        | Factor of Safety                                                                                                                                  |
| $\mu_{short} \coloneqq 0.35$                                                                                                                                                  | Poisson's Ratio for PE pipe material at short term (ASTM F 1962, 8.2.4.2)                                                                         |
| $E_{short} \!=\! 57500  \mathbf{psi}$                                                                                                                                         | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 10 hrs of sustained loadin<br>(Table X1.1 ASTM F 1962) |
| 0 2 4 6 8 10 12<br>% DEPLECTION                                                                                                                                               | 5                                                                                                                                                 |
| 2<br>0.0<br>0 2 4 6 8 10 12                                                                                                                                                   |                                                                                                                                                   |
| f <sub>0</sub> 6                                                                                                                                                              | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Calculated<br>deflection limit in section D4.1                                            |
| 8                                                                                                                                                                             | $f_{o\_short} \coloneqq 0.85$                                                                                                                     |
|                                                                                                                                                                               | $\left(\frac{1}{n}\right)^{3} \cdot \frac{f_{o\_short}}{N} = 108.8 \text{ psi}$ Allowable unconstrained buckling pressure                         |
| H=39.37 <b>ft</b>                                                                                                                                                             | Elevation difference between the lowest                                                                                                           |
| $P \rightarrow \gamma \gamma H = 24.61$ mei                                                                                                                                   | point in borehole and entry or exit pit<br>Pressure of drilling slurry                                                                            |
| $m_{mud} = \gamma_m \cdot m - 24.01 \text{ pst}$                                                                                                                              |                                                                                                                                                   |
|                                                                                                                                                                               | Net external loading with open borehole                                                                                                           |
| $P_{mud} \coloneqq \gamma_m \cdot H = 24.61 \text{ psi}$ $P_{net} \coloneqq P_{mud} = 24.61 \text{ psi}$ $Check \coloneqq \text{if } (P_{UC\_short} > P_{net}, \text{``oka})$ |                                                                                                                                                   |
| $P_{net} \coloneqq P_{mud} = 24.61 \ psi$                                                                                                                                     | y", "not okay") = "okay"                                                                                                                          |
| $P_{net} := P_{mud} = 24.61 \ psi$<br>$Check := if (P_{UC\_short} > P_{net}, "okay)$<br>D5.2 - Unconstrained Ring Buckling<br>Note that constraining the pipe w               | y", "not okay") = "okay"<br>ng, Levy's Equation (Long Term)<br>ill increase the pipe's buckling strength, therefore                               |
| $P_{net} := P_{mud} = 24.61 \ psi$<br>$Check := if (P_{UC\_short} > P_{net}, "okay)$<br>D5.2 - Unconstrained Ring Buckling<br>Note that constraining the pipe w               | ng, Levy's Equation (Long Term)                                                                                                                   |

| KILDUFF<br>UNDERGROUND<br>ENGINEERING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project:<br>Tunnel No.:<br>Description:<br>Calculated by: DA<br>Checked by: NW | Champlain Hudson Power Express - Package 6<br>Crossing #101.A - Stream S-33 & Culvert Crossing<br>Pull Back and Mud Pressure Calcs<br>Date: 4/16/23 R1: 6/12/23<br>Date: 4/16/23 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{long} = 28200 \; psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | Apparent modulus of elasticity for<br>PE4710, Base Temperature of 73 deg.<br>Fahrenheit at 50 years of sustained<br>loading (Table X1.1 ASTM F 1962)                             |
| $f_{o\_long} \coloneqq 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | Ovality compensation factor, Figure<br>3 (PPI Chp. 12). Use deflection limit<br>calculated in Section D4.2                                                                       |
| $P_{UC\_long} \coloneqq \left(\frac{2 \cdot E_{long}}{1 - \mu_{long}^{2}}\right) \cdot \left(\frac{1 - \mu_{long}^{2}}{1 - \mu_{long}^{2}}\right) \cdot \left(1 - \mu_$ | $\left(\frac{1}{DR_1-1}\right)^3 \cdot \frac{f_{o\_long}}{N} =$                | 31.1 <i>psi</i><br>Allowable unconstrained buckling<br>pressure                                                                                                                  |
| $P_{GW} \coloneqq \gamma_w \cdot H_w = 0 \ psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Groundwater head pressure                                                                                                                                                        |
| $P_{net} \coloneqq P_{GW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Net external loading with open borehole                                                                                                                                          |
| $Check \coloneqq \mathbf{if} \left( P_{UC\_long} > P_{net}, \text{``okay''}, \text{``not okay''} \right) = \text{``okay''}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                                                                                                                                  |
| $Check := \Pi \left( P_{UC\_long} > P_n \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sub>et</sub> , "okay", "not okay                                              | $('') = \operatorname{Okay}^{*}$                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                  |



Champlain Hudson Power Express - Package 6 Crossing #101.A - Stream S-33 & Culvert Crossing Pull Back and Mud Pressure Calcs Date: 4/16/23 R1: 6/12/23 Date: 4/16/23

## **References**

- 1. ASTM F 1962 -05 Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings
- 2. ASTM F 1804-08 Standard Practice for Determining Allowable Tensile Load for Polyethylene (PE) Gas Pipe During Pull-In Installation
- 3. Proposed Soil Properties for CHPE Package 1 HDDs, Kiewit, October 12, 2022.
- 4. Handbook of Polyethylete Pipe, 2008, Plastics Pipe Institute (PPI), Second Edition
- 5. Larry Slavin, 2009, Guidelines for Use of Mini-Horizontal Direction Drilling for Placement of High Density Polyethylene Pipe
- 6. Mohammad Najafi, 2013, Trenchless Technology, First Edition, McGraw Hill