

Powered by 💘 | BOreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 62A		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR		
	СНА		
Description:	HDD 62A 2-inch DR 9		

Input Summary

Start Coordinate	(0.00, 0.00, 284.00) ft
End Coordinate	(714.40, 0.00, 279.00) ft
Project Length	714.40 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 735.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.7	18.6
Water Pressure	18.3	18.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	20.1	36.9
Deflection		
Earth Load Deflection	0.512	5.291
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.541	5.320
Compressive Stress [psi]		
Compressive Wall Stress	90.2	165.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	744.0	744.0
Pullback Stress [psi]	425.1	425.1
Pullback Strain	7.393E-3	7.393E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	425.1	429.8
Tensile Strain	7.393E-3	7.574E-3

Net External Pressure = 26.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.541	7.5	13.9	OK
Unconstrained Collapse [psi]	30.8	132.0	4.3	OK
Compressive Wall Stress [psi]	90.2	1150.0	12.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	40.8	232.5	5.7	OK
Tensile Stress [psi]	429.8	1200.0	2.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE
	Ref: Schnectedy Couty, NY
	HDD 63
	Start Date: 07-24-2023
	End Date: 07-24-2023
Project Owner:	TDI
Project Contractor:	Kiewit + Subs
Project Consultant:	Kiewit, CHA, BCE
Designer:	M Boscardin
	BCE

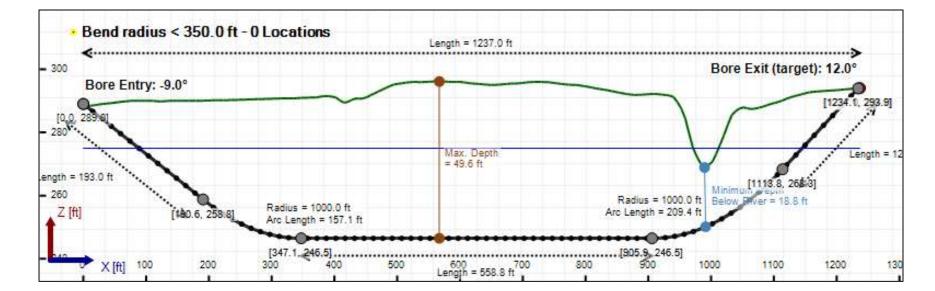
Description:

HDD 63 10-inch HDPE, DR9

Input Summary

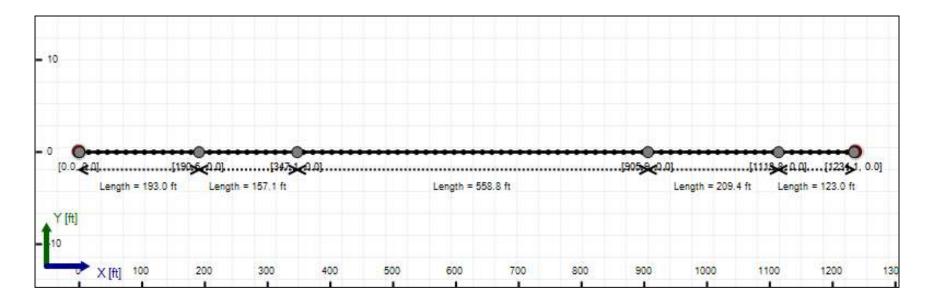
Start Coordinate	(0.00, 0.00, 289.00) ft
End Coordinate	(1237.00, 0.00, 294.00) ft
Project Length	1237.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.10 [psi]


Soil Layer #3 USCS, Gravel (G), GP From Assistant Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 2000.00, Coh: 3000.00 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1245.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	8.1	34.5
Water Pressure	11.4	12.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.5	46.9
Deflection		
Earth Load Deflection	2.206	9.409
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.338	9.541
Compressive Stress [psi]		
Compressive Wall Stress	87.8	211.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	20700.3	20700.3
Pullback Stress [psi]	577.3	577.3
Pullback Strain	1.004E-2	1.004E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	577.3	601.1
Tensile Strain	1.004E-2	1.090E-2

Net External Pressure = 32.0 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.338	7.5	3.2	OK
Unconstrained Collapse [psi]	29.9	112.0	3.7	OK
Compressive Wall Stress [psi]	87.8	1150.0	13.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	41.3	220.6	5.3	OK
Tensile Stress [psi]	601.1	1200.0	2.0	OK

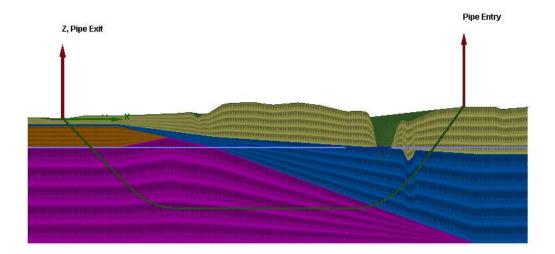
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1578.189 psi	2021.920 psi
1	8.00 in	12.00 in	1577.950 psi	2021.678 psi
2	12.00 in	16.13 in	1577.604 psi	2021.327 psi

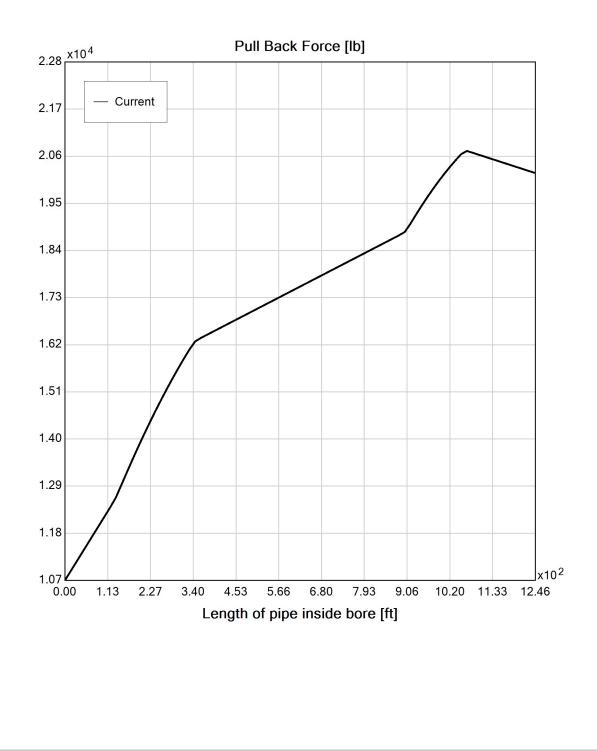
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

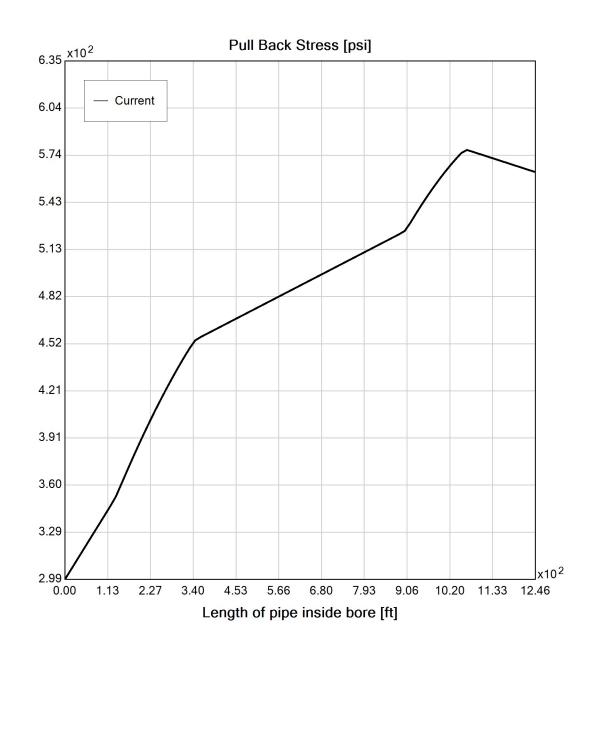
Estimated Circulating Pressure Summary

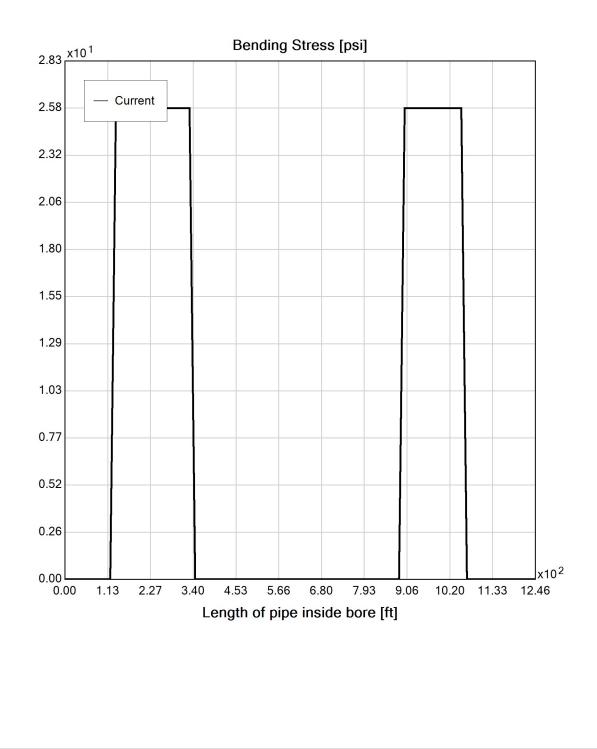
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

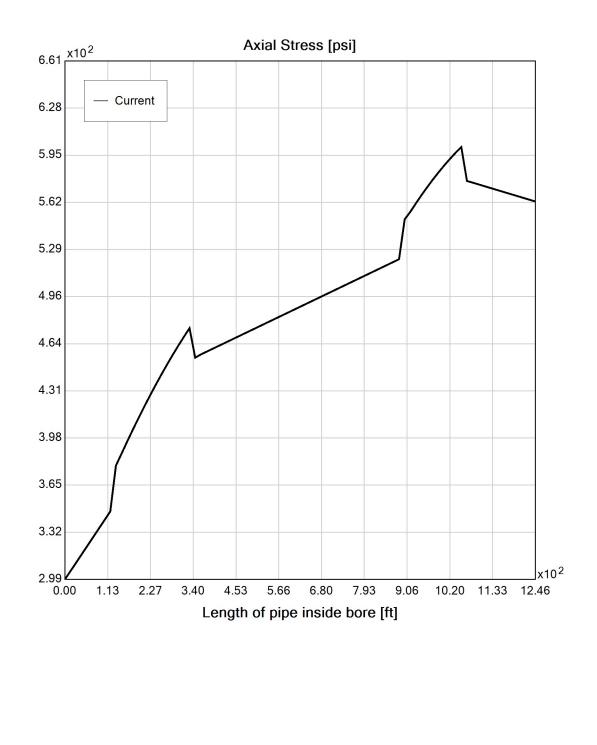

Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

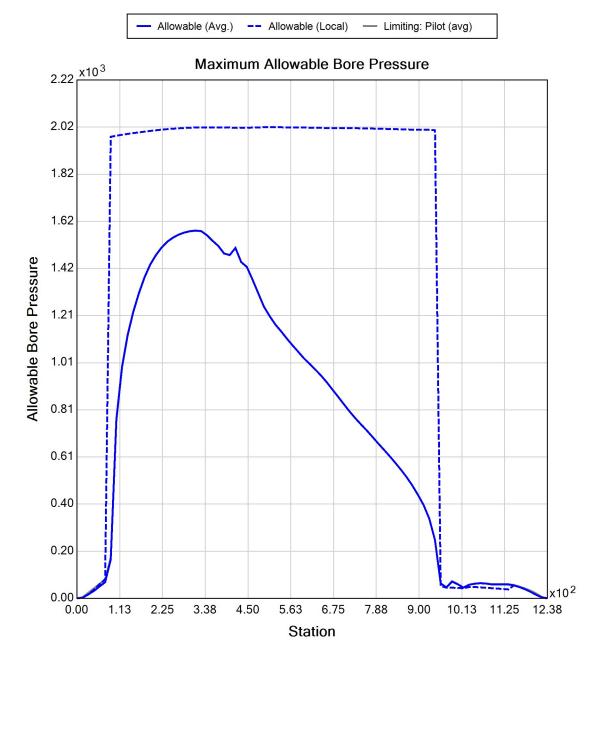
Fluid Consistency Index (K): 63.17

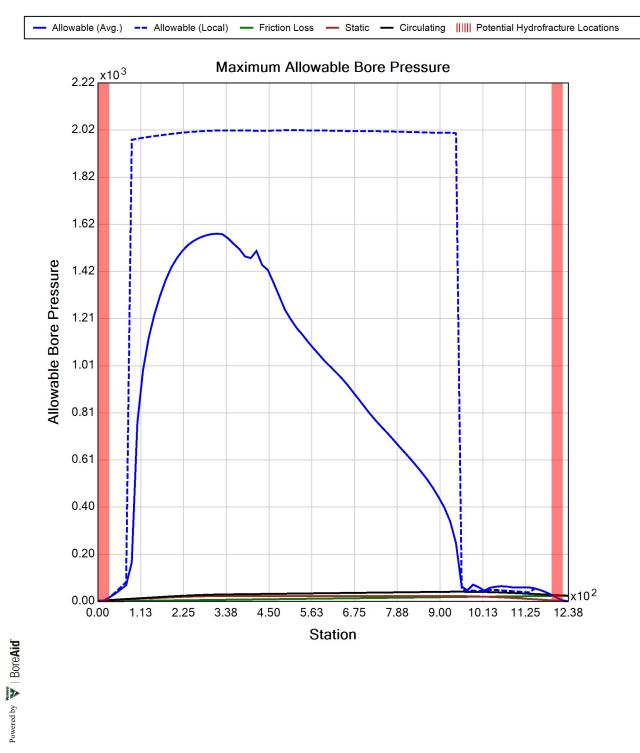

Power Law Exponent (n): 0.14


Effective Viscosity (cP): 333.0


Virtual Site







Powered by

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE
	Ref: Schnectedy Couty, NY
	HDD 63
	Start Date: 07-24-2023
	End Date: 07-24-2023
Project Owner:	TDI
Project Contractor:	Kiewit + Subs
Project Consultant:	Kiewit, CHA, BCE
Designer:	M Boscardin
	BCE

Description:

HDD 63 2-inch HDPE, DR9

Powered by 👻 | BOreAid

Input Summary

Start Coordinate	(0.00, 0.00, 289.00) ft
End Coordinate	(1237.00, 0.00, 294.00) ft
Project Length	1237.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1245.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.1	34.5
Water Pressure	11.4	12.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.5	46.9
Deflection		
Earth Load Deflection	1.934	9.409
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.963	9.438
Compressive Stress [psi]		
Compressive Wall Stress	83.3	211.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1120.0	1120.0
Pullback Stress [psi]	639.9	639.9
Pullback Strain	1.113E-2	1.113E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	639.9	643.6
Tensile Strain	1.113E-2	1.129E-2

Net External Pressure = 32.0 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.963	7.5	3.8	OK
Unconstrained Collapse [psi]	29.9	115.8	3.9	OK
Compressive Wall Stress [psi]	83.3	1150.0	13.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	41.3	218.5	5.3	OK
Tensile Stress [psi]	643.6	1200.0	1.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64
	P4B
	Start Date: 06-27-2023
	End Date: 06-27-2023
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	TAR/MDB rev
	CHA
Description:	HDD 64 10-inch DR9 Conduit 2 revised

Input Summary

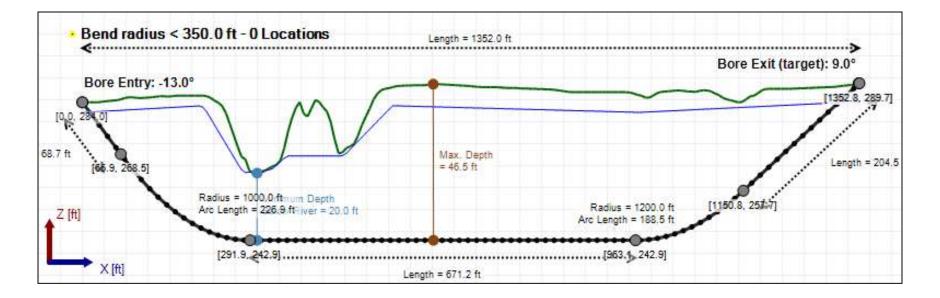
Start Coordinate	(0.00, 0.00, 284.00) ft
End Coordinate	(1352.00, 0.00, 289.70) ft
Project Length	1352.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

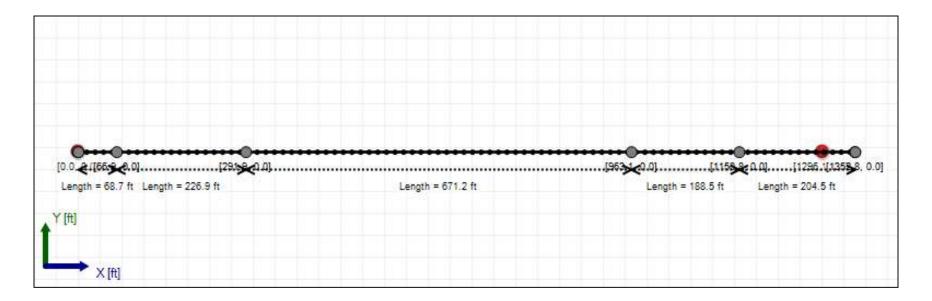
Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SM From Assistant Unit Weight: 115.0000 (dry), 130.0000 (sat) [lb/ft3] Phi: 35.00, S.M.: 650.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 100.0000 (dry), 120.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 400.00, Coh: 8.20 [psi]

Soil Layer #6 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 2000.00, Coh: 3000.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1365.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.6	22.7
Water Pressure	17.4	17.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.0	39.9
Deflection		
Earth Load Deflection	1.262	6.611
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.394	6.743
Compressive Stress [psi]		
Compressive Wall Stress	94.5	179.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	23026.4	23026.4
Pullback Stress [psi]	642.2	642.2
Pullback Strain	1.117E-2	1.117E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	642.2	665.6
Tensile Strain	1.117E-2	1.202E-2

Net External Pressure = 23.0 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.394	7.5	5.4	OK
Unconstrained Collapse [psi]	30.9	121.9	3.9	OK
Compressive Wall Stress [psi]	94.5	1150.0	12.2	OK

Installation Analysis

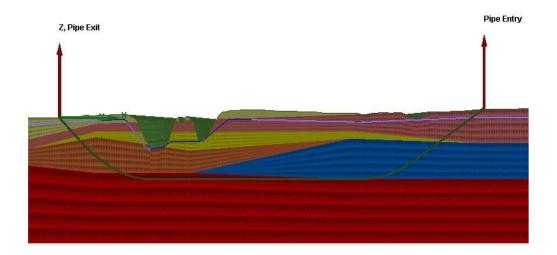
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	40.9	217.4	5.3	OK
Tensile Stress [psi]	665.6	1200.0	1.8	OK

Maximum Allowable Bore Pressure Summary

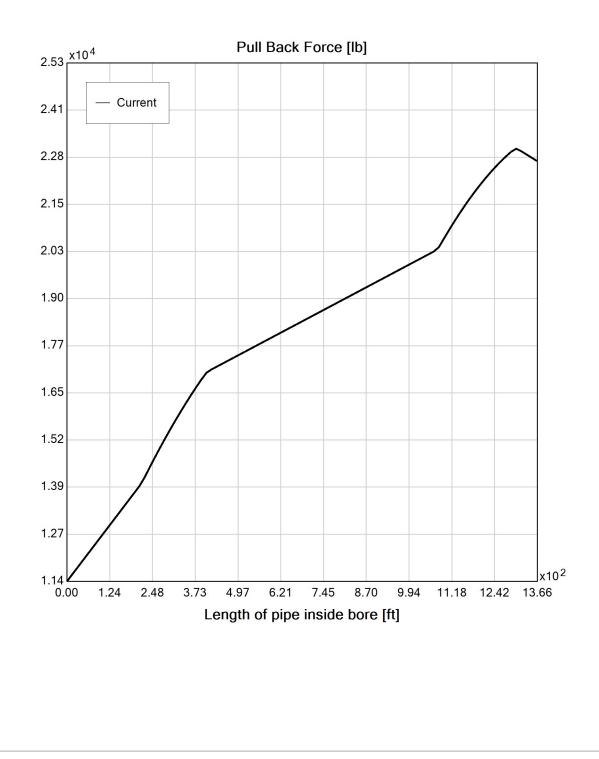
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	865.436 psi	2015.708 psi
1	8.00 in	12.00 in	864.541 psi	2015.439 psi
2	12.00 in	16.13 in	863.244 psi	2015.049 psi

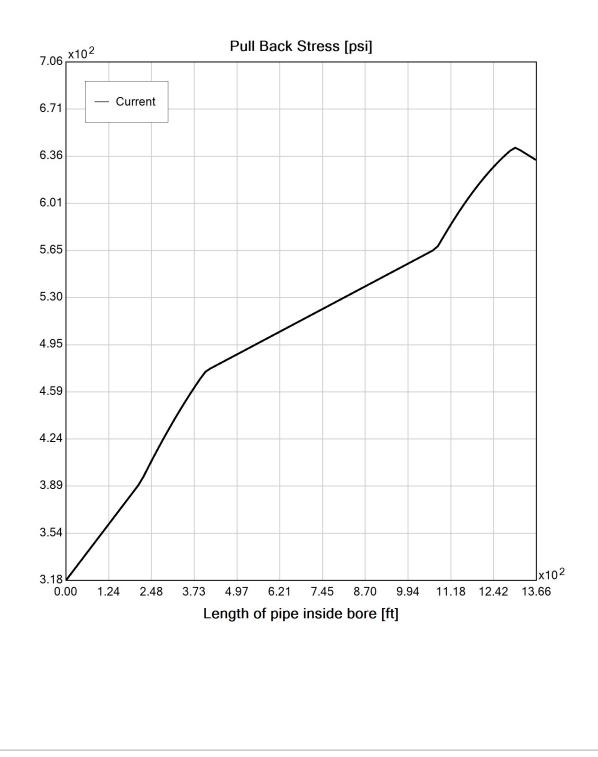
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

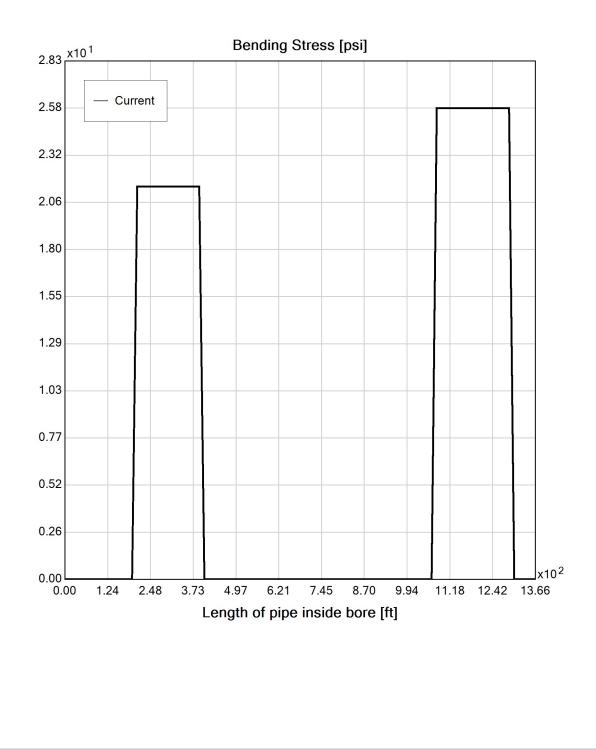
Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

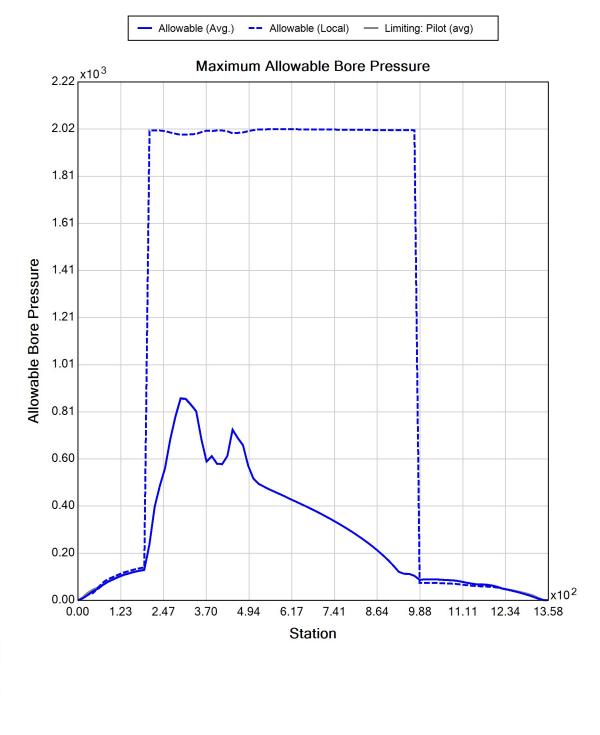
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

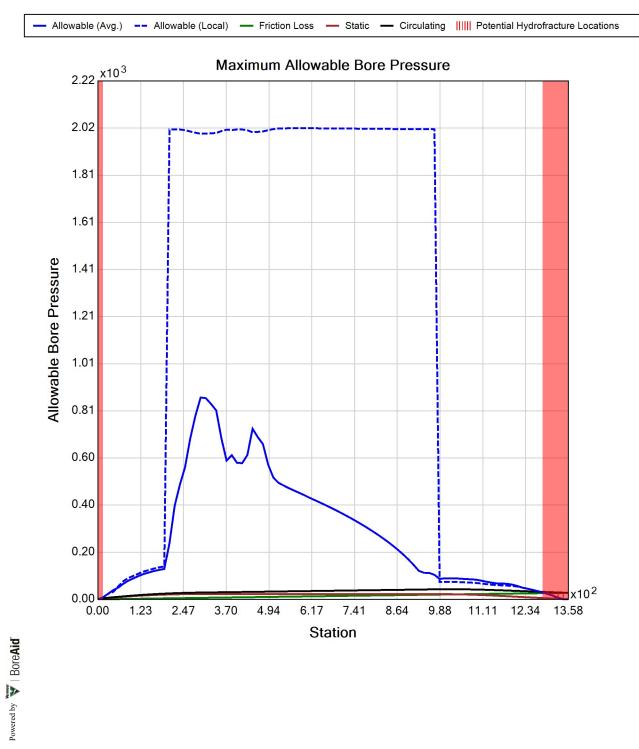

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64
	P4B
	Start Date: 06-27-2023
	End Date: 06-27-2023
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	TAR/MDB rev
	СНА
Description:	HDD 64 2-inch DR9 Conduit 1

Input Summary

Start Coordinate	(0.00, 0.00, 285.00) ft
End Coordinate	(1338.10, 0.00, 288.10) ft
Project Length	1338.10 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1350.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.4	22.6
Water Pressure	17.0	16.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.4	39.5
Deflection		
Earth Load Deflection	0.488	6.144
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.517	6.174
Compressive Stress [psi]		
Compressive Wall Stress	82.8	177.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1218.8	1218.8
Pullback Stress [psi]	696.4	696.4
Pullback Strain	1.211E-2	1.211E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	696.4	700.1
Tensile Strain	1.211E-2	1.227E-2

Net External Pressure = 22.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.517	7.5	14.5	OK
Unconstrained Collapse [psi]	30.3	132.0	4.4	OK
Compressive Wall Stress [psi]	82.8	1150.0	13.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	40.3	215.8	5.4	OK
Tensile Stress [psi]	700.1	1200.0	1.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64	
	P4B	
	Start Date: 06-27-2023	
	End Date: 06-27-2023	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	CHA/BCE	
Designer:	TAR/MDB rev	
	CHA	
Description:	HDD 64 10-inch DR9 Conduit 1	

Input Summary

Start Coordinate	(0.00, 0.00, 285.00) ft
End Coordinate	(1338.10, 0.00, 288.10) ft
Project Length	1338.10 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

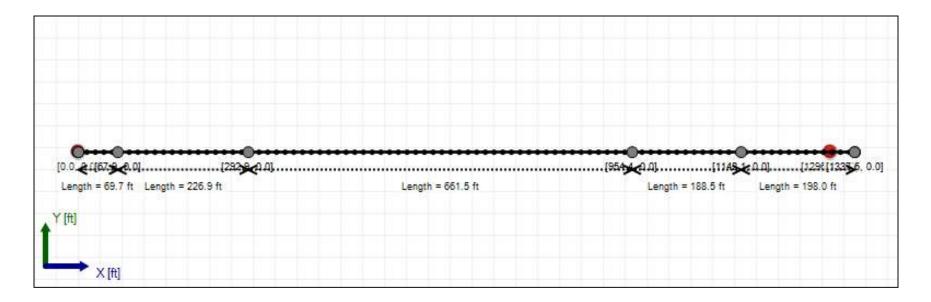
Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SM From Assistant Unit Weight: 115.0000 (dry), 130.0000 (sat) [lb/ft3] Phi: 35.00, S.M.: 650.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 100.0000 (dry), 120.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 400.00, Coh: 8.20 [psi]

Soil Layer #6 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 2000.00, Coh: 3000.00 [psi]

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1350.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.6	22.6
Water Pressure	16.9	16.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	20.6	39.5
Deflection		
Earth Load Deflection	1.215	6.144
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.347	6.277
Compressive Stress [psi]		
Compressive Wall Stress	92.5	177.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	22724.9	22724.9
Pullback Stress [psi]	633.8	633.8
Pullback Strain	1.102E-2	1.102E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	633.8	657.5
Tensile Strain	1.102E-2	1.188E-2

Net External Pressure = 22.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.347	7.5	5.6	OK
Unconstrained Collapse [psi]	30.3	122.9	4.1	OK
Compressive Wall Stress [psi]	92.5	1150.0	12.4	OK

Installation Analysis

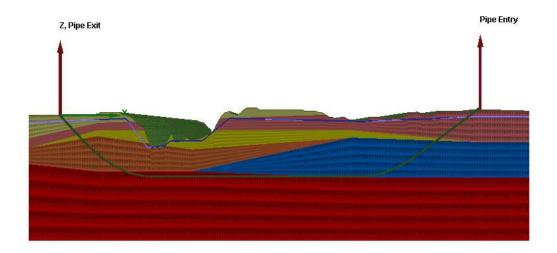
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	40.3	217.9	5.4	OK
Tensile Stress [psi]	657.5	1200.0	1.8	OK

Maximum Allowable Bore Pressure Summary

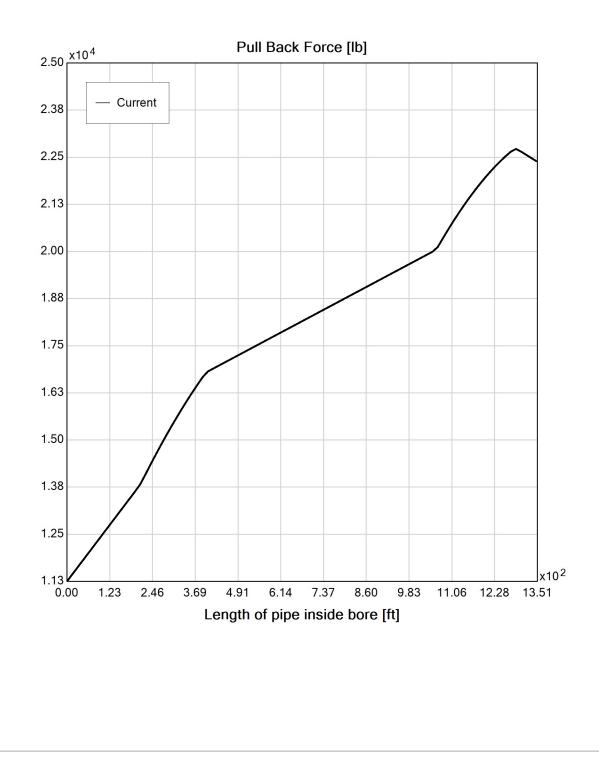
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	787.532 psi	2015.297 psi
1	8.00 in	12.00 in	786.627 psi	2015.025 psi
2	12.00 in	16.13 in	785.318 psi	2014.631 psi

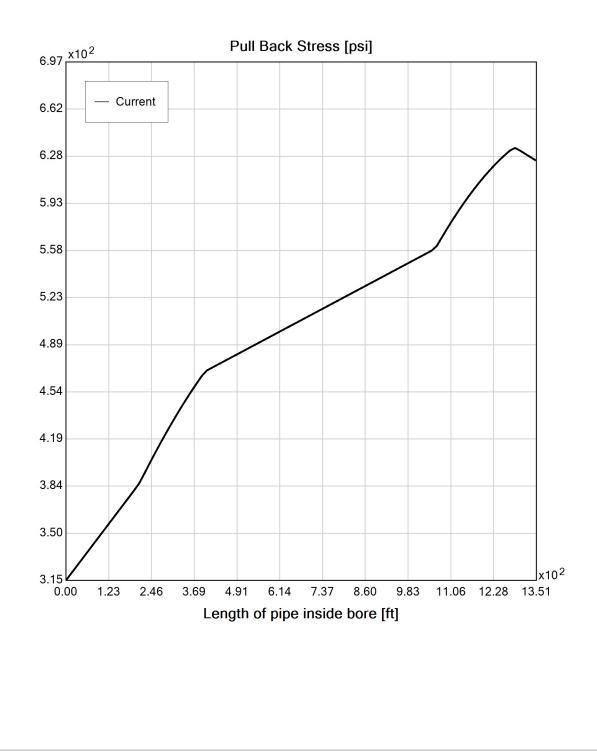
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

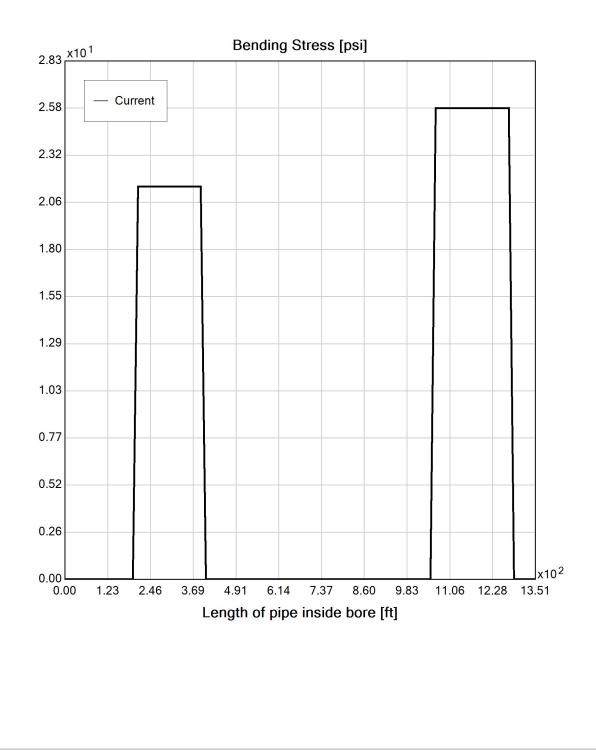
Estimated Circulating Pressure Summary

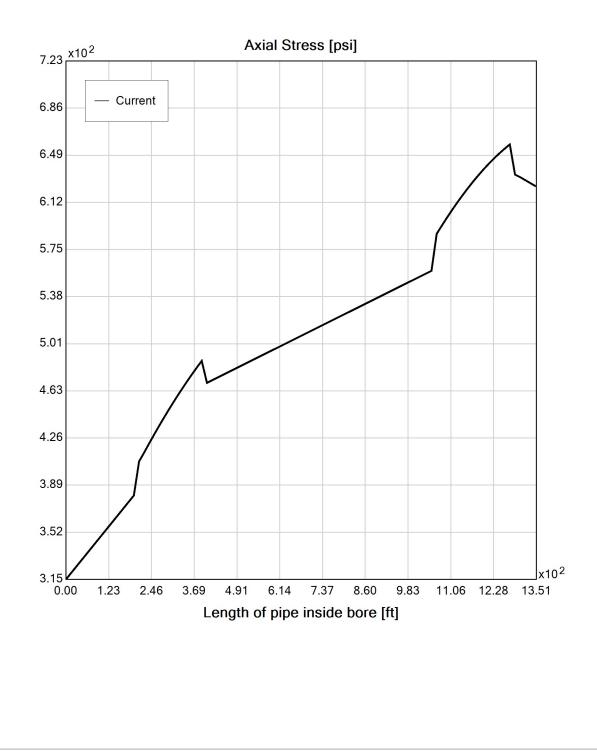

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

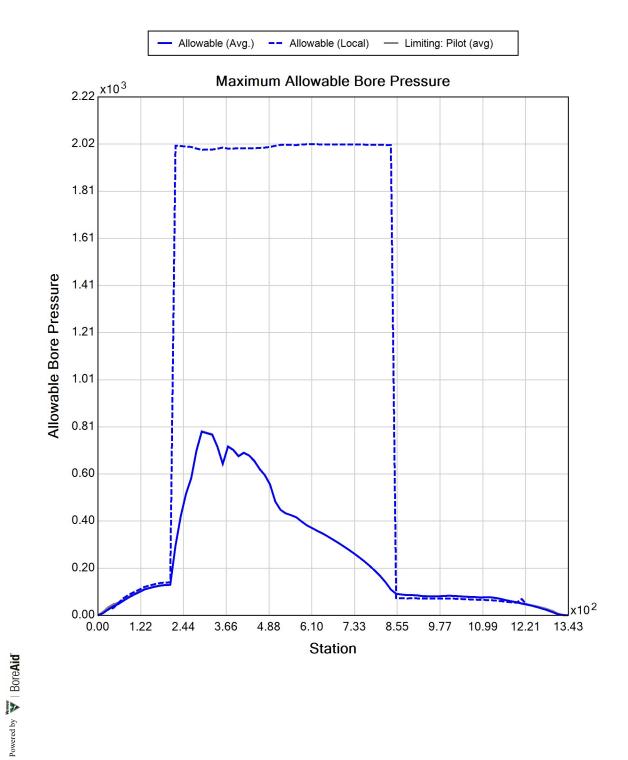
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

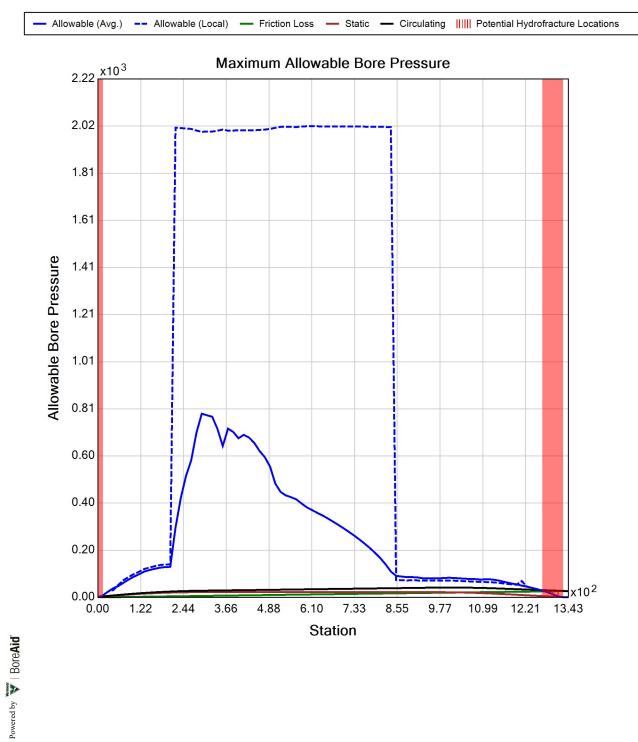

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64		
	P4B		
	Start Date: 06-27-2023		
	End Date: 06-27-2023		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR/MDB rev		
	СНА		
Description:	HDD 64 2-inch DR9 Conduit 2 revised		

Input Summary

Start Coordinate	(0.00, 0.00, 284.00) ft
End Coordinate	(1352.00, 0.00, 289.70) ft
Project Length	1352.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1365.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.4	22.7
Water Pressure	17.4	17.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.8	39.9
Deflection		
Earth Load Deflection	0.501	6.611
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.530	6.640
Compressive Stress [psi]		
Compressive Wall Stress	84.6	179.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1233.5	1233.5
Pullback Stress [psi]	704.8	704.8
Pullback Strain	1.226E-2	1.226E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	704.8	708.2
Tensile Strain	1.226E-2	1.242E-2

Net External Pressure = 23.0 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.530	7.5	14.1	OK
Unconstrained Collapse [psi]	30.9	131.7	4.3	OK
Compressive Wall Stress [psi]	84.6	1150.0	13.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	40.9	215.3	5.3	OK
Tensile Stress [psi]	708.2	1200.0	1.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64A		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	AB		
	СНА		
Description:	HDD 64A 10-inch DR 9 Conduit 1		

Input Summary

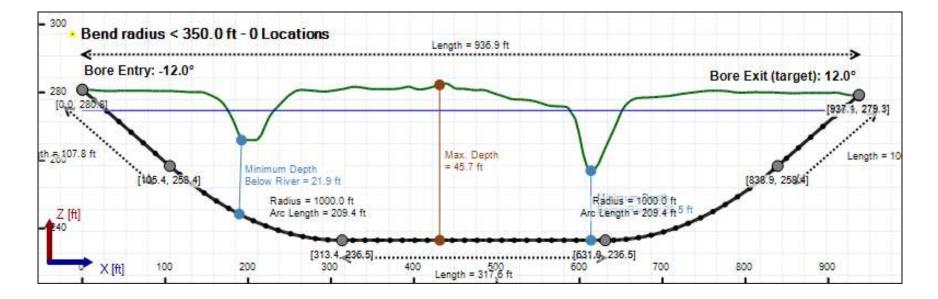
(0.00, 0.00, 280.80) ft
(936.90, 0.00, 279.10) ft
936.90 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Soil Summary

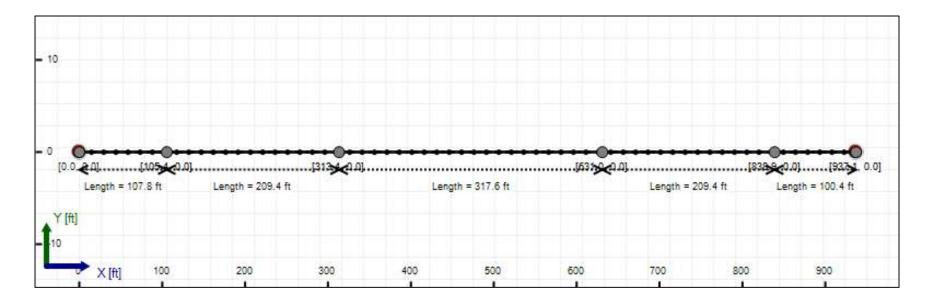
Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SW Depth: 2.20 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP Depth: 2.00 ft Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Sand (S), SM Depth: 8.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP Depth: 5.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Clay (C), CL Depth: 15.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 5.56 [psi]

Soil Layer #6 USCS, Sand (S), SW Depth: 20.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 945.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.4	20.7
Water Pressure	16.5	16.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	20.0	37.3
Deflection		
Earth Load Deflection	1.006	5.640
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.138	5.772
Compressive Stress [psi]		
Compressive Wall Stress	89.8	167.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16224.3	16224.3
Pullback Stress [psi]	452.5	452.5
Pullback Strain	7.869E-3	7.869E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	452.5	476.5
Tensile Strain	7.869E-3	8.735E-3

Net External Pressure = 24.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.138	7.5	6.6	OK
Unconstrained Collapse [psi]	28.8	125.6	4.4	OK
Compressive Wall Stress [psi]	89.8	1150.0	12.8	OK

Installation Analysis

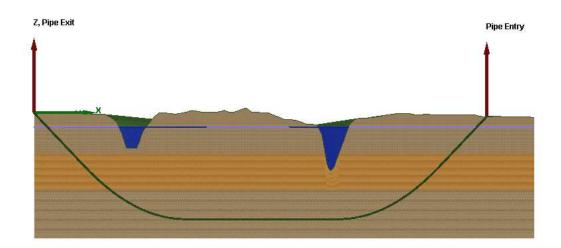
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	38.8	229.0	5.9	OK
Tensile Stress [psi]	476.5	1200.0	2.5	OK

Maximum Allowable Bore Pressure Summary

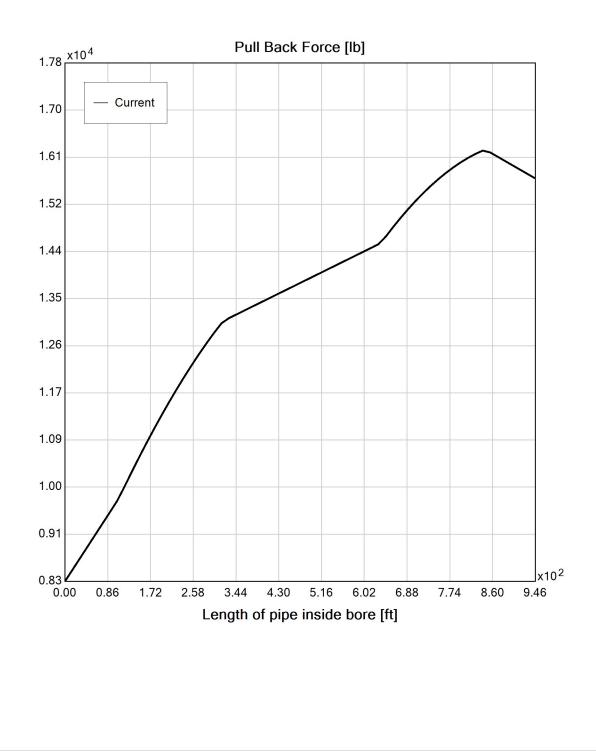
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	85.940 psi	96.438 psi
1	8.00 in	12.00 in	85.894 psi	96.384 psi
2	12.00 in	16.13 in	85.827 psi	96.307 psi

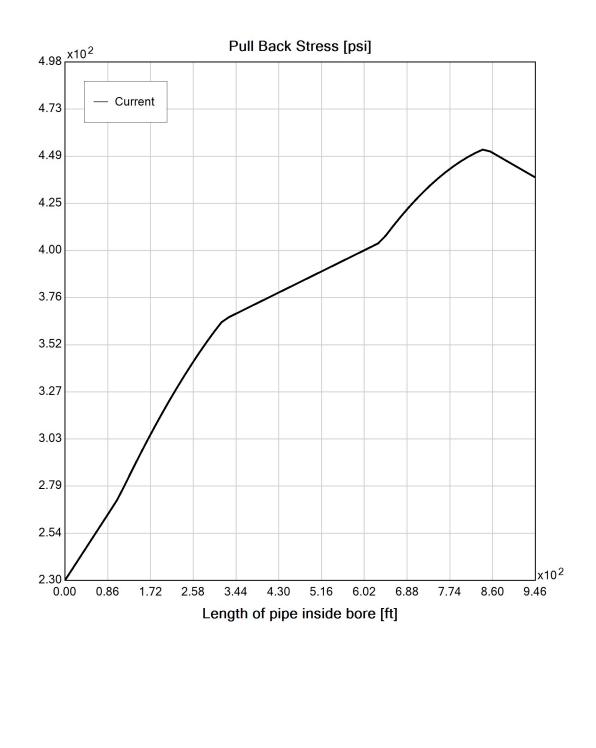
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

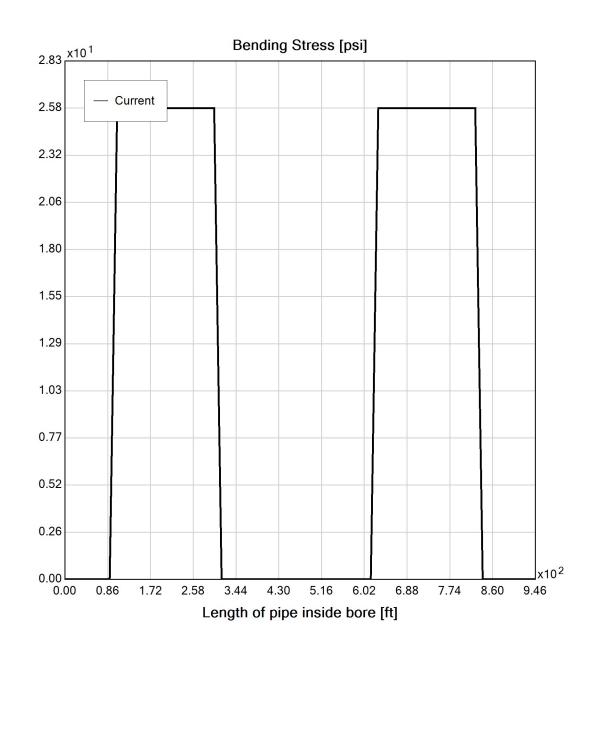
Estimated Circulating Pressure Summary

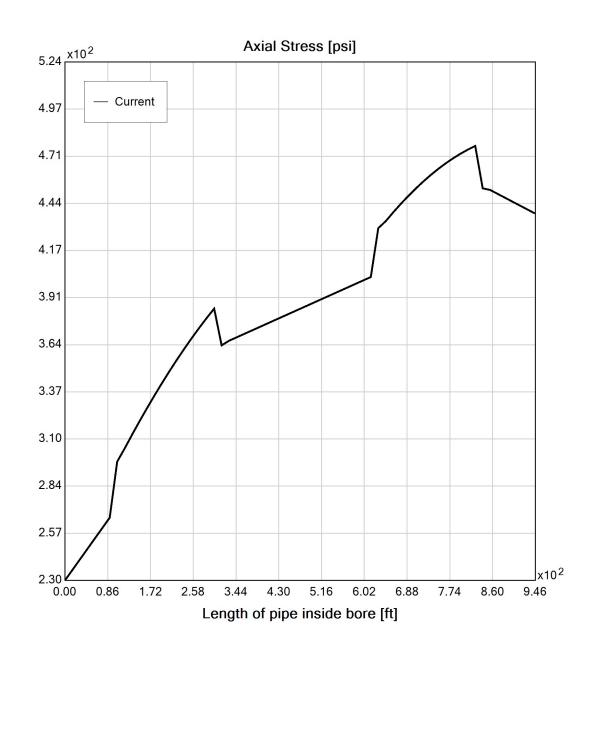

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

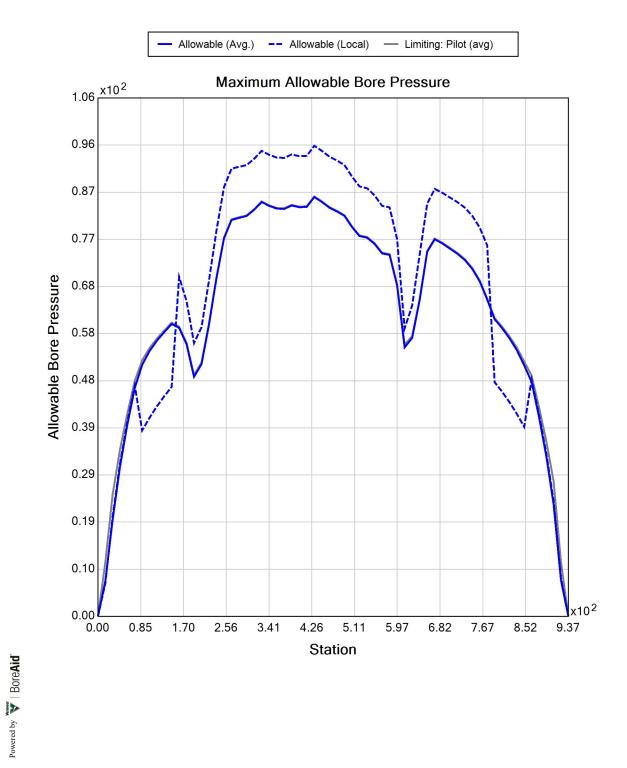
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

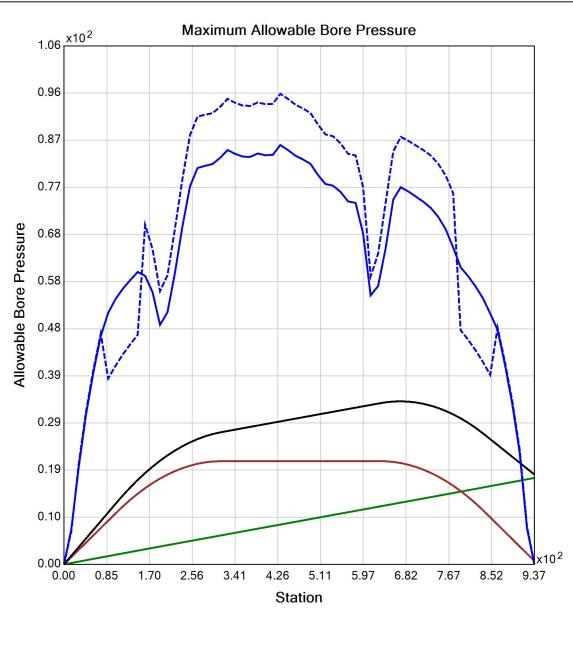

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







- Allowable (Avg.) -- Allowable (Local) -- Friction Loss -- Static -- Circulating |||||| Potential Hydrofracture Locations

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 64A
	P4B
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	AB
	СНА
Description:	HDD 64A 2-inch DR 9 Conduit 1

Input Summary

Start Coordinate	(0.00, 0.00, 280.80) ft	
End Coordinate	(936.90, 0.00, 279.10) ft	
Project Length	936.90 ft	
Pipe Type	HDPE	
OD Classification	IPS	
Pipe OD	2.375 in	
Pipe DR	9.0	
Pipe Thickness	0.26 in	
Rod Length	15.00 ft	
Rod Diameter	3.5 in	
Drill Rig Location	(0.00, 0.00, 0.00) ft	

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 945.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.4	20.7
Water Pressure	16.5	16.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	17.9	37.3
Deflection		
Earth Load Deflection	0.525	5.640
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.555	5.669
Compressive Stress [psi]		
Compressive Wall Stress	80.5	167.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	901.5	901.5
Pullback Stress [psi]	515.1	515.1
Pullback Strain	8.958E-3	8.958E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	515.1	519.0
Tensile Strain	8.958E-3	9.126E-3

Net External Pressure = 24.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.555	7.5	13.5	OK
Unconstrained Collapse [psi]	28.8	133.3	4.6	OK
Compressive Wall Stress [psi]	80.5	1150.0	14.3	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	38.8	227.1	5.9	OK
Tensile Stress [psi]	519.0	1200.0	2.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

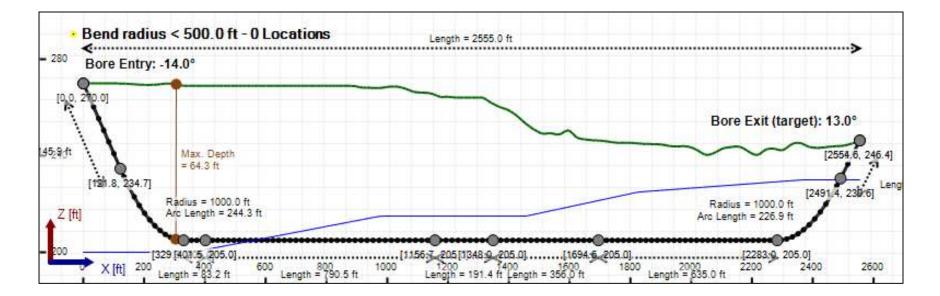
Project Summary

General:	CHPE HDD 65A P4B
	Start Date: 05-16-2023
	End Date: 05-16-2023
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA
Designer:	MDB
	BCE
Description:	HDD 65A Conduit 1, 8- inch DR18 Ballasted possibly can do with rollers and no ballast border line Estimated water 5 ft above top of rock, Estimated Shale to below HDD Bore Path. DR18 as estimate for DR17 installation

Input Summary

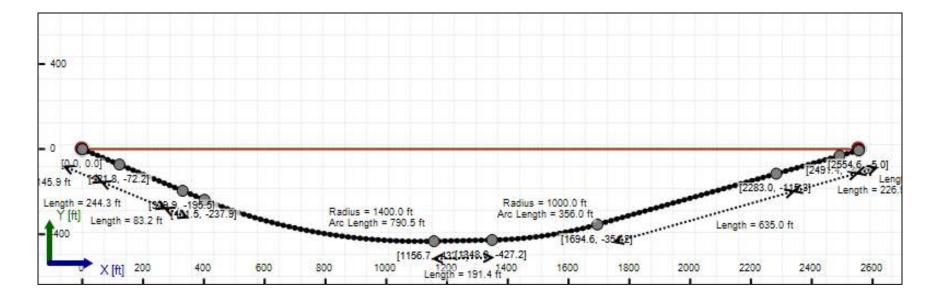
,270.00) ft
0.00, 246.40) ft
,0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SW From Assistant Unit Weight: 125.0000 (dry), 135.0000 (sat) [lb/ft3] Phi: 36.00, S.M.: 800.00, Coh: 0.00 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 2000.00, Coh: 3000.00 [psi]

Bore Cross-Section View

Powered by 💘 | BOreAid

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625") Pipe DR: 18 Pipe Length: 2759.98 ft Internal Pressure: 0 psi Borehole Diameter: 1.07799990971883 ft Silo Width: 1.07799990971883 ft Surface Surcharge: 0 psi Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38 Pipe Unit Weight: 87.40220 lb/ft3 Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.7	50.1
Water Pressure	10.5	4.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	15.2	54.4
Deflection		
Earth Load Deflection	0.967	9.810
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	1.026	9.870
Compressive Stress [psi]		
Compressive Wall Stress	137.0	489.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16686.4	16686.4
Pullback Stress [psi]	1360.8	1360.8
Pullback Strain	3.402E-3	3.402E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	1360.8	1498.3
Tensile Strain	3.402E-3	4.105E-3

Net External Pressure = 17.3 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.026	7.5	7.3	OK
Unconstrained Collapse [psi]	42.3	173.5	4.1	OK
Compressive Wall Stress [psi]	137.0	3200.0	23.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	24.1	161.3	6.7	OK
Tensile Stress [psi]	1498.3	2800.0	1.9	OK

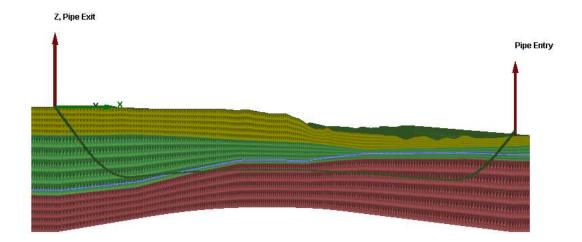
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1410.292 psi	2028.411 psi
1	8.00 in	16.00 in	1409.450 psi	2028.068 psi
2	16.00 in	19.13 in	1408.968 psi	2027.871 psi

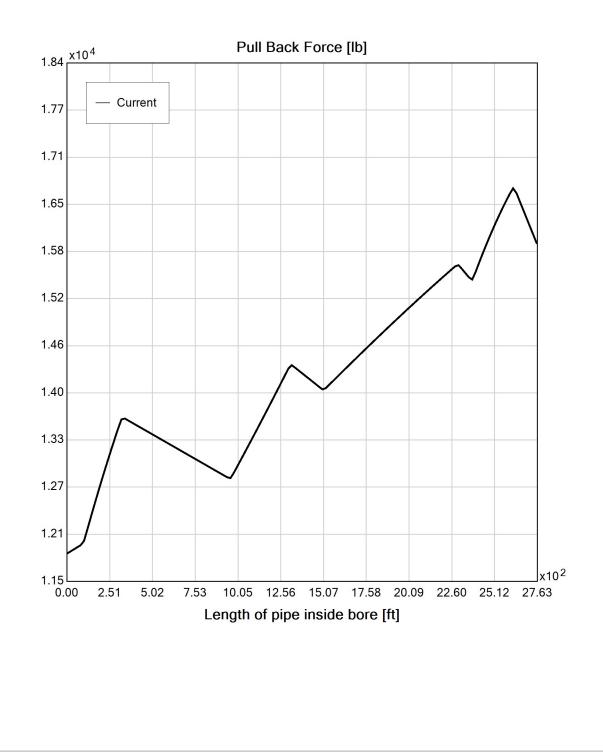
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

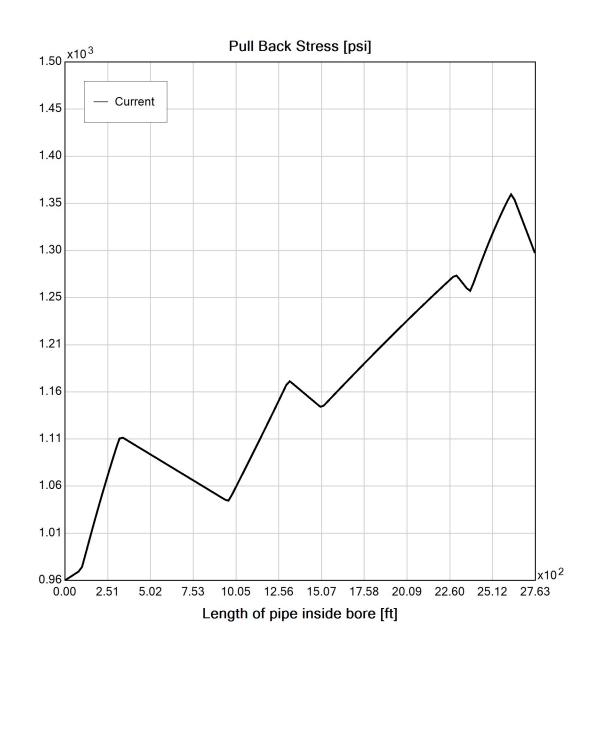
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

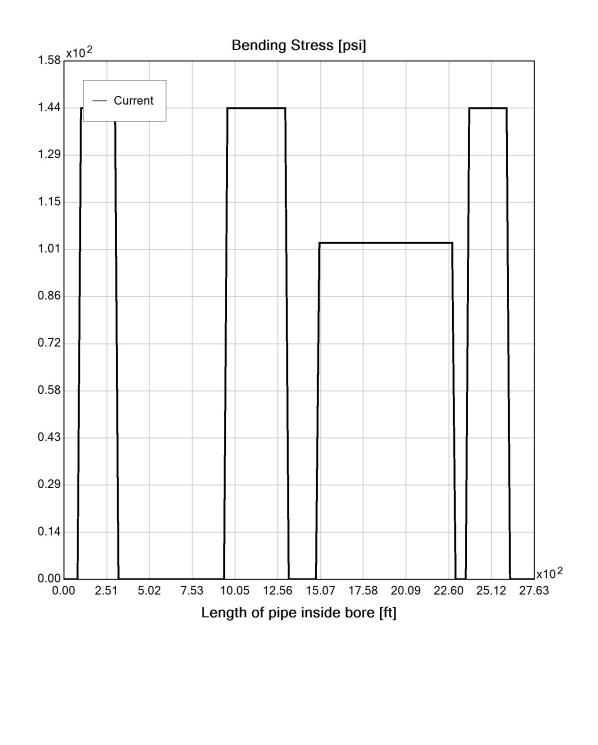

Flow Rate (Q): 280.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

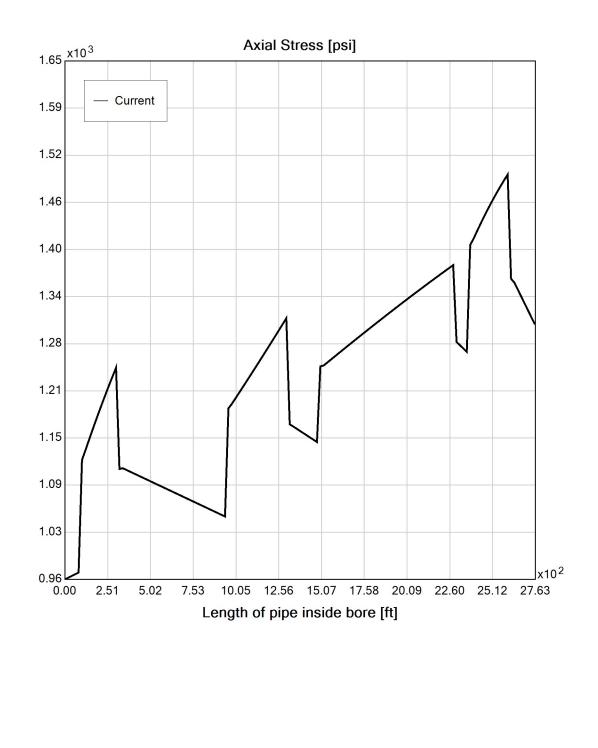
Fluid Consistency Index (K): 63.17

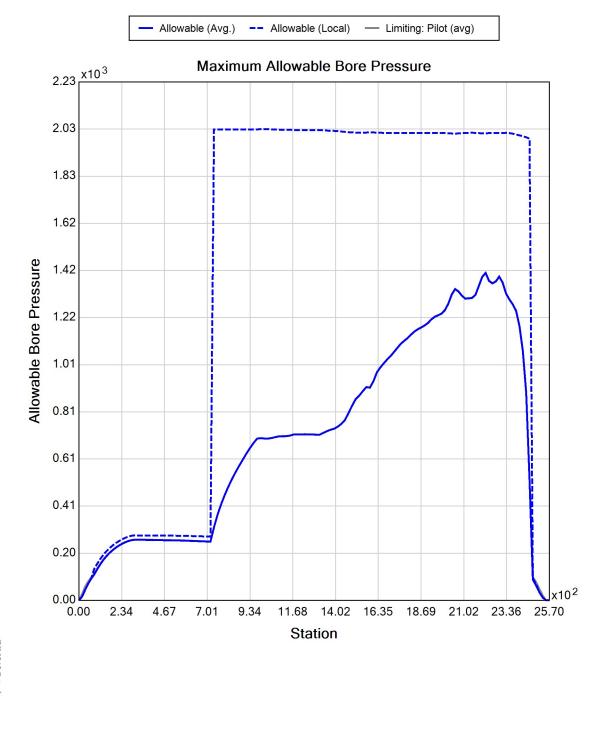

Power Law Exponent (n): 0.14

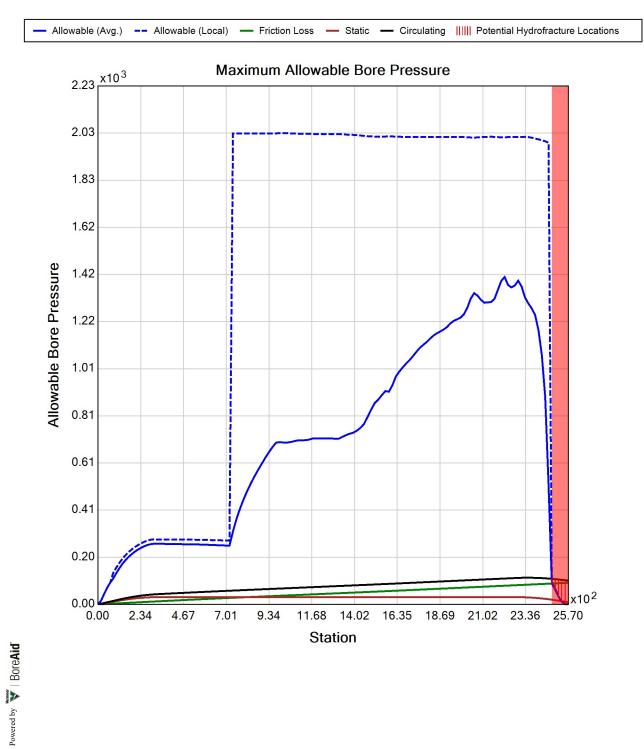
Effective Viscosity (cP): 88.5


Virtual Site









Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 65A	
	P4B	
	Start Date: 05-16-2023	
	End Date: 05-16-2023	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	СНА	
Designer:	MDB	
	BCE	

Description: HDD 65A Telecom 3- inch DR 7 Ballasted HDPE Conduit 1

Input Summary

(0.00, 0.00, 270.00) ft
(2555.00, 0.00, 246.40) ft
2555.00 ft
HDPE
IPS
3.500 in
7.0
0.50 in
20.00 ft
5 in
(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5") Pipe DR: 7 Pipe Length: 2759.98 ft Internal Pressure: 0 psi Borehole Diameter: 0.625 ft Silo Width: 0.625 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.7	50.1
Water Pressure	10.5	4.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.3	54.4
Deflection		
Earth Load Deflection	0.349	6.118
Buoyant Deflection	0.020	0.020
Reissner Effect	0	0
Net Deflection	0.370	6.138
Compressive Stress [psi]		
Compressive Wall Stress	46.4	190.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	3791.4	3791.4
Pullback Stress [psi]	804.6	804.6
Pullback Strain	1.399E-2	1.399E-2
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	804.6	810.4
Tensile Strain	1.399E-2	1.424E-2

Net External Pressure = 17.3 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.370	7.5	20.3	OK
Unconstrained Collapse [psi]	42.3	316.7	7.5	OK
Compressive Wall Stress [psi]	46.4	1150.0	24.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.010	7.5	756.1	OK
Unconstrained Collapse [psi]	24.1	484.3	20.1	OK
Tensile Stress [psi]	810.4	1200.0	1.5	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

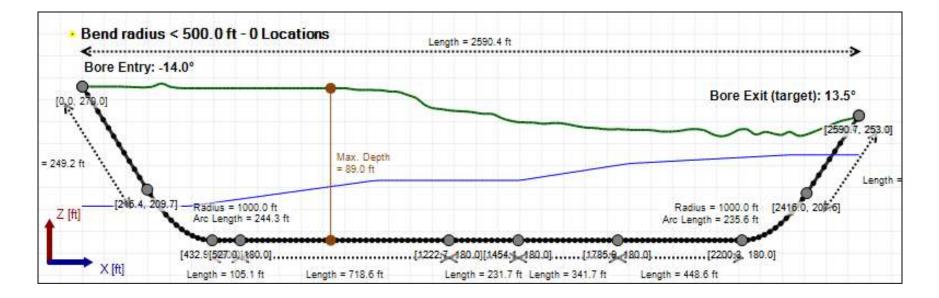
Project Summary

General:	CHPE HDD 65A
	P4B
	Start Date: 05-16-2023
	End Date: 05-16-2023
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA
Designer:	MDB
	BCE
Description:	HDD 65A Conduit 2, 8- inch DR18 PVC Ballasted possibly can do with rollers and no ballast border line, Estimated water 5 ft above top of rock, Estimated Shale to below HDD bore path. DR18 as estimate for DR 17 installation.

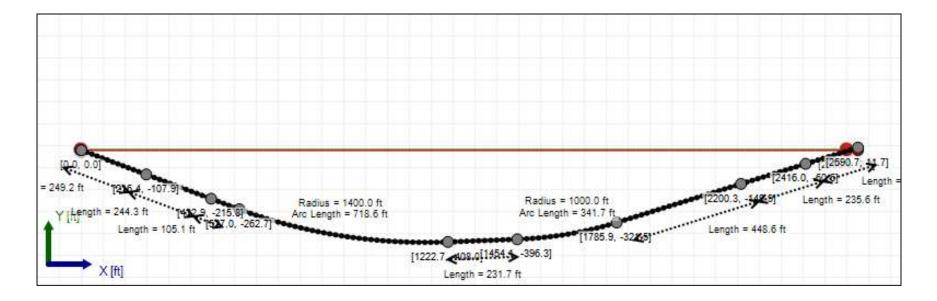
Input Summary

Start Coordinate	(0.00, 0.00, 270.00) ft
End Coordinate	(2590.40, 0.00, 253.00) ft
Project Length	2590.40 ft
Pipe Type	PVC
OD Classification	IPS
Pipe OD	8.625 in
Pipe DR	18.0
Pipe Thickness	0.48 in
Rod Length	20.00 ft
Rod Diameter	5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Sand (S), SW From Assistant Unit Weight: 125.0000 (dry), 135.0000 (sat) [lb/ft3] Phi: 36.00, S.M.: 800.00, Coh: 0.00 [psi]

Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 2000.00, Coh: 3000.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625") Pipe DR: 18 Pipe Length: 2779.98 ft Internal Pressure: 0 psi Borehole Diameter: 1.07799990971883 ft Silo Width: 1.07799990971883 ft Surface Surcharge: 0 psi Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38 Pipe Unit Weight: 87.40220 lb/ft3 Allowable Tensile Stress (Short Term): 2800 psi Allowable Tensile Stress (Long Term): 2800 psi Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.7	69.1
Water Pressure	21.0	14.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	25.8	83.4
Deflection		
Earth Load Deflection	0.967	13.048
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	1.027	13.108
Compressive Stress [psi]		
Compressive Wall Stress	232.0	750.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	17379.5	17379.5
Pullback Stress [psi]	1417.3	1417.3
Pullback Strain	3.543E-3	3.543E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	1417.3	1555.2
Tensile Strain	3.543E-3	4.247E-3

Net External Pressure = 22.6 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.027	7.5	7.3	OK
Unconstrained Collapse [psi]	58.5	174.1	3.0	OK
Compressive Wall Stress [psi]	232.0	3200.0	13.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	29.5	160.2	5.4	OK
Tensile Stress [psi]	1555.2	2800.0	1.8	OK

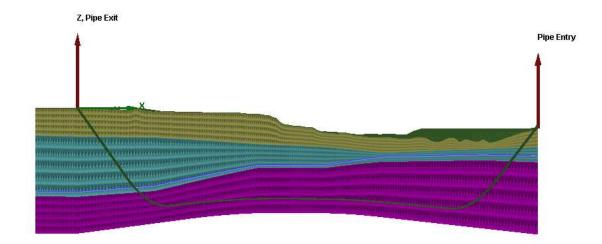
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1665.044 psi	2056.083 psi
1	8.00 in	16.00 in	1664.728 psi	2055.905 psi
2	16.00 in	19.13 in	1664.548 psi	2055.804 psi

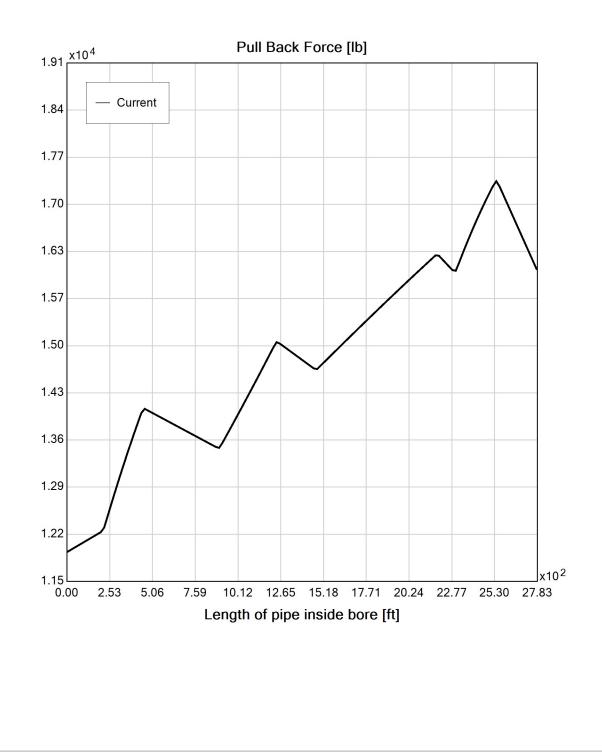
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

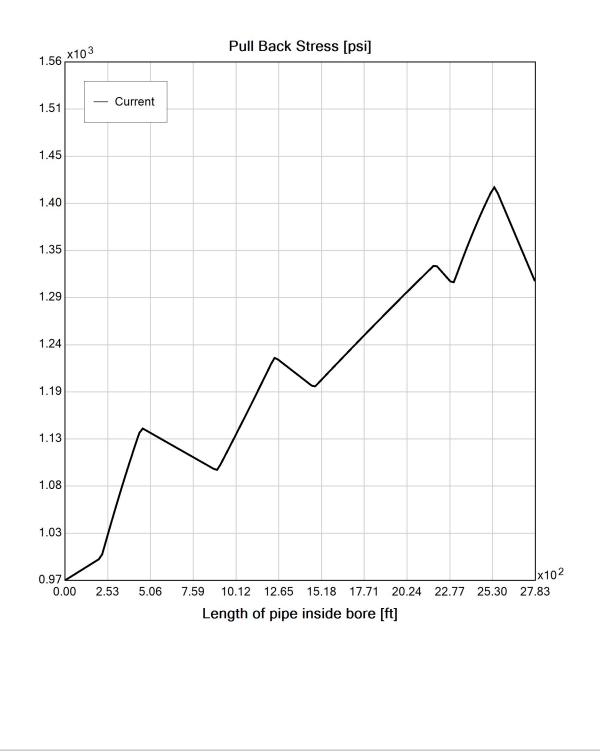
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

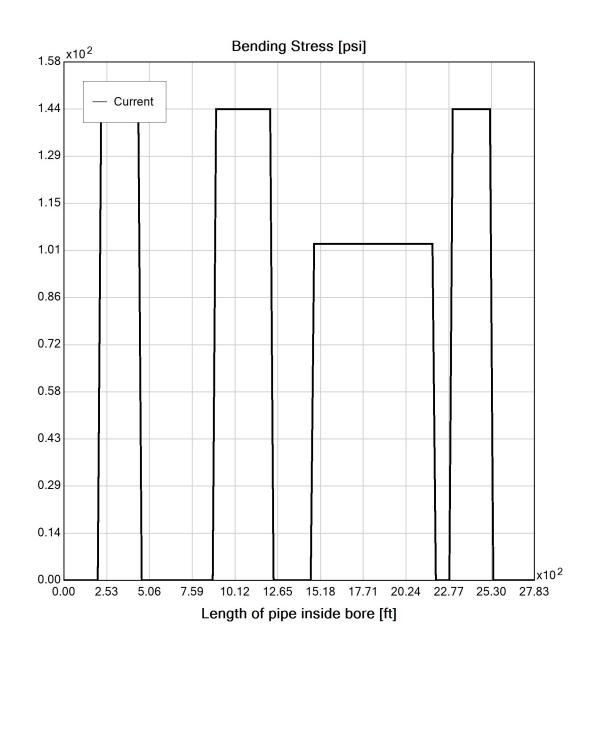

Flow Rate (Q): 280.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

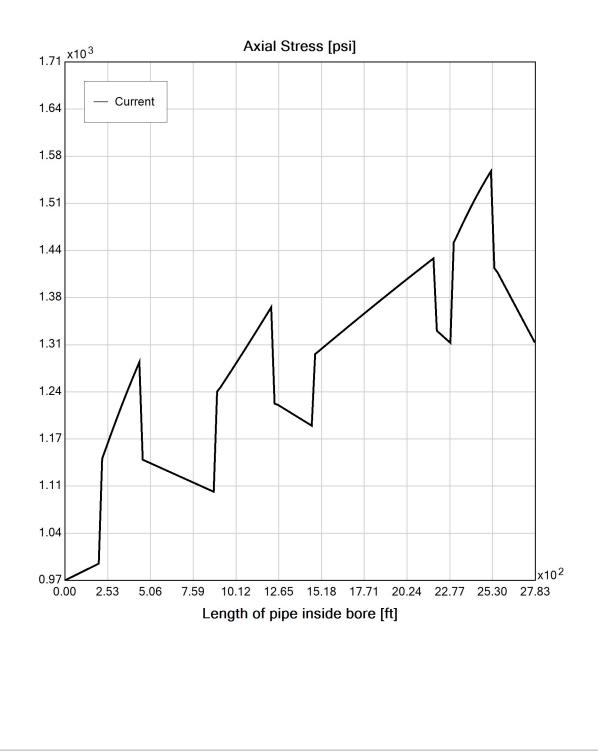
Fluid Consistency Index (K): 63.17

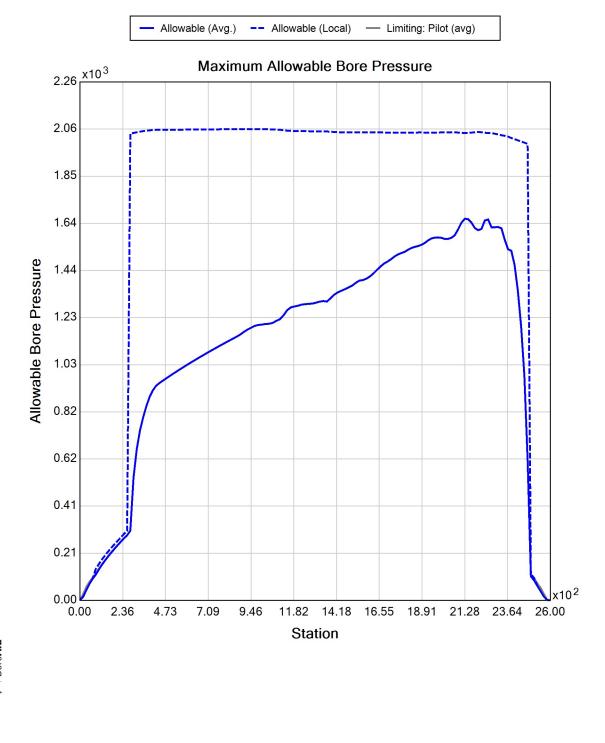

Power Law Exponent (n): 0.14

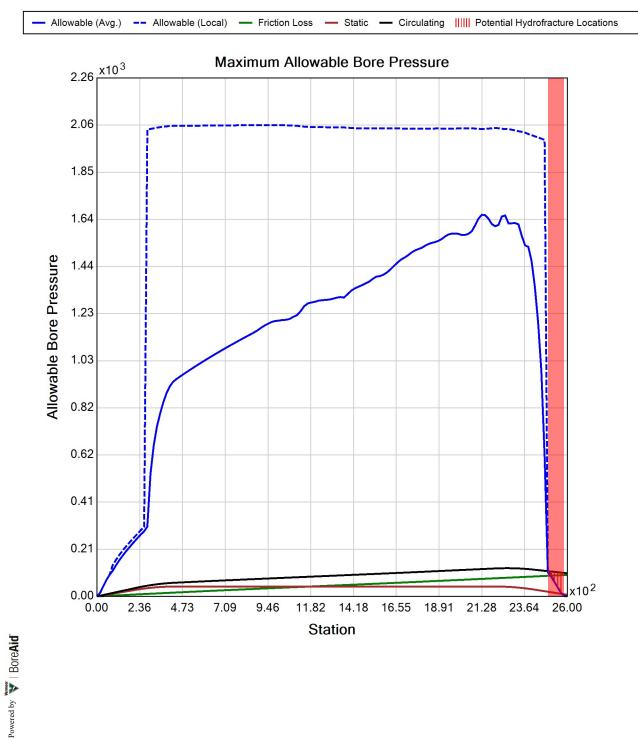
Effective Viscosity (cP): 88.5


Virtual Site









Powered by 💘 | BOreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 65A
	P4B
	Start Date: 05-16-2023
	End Date: 05-16-2023
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA
Designer:	MDB
	BCE
Description:	HDD 65A Telecom 3- inch DR 7 Ballasted HDPE Conduit 2

Input Summary

Start Coordinate	(0.00, 0.00, 270.00) ft
End Coordinate	(2590.40, 0.00, 253.00) ft
Project Length	2590.40 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	3.500 in
Pipe DR	7.0
Pipe Thickness	0.50 in
Rod Length	20.00 ft
Rod Diameter	5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5") Pipe DR: 7 Pipe Length: 2779.98 ft Internal Pressure: 0 psi Borehole Diameter: 0.625 ft Silo Width: 0.625 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.8	69.1
Water Pressure	21.0	14.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	23.8	83.4
Deflection		
Earth Load Deflection	0.350	8.137
Buoyant Deflection	0.020	0.020
Reissner Effect	0	0
Net Deflection	0.370	8.157
Compressive Stress [psi]		
Compressive Wall Stress	83.2	291.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	3967.5	3967.5
Pullback Stress [psi]	841.9	841.9
Pullback Strain	1.464E-2	1.464E-2
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	841.9	847.9
Tensile Strain	1.464E-2	1.489E-2

Net External Pressure = 22.6 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.370	7.5	20.3	OK
Unconstrained Collapse [psi]	58.5	317.1	5.4	OK
Compressive Wall Stress [psi]	83.2	1150.0	13.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.010	7.5	756.1	OK
Unconstrained Collapse [psi]	29.5	477.6	16.2	OK
Tensile Stress [psi]	847.9	1200.0	1.4	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 66
	P4B
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	TAR
	СНА
Description:	HDD 66 10-inch DR 9

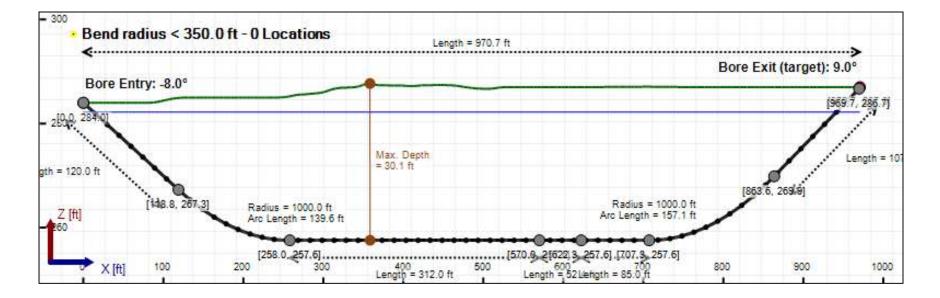
Input Summary

Start Coordinate	(0.00, 0.00, 284.00) ft
End Coordinate	(970.70, 0.00, 287.00) ft
Project Length	970.70 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

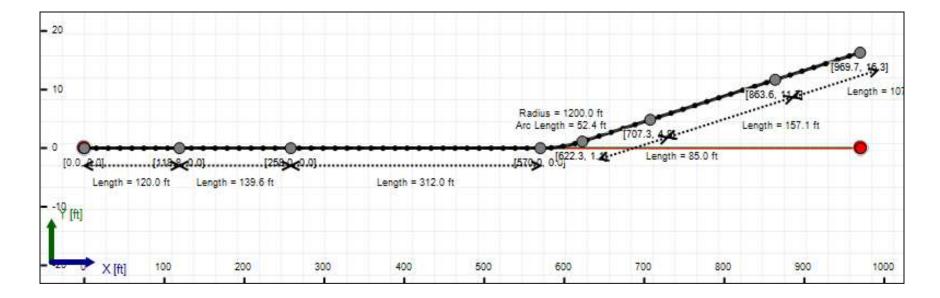
Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Soil Layer #3 USCS, Sand (S), SM From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Sand (S), SM From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 975.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.2	13.1
Water Pressure	10.7	10.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.9	23.7
Deflection		
Earth Load Deflection	0.869	3.559
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.001	3.691
Compressive Stress [psi]		
Compressive Wall Stress	62.4	106.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15723.7	15723.7
Pullback Stress [psi]	438.5	438.5
Pullback Strain	7.626E-3	7.626E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	438.5	459.9
Tensile Strain	7.626E-3	8.446E-3

Net External Pressure = 21.4 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.001	7.5	7.5	OK
Unconstrained Collapse [psi]	19.1	126.2	6.6	OK
Compressive Wall Stress [psi]	62.4	1150.0	18.4	OK

Installation Analysis

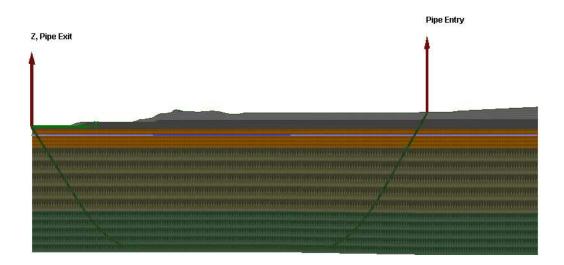
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	29.1	229.3	7.9	OK
Tensile Stress [psi]	459.9	1200.0	2.6	OK

Maximum Allowable Bore Pressure Summary

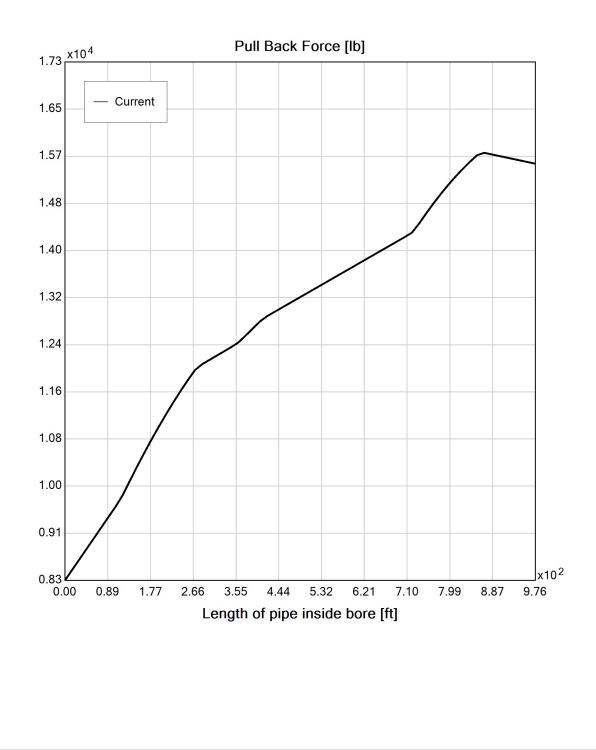
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	65.228 psi	70.058 psi
1	8.00 in	12.00 in	65.092 psi	69.914 psi
2	12.00 in	16.13 in	64.898 psi	69.707 psi

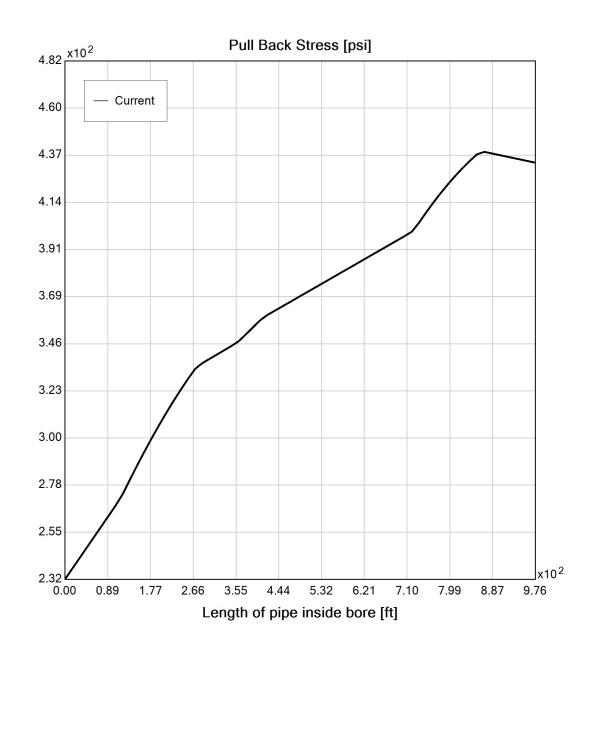
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

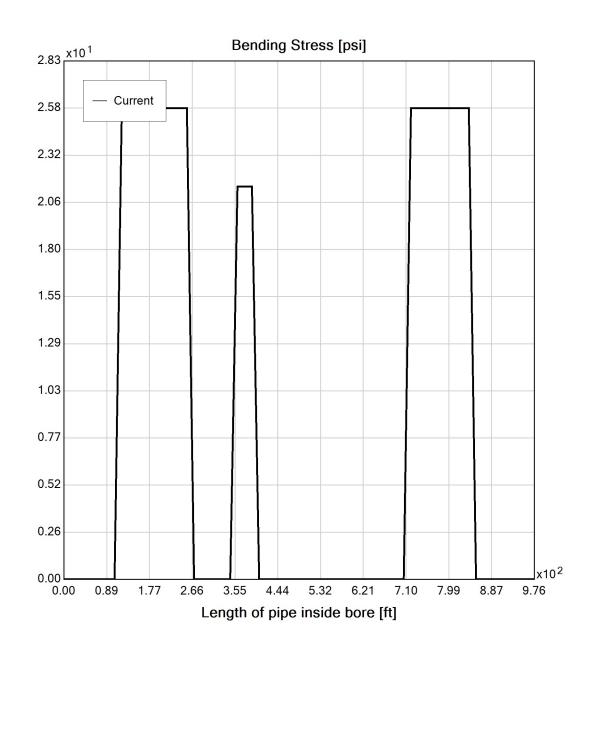
Estimated Circulating Pressure Summary

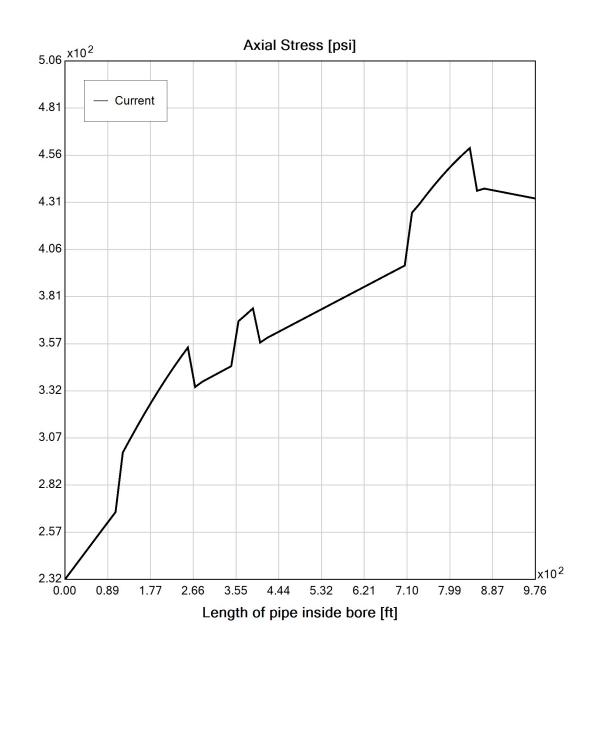

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

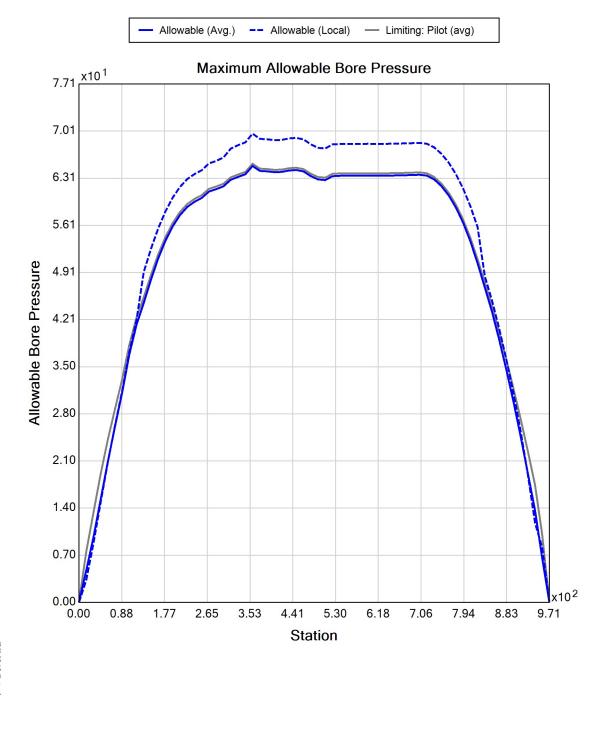
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

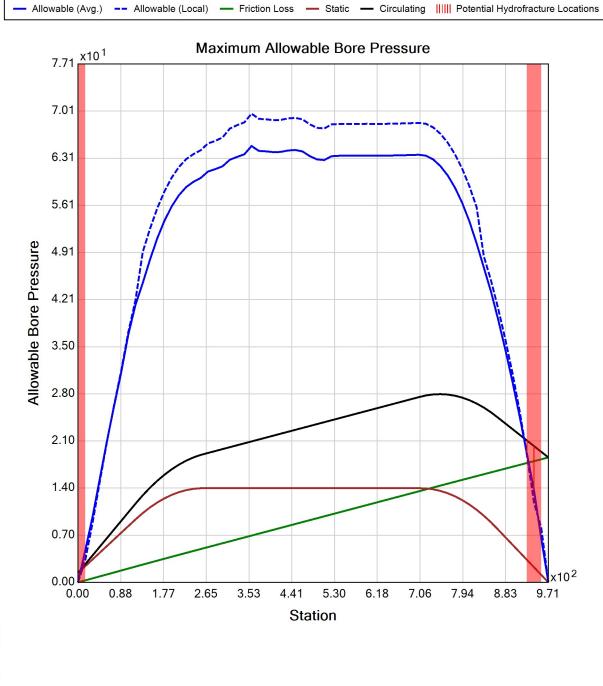

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 66		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR		
	СНА		
Description:	HDD 66 2-inch DR 9		

Input Summary

Start Coordinate	(0.00, 0.00, 284.00) ft
End Coordinate	(970.70, 0.00, 287.00) ft
Project Length	970.70 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 975.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.3	13.1
Water Pressure	10.7	10.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.0	23.7
Deflection		
Earth Load Deflection	0.425	3.559
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.454	3.588
Compressive Stress [psi]		
Compressive Wall Stress	53.8	106.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	877.1	877.1
Pullback Stress [psi]	501.1	501.1
Pullback Strain	8.715E-3	8.715E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	501.1	502.5
Tensile Strain	8.715E-3	8.837E-3

Net External Pressure = 21.4 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.454	7.5	16.5	OK
Unconstrained Collapse [psi]	19.1	133.5	7.0	OK
Compressive Wall Stress [psi]	53.8	1150.0	21.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	29.1	227.4	7.8	OK
Tensile Stress [psi]	502.5	1200.0	2.4	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

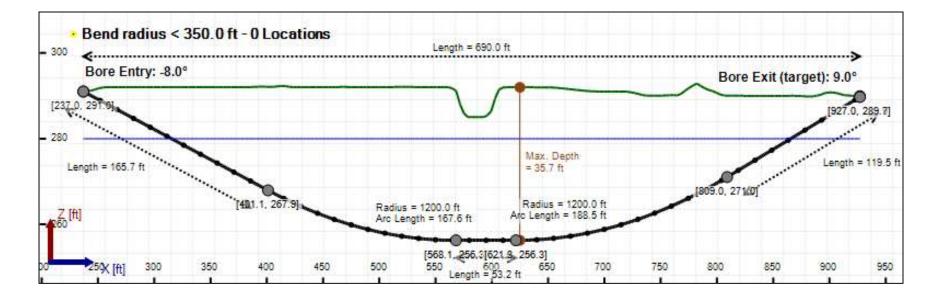
General:	CHPE HDD 67		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR		
	СНА		
Description:	HDD 67 10-inch DR9 Conduit 1		

Input Summary

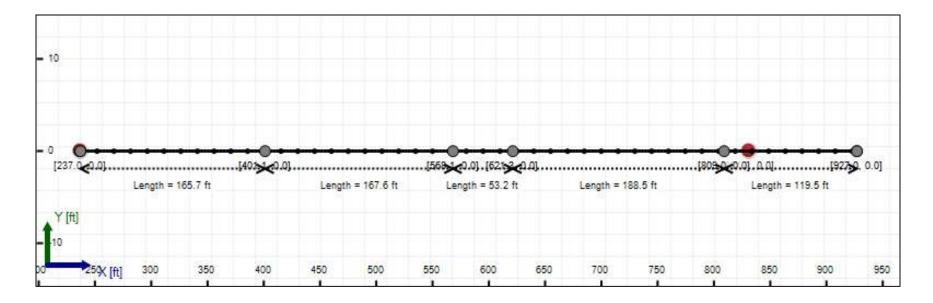
Start Coordinate	(237.00, 0.00, 291.00) ft
End Coordinate	(927.00, 0.00, 289.90) ft
Project Length	690.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Sand (S), SP Depth: 5.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Gravel (G), GP Depth: 10.50 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Gravel (G), GW Depth: 5.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Gravel (G), GP Depth: 35.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 705.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.7	19.5
Water Pressure	10.3	10.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.0	29.8
Deflection		
Earth Load Deflection	0.624	5.301
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.653	5.330
Compressive Stress [psi]		
Compressive Wall Stress	53.8	133.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	673.7	673.7
Pullback Stress [psi]	384.9	384.9
Pullback Strain	6.694E-3	6.694E-3
Bending Stress [psi]	0.0	4.7
Bending Strain	0	8.247E-5
Tensile Stress [psi]	384.9	387.6
Tensile Strain	6.694E-3	6.823E-3

Net External Pressure = 23.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.653	7.5	11.5	OK
Unconstrained Collapse [psi]	22.8	132.2	5.8	OK
Compressive Wall Stress [psi]	53.8	1150.0	21.4	OK

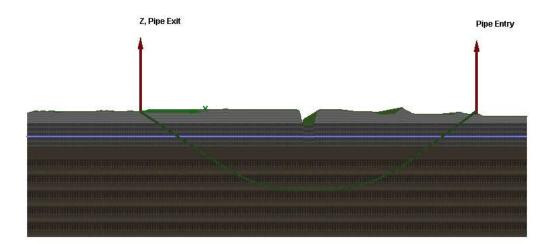
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	32.8	234.8	7.2	OK
Tensile Stress [psi]	387.6	1200.0	3.1	OK

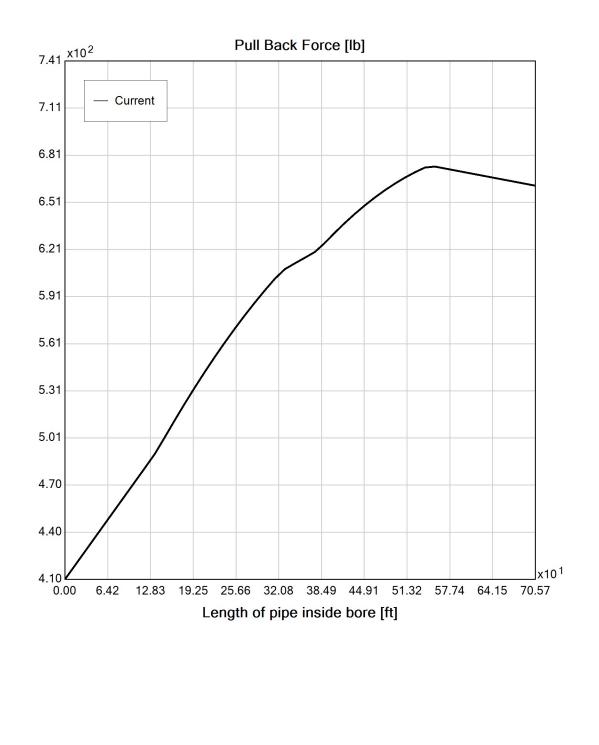
Maximum Allowable Bore Pressure Summary

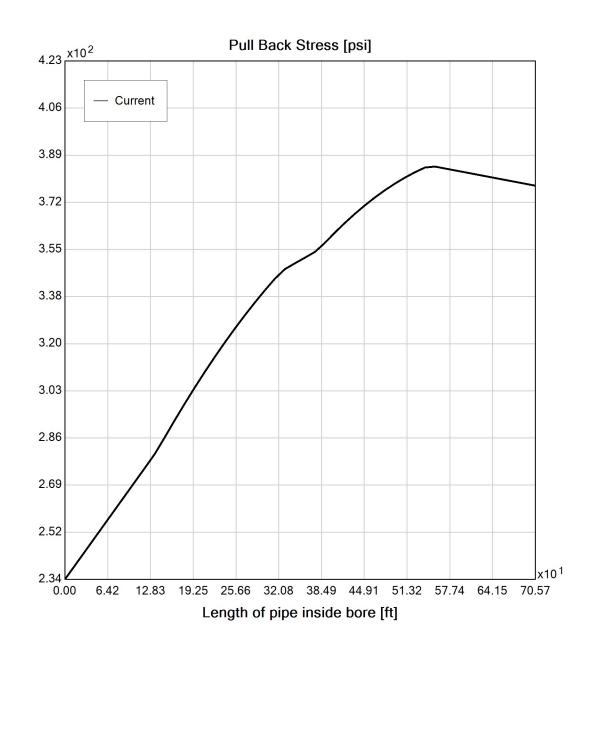
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	87.035 psi	87.035 psi
1	8.00 in	12.00 in	86.946 psi	86.946 psi
2	12.00 in	16.13 in	86.817 psi	86.817 psi

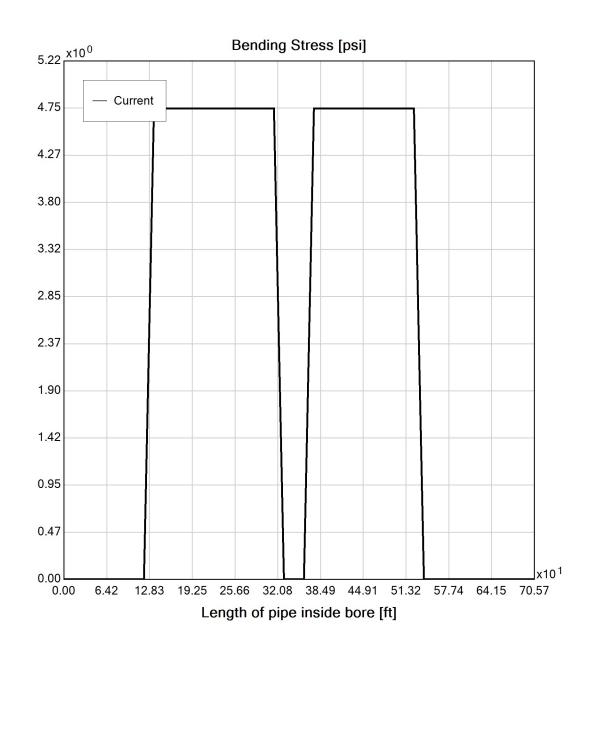
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

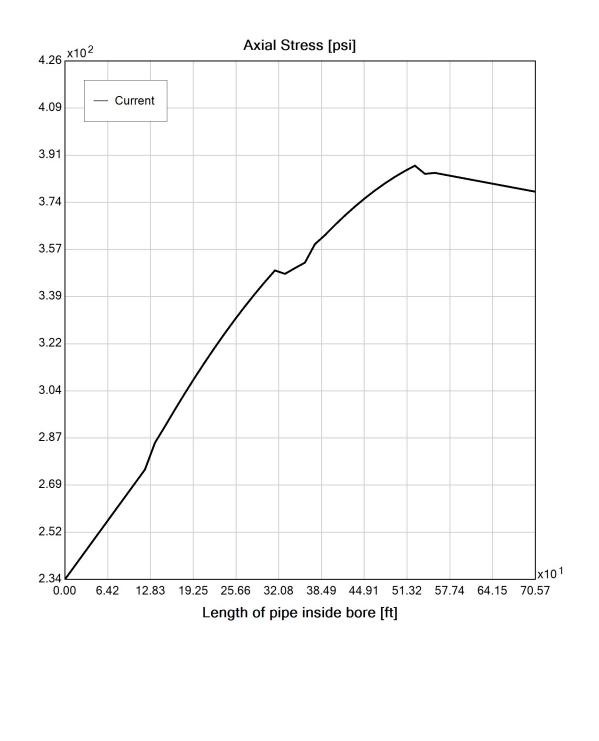

Estimated Circulating Pressure Summary

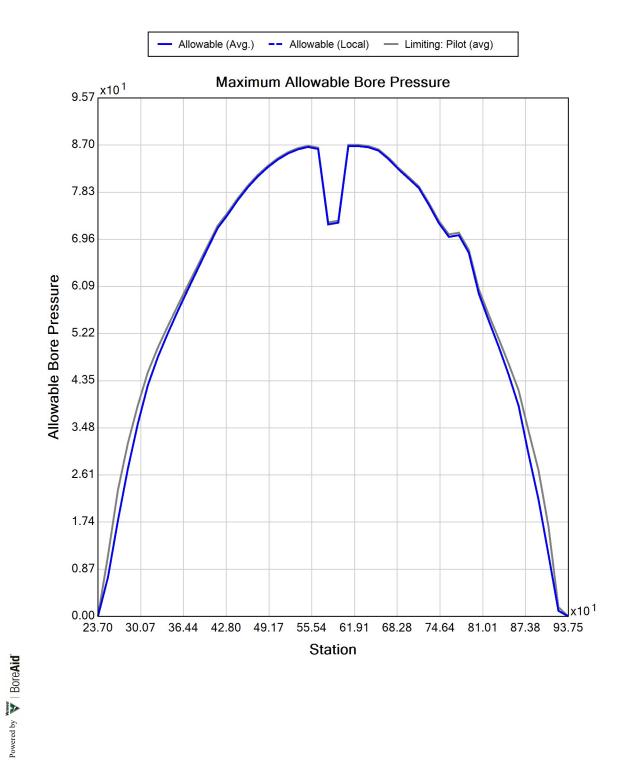
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

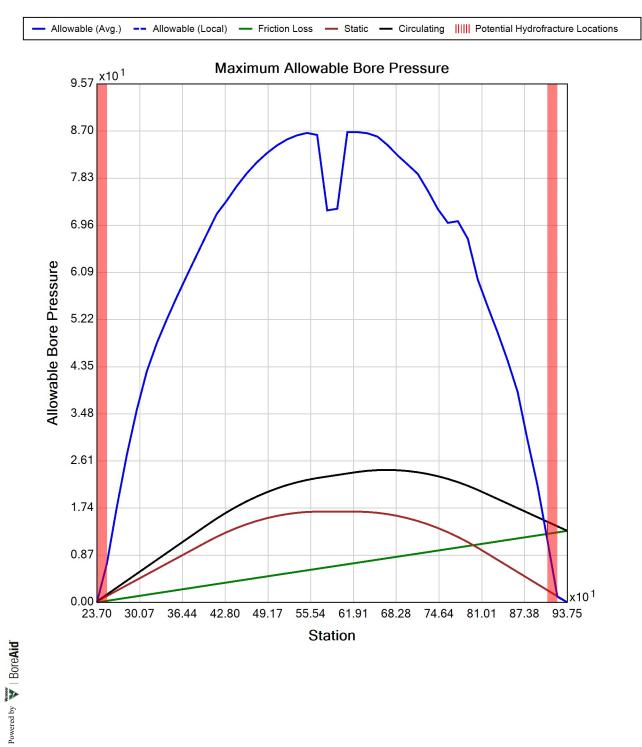

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 67		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR		
	СНА		
Description:	HDD 67 2-inch DR9 Conduit 1		

Input Summary

Start Coordinate	(237.00, 0.00, 291.00) ft
End Coordinate	(927.00, 0.00, 289.90) ft
Project Length	690.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 705.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.7	19.5
Water Pressure	10.3	10.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.0	29.8
Deflection		
Earth Load Deflection	0.624	5.301
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.653	5.330
Compressive Stress [psi]		
Compressive Wall Stress	53.8	133.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	673.7	673.7
Pullback Stress [psi]	384.9	384.9
Pullback Strain	6.694E-3	6.694E-3
Bending Stress [psi]	0.0	4.7
Bending Strain	0	8.247E-5
Tensile Stress [psi]	384.9	387.6
Tensile Strain	6.694E-3	6.823E-3

Net External Pressure = 23.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.653	7.5	11.5	OK
Unconstrained Collapse [psi]	22.8	132.2	5.8	OK
Compressive Wall Stress [psi]	53.8	1150.0	21.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	32.8	234.8	7.2	OK
Tensile Stress [psi]	387.6	1200.0	3.1	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

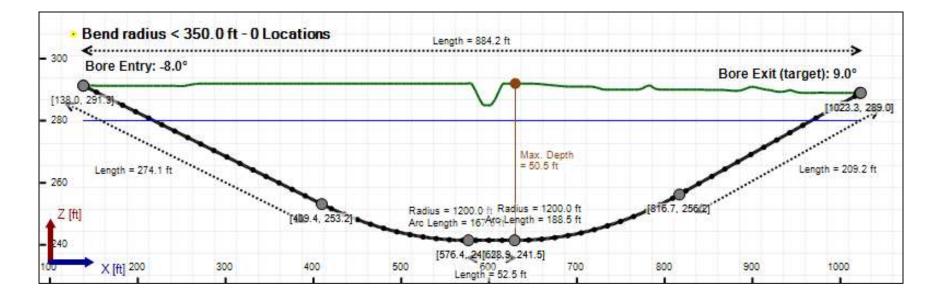
General:	CHPE HDD 67		
	P4B		
	Start Date: 12-10-2021		
	End Date: 12-10-2021		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:	TAR		
	СНА		
Description:	HDD 67 10-inch DR9 Conduit 2		

Input Summary

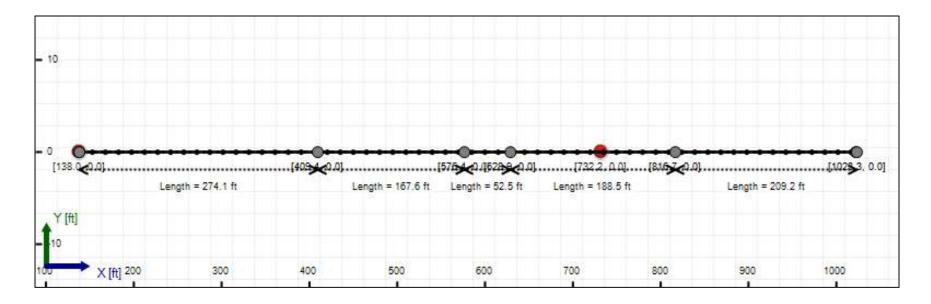
(138.00, 0.00, 291.30) ft
(1022.20, 0.00, 289.00) ft
884.20 ft
HDPE
IPS
2.375 in
9.0
0.26 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Sand (S), SP Depth: 5.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Gravel (G), GP Depth: 10.50 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Gravel (G), GW Depth: 5.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Gravel (G), GP Depth: 35.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 900.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.6	25.9
Water Pressure	16.7	16.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	18.3	42.6
Deflection		
Earth Load Deflection	0.617	7.054
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.647	7.083
Compressive Stress [psi]		
Compressive Wall Stress	82.2	191.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	824.9	824.9
Pullback Stress [psi]	471.3	471.3
Pullback Strain	8.197E-3	8.197E-3
Bending Stress [psi]	0.0	4.7
Bending Strain	0	8.247E-5
Tensile Stress [psi]	471.3	473.8
Tensile Strain	8.197E-3	8.322E-3

Net External Pressure = 33.1 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.647	7.5	11.6	OK
Unconstrained Collapse [psi]	32.4	132.6	4.1	OK
Compressive Wall Stress [psi]	82.2	1150.0	14.0	OK

Installation Analysis

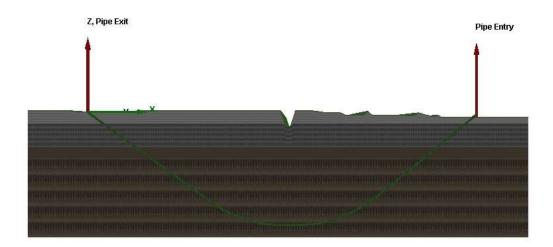
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	42.4	229.4	5.4	OK
Tensile Stress [psi]	473.8	1200.0	2.5	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	108.932 psi	108.932 psi
1	8.00 in	12.00 in	108.892 psi	108.892 psi
2	12.00 in	16.13 in	108.833 psi	108.833 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

