

HDD Design Summary Report Crossings HDD 51 to HDD 61 in Segment 6 – Package 4A

Ballston Spa to Glenville Saratoga & Schenectady County, New York

CHA Project Number: 066076

Prepared for: Transmission Developers Inc. 1301 Avenue of the Americas, 26th Floor New York, NY 10019

> Prepared by: CHA Consulting, Inc. III Winners Circle Albany, New York 12205 (518) 453-4500

August 2023

TABLE OF CONTENTS

1.0	Intro 1.1	ODUCTION Purpose					
2.0	Proj	ECT DESCRIPTION	1				
3.0	BACK	KGROUND	2				
4.0	SITE	CONDITIONS					
		4.1.1 Project Datum and Topography					
		4.1.2 Geotechnical Data	6				
5.0	DESIG	DESIGN SUMMARY					
	5.1	Geometry and Layout	12				
	5.2	Subsurface Model Development					
		5.2.1 BoreAid Analysis	14				
		5.2.2 Inadvertent Return and Hydro-fracture Analysis	15				
	5.3	Limitations	16				
6.0	Cons	STRUCTION CONSIDERATIONS	16				
	6.1	Risk Awareness and Assessment	16				
	6.2	Site Analysis	16				
	6.3	Erosion Control	17				
	6.4	Surveillance and Monitoring	17				
	6.5	Rework or Bore abandonment					
7.0	REFERENCES						

LIST OF REFERENCED APPENDICES

- Appendix A: Work Zones
- Appendix B: Locus Map
- Appendix C: HDD Geotechnical Data Reports for CHPE Segment 6 Package 4A HDDs
- Appendix D: BoreAid HDD Simulation Output
- Appendix E: HDD Design Drawings

Appendix F: Proposed Soil Properties for CHPE Segment 6 – Package 4A HDDs

1.0 INTRODUCTION

1.1 PURPOSE

The Champlain Hudson Power Express (CHPE) consists of installing a pair of HVDC electrical transmission cables with an associated telecommunications line from Canada to New York City. The portion of the work addressed herein is located in the upland portion of the route from the south end of Lake Champlain to New York City along the uplands of the Hudson River Valley. This work includes approximately 170 crossings under roads, railroads, wetlands water bodies, and obstructions to be installed using horizontal directional drilling (HDD) methods to minimize interference with use or impacts to the environment. This Design Summary Report addresses the design for the HDD crossings in Segment 6 – Package 4A from Ballston Spa to Glenville. These crossings are designated HDD 51 through HDD 61, inclusive of A and B designations.

The purposes of this Design Summary Report are to provide the following:

- Review of the existing geological, hydrogeological, and geotechnical conditions for HDD 51 through HDD 61 for total of 18 crossings (2 per site) in Segment 6 Package 4A.
- Provide a descriptive narrative of the HDD Crossings in support of the attached design drawings and technical specifications.
- Present stress and inadvertent release analyses that support the proposed designs.
- Evaluate construction considerations including inadvertent return mitigation.

2.0 **PROJECT DESCRIPTION**

The proposed CHPE route follows the Hudson River Valley of New York. The new transmission line will be approximately 146 miles in length, extending from the south end of Lake Champlain to Astoria, NY. Segment 6 – Package 4A is located in approximately a 10.2-mile section of the route in Saratoga & Schenectady County, New York.

A Project Locus Map and a plan showing the locations of the HDD 51 through HDD 61 crossings are presented in Appendix B.

The HDD crossing addressed in this report are located as shown in Table 1 below:

HDD#	Start Station	End Station	HDD Length, ft	Obstruction Crossed
51	40001+97	40022+12	1907/2018	Road/Rail/Wetland
52	40060+84	40087+80	2701	Wetland
53	40098+47	40106+61	815	Road (Rail
				Bridge)/Stream
53A	40227+56	40233+76	625/627	Culvert/Stream
				(Rail Bridge)
59	40409+11	40420+63	1124/1159	Culvert
59A	40425+37	40443+60	1826	Road/Rail
59B	40489+82	40498+10	829	Rail/Wetland
60	40511+60	40524+98	1332/1335	Wetland/Streams
				(Rail Bridge)
61	40527+60	40534+42	684/689	D.O.T Road

 Table 1: HDD Locations, Lengths, and Description

3.0 BACKGROUND

The underground construction of two HVDC electrical transmission cables is proposed to be housed in individual 10-inch-diameter DR 9 HDPE conduits distance dependent on depth and soil Thermal Resistivity (TR) values provided by NKT and as shown on drawing plans. A third, 2-inch-diameter DR 9 conduit will be bundled with one of the 10-inch diameter conduits for a telecommunications line. Longer and deeper bores may require an 8-inch-diameter conduit composed of the stronger, fusible PVC (FPVC) with an appropriate wall thickness (typically DR 14 or DR 17) to resist tensile stresses during installation and collapse-related long-term. The 8-inch conduit would typically be bundled with a 3-inch diameter HDPE for the telecommunications line, such as HDD#59A. This is checked and determined on a case-by-case basis and design sizes are shown on the design drawings shown in Appendix E. The conduits are to be installed in 16 to 22-inch final ream diameter bore holes. Using the 8-inch FPVC may permit a slightly smaller, 12-to-16-inch final ream diameter bore hole. The proposal is to install the cables at least 25 feet below congested areas, roads, railroads, under/around other obstructions, 15 to 25 feet below wetland and small streams, and 35 to 45 feet below open bodies (i.e., ponds, lakes, canals, and rivers) of water using HDD methods. HDD is a widely used trenchless construction method to install conduits with

limited disturbance to the ground around the bore alignment, minimal ground surface impacts above the alignment, and to minimize the potential of inadvertent releases of drilling fluids while boring. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of impact to congested areas, existing underground obstructions, and to the adjacent wetlands to the extent possible.

4.0 SITE CONDITIONS

4.1.1 **Project Datum and Topography**

<u>HDD #51</u>

HDD #51 consists of horizontally curved bores approximately 1907 feet and 2018 feet long. Both the bores are located on the west side of CP Rail railroad tracks and Oak Street in Ballston, NY, at approximately latitude 43.0025°N and longitude 73.8385°W. The HDD bores will pass under multiple reinforced concrete culvert pipes (RCP), various additional existing underground utilities, wetlands and will cross underneath East High St and Ballston Spa Industrial railway track. The ground surface elevations along the HDD path gently undulates between El. 284 and El. 293 (reference datum NAVD 1988). The bores of this HDD are intersecting in plan (stacked), conduits over and under each other, due to limited clearance between the RR bridge structure over E. High Street and the adjacent home, near Plan and Profile Station 40008+50. This intersected in plan was extended to eliminate private easements for homes on Kaleen Drive extending to Plan and Profile Station 40016+62.

<u>HDD #52</u>

HDD #52 consists of two HDD bores approximately 2701 feet long. Both bores are west of the CP Rail railroad tracks in Ballston, NY, and cross underneath NY designated wetlands, at approximately latitude 42.9871°N and longitude 73.8442°W. Both HDD bores run on the west side of the railroad tracks for entire drill. The ground surface elevations along the HDD path gently undulates between El. 294 and El. 297 (reference datum NAVD 1988).

HDD #53

HDD #53 consists of two straight (in plan view) HDD bores approximately 815 feet long that run on the west side of CP Rail railroad tracks and cross underneath Route 67 and a Stream in Ballston, NY, at approximately latitude 42.9771°N and longitude 73.8476°W. The HDD bores will pass approximately 34 feet underneath existing water and gas utility, 37 feet below the Route 67 and approximately 20 feet below the estimated mudline (assuming a 5' water depth). The ground surface elevations along the path of HDD #53 gently undulates from approximately El. 296 to El. 295 aside from the dip to the water level which is at approximately El. 266 (reference datum NAVD 1988).

<u>HDD #53A</u>

HDD #53A consists of two straight HDD bores approximately 625 feet and 627 feet long that runs on the west side of the CP Rail railroad tracks, a parallel to gas transmission line, and adjacent to a repurposed bike rail trail bridge in Ballston, NY. Both bores remain on west side of the tracks for the entire run. The HDD bores will pass approximately 17 feet below the estimated mudline (assuming a 5' water depth), at approximately latitude 42.9438°N and longitude 73.8633°W. The ground surface elevation at entry and exit of bore alignment is approximately El. 276, while at the center it dips down to the water level at El. 271 (reference datum NAVD 1988).

HDD #59

HDD #59 consists of two straight HDD bores, with one approximately 1124 feet long and the other approximately 1159 feet long that passes along the west side of Ballston Lake Road and run parallel to a gas transmission line in Ballston, NY, at approximately latitude 42.8969°N and longitude 73.8841°W. HDD bores remain on the west side of CP Railroad railway tracks for the entire run. The bores will pass approximately 20 feet below proposed mudline (5' depth assumed). The ground surface elevation at the entry point is approximately El. 270 and exit point is approximately El. 260, while most of the run it stays at El. 258 (reference datum NAVD 1988).

<u>HDD #59A</u>

HDD #59A consists of horizontal curved HDD bores, approximately 1826 feet long that cross Blue Barns Road, route 110, and run parallel to a gas transmission line in Ballston, NY, at approximately latitude 42.8912°N and longitude 73.8897°W. HDD bores start on the west side of CP Railroad railway tracks and crosses to the east side. The ground surface elevations along the HDD path gently undulates between El. 269 and El. 259 (reference datum NAVD 1988).

<u>HDD #59B</u>

HDD #59B consists of two straight HDD bores, approximately 829 feet long that parallels 3,200 feet west of Blue Barns Road, 2,700 feet east of Hetcheltown Road, run approximately 8 degrees skewed to a gas transmission line in Ballston, NY, at approximately latitude 42.8771°N and longitude 73.8988°W. HDD bores start on the east side of CP Railroad railway tracks and crosses to the west side. The bores will pass approximately 35 feet beneath railroad tracks and approximately 28 feet below NY designated wetlands. The ground surface elevations along the HDD path gently undulates between El. 252 and El. 241 (reference datum NAVD 1988).

HDD #60

HDD #60 consists of two HDD bores with a horizontal curve, approximately 1332 feet and 1335 feet long that crosses a gas transmission line approximately 1,400 feet north of Glenridge Road and then passes under the Alplaus Kill River in Ballston, NY. Both bores run on the west side of CP Rail railroad tracks at approximately latitude 42.8720°N and longitude 73.9002°W. HDD bores remain on the west side of CP Railroad railway tracks for the entire run. The ground surface elevations along the HDD path gently undulates between El. 233 and El. 236, aside from dipping to a water level at approximately El. 221 (reference datum NAVD 1988).

<u>HDD #61</u>

HDD #61 consists of two straight HDD bores, one approximately 684 feet long and the other approximately 689 feet long, that runs on the west side of CP Rail railroad tracks and cross underneath a Glenridge and Hetcheltown Roads in Ballston, NY, at approximately latitude 42.8681°N and longitude 73.9027°W. The HDD bores will cross underneath an existing storm and gas line, pass approximately 25 feet below the pavement, and will remain on the west side of railway tracks for the entire drill. The ground surface elevations along the HDD path gently undulates between El. 230 and El. 240 (reference datum NAVD 1988).

4.1.2 Geotechnical Data

<u>HDD #51</u>

Subsurface investigations were conducted in 2013 by TRC, 2022 by Terracon and 2022 by Kiewit for Transmission Developers, Inc. There are five borings to date at HDD #51: B158.87-1, KB-158.9, K-159.1, B159.1-1 and KB-158.8, which reach depths of 20.8, 60, 35, 14.5, and 15 feet below grade, respectively. There appears to be a 13.5-foot layer of medium dense fill over a 6.5foot layer of loose to medium dense silty sand, over a 0.8-foot layer of very dense weathered rock in boring B158.87-1. There appears to be a 2-foot layer of loose fill over a 6-foot layer of compact low plasticity silt, over a 2-foot layer of very dense weathered rock, over a 50-foot layer of shale bedrock in boring KB-158.9. There appears to be a 2-foot layer of loose fill over a 2-foot layer of very stiff low plasticity clay, over a 3-foot layer of very dense weathered rock, over a 7.5-foot layer of shale bedrock in boring B-159.1-1. There appears to be a 4-foot layer of very loose to loose fill over a 12-foot layer of very dense weathered rock, over a 19-foot layer of shale bedrock in boring K-159.1. There appears to be 2.4-foot layer of loose fill over a 2.6-foot layer of dense weathered rock, over a 10-foot layer of shale bedrock in boring KB-158-8. The majority of the drill path looks to be through layers of dense weathered rock and shale. Due to the length of the proposed HDD alignment, and the varying thickness of the soil layers observed onsite, the BoreAid analysis will be based on non-horizontal layering corresponding to all five soil borings. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #51 BoreAid analysis will be divided into three (3) layers: medium dense poorly graded sand (SP), very dense poorly graded gravels (GP) and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

HDD #52

Subsurface investigations were conducted in 2021 by AECOM, and 2022 by Kiewit for Transmission Developers, Inc. There are eight borings to date at HDD #52: K-159.9, BM-1B, K-160.0, K-160.1, K-160.2, B160.3-1, K-160.4 and BM-1E, which reached depths of 35, 35.2, 35, 35, 34.5, 14.5, 35 and 25 feet below grade, respectively. There appears to be a 6-foot layer of loose fill, over a 9-foot layer of silty sand, over a 20-foot layer of shale bedrock in boring K-159.9. There

appears to be a 5-foot layer of elastic sand, over a 10-foot layer of poorly graded sand, over a 5-foot layer of elastic sand, over a 15.2-foot layer of shale bed rock in boring BM-1B. There appears to be a 6-foot layer of loose fill, over a 10-foot layer of silty sand, over a 19-foot layer of shale bedrock in boring K-160.0. There appears to be a 6-foot layer of loose fill, over a 7.5-foot layer of silty sand, over a 1.5-foot layer of dense weathered rock, over a 20-foot layer of shale bedrock in boring K-160.1. There appears to be a 6-foot layer of loose fill, over a 8-foot layer of silty sand, over a 3-foot layer of interbedded sandstone and shale, over a 17.5-foot layer of shale bedrock in boring K-160.2. There appears to be a 4-foot layer of loose fill, over a 5.5-foot layer of silty sand, over a 5-foot layer of shale bedrock in boring B160.3-1. There appears to be a 6-foot layer of loose fill, over a 5.5-foot layer of sole silty sand, over a 5-foot layer of shale bedrock in boring B160.3-1. There appears to be a 3-foot layer of silty sand, over a 20-foot layer of shale bedrock in boring K-160.4. There appears to be a 3-foot layer of loose fill, over a 22-foot layer of shale bedrock in boring BM-18. There appears to be a 3-foot layer of loose fill, over a 22-foot layer of shale bedrock in boring BM-16.4. There appears to be a 3-foot layer of loose fill, over a 22-foot layer of shale bedrock in boring BM-18.

Based on the borings, the soil profile for the HDD #52 BoreAid analysis will be divided into three (3) layers: loose silty sand (SM), very dense well graded sand (SW), and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

<u>HDD #53</u>

Subsurface investigations were conducted in 2022 by Atlantic Testing Laboratories, Ltd. for Transmission Developers, Inc. There are two borings to date at HDD #53: KB-160.6 and B160.7-1, which reached depths of 82 and 25 feet below grade. There appears to be a 0.3-foot layer of loose fill, over a 4.5-foot layer of silty sand, over a 2.2-foot layer of weathered rock, over a 75-foot layer of shale bedrock in boring KB-160.6. There appears to be a 4-foot layer of silt, over a 9.5-foot layer of silty sand, over a 1.5-foot layer of silt, over a 10-foot layer shale bedrock in boring B160.7-1. The borings were similar; therefore, the BoreAid analysis soil layering will be based on the observations in boring KB-160.6. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings drilled for this project, the soil profile for the HDD #53 BoreAid analysis will be divided into four (4) layers: loose silt (ML), medium dense silty sand (SM), and dense

weathered rock (ML), and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

HDD #53A

Subsurface investigations were conducted in 2022 by Terracon for Transmission Developers, Inc. There are two borings to date at HDD #53A: KB-163.1 and KB-163.2, which extend to depths of 45 feet below grade. There appears to be a 0.5-foot layer of medium dense fill over a 6-foot layer of silty sand, over a 1.5-foot layer of dense weathered rock, over a 37-foot layer of shale bedrock in boring KB-163.1. There appears to be a 0.5-foot layer of medium dense fill over a 15.3-foot layer of medium silty sand, over a 4.2-foot layer of dense weathered rock, over a 25-foot layer of shale bedrock in boring KB-163.2. The BoreAid analysis will be based on the soil layering observed in boring KB-163.2, which contains soils more susceptible to frack out failure. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #53A BoreAid analysis will be divided int four (4) layers: medium dense fill (SP), medium dense silty sand (SM), dense weathered rock (GP) and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

HDD #59

Subsurface investigations were conducted in 2013 by TRC, 2022 by Terracon, and 2022 by Kiewit for Transmission Developers, Inc. There are four borings to date at HDD #59: B166.5-1, BM-3C, K-166.8 and KB-166.5, which reached depths of 13, 40.3, 20 and 35 feet below grade. There appears to be a 4-foot layer of loose fill over a 2-foot layer of very dense low plasticity silt, over a 2-foot layer of very dense weathered rock, over a 5-foot layer of shale bedrock in boring B166.5-1. There appears to be a 3-foot layer of loose well graded sand over a 4-foot layer of hard low plasticity silt, over a 2-foot layer of very dense weathered rock, over a 31.3-foot layer of shale bedrock in boring BM-3C. There appears to be a 1-foot layer of medium dense fill over a 4-foot layer of very dense weathered rock, over a 15-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of medium dense fill over a 2-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of hard low a 31-foot layer of shale bedrock in boring K-166.8. There appears to be a 2-foot layer of medium dense fill over a 2-foot layer of hard low dense fill over a 31-foot layer of hard low for the proposed HDD alignment, and the varying thickness of the four main soil layers observed onsite, the BoreAid

analysis will be based on non-horizontal layering corresponding to all four soil borings. The Geotechnical Data Report for this location is provided in Appendix C

Based on the borings, the soil profile for the HDD #59 BoreAid analysis will consist of four (4) layers: medium dense poorly graded sand (SP), stiff low plasticity clay (CL), very dense weathered rock (GP) and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

<u>HDD #59A</u>

Subsurface investigations were conducted in 2013 by TRC, 2021 by AECOM and 2022 by Terracon for Transmission Developers, Inc. There are five borings to date at HDD #59A: K-166.8, B166.9-1, B167.1-1, BM-3C and BM-4, which reached depths of 20, 14, 18, 40.3 and 16 feet below grade. There appears to be 1-foot layer of medium dense fill over a 4-foot layer of dense weathered rock, over a 15-foot layer of shale bedrock in boring K-166.8. There appears to be 4-foot layer of loose fill over a 10-foot layer of shale bedrock in boring B166.9-1. There appears to be 6-foot layer of loose fill over a 7-foot layer of hard low plasticity clay, over a 5-foot layer of shale bedrock in boring B167.1-1. There appears to be 3-foot layer of well graded sand over a 4-foot layer of hard low plasticity silt, over a 2-foot layer of very dense weathered rock, over a 31.3-foot layer of shale bedrock in BM-3C. There appears to be 3-foot layer of loose poorly graded sand over a 13-foot layer of shale bedrock in BM-4. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #59A BoreAid analysis will consist of four (4) layers: medium dense fill (SP), medium stiff low plasticity clay (CL), dense weathered rock (GM) and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

<u>HDD #59B</u>

Subsurface investigations were conducted in 2023 by Terracon. There are two borings to date at HDD #59B: KB-168.1 and KB-168.2, which extend to depths of 50 feet below grade. There appears to be a 2-foot layer of loose poorly graded sand over a 3.8-foot layer of medium dense poorly graded sand, over a 4.2-foot layer of very dense weathered rock, over a 40-foot layer of

shale bedrock in boring KB-168.1. There appears to be a 4-foot layer of loose sandy topsoil over a 6-foot layer of medium dense silty sand, over a 5-foot layer of very dense weathered rock, over a 35-foot layer of shale bedrock in boring KB-168.2. Due to the length of the proposed HDD alignment, and the varying thickness of the five main soil layers observed onsite, the BoreAid analysis will be based on non-horizontal layering corresponding to the two soil borings. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the layering observed in the two borings conducted along the alignment, the soil profile for the HDD #59B BoreAid analysis will be divided into five (5) layers: loose fill (SP), medium dense poorly graded sand (SP), medium dense silty sand (SM), very dense weathered rock (GP), and shale bedrock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

<u>HDD #60</u>

Subsurface investigations were conducted in 2013 by TRC and 2022 by Terracon for Transmission Developers, Inc. There are three borings to date at HDD #60: K-168.6, B168.64-1, and K-168.7, which extend to depths of 61.8 feet, 50 feet, and 60.9 feet below grade. There appears to be 10-foot layer of loose fill over a 5-foot layer of loose silty sand, over a 2-foot layer of medium stiff low plasticity clay, over a 44.8-foot layer of dense glacial till in boring K-168.6. There appears to be 4-foot layer of very dense fill over a 4-foot layer of very loose silty sand, over a 6-foot layer of very loose low plasticity silt, over a 3.5-foot layer of very dense low plasticity clay, over a 32.5-foot layer of very dense glacial till in boring B168.64-1. There appears to be an 8-foot layer of medium dense fill over a 7-foot layer of loose low plasticity silt, over a 5-foot layer of loose low plasticity silt, over a 40.9-foot layer of dense glacial till in boring K-168.7. The BoreAid analyses will be based on non-horizontal layering corresponding to borings K-168.6, B168.64-1 and K-168.7. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the layering observed in the three borings conducted along the alignment, the soil profile for the HDD#60 BoreAid analysis will be divided into three (3) layers: loose silty sand (SM), medium stiff high plasticity clay (CH), and dense glacial till (SM).

HDD #61

Subsurface investigations were conducted in 2013 by TRC and 2022 by Terracon for Transmission Developers, Inc. There are three borings to date at HDD #61: B168.86-1, K-168.8 and K-168.9, which extend to depths of 29.4, 40.7 and 42 feet below grade, respectively. There appears to be a 2-foot layer of medium dense fill over a 11.5-foot layer of medium stiff low plasticity silt, over a 10-foot layer of medium dense poorly graded sand, over a 5.9-foot layer of dense glacial till in boring B168.86-1. There appears to be a 6-foot layer of medium dense fill over a 4-foot layer of loose silty sand, over a 10-foot layer of soft low plasticity clay, over a 20.7-foot layer of dense glacial till in boring K-168.8. There appears to be a 12-foot layer of medium stiff fill over a 12-foot layer of medium dense silty sand, over an 18-foot layer of dense glacial till in boring K-168.8. There appears to be a K-168.9 and K-168.9 were generally consistent. Due to the varying thickness of the three to four main soil layers observed in those two borings, the BoreAid analysis will be based on non-horizontal layering corresponding to the two applicable soil borings, K-168.8 and K-168.9. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #61 BoreAid analysis will be divided into four (4) layers: medium dense poorly graded sand (SP), medium dense silty sand (SM), soft low plasticity clay (CL) and medium dense silty sand (SM). The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Appendix D.

5.0 DESIGN SUMMARY

The HDD construction process in soils generally consists of three steps:

Step 1: Drill a small diameter (approximately 7 to 9 inches diameter) pilot hole along the preplanned bore path. During the pilot hole boring, the location of the drill bit is tracked to confirm that it is following the planned path. If the drilling is observed to start to deviate from the planned path, corrections are made using a "bent" lead drilling section and controlled rotation of drill pipe string. The drill bit is designed to cut through the soil in combination with pressurized drilling fluid assisting the cutting of the soil, and transport of the cuttings to the entry pit for removal. The drilling fluid is generally a combination of bentonite (a clay mineral) and water, combined with NSF certified additives to support sides of the borehole and to better carry the cuttings to the entry

pit at lower pressures and velocities. The drilling fluids used under waterbodies and wetland areas are required in the project specifications to be "non-toxic and environmentally friendly". Once the pilot bore reaches the exit point, the next step of the process, hole enlargement begins.

Step 2: Enlarge the pilot hole to the diameter required for insertion of the conduits. This is accomplished by using successively larger reaming bits pulled through the pilot bore to gradually enlarge the bore from about 8 inches diameter to 16 to 22 inches diameter to accommodate in this case a HDPE conduit about 10 inches in diameter in one bore and a bundle of two conduits, one 10 inches diameter and the other 2 inches diameter, that are to be pulled into the enlarged bore hole. We estimate that one and possibly a second reaming pass will be used to create the 16 to 22 inch diameter borehole. This pulling in of a bundle of conduits is sometimes referred to as a slick bore. During this step, the borehole is still filled with drilling fluid to support the sides of the bore hole in preparation for Step 3, the insertion of the conduit.

Step 3: Pull the conduits into the enlarged hole. While the pilot hole and reaming operations are ongoing, the contractor will also be fabricating the conduits to be installed. The conduits come in about 40-foot-long sections and need to be fusion butt welded, debeaded internally, and arranged for the pullback into to the borehole. Ideally, the complete conduit (or bundle of conduits) will be welded (and bundled) into one long length for insertion. The goal is usually to pull the bundle into the bore in one, continuous, smooth, around the clock, operation. However, depending on work area and access constraints, sometimes the pipe is assembled in 2 or 3 lengths that are then joined (welded), "on the fly" as the conduit (bundle) is slowly pulled into the borehole. As the conduit (bundle) is pulled into the hole it may be ballasted with clean water, and some of the drilling fluid supporting the sides of the hole is displaced by the conduit and collected for eventual disposal. Upon completion of the conduit installation, the conduit will be allowed to relax and come to equilibrium in the hole, and the conduit will be cleaned and capped as described in the HDD technical specifications.

5.1 GEOMETRY AND LAYOUT

The HDD profiles are generally defined by the following parameters:

- Entry point location;
- Exit point location;

- Entry angle;
- Exit angle;
- Horizontal and vertical radius of Curvature;
- Lengths of tangent sections;
- Length of crossing;
- Depth of crossing and depth of cover;
- Site constraints and obstructions; and
- Available work and layout areas

The proposed bore paths entry angle, exit angle, and a vertical and horizontal design radii of curvature for each HDD crossing in this segment are shown in the design drawings provided in Appendix E.

The design drawings that summarize the proposed HDD installations are in Appendix E. The HDD technical specifications are found in Section 33057.13 of the Technical Specifications. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The site conditions posed various challenges in developing a design that is both constructible and minimizes the potential for negative environmental impacts. The proposed design has entry and exit pits areas constrained by available easements and traffic constraints. Available work areas may limit the lengths of the conduit that can be pre-assembled, necessitating having to preassemble the bundle several segments that will have to be welded together during the pull back. Work zone requirements are shown in Appendix A. HDD specific work areas at the entry and exit ends of the bores are noted on the drawings in Appendix E. In addition, space and easement constraints will require that during pullback, the above ground sections of the conduit will not be straight and will require rollers to accommodate a horizontal bend. Conduit assembly is expected to be performed at the ends of the alignment shown on the drawings in Appendix E for HDD specific work areas. In some cases, the limited work area at the one end of the HDD alignment, may require that the drilling and reaming prior to pullback be performed by the HDD rig located at the one end of the alignment, but the HDD rig may need to be relocated to the other end of the alignment for the pullback/conduit installation phase of the work. In addition, for some longer bores in soft/weak ground conditions, the intersection bore method may be used to better control the risk of inadvertent drilling fluid releases.

5.2 SUBSURFACE MODEL DEVELOPMENT

A subsurface model was developed based on the boring logs as approximate representation of subsurface conditions along the proposed HDD alignment. BoreAid Version 5.0.14 (2015) modeling software (a product of Vermeer) was used to model the HDD. Geotechnical input parameters of the soil were estimated as described below.

The internal friction angles (AASHTO LRFD, Ed. 7) were estimated using the Standard Penetrations Test (SPT) blow counts. The shear modulus (G) of each layer was estimated using soil density or consistency based on SPT blow count (N-value) and representative soil layer descriptions were used to estimate Young's Modulus (E) using Hunt (1986). The shear modulus was estimated using the relationship G = E/[2(1+v)], taking Poison's Ratio (v) equal to 0.3. Dry and saturated unit weights were selected based on soil type using Table 2-8 from the Manual on Estimating Soil Properties for Foundation Design (EPRI 1990). For cohesive soils, cohesion was estimated based on empirical correlations with SPT blow counts (EPRI 1990). Tables for soil properties used for the HDDs in Segment 6 – Package 4A are presented in Appendix F.

5.2.1 BoreAid Analysis

For the BoreAid analyses, the pipe configuration analyzed was for a pipe with a dimension ratio (DR) of 9 unless stress and deflection calculations indicated a need for a larger diameter conduit with a thicker, (larger DR) or a change to the stronger FPVC material. The designs do not include consideration of ballast or rollers unless the analyses indicated a need for such actions to manage installation stresses. The following conduit configurations were used in the modeling analyses:

- 1. An individual 10-inch-diameter DR 9 HDPE or 8-inch FPVC of DR 17 conduit for the conductor, and
- A bundle consisting of a 10-inch-diameter DR 9 HDPE conduit and a 2-inch-diameter DR
 9 HDPE conduit or an 8-inch FPVC of DR 17 with a 3-inch-diameter DR 7 HDPE conduit.

The stresses and deflections of the pipe are evaluated and compared to allowable values as shown on the BoreAid runs presented in Appendix D.

In addition, a run where 2-inch-diameter DR 9 or 3-inch diameter DR 7 HDPE conduit is modeled alone was performed to check installation stresses in that conduit. If a 2-inch HDPE DR 9 is run

and the contractors means, and methods are to substitute 3-inch HDPE DR7 the HDD subcontractor must run and submit their analysis.

The BoreAid software does not list IPS PVC 8-inch DR 17 as a data entry option, therefore where DR 17 FPVC was needed, the analyses were performed for IPS 8-inch DR 18. If the DR 18, which is a slightly thinner walled than the DR 17, model indicated adequate factors of safety relative to deformations and stresses, then the DR 17 is assumed to be feasible conduit for the design. Cases where the DR 18 did not show adequate factors of safety, the use of DR 17 pipe was checked using the based on safe pull stresses from the Underground Solutions technical literature and via hand calculations to check collapse related stresses using the methodology from JM Eagle technical bulletin and Handbook of PVC pipe CH 7. These calculations are included with the BoreAid modeling of DR 18 pipe in Appendix C where applicable.

5.2.2 Inadvertent Return and Hydro-fracture Analysis

BoreAid modeling software was used to perform inadvertent return analyses for each HDD alignment. The bore path alignment was selected and checked so that the allowable bore pressures are greater than the static and circulating pressures throughout most of the alignment except at the ends. The allowable pressures are related to in-situ ground and water stresses around the bore hole, and the strength of the ground. The Limiting Formation Pressure Figure from BoreAid indicates a generally acceptable factor of safety against the potential for inadvertent return along the proposed bore paths except at the ends.

Based on the bore path selection process, areas with the greatest potential for an inadvertent return were examined and adjusted during the design process to further limit the risks associated with an inadvertent return when possible. The entry and exit points exhibited the greatest potential for inadvertent returns. The depth of the entry/exit pits should be considered by the Contractor to increase the effective soil stress and provide a storage volume for returns to and near the entry and exit points. Note that while the potential for inadvertent return has been reduced through the design process, inadvertent returns are still possible through existing fissures in the soil or rock, shrinkage cracks, weak soils, or porous deposits of coarse gravel.

Fractures within and/or inadvertent releases through the surrounding soils may cause loss of drilling fluid pressures or inadvertent return of drilling fluid into the wetlands. The areas of greatest

concern are reduced soil cover over the bore alignment and where there is a risk of release to the wetlands. The contractor will be required to institute pre-emptive measures in this area to mitigate the effects of a release in the event that one should occur. Such measures may include containment booms and a standby vacuum truck to collect any released drilling fluids immediately. Ground heave or settlement from inadvertent release also pose risks to structures such as roadways. The HDD alignment was designed with geometries to providing enough soil cover to reduce the risk of inadvertent return. The Inadvertent Release Contingency Plan details additional methods for mitigating inadvertent returns.

5.3 LIMITATIONS

The structural analysis and inadvertent return mitigation analysis were performed using the proposed design bore paths and typically anticipated equipment and means and methods. The HDD subcontractor must submit structural and inadvertent return mitigation calculations and analysis for each bore path, including their final bore path geometry reflecting its specific equipment and contractor's specific means, methods, drilling fluids, and proposed final contractor refined final planned alignment. It is important to note that the Kiewit Design Team's analysis has been done without consideration for point loading due to unpredictable subsurface features such as encountering rocks, boulders, or other extremely dense material that may damage the conduit. The risk of such damage is low yet has been reported on some projects in recent years.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 RISK AWARENESS AND ASSESSMENT

The risks to be aware of during HDD include: inadvertent returns or fluid loss; any potential obstructions blocking or causing large deviations from the planned bore path; and electromagnetic effects on the HDD steering equipment from nearby high voltage power lines.

6.2 SITE ANALYSIS

A site analysis must be performed prior to commencing HDD operations. Considerations might need to be taken for items such as for site access, construction of HDD entry and exit pits, and layout area for equipment and supplies.

6.3 EROSION CONTROL

The proposed bore path crosses under roads, parking lots, water, stormwater and gas and electric utility lines, as well as under streams/wetlands, bodies of water, and railroads. The soil erosion control drawing will show where primary soil erosion control measures are required. The technical specifications and Inadvertent Release Contingency Plan both detail the requirements for both primary and secondary sediment and erosion control measures to be followed in case of an inadvertent return, which ultimately could deposit the fine bentonite sediment into the stream or wetland or bodies of water if not controlled. Construction of the entry and exit pits, and related work area will be close to the stream/wetlands. Silt fence, straw bales, and other soil erosion control measures are to be readily accessible at or near the work areas in accordance with the project specifications and Inadvertent Release Contingency Plan.

6.4 SURVEILLANCE AND MONITORING

During installation of the pipe by HDD, monitoring the stream, wetlands, waterbodies and bore alignment for indications of potential inadvertent returns or inadvertent releases will be necessary. The contractor will have primary responsibility for this monitoring and associated response and reporting in real-time. This will be accomplished as detailed in the Inadvertent Release Contingency Plan. Continuous visual inspection of the entire path is the most significant method of detection. However, an experienced drill crew can often prevent a return by monitoring drilling fluid pressures. A loss of pressure may indicate an inadvertent release has occurred. Regardless of the level of preparation, inspection, monitoring, etc., inadvertent returns are not always possible to predict or prevent. However, a significant effort can minimize the possibility but not eliminate it.

6.5 REWORK OR BORE ABANDONMENT

During any stage of the drilling and reaming process there exists risk of hole failure, mechanical failure, or a combination of the two that can render a hole not viable. Depending on the experience and the judgment of the drilling crew, a hole may be reworked by grouting the geotechnical instability and then attempting to bore through the consolidated material. In the event an individual

bore hole is abandoned grouting the hole shall occur, typically high yield bentonite, water and drill spoil. This will limit slurry communication between the abandoned bore path and a parallel bore attempt or to limit settlement at the surface that may impact structures. If the bore path to be abandoned passes under a railroad or in the Theoretical Zone of Influence of the railroad the abandoned hole shall be filled with cement-bentonite mix to ensure settlement is eliminated or limited. Also see the IRCP document section 4.3 and 8.0.

7.0 REFERENCES

American Association of State Highway and Transportation Officials. (2014). AASHTO LRFD bridge design specifications, Seventh edition, U.S. customary units. Washington, DC: American Association of State Highway and Transportation Officials.

Mayne, P.W., and Kulhawy, F.H. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute (EPRI).

Hunt, R.E. (1986). Geotechnical Engineering Analysis and Evaluation, McGraw-Hill Book Company, New York.

Appendix A

Work Zones

Introduction:

In general, HDD requires ample space for both entry and exit operations, work area, or Work zones. The HDD contractor or subcontractor ideally wants to consolidate all operations within these footprints. The exit Work zone also includes a narrower extension for the assembly of the full length pull back string of conduit or pipe. The size of these desired Work zones is driven by rig size in Table 1.

TYPICAL HDD	ENTRY AND EXI	T WORKSPACE
SYSTEM DESCRIPTION	ENTRY WORKSPACE	EXIT WORKSPACE
MAXI (24"-48")	150' X 350'	150' X 250'
MIDI (12"-<24")	150' X 250'	100' X 200'
MINI (2"-<12")	VARIES PER SITE	VARIES PER SITE

TABLE 1

An example of an entry Work zones is shown in Figure 1a below.

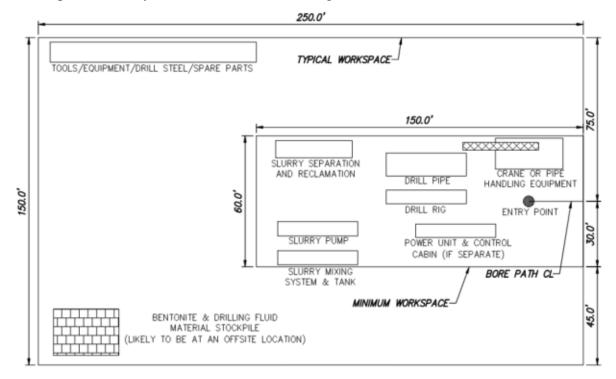


FIGURE 1a: Typical Entry Work Zone Configuration

An example of an exit Work zones is shown in Figure 1b below.

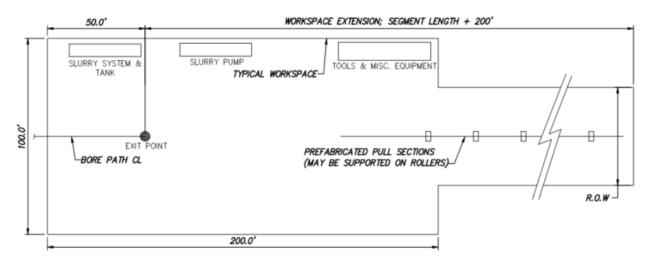


FIGURE 1b: Typical Exit Work Zone Configuration

Work zones should also be able to facilitate contingencies for space to recover a failed bore hole and a new offset bore, the ability swap entry for exit, or in some cases rigs on both ends.

CHPE Project Limitations:

Available Work zone areas for the Champlain Hudson Power Express Project (CHPE) are constrained because the project occupies a narrow existing corridor and is essential in a linear brown field. This is complicated by the rail corridor which precedes most forms of environmental regulations, and it traverses numerous wetlands or other sensitive areas which affects available Work zone areas.

We have assumed the majority of HDDs will be accommodated by a Mini or Midi HDD class machine and support equipment, <12-inch diameter and 1500 feet individual bores.

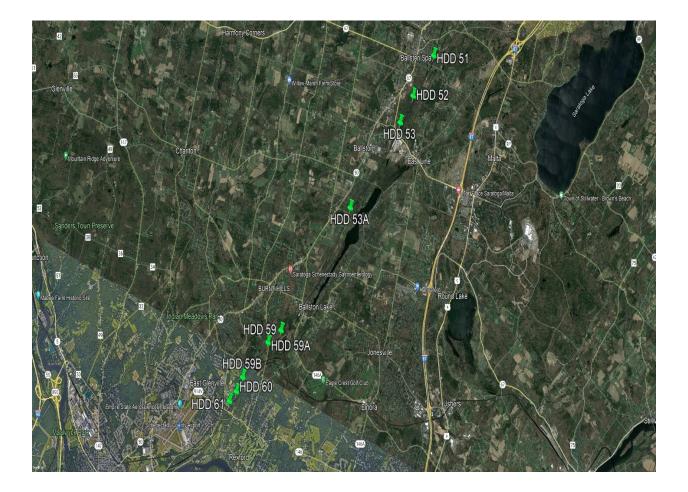
- Ideally, an Entry workspace approximately 20 to 25 feet wide x 150 to 200 feet long for a small rig with a mounted pipe rack and self-contained power unit and operator control cabin on the rig; a separate mud mixing and pumping unit, plus a separate mud processing and separation unit support by equipment arranged linearly. Since each crossing is a pair two, 20 x 150 Work zones are equivalent to a 40 x 150 overall work area, and we have assumed the support equipment will be set once for both HDDs. It is also assumed existing roads or access roads will parallel one side of a Work zone.
- 2. Ideally, an exit workspace approximately 15 to 20 feet wide and between 60% and 110% of the bore length is needed to layout and assemble the conduit for pullback.

A somewhat smaller entry Work zones may be possible depending on drill rig specifics and the availability of nearby areas for support equipment support operations. The project will have remote yards. Small work areas tend to reduce access and efficiency of operations, raise costs, but are necessitated by the specific project and site constraints.

GROUND TYPE	RIG SIZE	BORE LENGTH	WORK AREA	NOMINAL FOOTPRINT
		(ft)	(ft²)	(ft x ft)
SOIL	Large/Maxi	>2,500	37,500*	150 x 250*
	Medium/Midi	1000-2500	15,000*	100 x 150*
	Small/Mini	<1000	3,000*	30 x 100*
ROCK	Large/Maxi	>2,500	37,500*	150 x 250*
	Small/Mini &	1000-2500	15,000*	100 x 150*
	Medium/Midi			
PIPE ASSEMBLY	ALL	ALL	**	25 x (conduit length +
				50)**

See Figure 1c below covers general considerations and typical workspace configurations drafted for the CHPE Project.

Notes:


* The entry and exit workspaces typically need space for a drill rig and support equipment such as a pipe rack, power unit operator control cabin, a mud mixing and pumping unit, plus a separate mud processing and separation unit support equipment arranged linearly in line may be possible. Somewhat smaller work areas may be possible depending on drill rig specifics and availability of nearby areas for support equipment and support operations. Often need to coordinate final work areas with selected contractor's specific operations. Smaller work areas tend to reduce access and efficiency of operations.

** For HDD conduit bundle assembly and pullback, need a corridor equal to at least 1/3 to ½ of the length of the total bundle length and minimum 20 feet wide, typically at the exit end. Best if corridor equals the full length of the total bundle length plus about 50 ft

FIGURE 1c

Appendix B

Locus Map

Appendix C

HDD Geotechnical Data Report for CHPE Segment 6 – Package 4A HDDs

MEMORANDUM

DATE: April 13, 2023
TO: Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp.
SUBJECT: Geotechnical Data: Segment 6 – Package 4A – HDD Crossing 51 – Revision 1 Champlain Hudson Power Express Project Ballston Spa, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located in Ballston Spa, New York. The approximate station for the start of HDD crossing Number 51 is STA 39994+00 (43.0025°N, 73.8384°W).

The geotechnical data at this HDD crossing is attached. The available data is taken from the previous investigation by TRC and the recent investigations by Terracon and Kiewit, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Terracon, Results of Field Exploration, Champlain Hudson Power Express, Ballston Clifton Park Glenville, NY, dated June 22, 2022.
- Kiewit Engineering (NY) Corp., Package 4A Phase 4 Borings, Champlain Hudson Power Express, New York, dated January 20, 2023.
- Terracon Field Exploration and Laboratory Testing Results, Champlain-Hudson Power Express Project-Package 3, 4A and 4B, Fort Edward to Schenectady, dated April 11, 2023.

Contact us if you have questions or require additional information.

HDD 51 Borings B158.87-1, B159.1-1, K-159.1, KB-158.8, KB-158.9 Segment 6 - Design Package 4A

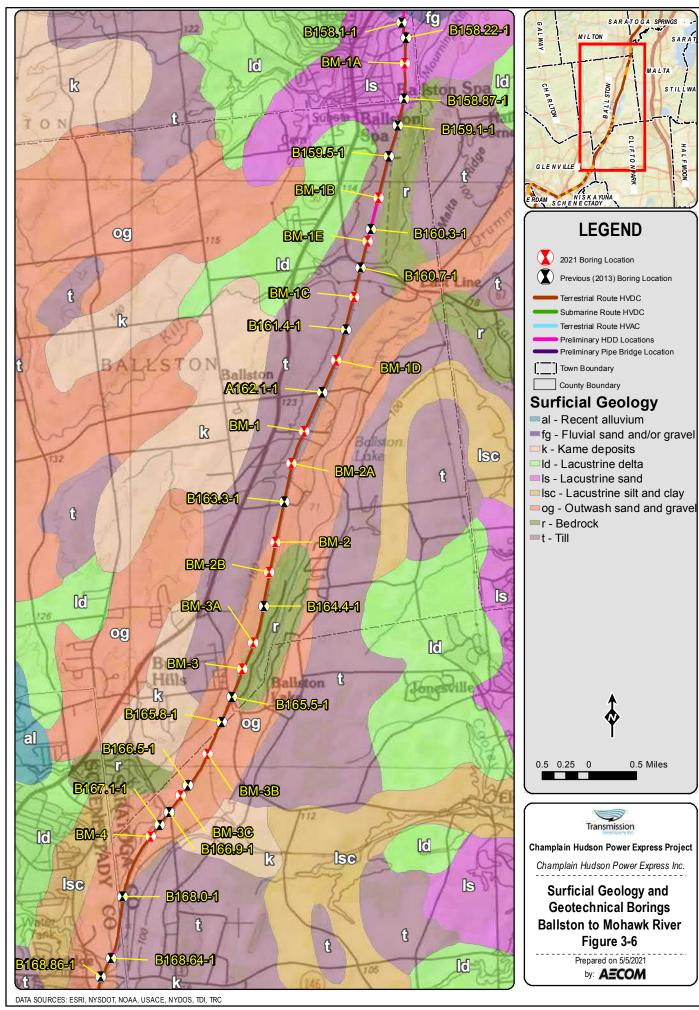
CHPE Segment 6 Package 4A Soil Boring Coordinates and Elevations

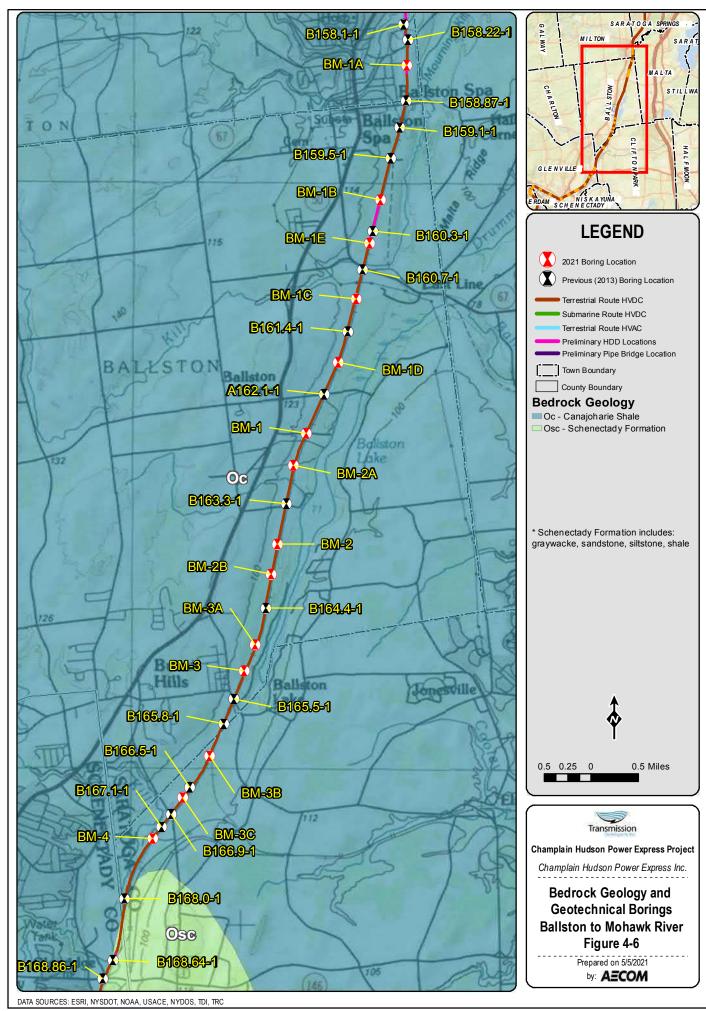
F 1	Device	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	A162.1-1	1502786.734	664476.477	284.0
	B158.87-1	1519228.136	669050.444	288.3
	B159.1-1	1517722.124	668720.464	291.0
	B159.5-1	1516012.300	668217.400	295.8
	B160.3-1	1511903.990	667182.915	294.6
	B160.7-1	1509749.417	666636.945	295.0
	B161.4-1	1506284.600	665799.100	288.0
	B163.3-1	1496630.400	662351.700	280.2
TRC*	B164.4-1	1490795.529	661205.362	267.5
	B165.5-1	1485722.400	659432.900	277.6
	B165.8-1	1484324.089	658853.809	275.4
	B166.5-1	1480752.600	656954.600	263.5
	B166.9-1	1479253.700	655902.600	265.4
	B167.1-1	1478553.300	655364.300	261.0
	B168.0-1	1474529.400	653290.100	251.4
	B168.64-1	1471082.866	652655.655	245.2
	B168.86-1	1470035.900	652059.906	231.6
	BM-1	1500593.800	663479.000	283.4
	BM-1B	1513675.554	667631.458	293.5
	BM-1C	1508115.700	666263.900	291.9
	BM-1D	1504574.200	665267.500	283.4
	BM-1E	1511220.853	667016.761	294.1
	BM-2	1494386.900	661852.400	271.4
AECOM**	BM-2A	1498788.900	662752.200	279.1
	BM-2B	1492715.315	661511.300	269.7
	BM-3	1487269.097	659995.860	275.1
	BM-3A	1488755.829	660606.619	270.8
	BM-3B	1482501.900	658059.300	273.6
	BM-3C	1480192.269	656553.384	263.2
	BM-4	1477890.500	654882.600	260.5

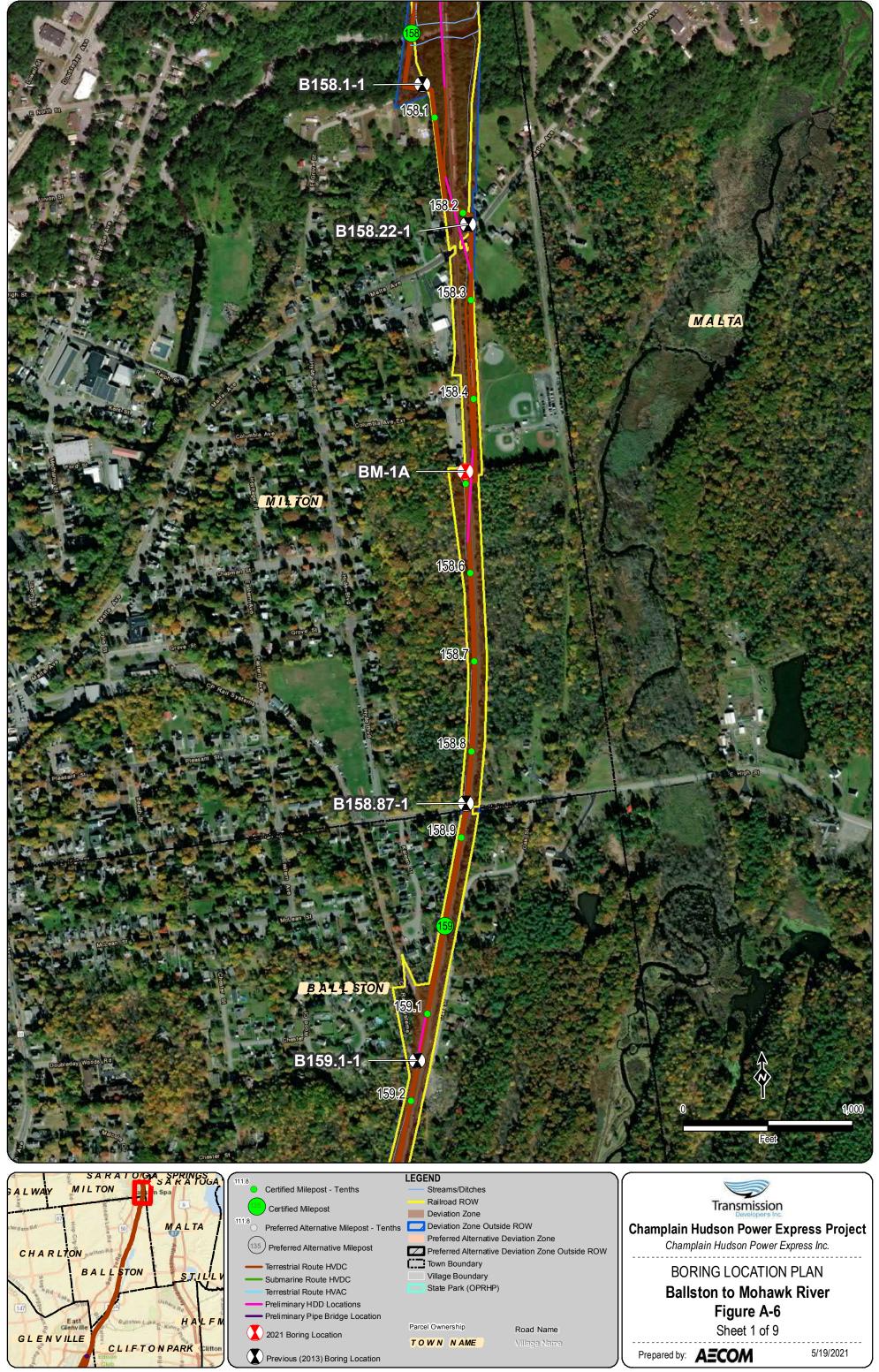
Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.


* TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.


*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Y:IP rojects/CHPEI/Route/Consensus_Alternative_Routes/MXDIAIt_5_Routes_DZ_201909/Boring_Locations/Maps_for

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

				_					
GROUNDWATER DATA				METHOD OF ADVANCING BOREHO					
FIRST ENCOUNTERED 13.5 '			\Box	а	FROM	0.0 '	то	2.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	_	d	FROM	2.0 '	ТО	20.3 '
				-					

 BORING
 B158.87-1

 G.S. ELEV.
 N/A

FILE 195651 SHEET 1 OF 1

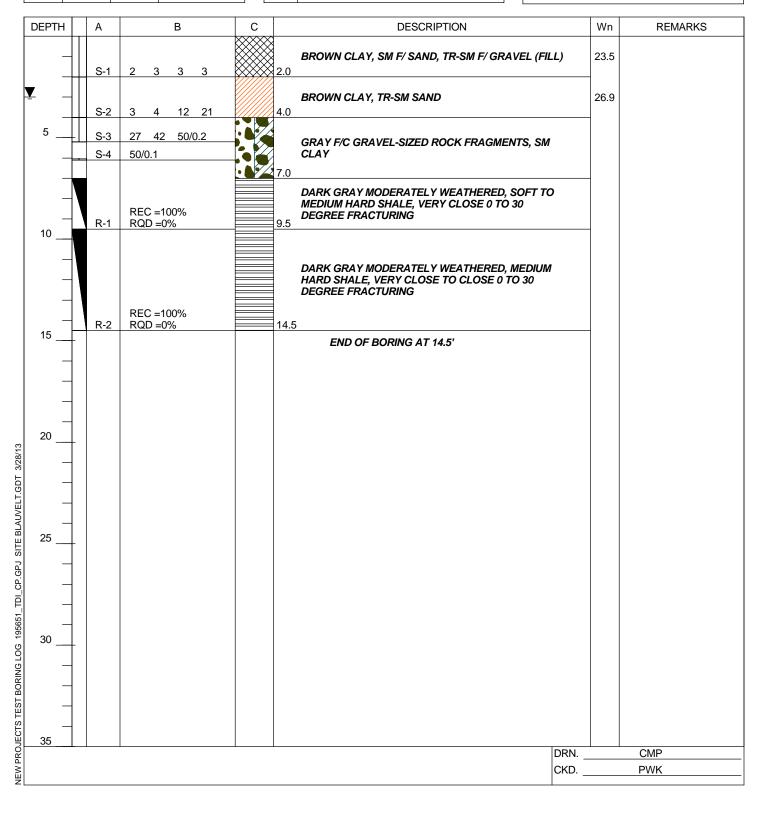
DRILLER	T. FARRELL
	J. LANGDON
INSPECTOR	N/A
DATE STARTED	02/28/2013
DATE COMPLETED	02/28/2013

- S-1 6 8 6 6 2.0 - S-2 6 7 6 7 2.0 14.0 5 - - S-3 4 5 4 4 14.0 - S-3 4 5 4 4 14.0 14.0 - S-4 7 9 10 25 110	
- S-2 6 7 6 7 5 - - - - - - 14.0 - S-3 4 5 4 4 - - 14.0 - S-4 7 9 10 25 YELLOW BROWN SILTY F/MC SAND, SM F/ GRAVEL (FILL) 14.0	
(FILL)	
15 <u>S-6</u> 12 4 4 BROWN SILT AND F/M/C SAND, TR F/ GRAVEL	
20 S-7 6 7 7 20 S-8 50/.3 20.0 20	FUSAL
EXE	
DRN. KR CKD. PWK	

TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

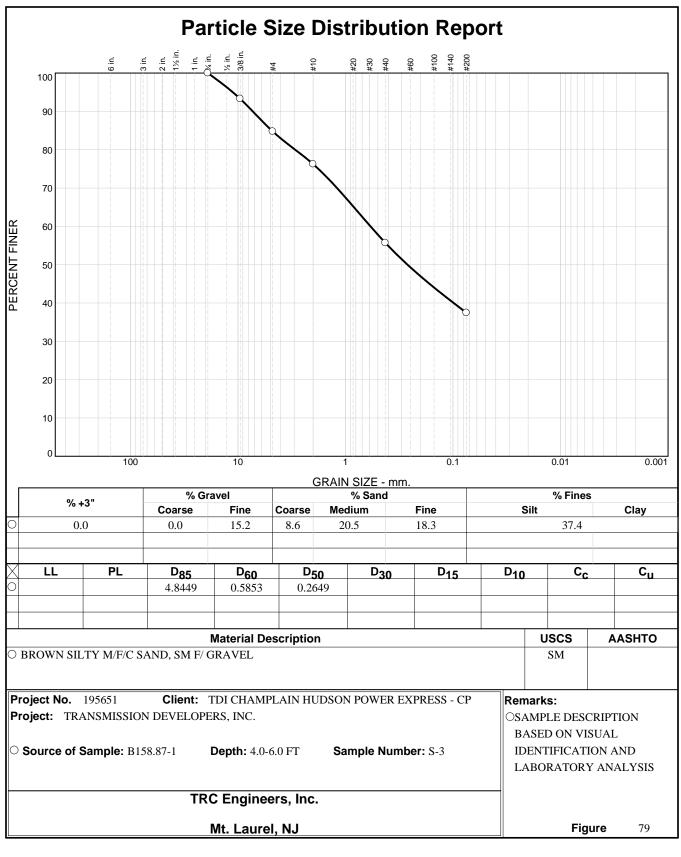

LOCATION: CP RAILROAD ROW, NY

GROUNDWATER DATA]	N	/ETHOD C	F ADVAN	CING BO	REHOLE
FIRST ENCOUNTERED NR				∇	а	FROM	0.0 '	то	6.1 '
DEPTH	EPTH HOUR DATE ELAPSED TIME		-	d	FROM	6.1 '	TO	7.0 '	
3.0'	16:35	1/14	0 HR		C ₂	FROM	7.0 '	то	14.5 '
				Ī					

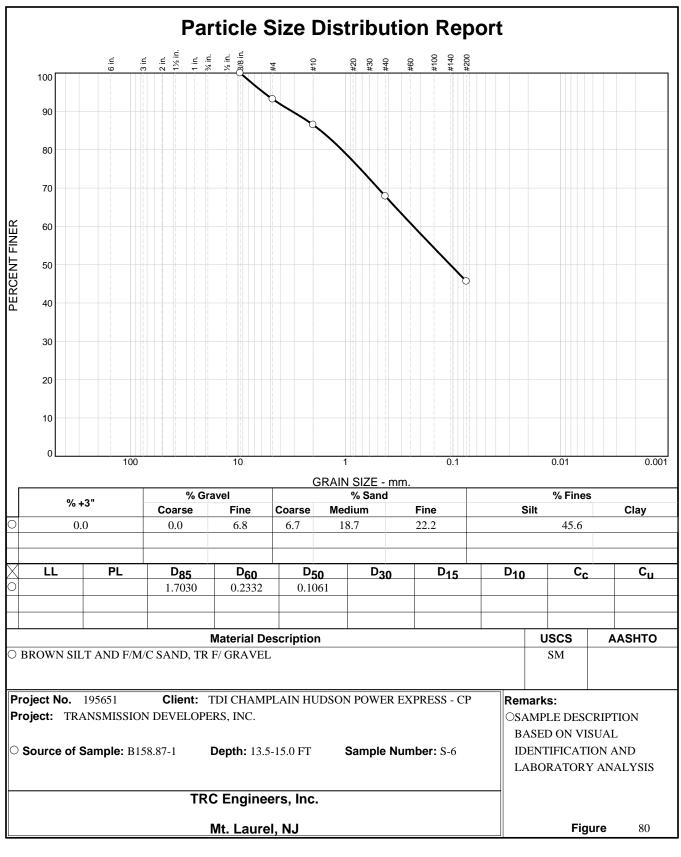
BORING B159.1-1 G.S. ELEV. N/A FILE 195651 SHEET

DRILLER J. MEHALICK HELPER M. KERLIN INSPECTOR C. POPPE DATE STARTED 01/14/2013 DATE COMPLETED 01/14/2013

1 OF 1



Project Name: Client Name: TRC Project #: TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651


Organic Content (%) Soil Group (USCS System) **GRAIN SIZE** Moisture Content (%) SAMPLE IDENTIFICATION PLASTICITY Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Liquidity Index) # Limit (%) Boring # Sand (%) Limit (%) Clay (%) Sample ∮ Plastic Silt (%) Liquid S-5 8.0-10.0 29.9 _ _ _ _ -_ _ _ _ _ 13.5-15.0 25.4 S-6 100.1 _ _ -_ _ --_ --_ -23.5-25.0 23.5 S-8 _ _ _ _ _ _ _ _ _ _ _ _ _ 2.0 - 4.0S-2 26.9 _ _ _ -_ _ _ _ _ _ _ _ B158.22-1 8.0-10.0 SM 53.2 S-5 24.9 21.9 7.0 _ _ _ _ _ _ _ _ 18.9-19.3 166.8 **R-1** 255 -_ _ ---_ _ -_ -S-3 4.0-6.0 SM 15.2 47.4 37.4 _ 14.0 _ _ _ _ _ _ _ B158.87-1 13.5-15.0 SM 6.8 47.6 45.6 15.6 S-6 -_ _ _ _ _ _ 23.5 S-1 0.0-2.0 _ _ _ -_ _ _ _ _ _ _ _ _ B159.1-1 S-2 2.0 - 4.026.9 _ _ _ _ _ _ _ _ _ _ _ _ _ R-2 12.9-13.1 167.1 _ _ _ _ _ _ -_ _ _ _ _ _ 12.9-13.2 165.5 B159.5-1 **R-3** _ _ _ _ _ -_ -_ _ _ -_ 4.0-6.0 8.3 132.4 B160.3-1 S-3 _ _ _ _ _ -_ -_ _ _ _

DRAWN BY: TBT 03/27/13

Tested By: <u>TBT 03/13/13</u>

Checked By:

Tested By: <u>TBT 03/13/13</u>

_____ Checked By: ___

EXPLORATION PLAN

Champlain-Hudson Power Express Design Package 4a
Ballston - Clifton Park - Glenville, NY June 22, 2022
Terracon Project No. JB215256A

Tlerracon GeoReport

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BUNG MAPS

Geotechnical Data Report

Champlain-Hudson Power Express- Package 4a June 22, 2022
Terracon Project No. JB215256A

PHOTOGRAPHY LOG

		В	ORING LO	g nc). K	-15	9. [,]	1			F	Page 1 of :	2
PRC	DJECT:	Champlain-Hudson Power Ex Package 4a	press Design	CLIE	NT: M	liew	it E	ngin	eering (NY) C	orp.			
SITE	Ξ:	Champlain to Hudson HDD C Ballston - Clifton Park - Gleny		_									
2		See Exploration Plan 9982° Longitude: -73.8396°	Surface Elev.: 25	90.89 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH 4-\ BALL	AST		<u>FION (Ft.)</u> 290.5		≥≞	l S	RE		د	U U		H
		SILTY SAND WITH GRAVEL, black, v	very loose to loose		-			14	3-5-3-1 N=8	-			
	.0			287	_			14	2-1-1-12 N=2				
		THERED ROCK, black, very dense			5-	-	\square	12	16-35-50/4"				
					-								
					-	_	\times	0	50/2"				
					- 10-		\times	3	50/3"				
					-					n I			
					-								
					- 15-								
	6.0 SHAL gray	<u>E</u> , slightly weathered, close fractured,	very poor RQD,	275	-					-			
					_				REC = 95% RQD = 7%				
2	0.0 SHAL	E, slightly weathered, close to modera	ate fractured, poor	271	20-					-			
	RQD,	gray			-				REC = 100%				
					-	-			RQD = 28%				
2	5.0 SHAL	<u>E</u> , slightly weathered, very close to me	oderate fractured,	266	25-					-			
	good	RQD, gray			-	-			REC = 100%				
	Stratificatio	n lines are approximate. In-situ, the transition n	nav be gradual.		_			ammei	RQD = 83%				
		······, ···, ···	,						.,,				
4 1/4"	ement Metho ' ID HSA nment Meth		See Exploration and Te description of field and used and additional da See Supporting Informa	laboratory ta (If any). ation for ex	procedu	ires	Lo Ha En	ergy T	y JCH Efficiency Summary ransfer Ratio: 91.3% Efficiency Correction	+/-2.7%			
	g backfilled	with bentonite grout upon completion	symbols and abbreviati Elevations were provid		vit					. , .			
∇	WATE overnight	R LEVEL OBSERVATIONS					Bori	ng Sta	rted: 03-28-2022	Bori	ng Com	pleted: 03-29-	·2022
	S. S. High						Drill	Rig: C	CME 750x	Drill	er: J. La	imm	
			30 Corpora Alba	te Cir Ste 2 ny, NY	U I		Proj	ect No	.: JB215256A	1			

BORING	LOG NO.	K-159.1
--------	---------	---------

Page 2 of 2

	PROJECT: Champlain-Hudson Power Express Design Package 4a				NT: K	(iewi	t E	ngin	eering (NY) C	orp.			
	SIT	E: Champlain to Hudson HDD Crossin Ballston - Clifton Park - Glenville, N											
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 42.9982° Longitude: -73.8396°	Surface Elev.: 29		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB2152563 CHAMPLAIN-HUDSON GPU TERRACON_DATATEMPLATE GDT 6/20/22		DEPTH SHALE, slightly weathered, very close to moderate good RQD, gray (continued) 30.0 SHALE, slightly weathered, close to moderate frace excellent RQD, gray 35.0 Boring Terminated at 35 Feet	ELEVAT	0.89 (FL) <u>10N (FL)</u> <u>261</u> <u>256</u>					REC = 96% RQD = 100%				
G IS NOT VALID IF SEP	4 1/4 Aband	TID HSA descr used soment Method: g backfilled with bentonite grout upon completion	Exploration and Te iption of field and l and additional dat. Supporting Informa ols and abbreviation tions were provide	laboratory a (If any). ation for exp ons.	procedu planatio	ires	Lo Ha En	immer iergy T	y JCH Efficiency Summary: ransfer Ratio: 91.3% Efficiency Correction	+/-2.7% (CE):1	.52		
ING LOC	∇	WATER LEVEL OBSERVATIONS overnight	Gee				Bori	ng Sta	rted: 03-28-2022	Borir	ng Com	oleted: 03-29-	2022
THIS BOR	<u></u>		ernight Ilerica 30 Corporate C Albany,					-	CME 750x	Drille	er: J. La	mm	

Client Kiewit Engineering Corp Project

Champlain-Hudson Power Express Project

Project No. JB215256

Boring	к	-159.1	Material I	Description	Sh	ale
Sample No			Equipm	ent Used	Tinius Olsen (120,000	
Depth (ft)		20-25	TICCS ID	C-48999, 118285		
Lab No		5073	Calibra	tion Date	11/2/	
			TEN	NGTH		
Sample No.		1	2	3	4	5
Diameter (in)		1.98	1.98	1.98	1.98	1.98
Length (in)		0.7	0.73	0.54	0.61	0.7
Length Diameter Rat	io	0.35	0.37	0.27	0.31	0.35
Rate of Loading		0.007	0.0073	0.0054	0.0061	0.007
Moisture Condition		1.02%	1.02%	1.02%	1.02%	1.02%
Maximum Applied Load	(lbf)	1664	1022	1454	1308	2503
Splitting Tensile Streng	th (psi)	764.7	450.4	866.2	689.8	1150.3
			TEN	ISILE STRE	NGTH	
Sample No.		6	7	8	9	10
Diameter (in)		1.98	1.98	1.98	1.98	1.98
Length (in)		0.69	0.58	0.62	0.7	0.69
Length Diameter Rat	io	0.35	0.29	0.31	0.35	0.35
Rate of Loading		0.0052	0.0065	0.006	0.007	0.006
Moisture Condition		0.90%	0.90%	0.90%	0.90%	0.90%
Maximum Applied Load	(lbf)	787	1145	1011	1162	1431
Splitting Tensile Streng	th (psi)	366.9	635.1	524.6	534.0	667.2

Page 1 of 1

Client:	Terracon Consultants, Inc.				
Project:	Champlain-Hudson Power Express				
Location:				Project No:	GTX-315284
Boring ID:	K-159.1	Sample Type:	cylinder	Tested By:	tlm
Sample ID:		Test Date:	06/17/22	Checked By:	smd
Depth :	25-30 ft	Test Id:	670476		
Test Comm	ent:				
Visual Desc	ription:				
Sample Cor	nment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
K-159.1		25-30 ft	1	1.4	1.9	1.65	
			2	2.4	2.1	2.25	
			3	1.1	1.3	1.20	
			4	0.8	1.4	1.10	
			5	1.4	1.0	1.20	
				Average CAIs	L	1.48	
				Average CAI *		1.95	
		1	CERCHAR Abr	asiveness Index Cla	assification Med	um abrasiveness	

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 40/42 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

20001480

PROJECT NUMBER

Package 4A Phase 4 Borings Champlain Hudson Power Express New York

Legend Key

Kiewit Borings

EXPLORATORY BORING LOG

BORING NO: KB-158.9

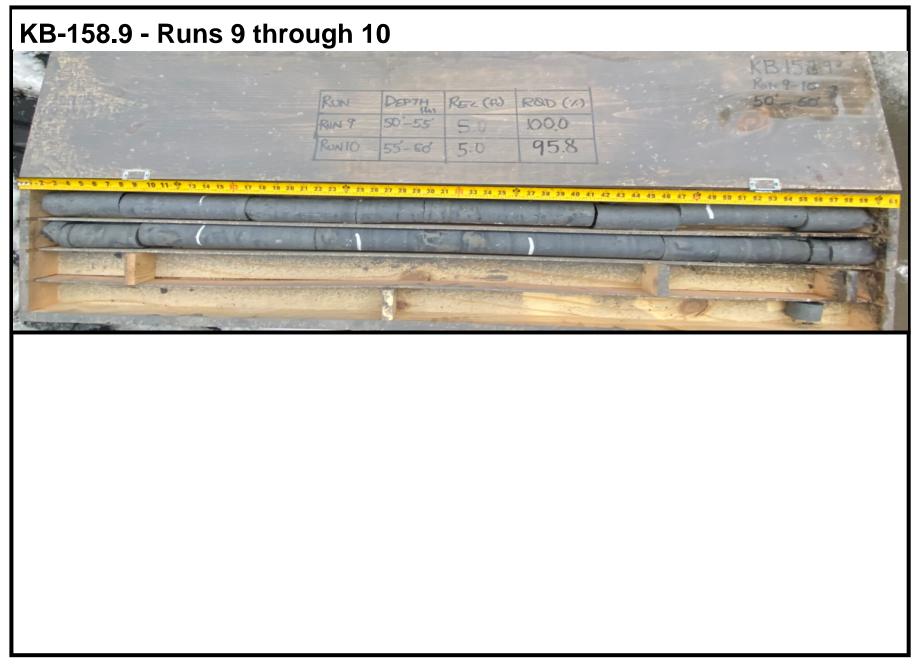
New York

0.			20001480	LOGGED BY	20001400 0.7411144					COORDINATES			9086	.//	
	STAR	T DATE	12/14/2022	DRILLER/RIG	Joh	n ,	/ Geo	probe	7822DT	GROUND ELEV.		28	36.2 f	t	
	FINISH	H DATE	12/15/2022	DRILL CONTRACTO				DT Inc		HAMMER TYPE/	EFF.	FF. Automatic			
	Elevation (ft)	Graphic Log	Material D	Description	Sample Type	Core Kun No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		▲ SP ⁻ ● MC ● PL ▼ Fin	& LL (% es Cont	ue 6) ent (%)	Т
	284.2		moist	l (SP), dark gray, loose,	M		50%		7-5-5-4 (10)	Boring advanced with 4" ID Mud Rotary	2	0 4	06		80
-	204.2		Sandy SILT (ML), brow dense, moist, fine to co gravel			2	75%		11-13-15-14 (28)						_
- ; -						3	71%		17-19-17-23 (36)						
-	278.2		Weathered rock, dark g	rray, medium dense to	Д		58%		32-22-22-28 (44)						
 0	276.2		dense, wet, sampled as	s shale fragments		5	33%		22-26-50/4"						1
			SHALE, gray, very clos discontinuities, laminate fresh			1 -	<u>86%</u> 8			15 minute core run					
- 5 - - - - -						2 -	<u>97%</u> 20			15 minute core run					
 0 			closely spaced disconti	nuities, fair RQD		3 -	<u>100%</u> 66			20 minute core run					
- 5 - - - -			closely to moderately s	paced discontinuities		4	<u>100%</u> 77			12 minute core run					
 			closely spaced disconti	nuities, poor RQD	-		()								-
						5 -	<u>100%</u> 48			20 minute core run					
 5															Ţ

EXPLORATORY BORING LOG

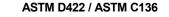
BORING NO: KB-158.9

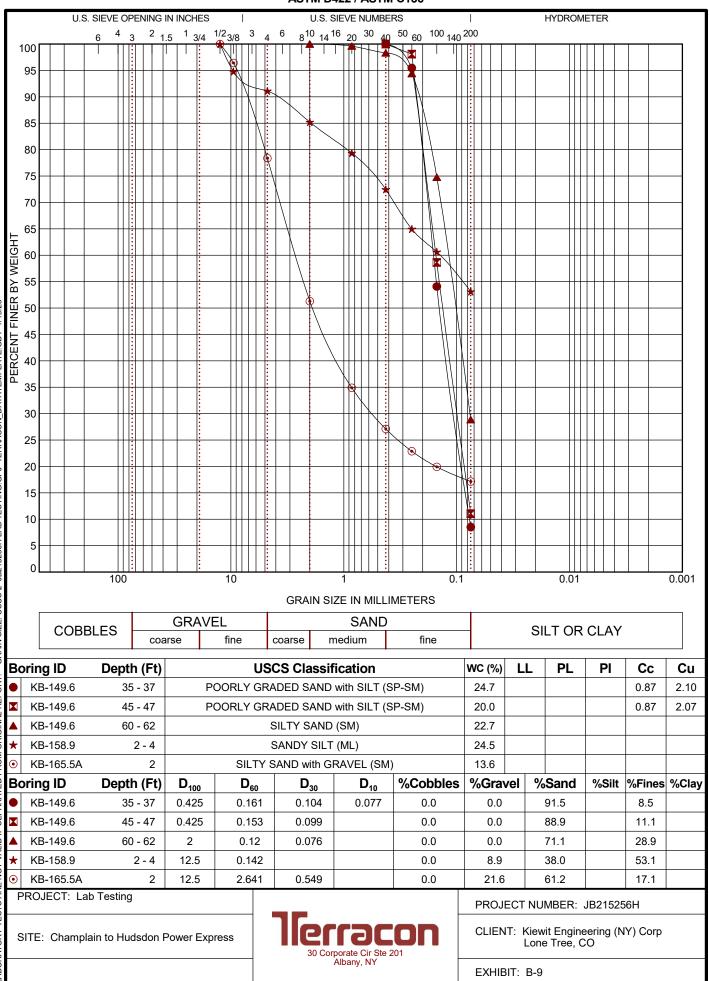
New York


PROJ	ECT NI	JMBER	20001480	LOGGED BY			Ahmad		COORDINATES			1880 9086		
	STAR		12/14/2022	DRILLER/RIG	J <u>ohn</u>	/ Geo	probe 7	822DT	GROUND ELEV.		28	36.2 f	it	
	FINISH		12/15/2022	DRILL CONTRACTO			DT Inc.		HAMMER TYPE/EFF. Automat			natic		
Depth (ft)	Elevation (ft)	Graphic Log	Material D	Pescription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT MC PL Fine		ue %) tent (%)	1
 	E		SHALE, gray, moderate discontinuities, laminate excellent RQD	ely spaced ed, good RQD, fresh	6	<u>100%</u> 82		<u> </u>	20 minute rock core		4			
			good RQD		7	<u>100%</u> 92			15 minute core run UCS = 6,292 psi					
 			-		8	<u>100%</u> 85			20 minute core run					
			moderately to widely sp excellent RQD	aced discontinuities,	9	<u>100%</u> 100			20 minute rock core					
- 55 - 			moderately spaced disc	continuities	10	<u>100%</u> 96			20 minute rock core					
- 60 - 	226.2		Boring Terminated at 60	Dft										
- 65 - - 65 - 														
													age 2	

KB-158.9 - Runs 1 through 4

KB-158.9 - Runs 5 through 8


		KB 158 9 RUN 5-8 30'-50' 81
	RUN DEPTH REC (10) ROD (1)	. 30'-50' sit
The second second	RUNS 30-35 5.0 47.5 RUNG 35-40 5.0 82.5	
	Rinz 40-45 5.0 91.6	the main the
All the second s	85.0	
2 3 4 5 6 7 8 9 10 11 9 13 14 15 m 17 18 19 20	KUN 8 49-50 5.0 21 22 23 1 25 26 27 26 29 30 31 33 34 38 1 37 38 39	
The second second		
STATISTICS STATISTICS		
1945 S20		A STATE OF A
the second second	A DESCRIPTION OF A DESC	

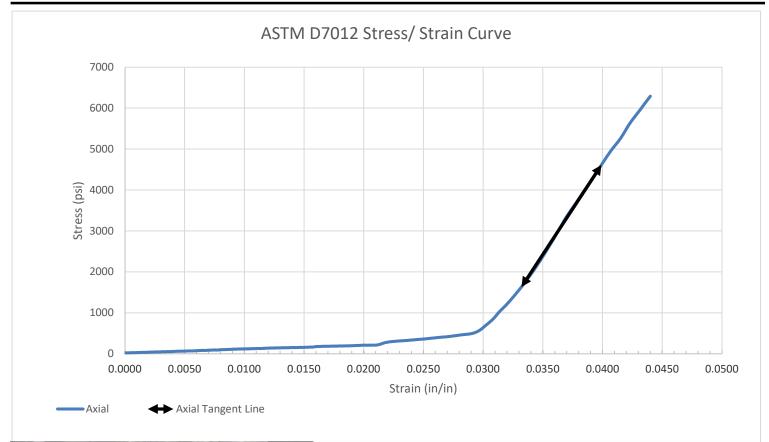


				Sheet 2 of 2
BORING ID	Depth (Ft.)		Water Content (%))
KB-149.6	60-62		22.7	
KB-158.9	2-4		24.5	
KB-165.5A	2		13.6	
KB-165.5B	2-4		14.3	
PROJECT: L SITE: Cham				
			I	
PROJECT: L	ab Testing			PROJECT NUMBER: JB215256H
SITE: Cham	olain to Hudsdo	n Power Express	Therracon 30 Corporate Cir Ste 201 Albany, NY	CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO
			Albany, NY	EXHIBIT: B-2

Summary of Laboratory Results

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS-2 JB215256H LAB TESTING.GPJ TERRACON_DATATEMPLATE.GDT 1/19/23 REPORT ORIGINAL ROM SEPARATED ш VALI NOT TESTS ARF ABORATORY


Client

Kiewit Engineering Corp

Project

Lab Testing

Project No. JB215256H

	SAMPLE	LOCATIO	N						
Site:		JB215256H							
Description:	escription: Shale								
Boring:	KB-158.9	Depth (feet):	43.0						
SPI	SPECIMEN INFORMATION								
Sample No.:	RC-1	Mass (g):	554.44						
Length (in.):	4.06	Diameter (in.):	2.00						
L/D Ratio:	2.030	Density (pcf):	165.598						
	TEST F	RESULTS							
Failure Load (lbs):			19373						
Failure Strain (in/in):		0.048						
Unconfined Compr	essive Strength (psi):	6,292						
Elastic Modulus, E	Elastic Modulus, E, (ksi): 445								
Time of Failure (min): 02:15									
Rate of Loading (in/sec): 0.04									
Moisture Content Post-break: 1.79%									

Client		Project	
Kiewit Engineering Corp		Lab Testing	
		Project No.	JB215256H
Equipment:	TICCS ID:		
Calipers	W-44049		
Scale	B-71466		
Dial Indicator	C-70608		
Compression (spherically seated)	C-48999		

Samples were prepared and tested in accordance with ASTM D4543 and D7012. Deviations, if any, are noted below: Notes:

Per ASTM D4543, this specimen has not met the requirements for perpendicularity, by exceeding 0.250°. Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches. Per ASTM D4543, this specimen has not met the requirements for parallelism, by exceeding 0.25°.

Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches.

Per ASTM D4543 and ASTM D7012, the desired specimen length to diameter are between 2.0:1 and 2.5:1. According to ASTM D7012 Section 8.2.1, this specimen, although not meeting all requirements of ASTM D4543 is acceptable for testing. However, the results reported may differ from results obtained from a test specimen that meets the requirements of D4543.

EXPLORATION PLAN

Packages 3, 4A and 4B
Fort Edward to Schenectady, NY April 11, 2023
Terracon Project No. JB215256J

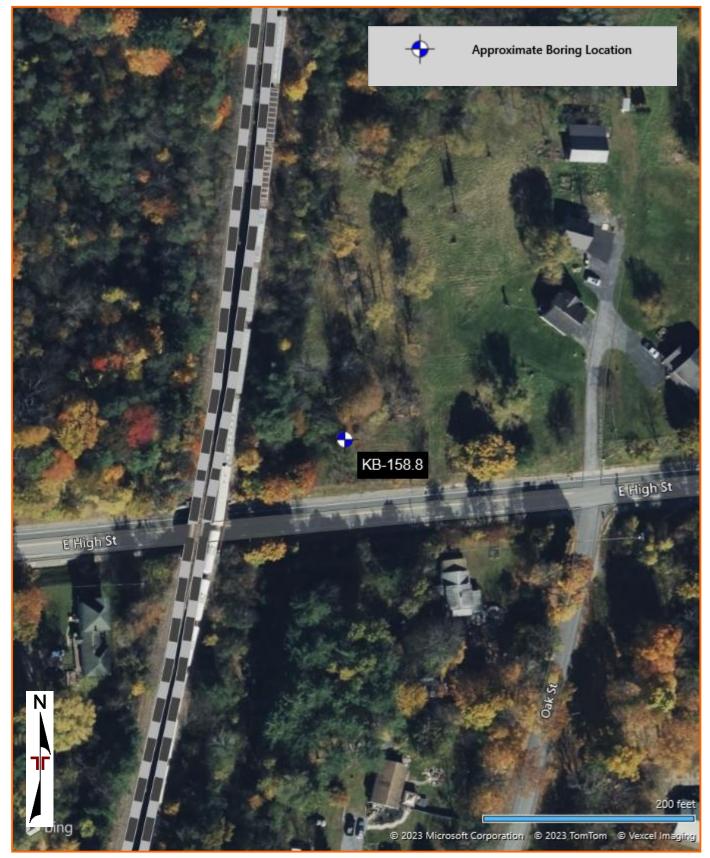


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

BORING LOG NO. KB-158.8

Page 1 of 1

PROJECT: Phase 4 Borings SITE: Champlain to Hudson HDD Crossings

CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO

LOCATION See Exploration Plan

GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 43.0017° Longitude: -73.8380°	Surface Elev.: 279.52 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
-	DEPTH 0.4_TOPSOIL FILL - LEAN CLAY, roots and rootlets noted,	ELEVATION (Ft.) 279.1 brown		> Ö	v)	R	2-3-4-4 N=7			H
	2.4 WEATHERED ROCK, gray, dense	277.1	-		X		11-16-24-50 N=40			
	5.0 SHALE, highly weathered, very close to close RQD, gray	274.5 e fractured,very poor 269.5	5	-			REC=100% RQD=8%			
	SHALE, highly weathered, very close to close RQD, gray		10- - - - 15-	-			REC=100% RQD=33%			
uki. Geu smaki lug-nu well JB2'	Boring Terminated at 15 Feet									
	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.		Ha	amme	r Type	e: Automatic			<u> </u>
	bement Method: 4" Casing 3 7/8" Tricone Drill Bit 5' NX Core Barrel onment Method: ng backfilled with bentonite grout upon completion	See Exploration and Testing Procedures description of field and laboratory proce used and additional data (If any). See Supporting Information for explanat symbols and abbreviations. Elevations were provided by others.		Hai Ene Hai	ergy T mmer	ransf	ency Summary: er Ratio: 89.1% +/- ency Correction (C H/DO	4.4% E): 1.49		
בי עואפ ר	WATER LEVEL OBSERVATIONS No free water encountered	Terraco		Borir	Boring Started: 02-17-2023			Boring Completed: 02-17-2023		
ניסם סם		30 Corporate Cir Ste 201		Drill	Rig: N	Nobil E	B-57	Driller: J.	Swope	
Ξ		Albany, NY		Proje	ect No	o.: JB2	215256J			

MEMORANDUM

DATE: January 19, 2023
TO: Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT: Geotechnical Data: Segment 6 – Package 4A – HDD Crossing 52 – Revision 1 Champlain Hudson Power Express Project Ballston Spa, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Ballston Spa, New York. The approximate station for the start of HDD crossing Number 52 is STA 40053+50 (42.9869°N, 73.8439°W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and TRC and from a recent investigation by Terracon, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.
- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Terracon, Results of Field Exploration, Champlain Hudson Power Express, Ballston Clifton Park Glenville, NY, dated June 22, 2022

Contact us if you have questions or require additional information.

HDD 52 Borings K-159.9, BM-1B, K-160.0, K-160.1, K-160.2, B160.3-1, K-160.4, BM-1E Segment 6 - Design Package 4A

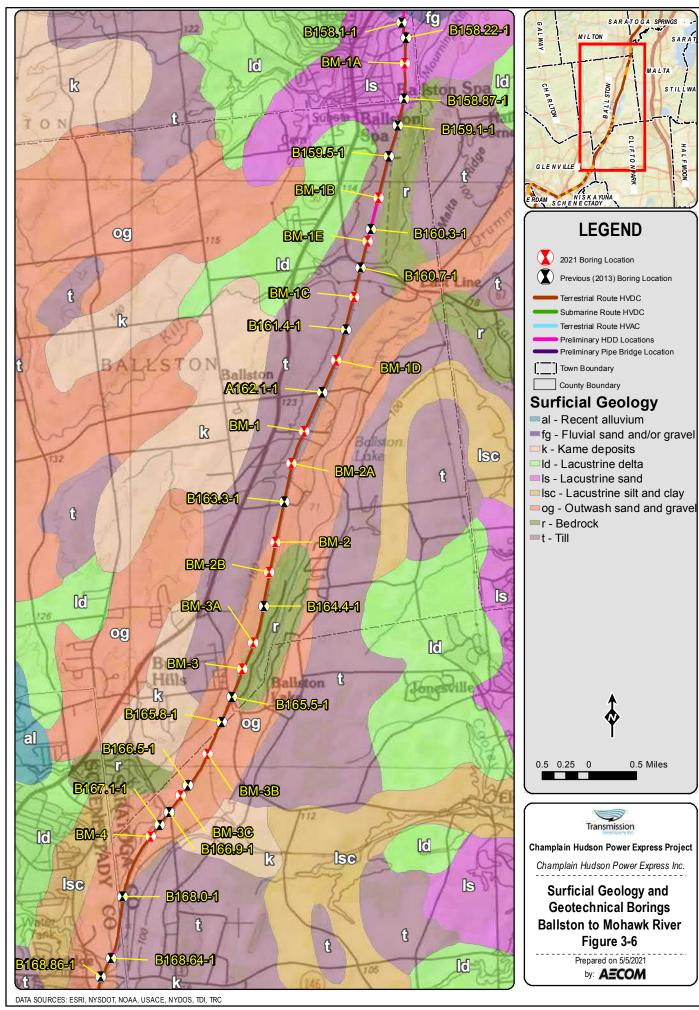
CHPE Segment 6 Package 4A Soil Boring Coordinates and Elevations

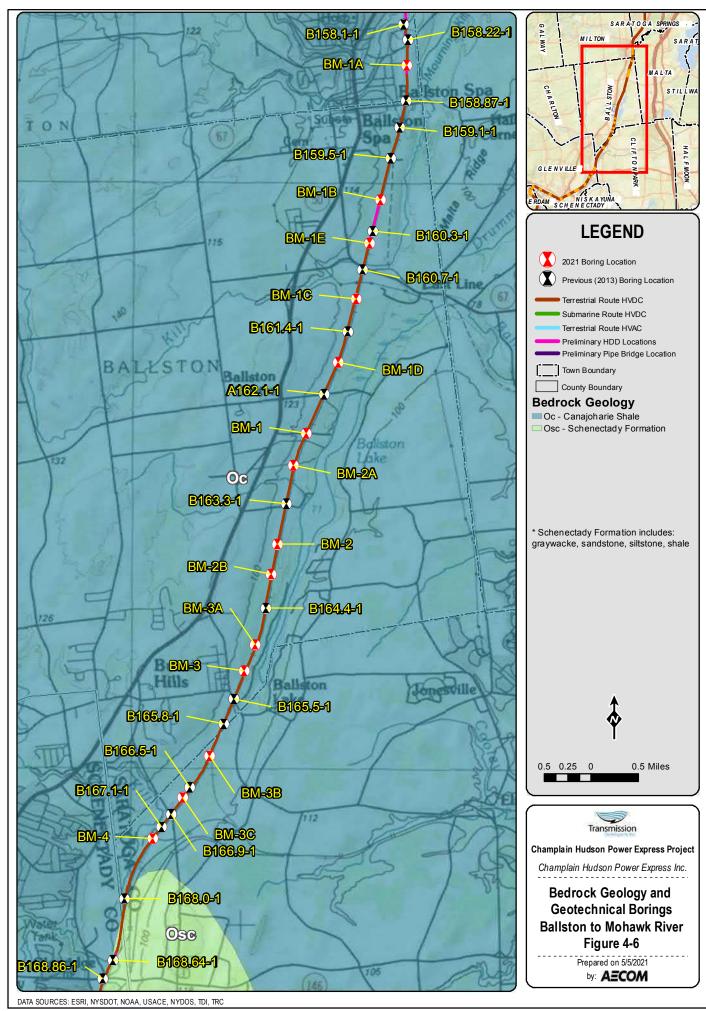
F :	Device	Northing	Easting	Ground Surface		
Firm	Boring	(feet)	(feet)	Elevation (feet)		
	A162.1-1	1502786.734	664476.477	284.0		
	B158.87-1	1519228.136	669050.444	288.3		
	B159.1-1	1517722.124	668720.464	291.0		
	B159.5-1	1516012.300	668217.400	295.8		
	B160.3-1	1511903.990	667182.915	294.6		
	B160.7-1	1509749.417	666636.945	295.0		
	B161.4-1	1506284.600	665799.100	288.0		
	B163.3-1	1496630.400	662351.700	280.2		
TRC*	B164.4-1	1490795.529	661205.362	267.5		
	B165.5-1	1485722.400	659432.900	277.6		
	B165.8-1	1484324.089	658853.809	275.4		
	B166.5-1	1480752.600	656954.600	263.5		
	B166.9-1	1479253.700	655902.600	265.4		
	B167.1-1	1478553.300	655364.300	261.0		
	B168.0-1	1474529.400	653290.100	251.4		
	B168.64-1	1471082.866	652655.655	245.2		
	B168.86-1	1470035.900	652059.906	231.6		
	BM-1	1500593.800	663479.000	283.4		
	BM-1B	1513675.554	667631.458	293.5		
	BM-1C	1508115.700	666263.900	291.9		
	BM-1D	1504574.200	665267.500	283.4		
	BM-1E	1511220.853	667016.761	294.1		
	BM-2	1494386.900	661852.400	271.4		
AECOM**	BM-2A	1498788.900	662752.200	279.1		
	BM-2B	1492715.315	661511.300	269.7		
	BM-3	1487269.097	659995.860	275.1		
	BM-3A	1488755.829	660606.619	270.8		
	BM-3B	1482501.900	658059.300	273.6		
	BM-3C	1480192.269	656553.384	263.2		
	BM-4	1477890.500	654882.600	260.5		

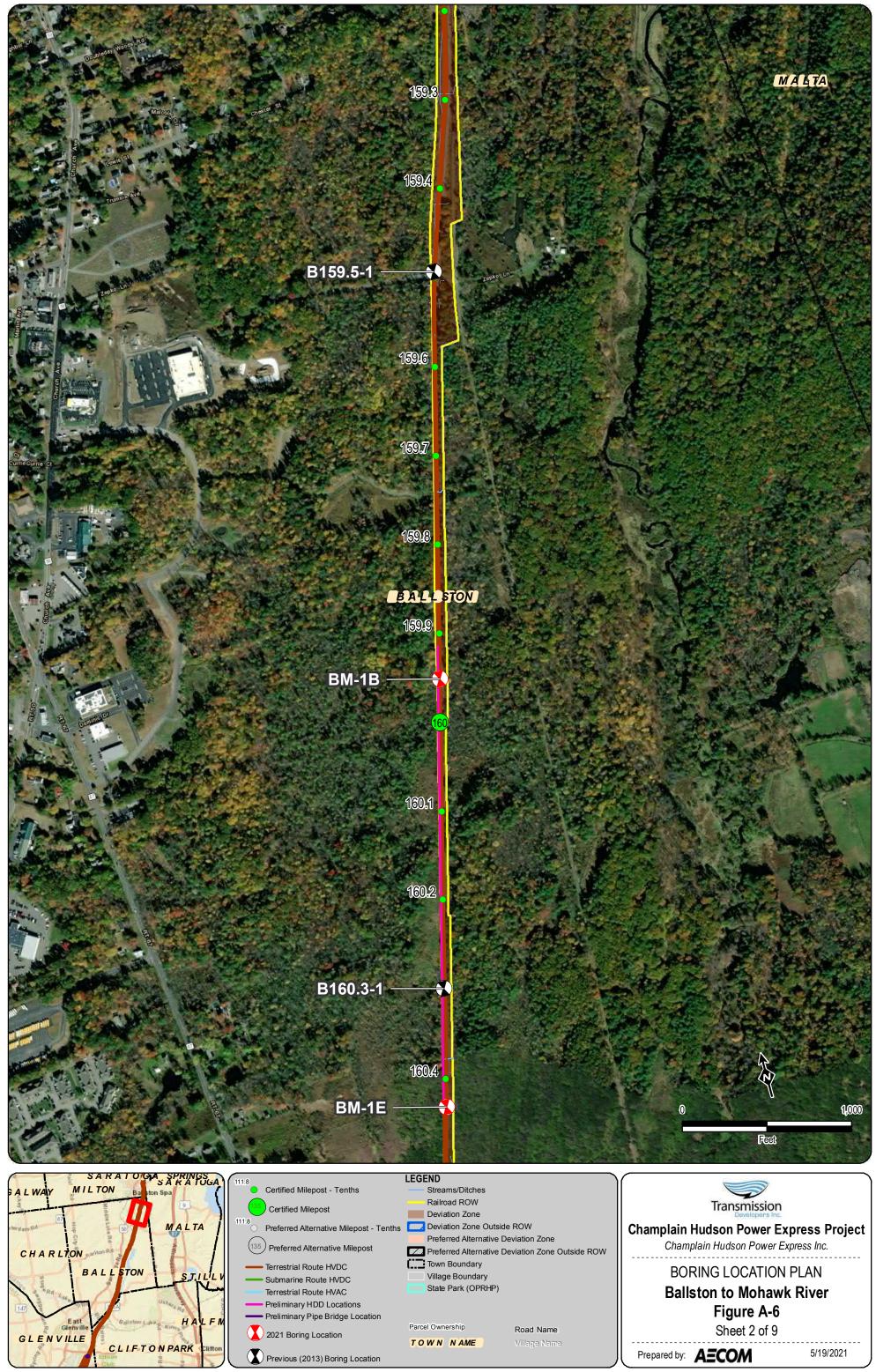
Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.


* TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.


*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Y:IP rojects/CHPEI/Route/Consensus_Alternative_Routes/MXD/AIt_5_Routes_DZ_201909/Boring_Locations/Maps

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

AUL		BORING CO	NTRACTOR:												SHEET 1 OF 2	
Process Multice Hold Second Seco		ADT													PROJECT NAME: CHPE -	
Process Multice Hold Second Seco		DRILLER:								\mathbf{T}					PROJECT NO.: 60323056	
SUBJECT VIEW VALUE SUBJECT VIEW VALUE <th colspan<="" td=""><td></td><td></td><td>artinez</td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td><td></td><td></td><td></td><td>HOLE NO.: BM-1B</td></th>	<td></td> <td></td> <td>artinez</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td> <td></td> <td></td> <td></td> <td>HOLE NO.: BM-1B</td>			artinez							C					HOLE NO.: BM-1B
<th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>															
UDCATOM MP - 1389 (CP Rul) GROUND WATER DBSERVATIONS CABING SAMPLER DITUE OPERATE NAL No water doarned TYPE Flam. bit See MUNIC CORE BARREL DRIL TO CORE BARRE									BODIN							
ORCUND WATER OSSERVATIONE CANNE SAMTLER (Addied Note Note Noted	-				1				DOININ	0 200						
No water observed TITE Flash Jort See SJZE 0.0. Collinger 4.5 Titopic 2.5 Store 0.0. Active 2.5 1787 Soft 00,00 Active 2.5 0				all)			C 4 5		CAM							
U U U 2.2' 17.8' SORMAG D.: 4.5'' SORMAG D.: 4.5'' V NAMEE WT. 140 he 140 he 120 he CONTUCE: CONTU	GRU		COBSERVATIONS				CAS	SING					CORE	DARKEL	DRILL RIG: Geoprode 7822D1	
UNDERCONS SAMPLE SAMP		No water obs	served		TYPE		Flush Jo	oint Steel	Mod	Modified		er Bit	N	Q	BORING TYPE: SPT/Core	
U U					SIZE I.C).	4	1"					17	7/8"	BORING O.D.: 4.5"/3"	
D OPENNO SAMPLE HAMEE FALL 337 337 T ATTUDE: P NNNET FROM. 10 NND In FROM. 10 NND FROM. 10 FROM. 10 USCS CHNR. FRLD. DENTIFICATION OF SOLS 10 0.9 0.9 0.0 0.0 0.0 FROM. 10 FRO					SIZE O.	D.				3"		7/8"	3	}"		
E AVE: PT DEFTING INFE TYPE PPN REC. IN BLOWS PER 6 in ON SAMPLER N OUCS STATAT CLASS. FELD DENTIFICATION OF SOLS. 10			1								-					
p MINET PROM. TO MD In In BOOM SPER is ON SMORER Cont ^{OD} CLASS CHMS DEELINENTIFICATION OF SOLIS 10								3	80"	N	118.08	OTDAT	1	LATITUDE:		
T (FEET) NO. (ROCK QUALITY DESONATION) DEFTH 0 0.9.5 607 Head Cleared 0							BLOW	S PER 6	in ON SA	MPI FR					FIELD IDENTIFICATION OF SOILS	
Image: Section of the sectio											0011.	01/100.				
10 0 0 0	Н		. ,				•									
10 10 <th< td=""><td></td><td></td><td>0'-5'</td><td></td><td>60"</td><td>60"</td><td></td><td>Hand (</td><td>Cleared</td><td>1</td><td></td><td>MH</td><td></td><td></td><td></td></th<>			0'-5'		60"	60"		Hand (Cleared	1		MH				
No No<	1.0										-			organioa		
No No<	2.0															
33 35 8:1 1 <td>2.0</td> <td></td> <td>Ŀ,</td> <td></td> <td></td>	2.0												Ŀ,			
40 0	3.0												SIL			
So Image: So			3'-5'	S-1							_			TR-1; (3	.0'-5.0')	
Sp Sp2 24* 24* 6 5 14 19 6.0 - <t< td=""><td>4.0</td><td colspan="3"></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	4.0						-				-					
Sp Sp2 24* 24* 6 5 14 19 6.0 - <t< td=""><td>5.0</td><td colspan="3"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5.0															
0.0 0	5.0		5'-7'	S-2	24"	24"	6	5	14	19	12	SP		Brown fi	ne-medium SAND, some silt, trace fine-medium	
Image: solution of the second secon	6.0													gravel; s	ubangular/subrounded gravel, medium dense	
Image: solution of the second secon																
B0 Image: Construction of the set of the s	7.0		71.01	0.0	0.4"	0.4"	00	40	40	47	00	0.0		Brown fi	ne SAND, trace silt, little fine-medium-coarse gravel	
90 Image: Second s	8.0		7-9	5-3	24	24	23	49	48	47	63	5P				
Image: Note of the sampler (califormic sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by	0.0															
10.0 10.1	9.0															
No. N			9'-11'	S-4	16"	16"	47	50	50/4"	65 SP						
13.0 Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. NH Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. The information contained on this log is not warranted to show the actual conditions do not conform to those indicated by this log. SAMPLE TYPE: Se SPLIT SPOON USHELBY TUBE R=ROCK CORE	10.0										-			TR-2; (9	.5-10.0)	
13.0 Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. NH Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. The information contained on this log is not warranted to show the actual conditions do not conform to those indicated by this log. SAMPLE TYPE: Se SPLIT SPOON USHELBY TUBE R=ROCK CORE	11.0												Î			
13.0 Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. NH Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. The information contained on this log is not warranted to show the actual conditions do not conform to those indicated by this log. SAMPLE TYPE: Se SPLIT SPOON USHELBY TUBE R=ROCK CORE	11.0		11'-'13'	S-5	2"	0"	50/2"						nse 1	No recov	very, drill to 13'	
13.0 Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. NH Image: Constraint of the sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2° O.D. by 2-7/16° I.D. by 6° length. The information contained on this log is not warranted to show the actual conditions do not conform to those indicated by this log. SAMPLE TYPE: Se SPLIT SPOON USHELBY TUBE R=ROCK CORE	12.0												- (de			
15.0 Image: Constraint of the second sec													VEL			
15.0 Image: Constraint of the second sec	13.0		401.451	D.4	0.4"	7"					-		GR∕	Boulder	fragments	
15.0 Image: Constraint of the second sec	14.0		13-15	K-1	24	1							D&	Douidoi	in agrino into	
Image: Note: 15:-17' S-6 24* 21 40 48 49 57 MH Dark gray SILT, trace clay, fine-coarse gravel; subangular, hard, dry 16.0 Image: Note: Image: Note: <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SAN</td><td></td><td></td></t<>													SAN			
16.0 10.0	15.0															
16.0 Image: Constraint of the second of			15'-17'	S-6	24"	24"	21	40	48	49	57	MH				
18.0 Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Renock CORE	16.0													nara, arj		
18.0 Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Image: Solid description represents a field identification after D.M. Burmister unless otherwise noted. Renock CORE	17.0															
19.0 Incurred Rock at 20' bgs 19.0 Incurred Rock at 20' bgs 20.0 Incurred Rock at 20' bgs NOTES: Incurred Rock at 20' bgs (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. (2) Correction factor: Ncorr=N*(2.0 ² -1.375 ²)in./(3.0 ² -2.4 ²)in. = N*0.65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE																
Incurred Rock at 20' bgs 20.0 Incurred Rock at 20' bgs NOTES: Incurred Rock at 20' bgs (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log. Soil description represents a field identification after D.M. Burmister unless otherwise noted. R=ROCK CORE	18.0															
Incurred Rock at 20' bgs 20.0 Incurred Rock at 20' bgs NOTES: Incurred Rock at 20' bgs (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log. Soil description represents a field identification after D.M. Burmister unless otherwise noted. R=ROCK CORE											-					
20.0 NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. (2) Correction factor: Ncorr=N*(2.0 ² -1.375 ²)in./(3.0 ² -2.4 ²)in. = N*0.65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S = SPLIT SPOON U = SHELBY TUBE R=ROCK CORE	19.0										-			Incurred	Rock at 20' bos	
NOTES: The information contained on this log is not warranted (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2* O.D. by 2-7/16* I.D. by 6* length. The information contained on this log is not warranted (2) Correction factor: Ncorr=N*(2.0 ² -1.375 ²)in./(3.0 ² -2.4 ²)in. = N*0.65. The information contained on this log is not warranted Soil description represents a field identification after D.M. Burmister unless otherwise noted. The information contained on this log. SAMPLE TYPE: S = SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	20.0													mourrou		
(2) Correction factor: Ncorr=N*(2.0 ² -1.375 ²)in./(3.0 ² -2.4 ²)in. = N*0.65. agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE		NOTES:												The info	rmation contained on this log is not warranted	
Soil description represents a field identification after D.M. Burmister unless otherwise noted. if he finds that the actual conditions do not conform to those indicated by this log. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE							T samples.	Rings dime	ensions = 2	-1/2" O.D.	by 2-7/16" I	I.D. by 6" le	ngth.	to show	the actual subsurface condition. The contractor	
Soil description represents a field identification after D.M. Burmister unless otherwise noted. to those indicated by this log. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	1	(2) Correction	factor: Ncorr=N*(2.0 ² -1.	375²)in./(3	.0 ² -2.4 ²)in.	= N*0.65.								-	-	
Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	1															
SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	1	Soil descripti	on represents a field	identifica												
PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35-50%	SAM															
	PRO	PORTIONS:		TRACE=	=1-10%		LITTLE=	10-20%		SOME=	20-35%		AND=3	5-50%		

		NTRACTOR:												SHEET 2 OF 2
	ADT						A =			V V				PROJECT NAME: CHPE -
	DRILLER:								0	///				PROJECT NO.: 60323056
	Francisco Ma					-								HOLE NO.: BM-1B
	SOILS ENGI													START DATE: 3/4/21
		Diden and Mike Izdet MP - 159.95 (CP Ra						BORIN	G LOG					FINISH DATE: 3/5/21 OFFSET: N/A
D	CORING	DEPTHS	TYPE	PEN.	REC.					N	USCS	STRAT.		OFFSET. NA
E P	RATE	FROM - TO	AND	in	in	BLOW	S PER 6	in ON SA	MPLER	Corr.	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS
T H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	Y DESIGN	NATION)			DEPTH		
	11 min	20'-25'	R-2	60"	60"		ROD: 60)" = 100%					Dark gra	ay shale, thinly laminated, moderately-slightly
21.0		20-23	11-2	00	00		RQD. 00	/ = 10070						d, 6 pieces, TR-3; (20.0'-20.6')
00.0	12 min													
22.0	11 min													
23.0	10 min													
24.0														
25.0	7 min													
26.0	55 min/5 ft	25'-30'	R-3	60"	59"		RQD: 5	8" = 96%						ay shale, thinly laminated, very compact, hard, nered; numerous bedding plane partings
													TP_4. (2	28.4'-28.9')
27.0												Щ	1111-4, (2	
28.0												SHALE		
29.0														
30.0	45 min	001.051	D 4	0.01	0.01			. 000/					۵۵۵ ما	ightly less compact
31.0	15 min	30'-35'	R-4	60"	60"		RQD	: 68%						Soft, slightly decomposed
	15 min												34.4': R	eturn to prior strata, vertical fracture
32.0	15 min													
33.0	7 min													
34.0														
35.0	8 min													
36.0													BM-1B	terminated at 35.2' bgs, grouted to surface
37.0														
38.0														
39.0														
40.0														
41.0														
42.0														
43.0														
44.0														
45.0	NOTES:												The info	rmation contained on this log is not warranted
													to show	the actual subsurface condition. The contractor
													-	that he will make no claims against AECOM ds that the actual conditions do not conform
	Soil description	on represents a field	identifica	tion after	D.M. Burmister unless otherwise noted.							e indicated by this log.		
			S= SPLI TRACE=	F SPOON		U=SHEL			R=ROCH				5-50%	
PRO	PORTIONS:		1-10%		LITTLE=	10-20%		SOME=2	20-35%		AND=35	o-50%		

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT													PROJECT NAME: CHPE -
	DRILLER:								O	///				PROJECT NO.: 60323056
	Francisco Ma	artinez												HOLE NO.: BM-1E
	SOILS ENGI	NEER/GEOLOGIST	:	1										START DATE: 3/9/21
	Michael Izdel	oski						BORIN	G LOG					FINISH DATE: 3/9/21
	LOCATION:	Ballston Mohawk (C	P Rail) N	/IP-160.43	3									OFFSET: N/A
GRC	UND WATEF	R OBSERVATIONS				CAS	SING	SAM	PLER	DRIL	L BIT	CORE E	BARREL	DRILL RIG: Geoprobe 7822DT
	No water obs	erved		TYPE		Flush Jo	oint Steel		California Modified		Tricone Roller Bit		Q	BORING TYPE: SPT/Core
				SIZE I.C).	4"		2	.5"			17	//8"	BORING O.D.: 4.5"/3"
				SIZE O.	D.	4	.5"	:	3"	3 7/8"		3"		SURFACE ELEV.:
				НАММЕ	R WT.	140) lbs	140) lbs					LONGITUDE:
D	CORING	SAMPLE	E	HAMME	AMMER FALL 30"			3	0"					LATITUDE:
E	RATE	DEPTHS	TYPE	PEN. REC. in in BLOWS PER 6 in ON					N			STRAT.		
P T	MIN/FT	FROM - TO (FEET)	AND NO.	in	in					Corr.(2)	CLASS.	CHNG. DEPTH		FIELD IDENTIFICATION OF SOILS
н		(1 2 2 1)	NO.				QUALIT	DESIG	DESIGNATION)			DEFIN		
		0'-5'					Hand (Cleared						
1.0										-				
2.0														
2.0													TR-1; (3	3.0'-5.0')
3.0										-				
		3'-5'	S-1							-				rk gray shale fragments, little fine-coarse sand, some clay; moist
4.0										-				spected shale bedrock, drill down to 5', bedrock not
5.0												confirm		
		5'-7'	S-2	24"	6"	49	50/1"	-	-	-	-			ay fine-coarse shale fragments, little fine-coarse
6.0														ace clayey-silt
7.0										-			Drill to 7	7.5'
7.0										-				
8.0		7.5'	S-3	24"	1"	50/1"	-	-	-	-	-			; dark gray fine-coarse shale fragments, little fine-
										-				sand, trace silt
9.0			-							-			Drill to 1	10.5', begin coring
10.0										-				
10.0	4 min	10'-15'	R-1	60"	36"		RQD: (0" = 0%		-				ay thinly laminated shale, significant fracturing and
11.0													partings	s on bedding planes; moderately soft, unweathered
	17 min									-		SHALE		
12.0	15 min											N		
13.0	101111													
	8 min													
14.0	10									-				
15.0	10 min									-				
	11 min	15'-20'	R-2	60"	42"		RQD: (0" = 0%					SAA	
16.0										-				
17.0	6 min									-				
17.0	15 min									-				
18.0	101111													
	25 min													
19.0										-				
20.0	18 min													
		ing lined drive sampler (actor: Ncorr=N*(2.0 ² -1.3				T samples.	Rings dime	ensions = 2	-1/2" O.D.	by 2-7/16" I	.D. by 6" le	ngth.	to show	nrmation contained on this log is not warranted the actual subsurface condition. The contractor that he will make no claims against AECOM
												-	ds that the actual conditions do not conform	
1														e indicated by this log.
		on represents a field												
	PLE TYPE:			T SPOON	I	U=SHEL			R=ROCI				E E 00/	
PROPORTIONS: TRAC				-1-10%		LITTLE=	10-20%		SOME=2	20-35%		AND=3	0-50%	

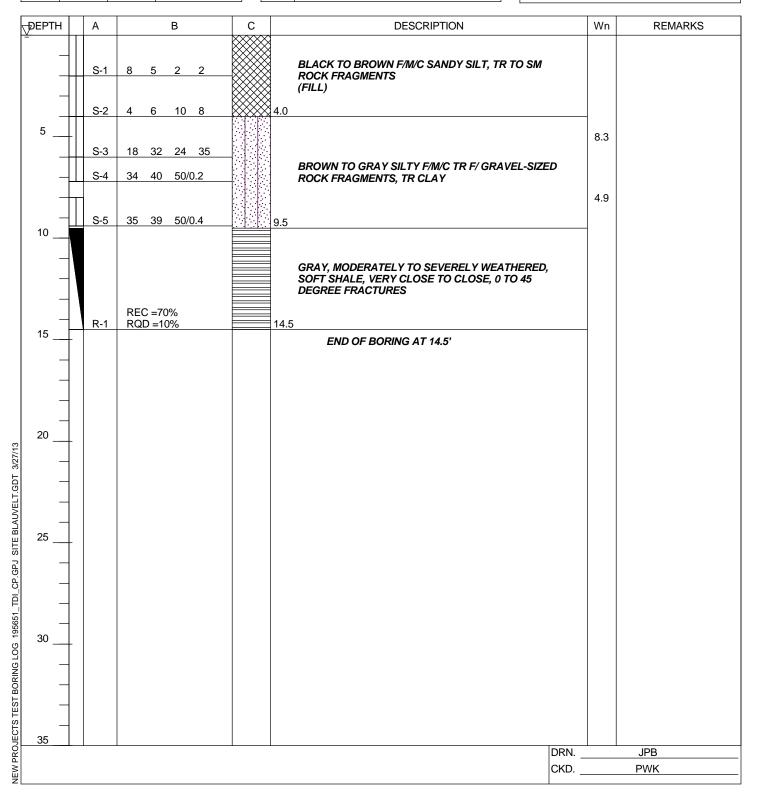
		NTRACTOR:											SHEET 2 OF 2				
	ADT						A =			VAV			PROJECT NAME: CHPE -				
	DRILLER:								U	///			PROJECT NO.: 60323056				
	Francisco Ma						2.	_					HOLE NO.: BM-1E				
	SOILS ENGI							BORIN	<u></u>				START DATE: 3/9/21				
	Michael Izdel	Ballston Mohawk (C	P Rail) M	IP-160 43				DUKIN	GLUG				FINISH DATE: 3/9/21 OFFSET: N/A				
D	CORING	DEPTHS	TYPE	PEN.	REC.					Ν	USCS	STRAT.					
E P	RATE	FROM - TO	AND	in	in			in ON SAI		Corr.	CLASS.		FIELD IDENTIFICATION OF SOILS				
т Н	MIN/FT	(FEET)	NO.			(ROCK	QUALIT	Y DESIGN	IATION)			DEPTH					
04.0	10 min	20'-25'	R-3	61"	61"		RQD: 35	.75" = 59%	6				Dark gray thinly laminated Shale, moderately hard/competent, moderate fracturing along bedding	planes			
21.0	8 min																
22.0	2 min											SHALE	TR-2; (22.65'-23.20')				
23.0	4 min											க்					
24.0	3 min																
25.0													BM-1E terminated at 25.1' bgs, grouted to surface				
26.0																	
27.0																	
28.0																	
29.0																	
30.0																	
31.0																	
32.0																	
33.0																	
34.0																	
35.0																	
36.0																	
37.0																	
38.0																	
39.0																	
40.0																	
41.0																	
42.0																	
43.0																	
44.0																	
45.0																	
-10.0	NOTES:						1	l	1			1	The information contained on this log is not warran	ted			
													to show the actual subsurface condition. The contr	actor			
													agrees that he will make no claims against AECON if he finds that the actual conditions do not conform				
		on represents a field											to those indicated by this log.				
	PLE TYPE: PORTIONS:		S= SPLI TRACE=	「SPOON 1-10%								AND=35	50%				

CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY


	GROU	NDWATEF	R DATA		Ν	IETHOD C	F ADVAN	CING BOI	REHOLE	
FIRST E	NCOUNT	ERED 0.0)'	∇	а	FROM	0.0 '	TO	4.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	4.0 '	TO	9.5 '	
					C ₂	FROM	9.5 '	TO	14.5 '	
				-						

BORING **B160.3-1** G.S. ELEV. N/A

5.5. ELEV. IN/A

FILE 195651 SHEET 1 OF 1

DRILLER	T. FARRELL
HELPER	J. LANGDON
INSPECTOR	C. POPPE
	00/10/0010
DATE STARTED _	02/13/2013
DATE COMPLETE	D 02/13/2013

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: **60323056** Project Name: **CHPE – Upstate New York Upland Geotechnical Investigation** Location: **Ballston - Mohawk Segment**

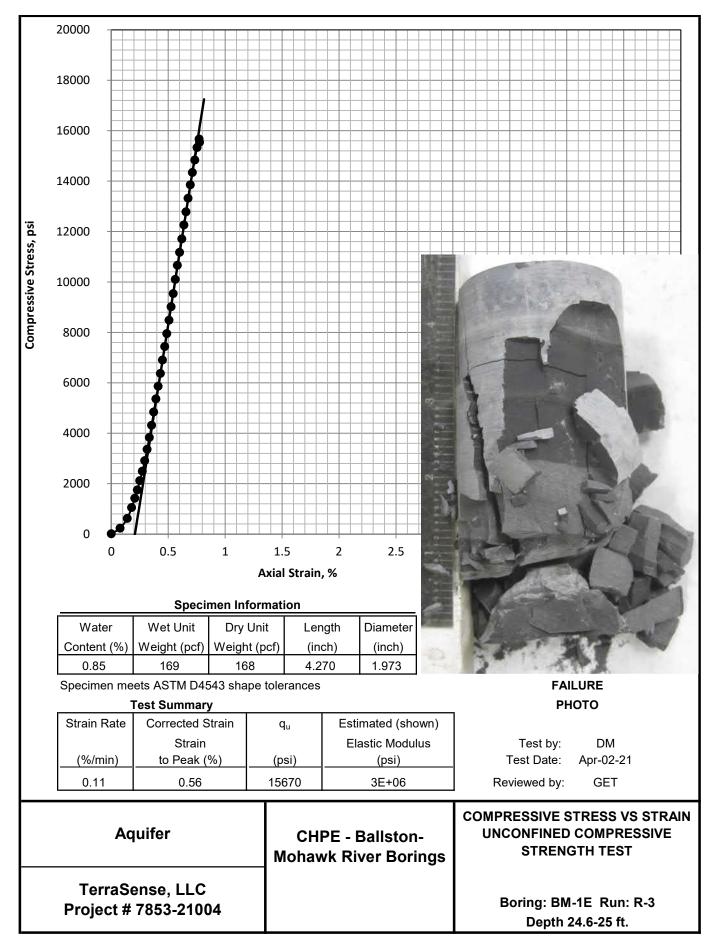
Boring No. BM- 1B	Depth (ft.) 20.0 – 35.2	Boning ID Date Deptin Punt Dec POD Precess BM-1B $5/4/21$ $20 \cdot 25$ $P \cdot 1$ $U0/u07:007$ $to0/u0 = 1007$ $Go BM-1B 3/5/21 25' \cdot 30' R - 2 51'/60' \cdot 18/ 57.75'/60' \cdot 16^{-7} 8 BM-1B 3/5/21 25' \cdot 30' R - 2 51'/60' \cdot 18/ 57.75'/60' \cdot 16^{-7} 8 BM-1B 3/5/21 30' \cdot 35 \cdot 2' R - 3 62'/42'' 100'' 42.35/62 \cdot 687 12 BM-1B 3/5/21 30' \cdot 35 \cdot 2' R - 3 62''/42'' 100'' 42.35/62 \cdot 687 12 $
Boring No. BM- 1D BM-	Depth (ft.) 11.0 – 16.0 11.0 –	BOELNG ID: $2M^{*}$ CATE DEPTH $2eC$ DAD W: 13B $E-1$ $2 23 21$ $11-13'.24''$ $13/24''=54''. 13/24'':54''. 1 8M-2A D-1 2/25/21 11-16':16'' 58'100''=82''. 32/100=53'/. 30BM-1D R-1 2/2 t/21 11'-10':100'' 47/00=78'/. 22/100:371. 21BM-1D R-1 2/2 t/21 11'-10':100'' 47/00=78'/. 22/100:371. 21$
2A Note: Bl	16.0	nserts represent core pieces that were removed for geotechnical and/or thermal resistivity laboratory testing

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: CHPE – Upstate New York Upland Geotechnical Investigation Location: Ballston - Mohawk Segment

Boring No. BM- 1E	Depth (ft.) 10.0 - 25.1	Bering ID Date Depth Run # REC RQD BM-IE 03/07/21 10'-15' 1 2 34'/64':60' 0'.66':0' <t< th=""></t<>
Boring No. BM- 2B	Depth (ft.) 8.0 – 28.0	$\frac{CHPE^{-}Sorratoga Co Borrings BM-2B}{R-2B} \frac{g_{\circ}\circ^{-}2g_{\circ}\circ^{\circ}}{2/22/21} GOOS2OSGGGGGGGGG\mathsf{G$

Aquifer CHPE - Ballston-Mohawk River Borings SUMMARY OF ROCK TESTING


SAMPLE	IDENTI	FICATION	STATE F	ROPER	TIES	ENGINEERING PROPERTY TESTS							
Boring	Run	Depth	WATER	TOTAL	DRY	TEST	HARDNESS	UNCONFINE	D COMPRES	SSION TESTS			
			CONTENT	UNIT	UNIT	TYPE	Mohs'		ASTM D7012	2)			
			(1)	WGT.	WGT.		HARDNESS	COMPRESSIVE	AXIAL	ESTIMATED (5)			
						(2)		STRENGTH	STRAIN @	ELASTIC			
									FAILURE	MODULUS			
			(%)	(pcf)	(pcf)		(-)	(psi)	(%)	(psi)			
BM-1B	R-2	20-25				М	3.0						
BM-1B	R-2	27.95-28.35	1.0	171	169	UC		13560	0.63	2E+06			
BM-1D	R-1	11-16				М	3-4						
BM-1D	R-1	14-14.4	1.1	170	168	UC		12530	0.53	2E+06			
BM-1E	R-3	20-25				М	4.0						
BM-1E	R-3	24.6-25	0.9	169	168	UC		15670	0.56	3E+06			
BM-2B	R-1	8-13				М	3.0						
BM-2B	R-1	11.0-11.4	1.3	169	167	UC		11590	0.52	2E+06			
BM-2B	R-4	23-28				М	3.0						
BM-2B	R-4	24.45-24.85	1.3	169	167	UC		11750	0.54	2E+06			
BM-3	R-1	3-8				М	4.0						
BM-3	R-1	6.3-6.7	1.0	169	167	UC		14200	0.70	2E+06			
BM-3	R-4	18-23				М	4.0						
BM-3	R-4	19.65-20.05	1.2	168	166	UC		14180	0.78	2E+06			
BM-3A	R-3	8-13				М	3.0						
BM-3A	R-3	9-9.4	1.2	169	167	UC		13030	0.66	2E+06			
BM-3A	R-5	18.1-23.1				М	3-4						
BM-3A	R-5	19.1-19.5	1.4	168	166	UC		12010	0.68	2E+06			
BM-3B	R-2	10-15				М	4.0						
BM-3B	R-2	12.2-12.6	0.7	169	168	UC		16540	0.42	4E+06			
BM-3C	R-2	14-19				М	4-5						
BM-3C	R-2	17.65-18.05	1.0	170	168	UC		15870	0.62	3E+06			
BM-3C	R-4	24-29				М	3.0						
BM-3C	R-4	25.5-25.9	1.0	168	167	UC		14750	0.63	2E+06			
BM-4	R-1	3-8				М	3.0						
BM-4	R-1	5.35-5.75	1.2	170	168	UC		12870	0.59	2E+06			
BM-4	R-2	8-13				М	3.0						
BM-4	R-2	8.25-8.65	1.2	169	167	UC		6660	0.43	2E+06			

Notes: (1) Water contents determined after trimming and shearing.

(2) Test Type Abbreviations: M: Mohs Hardness, UC: UC Compression test with estimated elastic moduli

(5) Modulus estimated based on corrected gross deformations.

TerraSense, LLC 45H Commerce Way Totowa, NJ 07512

Project Name: Client Name: TRC Project #: TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651

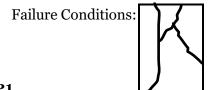
Organic Content (%) Soil Group (USCS System) **GRAIN SIZE** Moisture Content (%) SAMPLE IDENTIFICATION PLASTICITY Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Liquidity Index) # Limit (%) Boring # Sand (%) Limit (%) Clay (%) Sample ∮ Plastic Silt (%) Liquid S-5 8.0-10.0 29.9 _ _ _ _ -_ _ _ _ _ 13.5-15.0 25.4 S-6 100.1 _ _ -_ _ --_ --_ -23.5-25.0 23.5 S-8 _ _ _ _ _ _ _ _ _ _ _ _ _ 2.0 - 4.0S-2 26.9 _ _ _ _ _ _ _ _ _ _ _ _ B158.22-1 8.0-10.0 SM 53.2 S-5 24.9 21.9 7.0 _ _ _ _ _ _ _ _ 18.9-19.3 166.8 **R-1** 255 -_ _ ---_ _ -_ -S-3 4.0-6.0 SM 15.2 47.4 37.4 _ 14.0 _ _ _ _ _ _ _ B158.87-1 13.5-15.0 SM 6.8 47.6 45.6 15.6 S-6 -_ _ _ _ _ _ 23.5 S-1 0.0-2.0 _ _ _ -_ _ _ _ _ _ _ _ _ B159.1-1 S-2 2.0 - 4.026.9 _ _ _ _ _ _ _ _ _ _ _ _ _ R-2 12.9-13.1 167.1 _ _ _ _ _ _ -_ _ _ _ _ _ 12.9-13.2 165.5 B159.5-1 **R-3** _ _ _ _ _ -_ -_ _ _ -_ 4.0-6.0 8.3 132.4 B160.3-1 S-3 _ _ _ _ _ -_ -_ _ _ _

DRAWN BY: TBT 03/27/13

Project Name: Client Name: TRC Project #: <u>TDI Champlain Hudson Power Express – CP</u> Transmission Developers, Inc. 195651

SAMPLE I	IDENTII	FICATION	GRAIN SIZE DISTRIBUTION					PLASTICITY				vity	ntent	(pcf)	ve sf)	ontent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%) Clay (%)		Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-4	6.0-8.0	SM	34.5	48.3	1'	7.2	_	_	_	_	_	4.9	_	_	_
	S-5	8.0-9.4	5101	54.5	40.5	1	1.2	_	-	-	-	-	4.5	-	-	-
	R-1	11.7-12.1	-	-	-		-	-	-	-	-	-	-	173.1	800	-
	S-3	4.0-6.0	SM	10.0	47.8	1	2.2		_		_		15.5			
B160.7-1	S-4	6.0-8.0	3111	10.0	47.0	4.	2.6	-	-	-	-	-	15.5	-	-	-
D100.7-1	R-1	15.0-15.2	-	-	-	-	-	-	-	-	-	-	-	167.3	-	-
	R-2	23.5-23.8	-	-	-	-	-	-	-	-	-	-	-	164.3	-	-
B161.4-1	S-1	0.0-2.0	-	-	I	I	-	-	-	-	-	-	9.5	-	-	-
D101.4-1	S-3	4.0-6.0	CL	-	-	-	-	25	17	8	-0.3	-	14.3	-	-	-
	S-2	2.0-4.0	-	-	-			-	-	-	-	-	15.3	-	-	-
A162.1-1	S-4	6.0-8.0	-	-	-			-	-	-	-	-	8.2	-	-	-
A102.1-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	_	-	7.9	-	_	-
	R-1	15.7-16.0	-	-	-	-			-	-	-	-	-	176.8	-	-

DRAWN BY: TBT 03/27/13


TRC Engineers, Inc. Soil Mechanics Laboratory

Unconfined Compression Strength Test of Rock Core

Project Name:	TDI			
Project No.:	195651	Average Sample Diameter (in.):	1.980	Sample Description:
Boring No.:	B160.3-1	Cross Sectional Area (sq. in.)	3.079	GRAY SHALE
Sample No:	R-1	Average Sample Height (in.):	3.955	
Depth (ft):	11.7-12.1	Sample Mass-Dry (g):	553.24	
Elevation (ft):		Unit Weight (PCF)	173.1	

<u>Test Data</u>

Load (lb)	Strain (%)	Stress (tsf)
0	0.00	0
350	0.25	8
800	0.51	19
2200	0.76	51
6400	1.01	150
12000	1.26	281
19400	1.52	454
24200	1.77	566
30500	2.02	713
34000	2.28	795
5000	2.53	117
	0 350 800 2200 6400 12000 19400 24200 30500 34000	(%)00.003500.258000.5122000.7664001.01120001.26194001.52242001.77305002.02340002.28

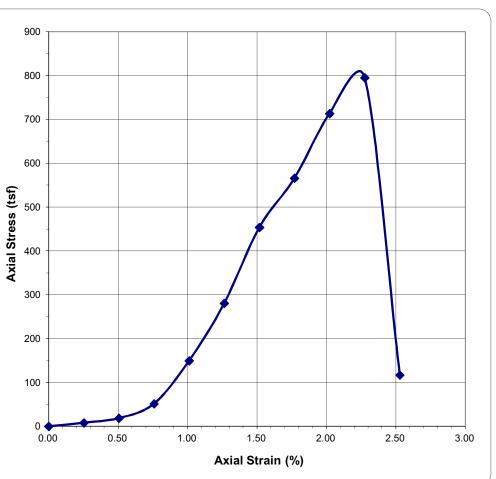


FIGURE: 121

EXPLORATION PLAN

Champlain-Hudson Power Express Design Package 4a
Ballston - Clifton Park - Glenville, NY June 22, 2022
Terracon Project No. JB215256A

Tlerracon GeoReport

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BUNG MAPS

BORING LOG NO. K-159.9

Page 1 of 2

PR	OJECT	Champlain-Hudson Power Exp Package 4a	oress Design	CLIEN	NT: K	liewi	it Eı	ngin	eering (NY) C	orp.			
SIT	E:	Champlain to Hudson HDD Cro Ballston - Clifton Park - Glenvi											
GRAPHIC LOG		N See Exploration Plan 2.9874° Longitude: -73.8437°	Surface Elev.: 301	I.97 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH FILL	SILTY SAND, trace gravel, brown, loos	ELEVATI Se	ON (Ft.)			Ŵ	0	1-2-2-4 N=4				<u> </u>
					-	-	$\left \right\rangle$	12	3-4-5-3 N=9				
	6.0			296	- 5 -	-	\square	12	2-3-4-3 N=7		15.9		33
	8.0	' <mark>Y SAND WITH GRAVEL (SM)</mark> , brown, de)	ense, (GLACIAL	294	-		\square	23	6-15-22-33 N=37				
	SILT	Y SAND (SM), gray, dense to very dense	e, (GLACIAL TILL)		- - 10-	-	\square	24	22-24-23-34 N=47		8.0		50
					-10		\square	24	33-35-43-43 N=78				
	15.0			287	-	-							
	SHA	<u>LE</u> , slightly weathered, very close to clos), gray	se fractured, poor		15- - -	-			REC = 91% RQD = 43%				
	20.0 <u>SHA</u> RQI	<u>LE</u> , slightly weathered, close to moderat), gray	e fractured, good	282	- 20-	-							
					-	-			REC = 96% RQD = 76%				
		LE , slightly weathered, close to wide frac), gray	ctured, excellent	277	25 - -	-			REC = 100%				
Stratification lines are approximate. In-situ, the transition may be gradual.					_		Ha	ammer	RQD = 100% Type: Automatic				
	cement Me	hod:	See Exploration and Tes	sting Proce	dures f	or a	No	tes:					
4 1/- Aband	4" ID HSA		description of field and l used and additional data See Supporting Informa symbols and abbreviation	aboratory a (If any). tion for exp ons.	procedu planatior	res	Log Ha En	gged b mmer ergy T	y MO Efficiency Summary: ransfer Ratio: 91.3% - Efficiency Correction	⊦/-2.7% (CE):1.	52		
	WAT	ER LEVEL OBSERVATIONS				_	Bori	ng Sta	rted: 04-06-2022	Borin	ig Comp	oleted: 04-06-2	2022
	No mea	surable groundwater prior to grouting		Drill Rig: CME 750x Driller: J. Lamm									
			30 Corporate Alban		01	Project No.: JB215256A							

BORING LOG NO. K-159	.9
----------------------	----

Page 2 of 2

P	ROJECT: Champlain-Hudson Power Exp Package 4a	press Design	CLIEN	NT: K	liewi	t Er	ngin	eering (NY) C	orp.			
S	ITE: Champlain to Hudson HDD Cr Ballston - Clifton Park - Glenvi	ossings ille, NY										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 42.9874° Longitude: -73.8437°	Surface Elev.: 30	1.97 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH SHALE, slightly weathered, close to wide fra RQD, gray (continued) 30.0 SHALE, slightly weathered, close to moderat RQD, gray	ctured, excellent	<u>10N (Ft.)</u> 272	- 30- -			E	REC = 100% RQD = 81%				
	35.0 Boring Terminated at 35 Feet		267	- 35-	-							
J WELL JB215256A CHAMF												
JORI. GEO SMARI LOG-NO												
		an ba sundual						Tura Addamatir				
Adva Adva 4	Stratification lines are approximate. In-situ, the transition mancement Method: 1/4" ID HSA	ay be gradual. See Exploration and Te description of field and used and additional dat	laboratory			Not Log	tes: gged b					
	ndonment Method: pring backfilled with bentonite grout upon completion	See Supporting Informa symbols and abbreviati Elevations were provide	ation for exp ons.		n of	Ene	ergy T	Efficiency Summary ransfer Ratio: 91.3% Efficiency Correctior	+/-2.7%			
	WATER LEVEL OBSERVATIONS No measurable groundwater prior to grouting	30 Corporat	DC te Cir Ste 2 ny, NY			Drill	Rig: C	rted: 04-06-2022 :ME 750x .: JB215256A		ng Comp er: J. La	bleted: 04-06-: mm	2022

			В	ORING LOO	g nc). K	-16	0.0	0			F	Page 1 of 2	2
	PR	OJECT:	Champlain-Hudson Power Ex Package 4a	press Design	CLIE	NT: K	liew	it E	ngin	eering (NY) C	orp.			
	SIT	E:	Champlain to Hudson HDD Cr Ballston - Clifton Park - Glenv	ossings ille, NY	-									
	GRAPHIC LOG		N See Exploration Plan .9856° Longitude: -73.8443°	Surface Elev.: 29	4.06 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
		DEPTH 0.3_\ BALL FILL	<u>_AST</u> - SILTY SAND WITH GRAVEL, black, lo		<u>ION (Ft.)</u> 294	_	- 0	, with the second secon	8	1-2-2-1 N=4				<u> </u>
6/20/22			- POORLY GRADED SAND WITH SILT n, loose	AND GRAVEL,	292	_	-		10	4-3-3-2 N=6		15.0		9
		6.0			288	- 5 -	-		14	1-2-4-5 N=6				
TATEMPLA		<u>SILT</u> (GLA	<u>Y SAND (SM)</u> , gray and brown, dense to CIAL TILL)	o very dense,		_	-							
RACON_DA						-	-	X	14	13-23-27-44 N=50		11.1		23
GPJ TERF						10- -	-	\ge	NR	47-50/4"				
JB215256A CHAMPLAIN-HUDSON .GPJ TERRACON_DATATEMPLATE.GDT						-	-							
6A CHAMP		16.0 SHAI	<u></u>	te fractured good	278	15- -	-							
MELL		RQD	, gray		974	_	-			REC = 100% RQD = 85%				
. GEO SMART LOG-1		SHAI	<u>E</u> , slightly weathered, close to modera lent RQD, gray	te fractured,	274	20 - -	-			REC = 95% RQD = 95%				
RIGINAL REPORT			<u>_E</u> , slightly weathered, close to modera lent RQD, gray	te fractured,	269	- 25- -	-							
TED FROM C		Stratificati	on lines are approximate. In situ, the transition m	ay be gradual		_	-		ammei	REC = 100% RQD = 100%				
EPARA			on lines are approximate. In-situ, the transition m	ay ve gradual.				-		Type. Automatic				
T VALID IF	4 1/4 Aband	cement Meth 4" ID HSA onment Meth ng backfilled		See Exploration and Te description of field and used and additional dat. See Supporting Informa symbols and abbreviation Elevations were provide	laboratory a (If any). ation for ex ons.	procedu planatior	res	Lo Ha En Ha	ergy T mmer	y JCH Efficiency Summary: ransfer Ratio: 91.3% Efficiency Correction Recorded	+/-2.7%			
NG LO						Boring Started: 04-05-2022 Boring Col						ng Com	oleted: 04-06-	2022
THIS BORI		NO MEAS	urable groundwater prior to grouting	30 Corporat Albar	BC e Cir Ste 2 ny, NY	U 01			-	:ME 750x .: JB215256A	Drille	er: J. La	mm	

BORING LOG NO. K-160.0

Page 2	of	2
--------	----	---

F	PROJECT: Champlain-Hudson Power Exp Package 4a	ress Design	CLIEN	NT: K	liewi	t Ei	ngin	eering (NY) C	orp.			
5	SITE: Champlain to Hudson HDD Cro Ballston - Clifton Park - Glenvil											
	DEPTH	Surface Elev.: 294 ELEVATI	. ,	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	SHALE, slightly weathered, close to moderate excellent RQD, gray <i>(continued)</i> 30.0 SHALE, slightly weathered, close to moderate excellent RQD, gray	e fractured,	264	- 30- - - - - -				REC = 100% RQD = 100%				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215266A CHAMPLAIN-HUDSON .GPJ TERRACON_DATATEMPLATE.GDT	Stratification lines are approximate. In-situ, the transition ma	y be gradual.		35-			amme	Type: Automatic				
POT VALID IF SEPAR	/ancement Method: 1/4" ID HSA andonment Method:	See Exploration and Ter description of field and I used and additional data See Supporting Informa symbols and abbreviation	aboratory a (If any). tion for exp	procedu	res	Lo Ha En	ammer nergy T	oy JCH Efficiency Summary: ransfer Ratio: 91.3% - Efficiency Correction				
	Boring backfilled with bentonite grout upon completion WATER LEVEL OBSERVATIONS	Elevations were provide				Bori	ing Sta	rted: 04-05-2022	Borin		pleted: 04-06-	2022
THIS BORIN	No measurable groundwater prior to grouting	30 Corporate Alban				Drill	Rig: C	CME 750x		er: J. La		

BORING	LOG NO.	K-160.1
--------	---------	---------

Page 1 of 2

PF	ROJECT:	press Design		NT: K	liewi	t En	gin	eering (NY) C	orp.				
SI	TE:	Package 4a Champlain to Hudson HDD Cr Ballston - Clifton Park - Glenvi	ossings ille, NY										
GRAPHIC LOG		V See Exploration Plan 9844° Longitude: -73.8448°	Surface Elev.: 294 ELEVAT		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.4 <u>BALL</u> FILL	AST - POORLY GRADED SAND WITH GRAY to loose		294	_	-	\mathbf{X}	8	1-1-2-3 N=3				
6/20/22	3.0 FILL loose	- POORLY GRADED SAND, trace grave	el, brown and gray,	291	_	-		12	6-3-2-1 N=5				
	6.0			288	- 5 -	-		18	2-2-4-6 N=6				
		<u>/ SAND (SM)</u> , cobbles and boulders not Jense, (GLACIAL TILL)	ted, gray, dense to		_	-		20	11-16-19-20 N=35				
RACON DA					-	-		20	14-24-24-37 N=48		8.5		48
I.GPJ TER					10— _	-	X	NR	32-50-50/4"				
Nosaut-N	13.5 WEA	THERED ROCK, gray, very dense		280.5	_	-							
	15.0	E , slightly weathered, close to moderate	te fractured, fair	279	15- -	-		-					
0 WELL JB215					-	-			REC = 83% RQD = 68%				
PORT. GEO SMART LOG-NO WELL		<u>.E</u> , slightly weathered, close to moderation in the set of the se	te fractured,	274	20			-	REC = 100% RQD = 91%				
D FROM ORIGINAL REI		<u>E</u> , slightly weathered, close to moderation in the set of the set	te fractured,	269	25 - -	-		-	REC = 100% RQD = 100%				
PARATEL	Stratificatio	on lines are approximate. In-situ, the transition m	ay be gradual.				Ha	mmer	Type: Automatic		I		L
ull 4 1 4 1 101 ∧ 4 1 101 ∧ 4 1 101 ∧ 4 1	ncement Meth /4" ID HSA donment Meth		See Exploration and Te description of field and I used and additional data See Supporting Informa symbols and abbreviation Elevations were provide	aboratory a (If any). tion for exp ons.	procedu planatior	res	Han Ene Han	ged b nmer l ergy Tr nmer l	y JCH Efficiency Summary: ansfer Ratio: 91.3% Efficiency Correction Recorded				
		R LEVEL OBSERVATIONS urable groundwater prior to grouting		ac				·	ted: 04-04-2022	Borir	ng Com	oleted: 04-04-2	2022
THIS BO		30 Corporate						ME 750x : JB215256A	Drille	er: J. La	mm		

BORING LOG NO. K-160.1

Pag		2	of	2
Pag	e	2	0I	4

I	PROJECT: Champlain-Hudson Power Expr Package 4a	ess Design	CLIEN	NT: K	liewi	t Ei	ngin	eering (NY) C	orp.			
:	BITE: Champlain to Hudson HDD Cros Ballston - Clifton Park - Glenvill	ssings e, NY										
	LOCATION See Exploration Plan Latitude: 42.9844° Longitude: -73.8448°	Surface Elev.: 294 ELEVAT		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
MPLATE.GDT 6/20/22	SHALE, slightly weathered, close to moderate excellent RQD, gray (continued) 30.0 SHALE, slightly weathered, close to moderate RQD, gray 35.0	fractured,	264	- 30- - - -				REC = 95% RQD = 86%				
	Boring Terminated at 35 Feet		203	35-								
ID IF SEPARATE	4 1/4" ID HSA	be gradual. See Exploration and Te lescription of field and l ised and additional data	laboratory			No	tes: gged b	y JCH		I		I
OG IS NOT VAL	andonment Method: solution solution solution and solution solution solution backfilled with bentonite grout upon completion solution solut	See Supporting Informa symbols and abbreviation Elevations were provide	i <mark>tion</mark> for exp ons.		n of	En	ergy T	Efficiency Summary: ransfer Ratio: 91.3% Efficiency Correction				
THIS BORING L	WATER LEVEL OBSERVATIONS No measurable groundwater prior to grouting	30 Corporate	DC e Cir Ste 2 ny, NY			Drill	Rig: C	rted: 04-04-2022 CME 750x .: JB215256A	_	ng Comp er: J. Lai	bleted: 04-04-; mm	2022

BORING LOG NO. K-160.2

Page 1 of 2

	PR	OJECT: Champlain-Hudson Power Express Design Package 4a	CLIENT: Kiewit Engineering (NY) Corp.									
	SIT											
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 42.9830° Longitude: -73.8452° Surface Elev.: DEPTH ELEV	294.07 (Ft.) ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
		0.3 ∧ <mark>BALLAST</mark> <u>FILL - SILTY SAND WITH GRAVEL</u> , bricks and ash noted, 2 0 black, loose	294	_		X	14	1-3-4-7 N=7				
6/22/22		FILL - SILTY SAND, trace clay, gray, loose		_			14	5-3-2-7 N=5				
		6.0	288	- 5 -			8	2-3-3-4 N=6				
JB215256A CHAMPLAIN-HUDSON .GPJ TERRACON_DATATEMPLATE.GDT		SILTY SAND (SM), gray, medium dense to very dense, (GLACIAL TILL)		-		\square	20	9-11-16-22 N=27		7.8		45
RACON_DP				- 10-								
N.GPJ TER				-		\square	18	18-27-32-30 N=59				
NIN-HUDSO	n Nove Nove	14.0	280									
A CHAMPL/	$\overset{\times}{\searrow}$	WEATHERED ROCK, gray, very dense		15								
RT LOG-NO WELL JB215256		17.0 SHALE, slightly weathered, very close to moderate fractured, poor RQD, gray	277	-	-			REC = 97% RQD = 47%				
		20.0 SHALE, slightly weathered, very close to close fractured, good RQD, gray	274	20	-			REC = 100% RQD = 75%				
GINAL REPORT. (25.0 <u>SHALE</u> , slightly weathered, very close to close fractured, good RQD, gray	269	- 25-	-							
D FROM OR				-				REC = 95% RQD = 78%				
ARATEL		Stratification lines are approximate. In-situ, the transition may be gradual.		1	1	LLLL Ha	ammer	Type: Automatic		I		
T VALID IF	4 1/4 Aband	Accement Method: /4" ID HSA See Exploration and description of field a used and additional See Supporting Info symbols and abbrev Elevations were pro	nd laboratory data (If any). mation for ex ations.	procedu planatior	ires	Log Ha En	ergy T	y JCH Efficiency Summary: ransfer Ratio: 91.3% Efficiency Correction	+/-2.7%			
ING LOC		WATER LEVEL OBSERVATIONS No measurable groundwater prior to grouting	Boring Started: 03-30-2022 Boring Completed: 0				oleted: 04-01-:	2022				
HIS BOR		30 Corpo	rate Cir Ste				-	ME 750x	Drille	er: J. La	mm	
Ē		A	bany, NY			I Proje	ect No	.: JB215256A				

BORING LOG NO. K-160.2

Page 2 of 2

PR	OJECT: Champlain-Hudson Power Exp Package 4a	ress Design	CLIEN	nt: K	iewi	t E	ngin	eering (NY) C	orp.			
SIT	E: Champlain to Hudson HDD Cro Ballston - Clifton Park - Glenvil											
	LOCATION See Exploration Plan Latitude: 42.9830° Longitude: -73.8452° DEPTH SHALE, slightly weathered, very close to close RQD, gray 34.5 Boring Terminated at 34.5 Feet	Surface Elev.: 294 ELEVATI e fractured, good			WATER LEVEL	SAMPLE TYPE	RECOVERY (In.)	REC = 93% RQD = 85%	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS	PERCENT FINES
	Stratification lines are approximate. In-situ, the transition may	y be gradual.				Hi	amme	r Type: Automatic				
Advan	rement Method					NI-	tec:					
4 1/4" ID HSA description of field and used and additional dat		mation for explanation of iations.										
	WATER LEVEL OBSERVATIONS			Boring Started: 03-30-2022 Boring Completed: 04-01-20					2022			
	No measurable groundwater prior to grouting	lierra	DC	Oľ		Drill	Rig: C	CME 750x	Drille	er: J. La	mm	
		30 Corporate Alban	e Cir Ste 2		_		-	.: JB215256A				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215256A CHAMPLAIN-HUDSON. GPJ TERRACON_DATATEMPLATE.GDT 6/22/22

		E	BORING LOO	g nc). K	-16	0. 4	4			F	Page 1 of 2	2
PR	OJECT:	Champlain-Hudson Power E Package 4a	xpress Design	CLIE	NT: K	liew	it E	ngin	eering (NY) C	orp.		0	
SIT	ſE:	Champlain to Hudson HDD (Ballston - Clifton Park - Glen											
GRAPHIC LOG		N See Exploration Plan .9805° Longitude: -73.8461°	Surface Elev.: 29	4.55 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH 0.4 BALL FILL	<u>_AST</u> - SILTY GRAVEL WITH SAND, black,		<u>10N (Ft.)</u> 294				8	1-2-4-2 N=6				
					-	-	$\left \right\rangle$	1	3-3-2-3 N=5				
				000 5	- 5 -	-	$\left \right\rangle$	14	3-3-4-5 N=7				
SILTY SAND WITH GRAVEL (SM), gray, medium dense to very dense, (GLACIAL TILL)				288.5	-			20	6-10-12-22 N=22		9.4		17
					- - 10-	-							
					-	-	\geq	7	22-50/4"				
					-	-							
	15.0 SHAI good	<u>_E</u> , slightly weathered, very close to r RQD, gray	noderate fractured,	279.5	15-	-							
					-	-			REC = 91% RQD = 75%				
		<u>_E</u> , slightly weathered, very close to c , gray	lose fractured, fair	274.5	20-								
					-	-			REC = 100% RQD = 53%				
		<u></u>	lose fractured, good	269.5	- 25-	_							
	RQD	, gray			-	-			REC = 100% RQD = 83%				
	Stratificatio	on lines are approximate. In-situ, the transition	may be gradual.				H	amme	Type: Automatic				
	cement Meth 4" ID HSA	iod:	See Exploration and Te description of field and used and additional dat See Supporting Informa	laboratory a (If any).	procedu	ires	Lo Ha En	immer iergy T	y JCH Efficiency Summary ransfer Ratio: 91.3%	+/-2.7%			
Aband Bori	onment Meth	nod: with bentonite grout upon completion	symbols and abbreviati Elevations were provide	ons.			Ha	mmer	Efficiency Correction	n (CE):1	.52		
							Bori	ng Sta	rted: 03-29-2022	Borii	ng Com	pleted: 03-30-	2022
	While dri	lling	- lierr	JC			Drill	Rig: C	CME 750x	Drill	er: J. La	imm	
			30 Corporat Albai	e Cir Ste 2 ny, NY	01		Proj	ect No	.: JB215256A				

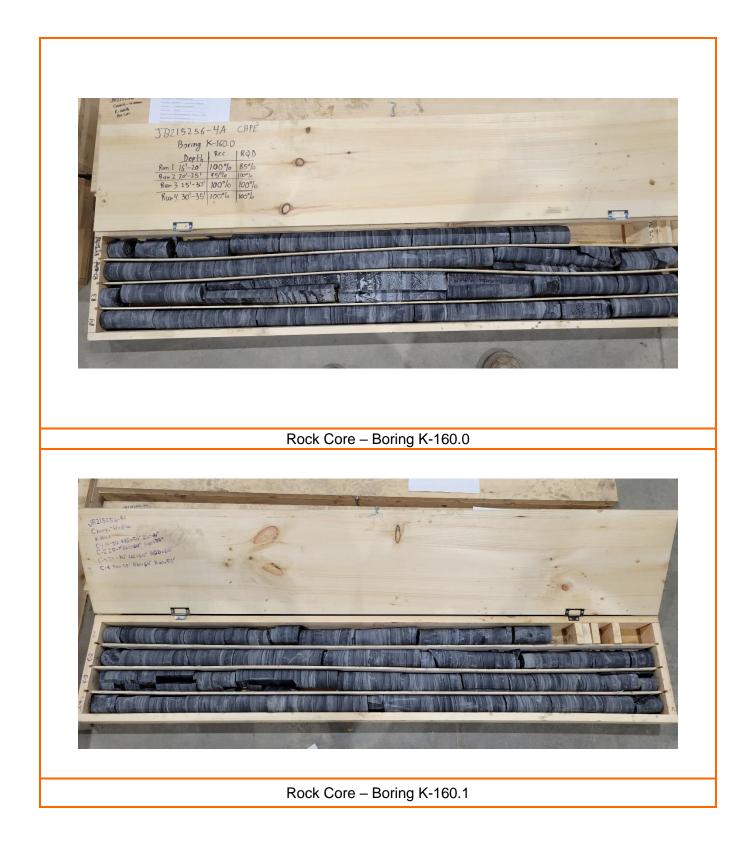
BORING LOG NO. K-160.4

Pa	ae	2	of	2

PF	OJECT: Champlain-Hudson Power Exp Package 4a	oress Design	CLIENT: Kiewit Engineering (NY) Corp.									
Sľ	TE: Champlain to Hudson HDD Cro Ballston - Clifton Park - Glenvi											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 42.9805° Longitude: -73.8461°	Surface Elev.: 29		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	LABORATORY HP (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	DEPTH SHALE, slightly weathered, very close to clos 30.0 SHALE, slightly weathered, very close to clos RQD, gray 35.0 Boring Terminated at 35 Feet	e fractured, good	<u>264.5</u> 259.5	30-				REC = 100% RQD = 83%				
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.				Ha	ammei	Type: Automatic				
Advai 4 1 Advai 4 1 Aban Bo	Acement Method: /4" ID HSA donment Method: ring backfilled with bentonite grout upon completion	See Exploration and Te description of field and used and additional dat See Supporting Informa symbols and abbreviati Elevations were provide	laboratory ta (If any). ation for exp ons.	procedu planatio	ires	Log Ha En	immer ergy T	y JCH Efficiency Summary: ransfer Ratio: 91.3% Efficiency Correction				
	WATER LEVEL OBSERVATIONS While drilling Of Corpora Alba			01		Boring Started: 03-29-2022 Boring Completed: 03-30-2022 Drill Rig: CME 750x Driller: J. Lamm Project No.: JB215256A Driller: J. Lamm				2022		

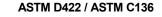
Geotechnical Data Report

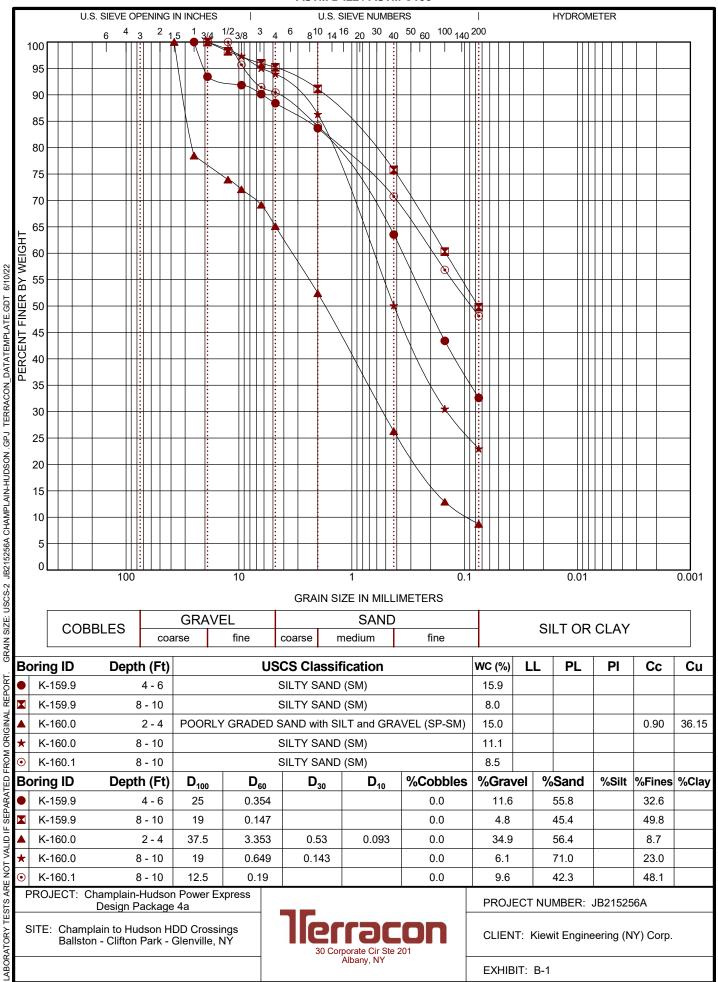
Champlain-Hudson Power Express- Package 4a June 22, 2022
Terracon Project No. JB215256A

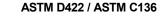


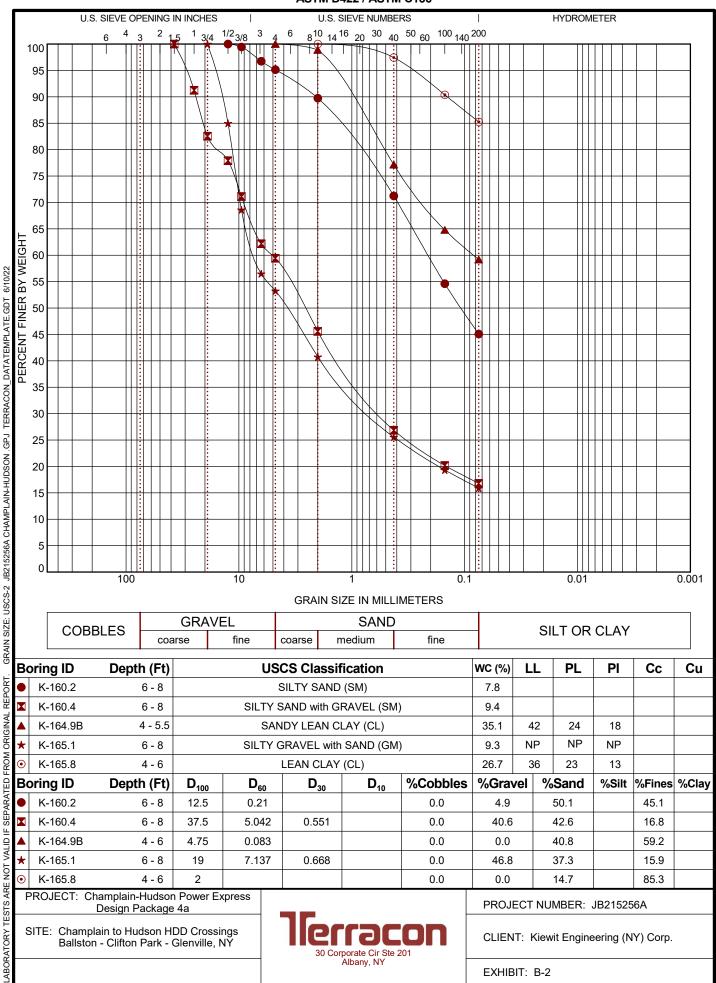
PHOTOGRAPHY LOG

Geotechnical Data Report Champlain-Hudson Power Express- Package 4a June 22, 2022 Terracon Project No. JB215256A




Geotechnical Data Report Champlain-Hudson Power Express- Package 4a June 22, 2022 Terracon Project No. JB215256A




GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

	1			Sheet 1 of 1
BORING ID	Depth (Ft.)		Organic Content (%)	
K-160.1	4-6		0.8	
K-165.8	2-4		75.5	
K-168.6	4-6		7.4	
PROJECT: C SITE: Champ Ballsto				
PROJECT: C	Champlain-Hud	son Power Express age 4a		PROJECT NUMBER: JB215256A
SITE: Cham Ballsto		age 4a HDD Crossings c - Glenville, NY	Tierracon	CLIENT: Kiewit Engineering (NY) Corp.
			30 Corporate Cir Ste 201 Albany, NY	EXHIBIT: B-1

Summary of Laboratory Results

Client

Kiewit Engineering (NY) Corp Lone Tree, CO

Project

Champlain-Hudson Power Express Project JB215256

Date Received:

4/25/2022

Result	ts from Cor
Sample Location	K-160.1
Sample Depth (ft.)	6'-8'
pH Analysis, ASTM G 51	6.89
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	3
Sulfides, AWWA 4500-S D, (mg/kg)	Nil
Chlorides, ASTM D 512, (ppm)	15
Red-Ox, ASTM G 200, (mV)	+494
Total Salts, AWWA 2520 B, (mg/kg)	343
Resistivity (Saturated), ASTM G 57, (ohm-cm)	5180

Analyzed By: Kyle Lemone Laboratory Supervisor

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client Kiewit Engineering Corp Project

Champlain-Hudson Power Express Project

Project No. JB215256

Boring	ĸ	(-160.0	Material I	Description	Sha	ale		
Sample No			Equipm	ent Used	Tinius Olsen (120,000lbs			
Depth (ft)		20-25	TICCS ID	/Serial No.	C-48999, 118285			
Lab No		5068	Calibra	tion Date	11/2/2			
			TEN	ISILE STREI	NGTH			
Sample No.		1	2	3	4	5		
Diameter (in)		1.97	1.97	1.97	1.97	1.97		
Length (in)		0.061	0.059	0.069	0.071	0.063		
Length Diameter Ratio)	0.03	0.03	0.04	0.04	0.03		
Rate of Loading		0.0061	0.0059	0.0069	0.0071	0.0063		
Moisture Condition		0.90%	0.90%	0.90%	0.90%	0.90%		
Maximum Applied Load	(lbf)	4069	3735	2136	1705	2888		
Splitting Tensile Strengt	n (psi)	21567.1	20467.9	10008.9	7764.3	14821.		
		TENSILE STRENGTH						
Sample No.		6	7	8	9			
Diameter (in)		1.97	1.97	1.97	1.97			
Length (in)		0.052	0.065	0.06	0.07			
Length Diameter Ratio)	0.03	0.03	0.03	0.04			
Rate of Loading		0.0052	0.0065	0.006	0.007			
Moisture Condition		0.90%	0.90%	0.90%	0.90%			
Maximum Applied Load	(lbf)	787	1145	1011	1162			
Splitting Tensile Strengt	n (psi)	4893.3	5695.4	5448.0	5367.1			

Client:	Terracon Consultants, Inc.				
Project:	Champlain-Hudson Power Express				
Location:				Project No:	GTX-315284
Boring ID:	K-160.0	Sample Type:	cylinder	Tested By:	tlm
Sample ID:		Test Date:	06/17/22	Checked By:	smd
Depth :	20-25 ft	Test Id:	670478		
Test Comm	ent:				
Visual Desc	ription:				
Sample Cor	nment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
K-160.0		20-25 ft	1	0.5	0.6	0.55	
			2	0.4	0.9	0.65	
			3	1.3	1.6	1.45	
			4	0.7	0.7	0.70	
			5	0.5	0.8	0.65	
				Average CAIs	L	0.8	
				Average CAI *		1.27	
	1	ł	CERCHAR Abra	asiveness Index Cla	assification Low	abrasiveness	

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 40/42 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

MEMORANDUM

DATE:	January 19, 2023
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 6 – Package 4A – HDD Crossing 53 Champlain Hudson Power Express Project Ballston Spa, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Ballston Spa, New York. The approximate station for the start of HDD crossing Number 53 is STA 40091+00 (42.9769°N, 73.8477°W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by TRC and from a recent investigation by Terracon, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Terracon Consultants-NY, Inc., Results of Field Exploration, Champlain-Hudson Power Express Additional HDD Borings Phase 3, Fort Ann to Coxsackie, NY, dated November 3, 2022

Contact us if you have questions or require additional information.

HDD 53 Borings B-160.7-1, KB-160.6 Segment 6 - Design Package 4A

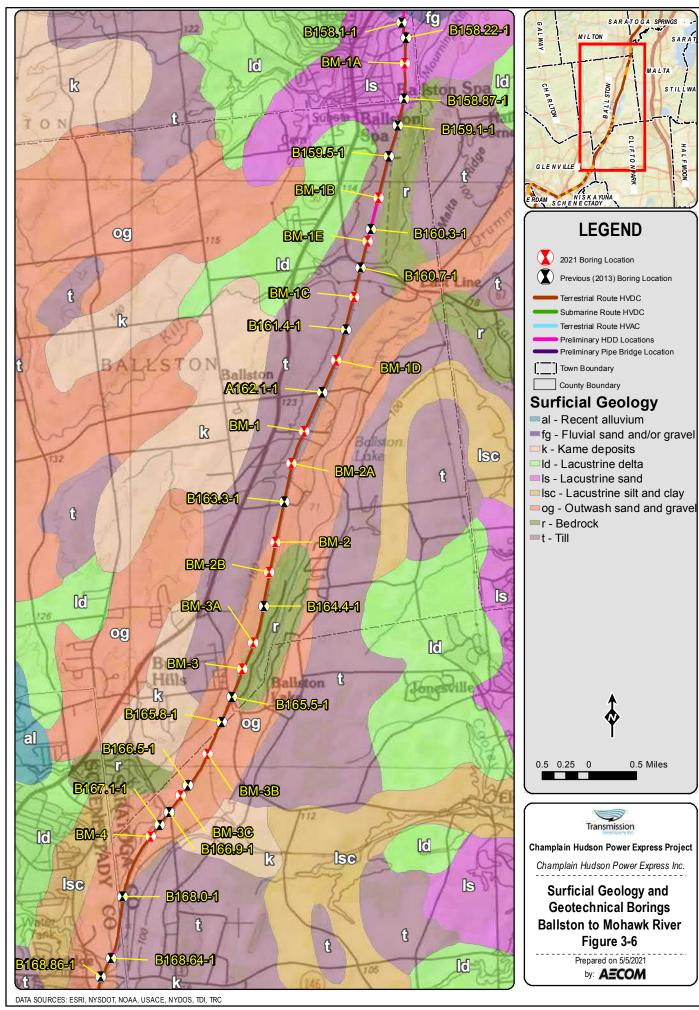
CHPE Segment 6 Package 4A Soil Boring Coordinates and Elevations

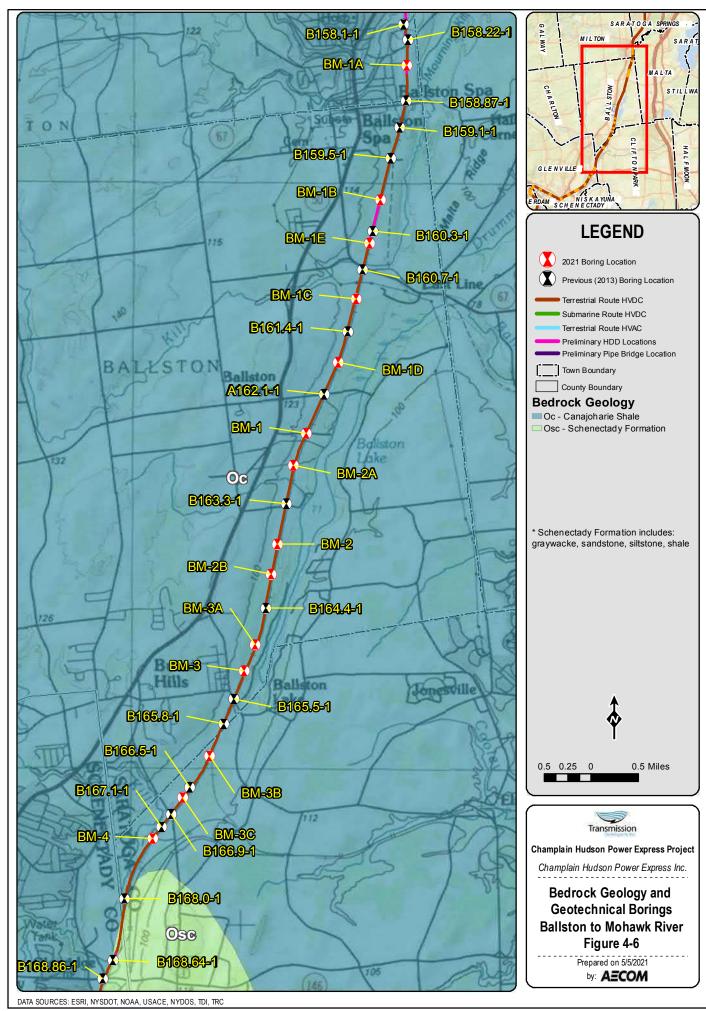
F 1	Davina	Northing	Easting	Ground Surface		
Firm	Boring	(feet)	(feet)	Elevation (feet)		
	A162.1-1	1502786.734	664476.477	284.0		
	B158.87-1	1519228.136	669050.444	288.3		
	B159.1-1	1517722.124	668720.464	291.0		
	B159.5-1	1516012.300	668217.400	295.8		
	B160.3-1	1511903.990	667182.915	294.6		
	B160.7-1	1509749.417	666636.945	295.0		
	B161.4-1	1506284.600	665799.100	288.0		
	B163.3-1	1496630.400	662351.700	280.2		
TRC*	B164.4-1	1490795.529	661205.362	267.5		
	B165.5-1	1485722.400	659432.900	277.6		
	B165.8-1	1484324.089	658853.809	275.4		
	B166.5-1	1480752.600	656954.600	263.5		
	B166.9-1	1479253.700	655902.600	265.4		
	B167.1-1	1478553.300	655364.300	261.0		
	B168.0-1	1474529.400	653290.100	251.4		
	B168.64-1	1471082.866	652655.655	245.2		
	B168.86-1	1470035.900	652059.906	231.6		
	BM-1	1500593.800	663479.000	283.4		
	BM-1B	1513675.554	667631.458	293.5		
	BM-1C	1508115.700	666263.900	291.9		
	BM-1D	1504574.200	665267.500	283.4		
	BM-1E	1511220.853	667016.761	294.1		
	BM-2	1494386.900	661852.400	271.4		
AECOM**	BM-2A	1498788.900	662752.200	279.1		
	BM-2B	1492715.315	661511.300	269.7		
	BM-3	1487269.097	659995.860	275.1		
	BM-3A	1488755.829	660606.619	270.8		
	BM-3B	1482501.900	658059.300	273.6		
	BM-3C	1480192.269	656553.384	263.2		
	BM-4	1477890.500	654882.600	260.5		

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.


* TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Y: Projects/CHPEI/Route/Consensus_Alternative_Routes/MXDAIt_5_Routes_DZ_201909/Boring_Locations/Maps_for

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

©TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

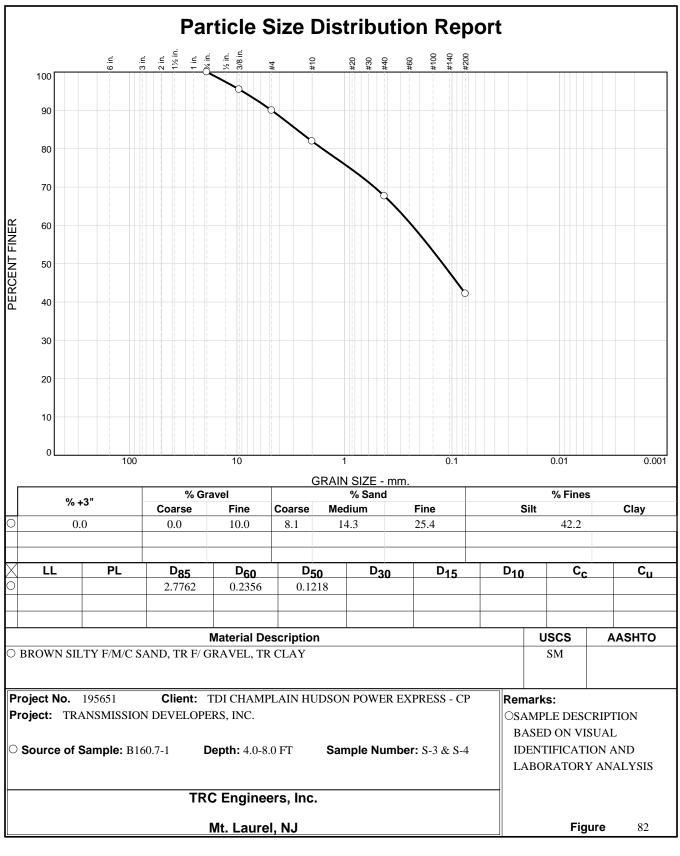
LOCATION: CP RAILROAD ROW, NY

				-						
	GROU	NDWATEF	R DATA		N	/ETHOD C	F ADVAN	CING BO	REHOLE	
FIRST E	FIRST ENCOUNTERED DRY					FROM	0.0 '	то	4.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	4.0 '	TO	15.0 '	
					C ₂	FROM	15.0 '	то	25.0 '	

BORING B160.7-1 G.S. ELEV. N/A

FILE 195651

DRILLER	T. FARRELL
HELPER	J. LANGDON
INSPECTOR	C. POPPE
DATE STARTED	02/14/2013
DATE COMPLET	ED 02/14/2013


DEPTH	A		В	5		С		DESCRIPTION	Wn	REMARKS
	<u>S-1</u>			5			4.0	BROWN SILT, TR TO SM F/ SAND, TR GRAVEL AND ROCK FRAGMENTS		
5	S-2 S-3			10 37			4.0	BROWN F/ SANDY CLAY, TR SILT, TR GRAVEL	15.5	
	S-4	10 8	<u>8</u>	14	22		8.0		_	
10	S-5	15 2	<u>20</u> :	31	35		13.	BROWN SILTY F/M/C SAND, SM F/C GRAVEL-SIZED ROCK FRAGMENTS		
15	S-6	35 4	<u>40 </u>	<u>50/0</u>	.3		15.0	GRAY SILT, SM F/C GRAVEL-SIZED ROCK FRAGMENTS, TR F/ SAND (DECOMPOSED ROCK)		
-		REC :		%				GRAY, MODERATELY WEATHERED, SOFT SHALE,		
20	<u>R-1</u>	RQD	=0%					VERY CLOSE TO CLOSE, 0 TO 45 DEGREE FRACTURES		
	R-2	REC = RQD =		%			25.0	END OF BORING AT 25'		
30										
-										
35								DRN. CKD.		JPB PWK

Project Name: Client Name: TRC Project #: TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651

Organic Content (%) Soil Group (USCS System) **GRAIN SIZE** Moisture Content (%) SAMPLE IDENTIFICATION PLASTICITY Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Liquidity Index) # Limit (%) Limit (%) Sand (%) Clay (%) Boring # Sample ∮ Plastic Silt (%) Liquid S-4 6.0-8.0 SM 34.5 48.3 17.2 4.9 _ _ _ _ _ _ _ _ 8.0-9.4 S-5 R-1 11.7-12.1 173.1 800 _ _ _ _ _ _ _ _ _ _ _ 4.0-6.0 S-3 42.2 SM 10.0 47.8 15.5 -_ _ _ --_ -6.0-8.0 S-4 B160.7-1 15.0-15.2 167.3 R-1 ---_ _ ----_ _ --R-2 23.5-23.8 164.3 _ _ _ _ _ _ _ _ _ _ _ -_ 0.0-2.0 9.5 S-1 _ _ _ _ _ _ _ _ _ _ _ B161.4-1 17 S-3 4.0-6.0 CL 25 8 -0.3 14.3 _ _ _ _ _ _ _ _ S-2 2.0 - 4.015.3 _ _ _ _ _ _ _ _ _ _ _ _ _ S-4 6.0-8.0 8.2 _ _ _ _ _ _ _ -_ _ _ -_ A162.1-1 S-5 8.0-10.0 7.9 -_ -_ _ _ _ _ -_ _ -_ 15.7-16.0 R-1 176.8 _ _ _ _ _ _ _ -_ -_ _ _

DRAWN BY: TBT 03/27/13

Tested By: <u>BMH 02/21/13</u>

Checked By:

EXPLORATION PLAN

CHPE - Additional HDD Borings - Phase 3
Fort Ann to Coxsackie, NY November 3, 2022
Terracon Project No. JB215256G

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

	E	ORING LOG	i NO). K	(B-	16	60.6	5			Page 1 of	3	
PF	ROJECT: CHPE - Additional HDD Bor	ings - Phase 3	CLI	ENT:	Kie	wit	Eng	gineering (NY) , CO	Corp	D	0		
SI	TE: Fort Ann to Coxsackie, NY				LUI			,					
go	LOCATION See Exploration Plan			(·	NS NS	ΡE	(In.)	F		(%)	ATTERBERG LIMITS	NES	
GRAPHIC LOG	Latitude: 42.976430° Longitude: -73.848032°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	'ERY	FIELD TEST RESULTS		WATER CONTENT (%)		PERCENT FINES	
GRAP		Surface Elev.: 295.689	9 (Ft.)	DEP'	VATE	AMPI	RECOVERY	FIELD		CONT	LL-PL-PI	ERCE	
	DEPTH →0.3_∧ TOPSOIL	ELEVATIO	N (Ft.) 295.4		>ō	s v						Ë	
	SILTY SAND (SM), brown, medium dense	e, (Glacial Till)	200.4	-		X	14	3-4-7-7 N=11					
				_	-	$\left\{ \right\}$	}	0.0.40.44					
				-	-	X	22	9-9-10-14 N=19		12.2		37	
	4.8		290.9	_		$\overline{\mathbf{X}}$	15	14-29-50/3"					
	WEATHERED SHALE, gray, very dense			5 –									
\mathbb{R}	7.0		288.7										
ALEN	SHALE, slightly weathered, extremely clo fractured, very poor RQD, gray	se to very close		_									
				_				DEC- 100%					
				10-	-			REC= 100% RQD = 0%					
				_									
	12.0 SHALE, slightly weathered, extremely clo	se to very close	283.7	_	-								
	fractured, fair RQD, gray	se to very close		_	-								
				_	-			REC= 100%					
				15-	-			RQD =71%					
2990 C				_	-								
JB212250G CHPE - ADDIIONAL, GPJ	17.0 SHALE, unweathered, extremely close to	moderate	278.7	_	-								
	fractured, excellent RQD, gray			_	-								
				_	-								
				20-	-								
				_				REC= 100%					
				_				RQD =100%					
				_									
KEPC				25-]								
				25									
	27.0		268.7	_									
				_									
	Stratification lines are approximate. In-situ, the transitio	n may be gradual.			1		Ham	mer Type: Automatic				I	
Adva	Incement Method:	See Exploration and Te					Notes	5:					
	1/4 HSA, and 3" casing	description of field and used and additional dat			edures	;	Hami	ed by JCH/JL mer Efficiency Summar					
≥ Q Aban	ndonment Method:	See Supporting Informa symbols and abbreviation		explana	ation of	f	Energ	gy Transfer Ratio: 84.7 mer Efficiency Correction	% +/-5.				
Bo	rring backfilled with bentonite grout upon completion	Elevations were provide	ed by of	thers.									
	WATER LEVEL OBSERVATIONS						Boring	Started: 08-03-2022	В	oring Co	mpleted: 08-05-	-2022	
BCK	No free water observed						Drill Ri	ig: Diedrich D-50	D	riller: S.	Morey		
SHT NHT		30 Corporat Albar	e Cir S ny, NY	te 201			Project No.: JB215256G						

	BORING LOG NO. KB-160.6 Page 2 of 3									3			
PR	OJECT:	CHPE - Additional HDD Bori	ngs - Phase 3	CLIE	NT:			Eng Tree	ineering (NY)	Cor	р		
SIT	ſE:	Fort Ann to Coxsackie, NY		-		LOI		nee,					
GRAPHIC LOG	Latitude: 42	N See Exploration Plan 2.976430° Longitude: -73.848032°	Surface Elev.: 295.689		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	RQD	LE, unweathered close to moderate fr), gray <i>(continued)</i> ical fracture from 30.8' to 32'	ELEVATIO actured, fair		 30								
	37.0			258.7	_ _ 35— _				REC = 98% RQD =69%				
JB215256G CHPE - ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 11/222		<u>LE</u> , unweathered, very close to mode RQD, gray	rate fractured,		- 40 - - 45				REC= 100% RQD = 68%				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JE DuerqP // P // C // C // C // C // C // C //	exce	<u>LE</u> , unweathered, close to moderate f llent RQD, gray ical fracture from 52' to 53'	ractured,		- - 50- - - - 55- -				REC= 100% RQD = 98%				
	Stratificati	ion lines are approximate. In-situ, the transition	may be gradual.					Ham	mer Type: Automatic				<u> </u>
Advan 4 1/ 10 Advan 4 1/ Advan 8 1/ Advan 8 1/ 10 Advan 8 0/ 10 Advan	Advancement Method: See Exploration and Te description of field and used and additional dat 4 1/4 HSA, and 3" casing See Exploration and Te description of field and used and additional dat Abandonment Method: See Supporting Information Symbols and abbreviational date Boring backfilled with bentonite grout upon completion Elevations were provide					hation for explanation of tions. Energy Transfer Ratio: 84.7% +/-5.0% Hammer Efficiency Correction (CE): 1.4							
				Boring Started: 08-03-						22 Boring Completed: 08-05-2022			
IS BORI	NO Tree I	water observed	30 Corporate	DC e Cir Ste				Drill Ri	g: Diedrich D-50	[Driller: S.	Morey	
Ē				ny, NY			F	Project	No.: JB215256G				

BORING LOG NO. KB-160.6

PROJECT: CHPE - Additional HDD Borings - Phase 3 **CLIENT: Kiewit Engineering (NY) Corp** Lone Tree, CO SITE: Fort Ann to Coxsackie, NY ATTERBERG LIMITS LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS SAMPLE TYPE **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. FIELD TEST RESULTS DEPTH (Ft.) Latitude: 42.976430° Longitude: -73.848032° LL-PL-PI Surface Elev .: 295.6899 (Ft.) ELEVATION (Ft. DEPTH 238.7 57.0 SHALE, unweathered, close to moderate fractured, excellent RQD, gray 60 REC= 100% RQD =98% 65 67.0 228.7 SHALE, unweathered, close to moderate fractured, excellent RQD, gray 70 REC = 100% RQD = 94% 75 77.0 218.7 SHALE, unweathered, close to moderate fractured, excellent RQD, gray REC= 100% RQD =100% 80 213.7 Boring Terminated at 82 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4 1/4 HSA, and 3" casing description of field and laboratory procedures Logged by JCH/JL Hammer Efficiency Summary: Energy Transfer Ratio: 84.7% +/-5.0% used and additional data (If any). Supporting Information for explanation of Hammer Efficiency Correction (CE): 1.41 Abandonment Method: symbols and abbreviations. Boring backfilled with bentonite grout upon completion Elevations were provided by others. WATER LEVEL OBSERVATIONS Boring Completed: 08-05-2022 Boring Started: 08-03-2022 No free water observed Drill Rig: Diedrich D-50 Driller: S. Morey

30 Corporate Cir Ste 201

Albany, NY

Project No.: JB215256G

11/2/22

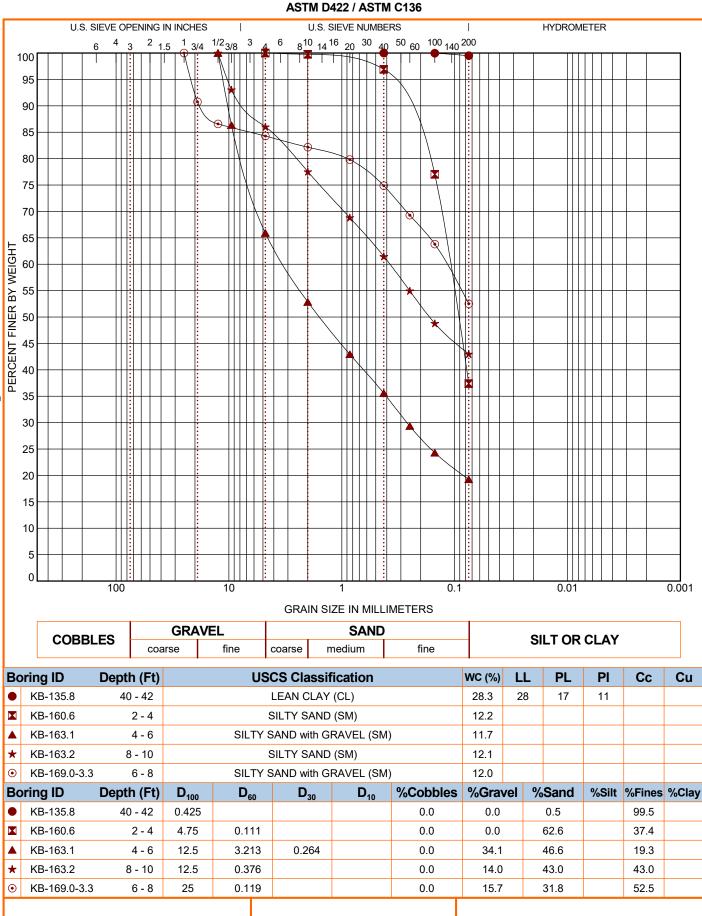
TERRACON_DATATEMPLATE.GDT

GPJ

JB215256G CHPE - ADDITIONAL.

. REPORT. GEO SMART LOG-NO WELL

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL


Page 3 of 3

PERCENT FINES

Summary of Laboratory Results

			,		Sheet 1 of 3					
BORING ID	Depth (Ft.)		Water Content (%)		Organic Content (%)					
KB-115.5	2-4		13.4		3.4					
KB-115.5	15-17		70.8							
KB-117.6-1.6D	3-5		4.0							
KB-117.6-1.6D	20-22		22.7							
KB-117.6-1.6D	35-37		26.2							
KB-117.6-1.6D	49-51		15.3							
KB-122.9	4-6		23.1							
KB-122.9	15-17		18.6							
KB-122.9	25-27		77.9							
KB-122.9	45-47		74.8							
KB-123.0	2-4		10.9							
KB-123.0	20-22		68.3							
KB-123.0	35-37		51.0							
KB-123.0	50-52		45.9							
KB-123.0	65-67		34.5							
KB-132.1A	4-6		27.5							
KB-122.9 KB-122.9 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-123.0 KB-132.0 KB-132.1A KB-132.1A KB-132.3A KB-132.3A KB-132.5A KB-135.7 KB-135.7	15-17		38.1							
KB-132.1A	30-32		34.0							
KB-132.3A	4-6		12.1							
KB-132.3A	15-17		45.2							
KB-132.3A	30-32		37.2							
KB-132.5A	4-6		17.4							
KB-132.5A	30-32		38.8							
KB-132.5A	45-47		38.2							
KB-135.7	2-4		36.6							
KB-135.7	15-17		41.9							
KB-135.7	30-32		34.8							
KB-135.8 KB-135.8 KB-135.8	2-4 15-17		5.6 42.7							
KB-135.8	30-32		36.8							
KB-135.8 KB-135.8	40-42		28.3							
KB-160.6	2-4		12.2							
KB-163.1	4-6		11.7							
KB-163.2	8-10		12.1							
KB-169.0-3.3	6-8		12.0							
KB-169.0-3.3	25-27		11.5							
KB-169.0-3.3	35-37		8.4							
KB-177.1	10-12		8.9							
KB-177.1	25-27		11.5							
KB-177.1	40-42		11.2							
KB-177.1	50-52		5.7							
KB-160.6 KB-163.1 KB-163.2 KB-169.0-3.3 KB-169.0-3.3 KB-169.0-3.3 KB-177.1 KB-177.1 KB-177.1 KB-177.1 KB-177.1 KB-177.1 SITE: Fort Ar	6-8		31.5							
PROJECT: C P	CHPE - Additior hase 3	nal HDD Borings -	Terra	CON	PROJECT NUMBER: JB215256G					
SITE: Fort Ann to Coxsackie, NY			30 Corporate (Albany,	Cir Ste 201	CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO					

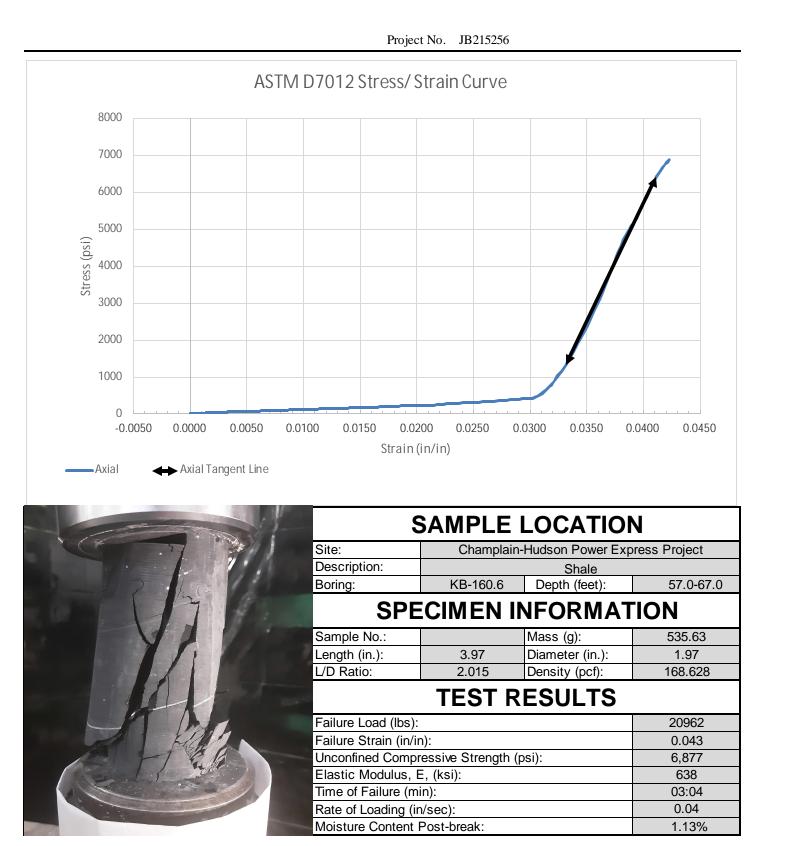
GRAIN SIZE DISTRIBUTION

PROJECT: CHPE - Additional HDD Borings -Phase 3

PROJECT NUMBER: JB215256G

SITE: Fort Ann to Coxsackie, NY

CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO



Client

Kiewit Engineering Corp

Project

Champlain-Hudson Power Express Project

Client		Project							
Kiewit Engineering Corp		Champlain-Hudson Power Express Project							
		Project No. JB215256							
Equipment:	TICCS ID:								
Calipers	W-44049								
Scale	B-71466								
Dial Indicator	C-70608								
Compression (spherically seated)	C-48999								

Samples were prepared and tested in accordance with ASTM D4543 and D7012. Deviations, if any, are noted below: Notes:

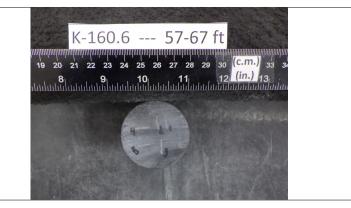
Per ASTM D4543, this specimen has not met the requirements for perpendicularity, by exceeding 0.250°. Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches. Per ASTM D4543, this specimen has not met the requirements for parallelism, by exceeding 0.25°. Per ASTM D4543, this specimen has not met the requirements for flatness, by exceeding 0.001 inches. Per ASTM D4543 and ASTM D7012, the desired specimen length to diameter are between 2.0:1 and 2.5:1. According to ASTM D7012 Section 8.2.1, this specimen, although not meeting all requirements of ASTM D4543 is acceptable for testing. However, the results reported may differ from results obtained from a test specimen that meets the requirements of D4543.

Client Kiewit Engineering Corp Project

Champlain-Hudson Power Express Project

Project No. JB215256

Boring	۲	(B-160.6	Material I	Description	Shale					
Sample No			Equipm	ent Used	Tinius Olsen					
Depth (ft)	5	7.0-67.0	TICCS ID)/Serial No.		, 118285				
Lab No		7754	Calibra	tion Date	11/2/2021					
·			TEN	NGTH						
Lab No.		1	2	3	4	5				
Diameter (in)		1.97	1.97	1.97	1.97	1.97				
Length (in)		0.72	0.62	0.64	0.61	0.54				
Length Diameter Rati	0.37	0.31	0.32	0.31	0.27					
Rate of Loading	0.072	0.062	0.064	0.061	0.054					
Moisture Condition	1.00%	1.00%	1.00%	1.00%	100.009					
Maximum Applied Load	Maximum Applied Load (lbf)		pplied Load (lbf)		ied Load (lbf) 35		1699	2509	1676	1664
Splitting Tensile Strengt	h (psi)	1607.6	886.0	1267.5	888.3	996.3				
			TEN	ISILE STREI	l l					
Lab No.		6	7	8	9	10				
Diameter (in)		1.97	1.97	1.97	1.97	1.97				
Length (in)		0.58	0.62	0.7	0.64	0.69				
Length Diameter Rati	0	0.29	0.31	0.36	0.32	0.35				
Rate of Loading		0.058	0.062	0.07	0.064	0.069				
Moisture Condition		1.00%	1.00%	1.00%		1.00%				
		1.00%	1.00%	1.00%	1.00%	1.00%				
Maximum Applied Load	(lbf)	884	2398	2906	2579	1594				


Client:	Terracon Consultants, Inc.				
Project:	Champlain-Hudson Power Express				
Location:				Project No:	GTX-315284
Boring ID:	KB-160.6	Sample Type:	cylinder	Tested By:	tlm
Sample ID:		Test Date:	09/12/22	Checked By:	jsc
Depth :	57'-67'	Test Id:	683875		
Test Comm	ent:				
Visual Desc	ription:				
Sample Cor	mment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
K-160.6		57-67 ft	1	0.4	0.6	0.50	
			2	0.3	1.0	0.65	
			3	1.1	0.2	0.65	
			4	0.6	0.2	0.40	
			5	0.6	1.2	0.90	
				Average CAIs	0.62		
				Average CAI *	1.09		
			CERCHAR Abr	asiveness Index Cla	assification M	edium abrasiveness	

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

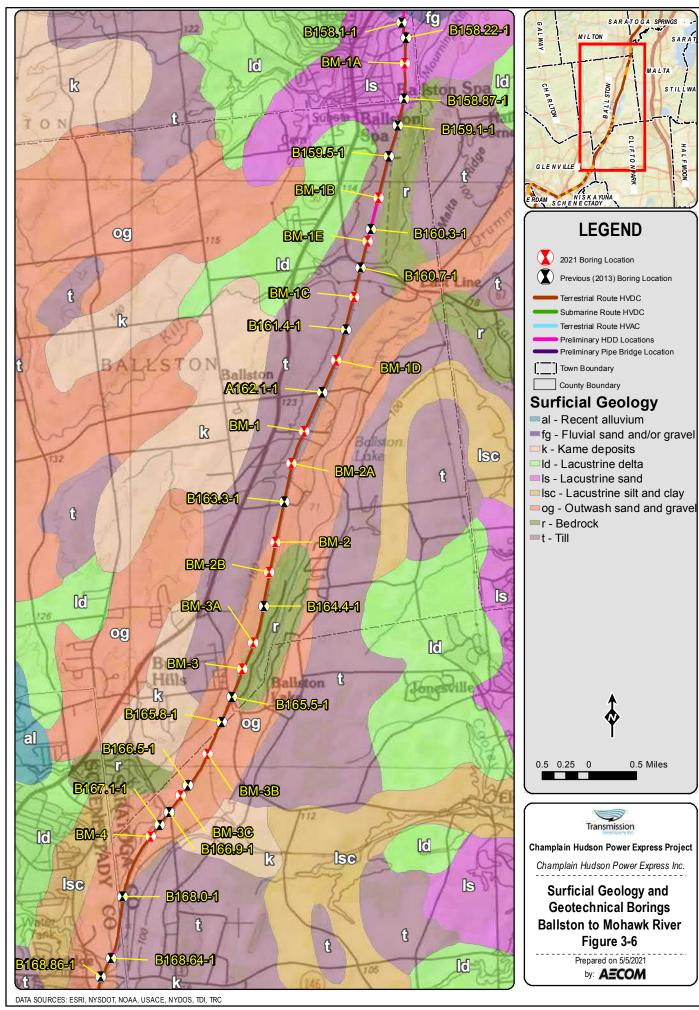
Geotechnical Data Report Champlain-Hudson Power Express- Additional HDD Borings – Phase 3 Fort Ann to Coxsackie, NY November 3, 2022 – Terracon Project No. JB215256G lerracon

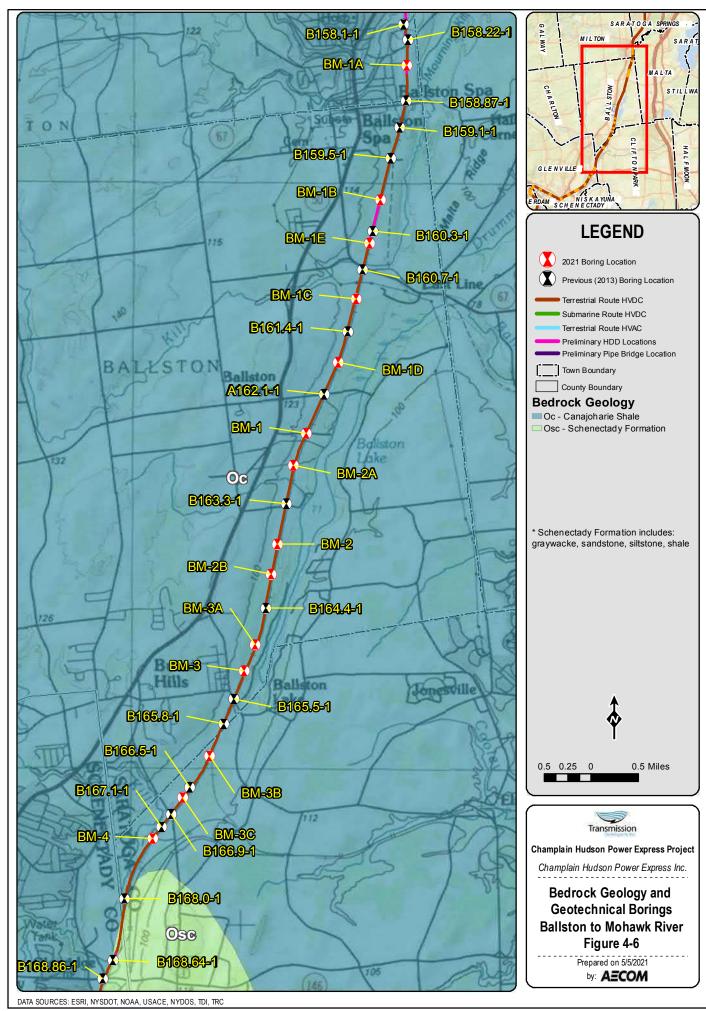
GeoReport

Rock Core – Boring KB-160.6 Runs 1 through 3

MEMORANDUM

DATE:	January 19, 2023
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 6 – Package 4A – HDD Crossing 53A Champlain Hudson Power Express Project Ballston Spa, New York


Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Ballston Spa, New York. The approximate station for the start of HDD crossing Number 53A is STA 40220+00 (42.9438°N, 73.8631°W).


The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by Terracon, referenced below.

• Terracon Consultants-NY, Inc., Results of Field Exploration, Champlain-Hudson Power Express – Additional HDD Borings – Phase 3, Fort Ann to Coxsackie, NY, dated November 3, 2022.

Contact us if you have questions or require additional information.

HDD 53A Borings KB-163.1, KB-163.2 Segment 6 - Design Package 4A

EXPLORATION PLAN

CHPE - Additional HDD Borings - Phase 3
Fort Ann to Coxsackie, NY November 3, 2022
Terracon Project No. JB215256G

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

		В	ORING LOG	OG NO. KB-163.1 Page							Page 1 of	2	
PF	ROJECT	: CHPE - Additional HDD Bor	rings - Phase 3	CLI	ENT:	Kie Lor	wit ne 1	Eng Free	gineering (NY) , CO	Cor	р		
Sľ	TE:	Fort Ann to Coxsackie, NY											
GRAPHIC LOG		ON See Exploration Plan 42.943364° Longitude: -73.862799°	Surface Elev.: 272.845	56 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	SIL	<u>L - SILTY SAND WITH GRAVEL</u> , black TY SAND WITH GRAVEL (SM), brown ACIAL TILL)	ELEVATIO			<a>8	s	문 20	8-10-8-8 N=18				L L
122					_	-		21	5-6-10-9 N=16				
TE.GDT 11/2/22				000.0	- 5 -	-		16	6-7-8-11 N=15		11.7		19
	Υ <u></u>	ATHERED ROCK, gray, very dense		266.3	-	-	X	0.8	11-50/4"				
JB215256G CHPE - ADDITIONAL. GPJ TERRACON_DATATEMPLATE. GDT	fair 18.0	ALE, slightly weathered, close to mode RQD, gray		254.8	- 10- - - 15- -				REC= 100% RQD = 73%				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL	<u>SH</u> goo	<u>ALE</u> , slightly weathered, close to mode	erate fractured,	_244.8	20 25 				REC= 100% RQD =78%				
PARATE	Stratifica	ation lines are approximate. In-situ, the transitio	n may be gradual.	.				Ham	mer Type: Automatic				
Adva 3" Adva 3" Aban Bo	donment Me	tricone roller bit	See Exploration and Te description of field and used and additional dat See Supporting Informa symbols and abbreviati Elevations were provide	laborato a (If any ation for ons.	ry proc). explana	edures		Hami Energ	s: ed by AB ner Efficiency Summa yy Transfer Ratio: 84.3 ner Efficiency Correct	7% +/-5			
								Boring	Started: 08-08-2022	E	Boring Co	mpleted: 08-08-	-2022
No free water observed			30 Corporat	Cir Ste ny, NY		Л	Ŀ		g: Diedrich D-50 t No.: JB215256G	-	Driller: S. Morey		

		BOR	ING LOG	G NO. KB-163.1								Page 2 of :	2	
	PR	OJECT: CHPE - Additional HDD Borings	- Phase 3	CLI	ENT:	Kie	wit	Eng	ineering (NY)					
	SIT	TE: Fort Ann to Coxsackie, NY			Lone Tree, CO									
	GRAPHIC LOG	DEPTH SHALE, slightly weathered, close to moderate fr	urface Elev.: 272.8456 ELEVATION actured,		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
ACON_DATATEMPLATE.GDT 11/2/22		fair RQD, gray	234.8	30				REC= 100% RQD =57%						
JB215256G CHPE - ADDITIONAL GPJ TERRACON_DATATEMPLATE GDT		<u>SHALE</u> , slightly weathered, close to moderate fr good RQD, gray	actured,	227.0	40	-			REC = 100% RQD = 86%					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB21	Boring Terminated at 45 Feet							Hee						
PARATI		Stratification lines are approximate. In-situ, the transition may be	e gradual.					Ham	mer Type: Automatic	;				
G IS NOT VALID IF SEI	3" c Aband	casing with tricone roller bit de: domment Method: ing backfilled with bentonite grout upon completion	e Exploration and Test scription of field and li ad and additional data e Supporting Informat mbols and abbreviation evations were provide	aborato a (If any tion for ons.	ory proce /). explana	edures	;	Hamr Energ	:: ed by AB ner Efficiency Summa y Transfer Ratio: 84. ner Efficiency Correct	7% +/-5.				
NG LC		WATER LEVEL OBSERVATIONS					E	Boring	Started: 08-08-2022	B	oring Co	mpleted: 08-08-	2022	
BORII		No free water observed					l I	Drill Ri	g: Diedrich D-50	D	riller: S.	Morey		
THIS	30 Corporate				e 201		F	Project No.: JB215256G						

BORING LOG NO. KB-163.2

PROJECT: CHPE - Additional HDD Borings - Phase 3

CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO

Page 1 of 2

SITE: Fort Ann to Coxsackie, NY

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215256G CHPE - ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 11/12/22

SIT	E: Fort Ann to Coxsackie, NY										
LOG	LOCATION See Exploration Plan		=t.)	IONS	ΥPE	۲ (In.)	S		(%)	ATTERBERG LIMITS	PERCENT FINES
GRAPHIC LOG	Latitude: 42.942182° Longitude: -73.863320°		DEPTH (Ft.)	ER LE RVAT	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	LL-PL-PI	ENTF
GRA		Surface Elev.: 275.5275 (Ft.)	Ë	WATER LEVEL OBSERVATIONS	SAM	RECC	FIEI		SN CON CON		PERC
	DEPTH ELEVATION (Ft.) 275 275 275 275						5-6-7-9				
	<u>SILTY SAND (SM)</u> , brown, medium dense to v (GLACIAL TILL)	very dense,	-		\square	12	N=13				
			-		X	17	8-7-8-8 N=15				
			5-		$\left \right\rangle$	20	3-8-7-11 N=15				
					$\left \right\rangle$	20	13-11-6-4 N=17				
			-		\bigtriangledown	20	4-6-9-9		12.1		43
	grades to gray				\square	20	N=15		12.1		40
			-								
			-								
	15.8	259.7	15-		\times	9	33-50/4"				
	WEATHERED ROCK, black, very dense										
$\langle \rangle$			-								
	20.0 SHALE, slightly weathered, extremley close to	255.5 255.5	20-	-							
	fractured, poor RQD, gray		-								
			_				REC = 100% RQD = 45%				
				-							
	25.0 SHALE, slightly weathered, very close to moc	250.5 lerate	25-	-							
	fractured, good RQD, gray		-	1							
			_								
	Stratification lines are approximate. In-situ, the transition may be gradual.					Ham	ner Type: Automatic				
	Advancement Method: 3" and 4" casing with tricone roller bit from 15.8' to 20' bandonment Method: Boring backfilled with bentonite grout upon completion See Supporting Information for symbols and abbreviations. Elevations were provided by of			edures		Hamn Energ	ed by AB ner Efficiency Summa v Transfer Ratio: 84.7	ary: 7% +/-5.	0%		
						Hamn	her Efficiency Correct	ion (CE)): 1.41		
	WATER LEVEL OBSERVATIONS				E	Boring	Started: 08-09-2022	В	oring Co	mpleted: 08-10-	2022
	No free water observed	30 Corporate Cir S			- F		g: Diedrich D-50	D	riller: S.	Morey	
		Albany, NY			F	Project	No.: JB215256G				

			В	ORING LOG	G NO. KB-163.2								Page 2 of :	2	
	PR	OJECT:	CHPE - Additional HDD Borin	ngs - Phase 3	CL	ENT:				gineering (NY)) Cor	р			
	SIT	E:	Fort Ann to Coxsackie, NY				LOI	le	i i ee	, CO					
	GRAPHIC LOG		N See Exploration Plan .942182° Longitude: -73.863320°	Surface Elev.: 275.527	5 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
			<u>_E</u> , slightly weathered, very close to m ired, good RQD, gray <i>(continued)</i>	ELEVATION oderate	N (Ft.)		>8	S	R					8	
PLATE.GDT 11/2/22			noo, good rigo, gray (oonninaca)		240.5	30- - - -	-			REC = 100% RQD = 76%					
JB215256G CHPE - ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT		35.0 SHALE, slightly weathered, close to moderate fractured, excellent RQD, gray				35- - - - 40- - - -	-			REC = 97% RQD = 80%					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB2152560		45.0 2 Boring Terminated at 45 Feet Stratification lines are approximate. In-situ, the transition may be gradual.							Ham	mer Type: Automatic					
ALID IF SEPA	Advancement Method: See Exploration and Testin 3" and 4" casing with tricone roller bit from 15.8' to 20' See Exploration and Testin description of field and lab used and additional data (Abandonment Method: See Supporting Information Boring backfilled with bentonite grout upon completion Elevations were provided					ory proc				s: ed by AB ner Efficiency Summa	ary:				
IG IS NOT V/							ation of	F	Energ	gy Transfer Ratio: 84. ner Efficiency Correc	7% +/-{				
NG LC			R LEVEL OBSERVATIONS		_				Boring	Started: 08-09-2022	I	Boring Co	mpleted: 08-10-	2022	
30RIN		No free v	vater observed	llerr					Drill Ri	g: Diedrich D-50		Driller: S.	Morey		
THIS E	ග ව ඩ ඩ න ව ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර				e Cir S		_		Project No.: JB215256G				,		

