

Champlain Hudson Power Express ("CHPE") Environmental Management & Construction Plan Notice of Major Change

Project: <u>Champlain Hudson Power Express</u> Segment: <u>13, 14, 15</u> Notice Number: <u>264</u> PSC Case: <u>10-T-0139</u> USACE Permit Number: <u>NAN-2009-01089-M12</u> Location (Milepost, Town/County): <u>Randall's Island, NY, 40°47'52"N, 73°55'5"W</u> Drawing References: <u>Segment 13, 14, 15 (Package 8) Appendix C: C-103, C-104, C-203, C-313, C-314, C-315, C-316, C-402, C-403</u> Other Documents/References: N/A Component(s) Impacted by Change: Segment 13,14,15 (Package 8) Appendix C, Appendix E and Appendix J

Description of Change:

This change involves a revision to the installation methodology from a trenched cable installation beneath a paved pathway in Randall's Island Park to a trenchless horizontal directional drill (HDD) method from STA 80035+00 to 80044+70 to cross under Randall's Island NYC Parks Field 46 and Field 48.

This requested change has been reviewed extensively with NYC Parks & Recreation; the agency has no objection to this proposed change, which is designed to reduce overall impacts to the park, including the period of time needed for construction, dewatering burdens and other impacts which would have resulted from trenching. An amendment to the Parks Construction Permit No. M104.20240105 will be obtained from NYC Parks prior to beginning construction of the new HDD 134A, in parallel with consideration of this major change notice.

See Reviewer Supplement Form for full description of the changes. There are no changes to wetland or tree clearing impacts. Overall, this change will result in the same or reduced impacts to various resources on Randall's Island. However, because this change will shift the alignment outside of the deviation zone, a major change is required from the Commission.

Updates to Segment 13,14,15 Excursion Table

Excursion	Parcel ID	Sheet (Approximate – See Drawings for Details)	Stationing Start	Stationing End	Justification for Revision	Change in Environmental Impact	
S13-6	Block: 1819 Lot: 203	C-103	80035+00	80035+30	Shifting of trench a few feet for alignment into new HDD 134 entry pits.	None	
S13-7	Block: 1819 Lot: 203	C-103	80035+60	80036+00	Start of new HDD 134A replacement of open cut trench	None	
S13-7A (NEW)	Block: 1819 Lot: 203	C-103 C-104	80036+20	80044+70	New HDD 134A replaces open cut trench	Recreation (see below)	

New Excursion S13-7A

1. Description of the Excursion

The length of the excursion is approximately 850 linear feet. The entirety of the excursion will be installed via HDD below grade with no anticipated surface disturbance.

2. Justification

The primary purpose of HDD 134A is to reduce the quantity of dewatering required during excavation to construct the previously designed open cut trench.

- 3. <u>Environmental Impact</u>
 - Recreation Excursion S13-7A will result in an overall reduction in construction duration on or near recreational areas. Pursuant to CHPE's revocable consent, HDD work will be completed in the off-season to minimize impacts on recreational uses at the park.
 - Agricultural Resources -- Excursion S13-7A will not impact any agricultural areas.
 - Cultural Resources -- Excursion S13-7A will not impact any cultural resources.
 - Threatened and Endangered Species *Excursion S13-7A will not impact any threatened or endangered species.*
 - Wetlands and Streams Excursion S13-7A will not impact any wetlands or streams.

Lastly, CHPE has the necessary land rights to construct and operate the Facility in this location through its Revocable Consent from the City of New York. Any future updates to that Revocable Consent will be filed on DMM upon receipt.

CC Requirements for Modifying an EMCP

#	Certificate Condition	Description of the Proposed change
	The EM&CP approved by the Commission may incorporate	
158	modifications from the EM&CP proposed by the Certificate	
	Holders. No change to the approved EM&CP may thereafter	
	be made except in accordance with the following procedures:	
	For a proposed change that: (i) would involve a site listed or	(i)This change does not involve a site listed in the NYS or
	eligible for listing on the New York State or National Register	National Register of Historic Places.
	of Historic Places, the Certificate Holders shall give at least two	
	(2) weeks prior notice to the Field Service Bureau of OPRHP.	(ii)This change does not result in an increased impact to
	(ii) would involve any State-regulated wetland or protected	any federal or State-regulated wetland or waterbody and
	stream or water body, the Certificate Holders shall give at	is not located in the Adirondack Park.
	least two weeks prior notice to NYSDEC, and, if within the	
	Adirondack Park, to APA. (iii) would affect the occupied	(iii)This change does not affect an occupied habitat of a
	habitat of a TE species, the Certificate Holders shall give at	TE species.
	least two weeks prior notice to NYSDEC and to the USFWS or	
158(a)	NMFS (where applicable) prior to providing notice to DPS staff	(iv) This change does not affect individual species or
200(0)	of the proposed change. (iv) would affect the individual or	habitat supporting RTE plants.
	habitat supporting RTE plants, the Certificate Holders shall	
	give at least two (2) weeks prior notice to NYSDEC and DPS. (v)	(v)The change does not involve Agricultural Land.
	would involve agricultural land, the Certificate Holders shall	
	give at least two (2) weeks prior notice to Ag & Mkts. (vi)	(vi)There are no changes in herbicide use as result of the
	would involve the herbicides planned for use (including mixed	requested revision.
	proportions, additives or method of application), the	
	Certificate Holders shall give at least thirty (30) days prior	(vii) The change is on land owned or occupied by New
	notice to NYSDEC. (vii) would affect land or water owned or	York City.
	controlled by CNY, the Certificate Holders shall give at least	
	two (2) weeks prior notice to CNY.	

The Certificate Holders shall report any proposed changes to the EM&CP to DPS Staff. DPS Staff will refer to the Commission for approval any proposed changes that cause a substantial increase in environmental impact, after consultation with NYSDEC, any proposed changes that relate to contested issues decided during the proceeding, and any proposed changes 158(b) affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes,			
 the EM&CP to DPS Staff. DPS Staff will refer to the Commission for approval any proposed changes that cause a substantial increase in environmental impact, after consultation with NYSDEC, any proposed changes that relate to contested issues decided during the proceeding, and any proposed changes affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes, 		The Certificate Holders shall report any proposed changes to	See description above.
for approval any proposed changes that cause a substantial increase in environmental impact, after consultation with NYSDEC, any proposed changes that relate to contested issues decided during the proceeding, and any proposed changes affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes,		the EM&CP to DPS Staff. DPS Staff will refer to the Commission	
 increase in environmental impact, after consultation with NYSDEC, any proposed changes that relate to contested issues decided during the proceeding, and any proposed changes affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes, 		for approval any proposed changes that cause a substantial	
 NYSDEC, any proposed changes that relate to contested issues decided during the proceeding, and any proposed changes affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes, 		increase in environmental impact, after consultation with	
decided during the proceeding, and any proposed changes affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes,		NYSDEC, any proposed changes that relate to contested issues	
158(b) affecting State highways (but need not do so if the report indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes,		decided during the proceeding, and any proposed changes	
indicates NYSDOT's agreement to such proposed changes). DPS Staff is authorized to approve all other proposed changes,	158(b)	affecting State highways (but need not do so if the report	
DPS Staff is authorized to approve all other proposed changes,		indicates NYSDOT's agreement to such proposed changes).	
		DPS Staff is authorized to approve all other proposed changes,	
in accordance with the procedure outlined herein, and will		in accordance with the procedure outlined herein, and will	
submit reports of such changes to the Secretary or the		submit reports of such changes to the Secretary or the	
Secretary's designee, which reports will be posted on the		Secretary's designee, which reports will be posted on the	
Commission's website under this case number.		Commission's website under this case number.	
Upon being advised that DPS Staff will refer a proposed N/A		Upon being advised that DPS Staff will refer a proposed	N/A
change to the Commission, the Certificate Holders shall notify		change to the Commission, the Certificate Holders shall notify	
all active parties that have requested to be so notified, as well		all active parties that have requested to be so notified, as well	
as property owners or lessees whose property is affected by		as property owners or lessees whose property is affected by	
158(c) the proposed change. The notice shall: (i) describe the original	158(c)	the proposed change. The notice shall: (i) describe the original	
conditions and the requested change; (ii) provide documents		conditions and the requested change; (ii) provide documents	
supporting the request; and (iii) state that persons may		supporting the request; and (iii) state that persons may	
comment by writing to the Commission within twenty-one		comment by writing to the Commission within twenty-one	
(21) days of the notification date.		(21) days of the notification date.	
The Certificate Holders shall not execute any proposed change CHPE anticipates receiving oral or written approval from		The Certificate Holders shall not execute any proposed change	CHPE anticipates receiving oral or written approval from
until they receive written approval from the Commission (if DPS staff.		until they receive written approval from the Commission (if	DPS staff.
Commission approval is required pursuant to subparagraph		Commission approval is required pursuant to subparagraph	
(a) of this paragraph) or oral or written approval from DPS		(a) of this paragraph) or oral or written approval from DPS	
Staff (in the case of a change that Staff has authority to		Staff (in the case of a change that Staff has authority to	
158(d) approve) except in emergency situations threatening personal	158(d)	approve) except in emergency situations threatening personal	
injury, property damage, or severe adverse environmental		injury, property damage, or severe adverse environmental	
impact, or as specified in the EM&CP. When the Certificate		impact, or as specified in the EM&CP. When the Certificate	
Holders have obtained oral approval from DPS Staff for a		Holders have obtained oral approval from DPS Staff for a	
change, DPS Staff will confirm such approval in writing within		change, DPS Staff will confirm such approval in writing within	
ten (10) business days.		ten (10) business days.	

Proposed Change Involves New/Additional Impacts to:

□ Site listed or eligible for listing on the New York State or National Register of Historic Places [CC 158(a)(i)]

State-regulated wetland or protected stream or water body [CC 158(a)(ii)]

Occupied habitat of a TE species [CC 158(a)(iii)]

□ Individual or habitat supporting RTE plants [CC 158(a)(iv)]

□ Agricultural land [CC 158(a)(v)]

□ Herbicides planned for use (including mixed proportions, additives or method of application) [CC 158(a)(vi)]

⊠Land or water owned or controlled by CNY [CC 158(a)(vii)]

□Federally regulated wetland or protected stream or water body [Requires Transmittal to ACOE]

List of References and Attachments:

FDC-0050: Reviewer Supplement Form

Segments 13, 14, 15 (Package 8) Appendix C: Revised Sheets

Segments 13, 14, 15 (Package 8) Appendix E: Updates

Segments 13, 14, 15 (Package 8) Appendix J: HDD Design Summary Report Changes

Signoff by: <u>CHPE</u>	Overland Team	Date:	
Approvals Position	Name	Signature	Date
Segment Engineer:	Eric Schlosser	Electronically signed by Eric. Schlosser Date: 10/15/2024 4:54:48 PM	10/15/2024
Segment Manager:	Tyler Weber	Electronically signed by Tyler.Weber Date: 10/15/2024 5.07.12 PM	1 <u>0/15/2</u> 024
CHPE, LLC Approval: _	Paul Weske	Paul Weske	10/16/2024
Transmitted to DPS b	y:		
DPS Approval By:			
Transmitted to ACOE	by:		

CHPE LLC 623 Fifth Avenue, 20th Floor New York, NY 10022

Segment 13,14,15 (Package 8) EM&CP Appendix C Sheet Revisions

Sheet No.	Rev No.	Revision Description	Summary
G-001	2	FDC-0050: HDD 134A Addition	Update to sheet index to include new sheets
			from added HDD 134A
G-003	1	FDC-0050: HDD 134A Addition	Update to general notes sheet adding notes
			from 3 rd party coordination.
C-103	3	FDC-0050: HDD 134A Addition	Update to plan and profile to incorporate
			added HDD 134A (entry side) along with
			utility updates based on additional pothole
			investigation to facilitate the new HDD
			design.
C-104	2	FDC-0050: HDD 134A Addition	Update to plan and profile to incorporate
			added HDD 134A (exit side) along with utility
			updates based on additional pothole
			investigation to facilitate the new HDD
			design.
C-203	0	FDC-0050: HDD 134A Addition	New sheet to show the LOW expansion
			southeast of the added HDD 134A exit pits
			to facilitate HDD pull back operations.
C-313	0	FDC-0050: HDD 134A Addition	New sheet for added HDD 134A Conduit 1
			plan view.
C-314	0	FDC-0050: HDD 134A Addition	New sheet for added HDD 134A Conduit 1
			profile view.
C-315	0	FDC-0050: HDD 134A Addition	New sheet for added HDD 134A Conduit 2
			plan view.
C-316	0	FDC-0050: HDD 134A Addition	New sheet for added HDD 134A Conduit 2
			profile view.
C-402	3	FDC-0050: HDD 134A Addition	Update to erosion and sediment control
			plan to incorporate added HDD 134A.
C-403	2	FDC-0050: HDD 134A Addition	Update to erosion and sediment control
			plan to incorporate added HDD 134A.

Summary of Affected Easement (s)

• NYC Parks and Recreation Block: 1819, Lot: 203

SHEET LIST TABLE	
SHEET NUMBER	SHEET TITLE
PACKAGE 8: GENE	RAL SHEETS
G-000	COVER SHEET
G-001	SHEET INDEX
G-002	PROJECT WIDE GENERAL NOTES 01
G-003	PACKAGE 8 SPECIFIC GENERAL NOTES
G-004	PACKAGE 8 SPECIFIC GENERAL NOTES
G-005	
G-006	PLAN AND PROFILE KEY MAP & SPLICE LOCATION TABLE
G-007	
G-008	
PACKAGE 8: PLAN	AND PROFILE SHEETS
C-101	STA. 80000+00 TO STA. 80013+00 PLAN AND PROFILE
C-102	STA. 80013+00 TO STA. 80028+00 PLAN AND PROFILE
C-103	STA. 80028+00 TO STA. 80038+00 PLAN AND PROFILE
C-104	STA. 80038+00 TO STA. 80053+00 PLAN AND PROFILE
C-105	STA. 80053+00 TO STA. 80067+00 PLAN AND PROFILE
C-106	STA. 80067+00 TO STA. 80081+00 PLAN AND PROFILE
C-107	STA. 80081+00 TO STA. 80095+00 PLAN AND PROFILE
C-108	STA. 80095+00 TO STA. 80107+90 PLAN AND PROFILE
C-109	RANDALL'S ISLAND NYC PARKS PROPOSED SIDEWALK
C-110	GROUND WATER DISPOSAL PLAN - RANDALL'S ISLAND
PACKAGE 8: ACCE	SS AND CONSTRUCTION STAGING PLANS
C-201	STAGING AND WORK AREA – BRONX
C - 202	STAGING AND WORK AREA - ASTORIA
(C-203	LOW EXTENTS AND PULLBACK AREA - RANDALL'S ISLAND
PACKAGE 8. HDD	TRENCHLESS PLANS
C-301	HDD #134 CROSSING, CONDUIT 1
C-302	HDD #134 CROSSING, CONDUIT 1
C-303	HDD #134 CROSSING, CONDUIT 2
C-304	HDD #134 CROSSING, CONDUIT 2
C-305	HDD #135 CROSSING, CONDUIT 1
C-306	HDD #135 CROSSING, CONDUIT 1
C-307	HDD #135 CROSSING, CONDUIT 1
C-308	HDD #135 CROSSING, CONDUIT 1
C-309	HDD #135 CROSSING, CONDUIT 2
C-310	HDD #135 CROSSING, CONDUIT 2
C-311	HDD #135 CROSSING, CONDUIT 2
C-312	HDD #135 CROSSING CONDULT 2
C-313	HDD #134A CROSSING, CONDUIT 1
∑ C-314	HDD #134A CROSSING, CONDUIT 1 /2
C-315	HDD #134A CROSSING, CONDUIT 2
	HDD #134A CROSSING, CONDUIT 2
PACKAGE 8: EROS	NON AND SEDIMENT CONTROL PLANS
C-400	E&SC KEY SHEET
C-401	STA. 80000+00 TO STA. 80013+00
C-402	STA. 80027+00 TO STA. 80038+00
C-403	STA. 80038+00 TO STA. 80053+50
C-404	STA. 80094+00 TO STA. 80107+90
C-405	RANDALL'S ISLAND NYC PARKS PROPOSED SIDEWALK
PACKAGE 8: MAIN	TENANCE AND PROTECTION OF TRAFFIC PLANS
C-501	WORK ZONE TRAFFIC CONTROL NOTES, LEGEND AND ABBREVIATIONS
C-502	WORK ZONE TRAFFIC CONTROL PLAN 01 - BRONX
C-503	WORK ZONE TRAFFIC CONTROL PLAN 02 - RANDALL'S ISLAND
C-504	WORK ZONE TRAFFIC CONTROL PLAN 02 - RANDALL'S ISLAND PROFILE AND SECTION VIEW
	WORK ZUNE IRAFFIC CONTROL PLAN 03 - RANDALL'S ISLAND BIKE & PEDESTRIAN TRAFFIC CONTROL, OUTSIDE OF RECREATION PERIOD
0.507	WORK ZUNE IRAFFIC CONTROL PLAN US - RANDALLS ISLAND BIKE & PEDESTRIAN TRAFFIC CONTROL, PEAK RECREATION PERIOD
10-201	WURR ZUNE IRAFFIC CUNTRUL PLAN 04 - ASTORIA

PROJECT NO.: 21162

PACKAGE 8: CIV	IL DETAILS: ESC DETAILS
C-601	EROSION AND SEDIMENT CONTROL DETAILS
C-602	EROSION AND SEDIMENT CONTROL DETAILS
C-603	EROSION AND SEDIMENT CONTROL DETAILS
C-604	EROSION AND SEDIMENT CONTROL DETAILS
C-613	WETLAND WORKING SURFACE
PACKAGE 8: CIV	IL DETAILS: CONSTRUCTION AND INSTALLATION DETAILS
C-621	TRENCHING DETAILS
C-622	DETAILS
C-622.1	PROPOSED FIRE HYDRANT RELOCATION
C-622.2	DRAINAGE RELOCATION DETAIL
PACKAGE 8: CIV	IL DETAILS: RESTORATION DETAILS
C-631	SURFACE RESTORATION DETAILS
PACKAGE 8: STR	RUCTURAL DETAILS
S-700	SPLICE VAULT PLAN AND ELEVATION
S-701	SPLICE VAULT SECTION AND DETAILS
S-702	SPLICE VAULT ANCHOR AND EMBED DETAILS
S-703	SPLICE VAULT DETAILS
S-705	STRUCTURAL GENERAL NOTES AND ABBREVIATIONS
S-720	REINFORCING TRAY STRUCTURE DETAILS I
S-721	REINFORCING TRAY STRUCTURE DETAILS II
S-730	TRANSITION VAULT PLAN AND ELEVATION
S-731	TRANSITION VAULT SECTION AND DETAILS
S-732	TRANSITION VAULT ANCHOR AND EMBED DETAILS
S-733	TRANSITION VAULT DETAILS
PACKAGE 8: ELE	CTRICAL DETAILS
C-801	ABOVE GROUND MARKING DETAILS
C-802	TYPICAL VAULT SNAKING DETAILS
C-803	TYPICAL VAULT GROUNDING DETAILS
C-805	TYPICAL TRANSITION VAULT SNAKING DETAILS
C-806	TRANSITION VAULT GROUNDING DETAILS
C-807	SPLICE VAULT AND CABLE MARKING DETAILS
C-812	VAULT CONNECTION DETAILS
PACKAGE 8: COM	MUNICATIONS DETAILS
C-850	TRANSITION VAULT FIBER OPTIC DETAIL
C-852	ENCLOSED VAULT W/ FIBER OPTICS
C-855	FIBER OPTIC SPLICE DIAGRAM
C-856	FIBER OPTIC SLACK ENCLOSURE DETAIL
PACKAGE 8: OTH	IER DETAILS
C-901	TYPICAL UTILITY SEPARATION DETAILS
L	

AFFIXED ON: 10/15/2024	
* THE OF NEW LOOP * THE OF NEW	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

ALTERED ON:

PROJECT NO.: 120174

					(
					ד [
2	10/15/2024	FDC-0050 HDD 134A ADDITION	BL	CV	
1	04/03/2024	NDC-0036: 3RD PARTY UPDATES	MK	CV	
0	07/31/2023	ISSUED FOR CONSTRUCTION SUBMISSION	MK	CV	
No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DRA

В

CHAMPLAIN HUDSON POWER EXPRESS SEGMENTS 13 TO 15 - PACKAGE 8 FRANSITION VAULT 5 TO ASTORIA CONVERTER STATION

SHEET INDEX

RAWN BY: MK DESIGNED BY: MK APPROVED BY: CV SCALE AS SHOWN DATE: 07/31/2023 DRAWING NO.

N/A

PERMIT DRAWING NO.

G-001

1	2		3
ADDITIONAL GENERAL NOTES	NYCDEP NO	<u>TES</u>	
1. CONTRACTOR SHALL OBTAIN TREE WORK PERMIT AS PER NYCDPR TREE PROTECTION PROTOCOL FOR ALL ON OR WITHIN 50 FEET OF A TREE UNDER NEW YORK CITY JURISDICTION.	WORK TO BE PERFORMED 1. THE DETAILED DEVIATION SI) DESIGN SHALL COMPLY WITH NYCDEP STANDARDS AN 1ALL BE APPROVED BY NYCDEP.	ND DETAILS TO THE FULLEST EXTENT POSSIBLE AND ANY
2. ALL EXISTING TREES WHICH ARE WITHIN LIMIT OF WORK AND ARE IMPACTED BY THE PROPOSED WORK SI ACCORDANCE WITH APPLICABLE STANDARDS FROM NYCDOT AND NYCDPR AND THE CERTIFICATE CONDITION	ALL BE REPLACED IN 2. WHERE A CH NS. CROSSING UN DECUMPED AN	PE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR IDER AN EXISTING NYCDEP SEWER, THE SEWER IS TO I	R CONSTRUCTION VIA OPEN-CUT MEANS AND METHODS THAT IS BE REPLACED BETWEEN MANHOLES PER NYCDEP STANDARDS, IF
3. IT IS ASSUMED THAT ALL EXISTING UTILITIES WILL REMAIN IN PLACE AND BE PROTECTED. PROPOSED COI BE DESIGNED TO AVOID EXISTING UTILITY RELOCATIONS.	IDUIT'S ALIGNMENT SHALL BY NYCDEP. FOUNDATION	A ONE-FOOT SIX-INCH (1'-6") MINIMUM VERTICAL CLE AND TOP OF THE CHPE DUCT BANK OR STRUCTURE S	EARANCE BETWEEN THE BOTTOM OF THE NYCDEP SEWER SHALL BE ACHIEVED.
4. ALL EXISTING LIGHT POLES WHICH ARE WITHIN LIMIT OF WORK AND ARE IMPACTED BY THE PROPOSED WITH PRIOR SHUTDOWN PERMISSION FROM AUTHORITY AND STORED OFF-SITE, AND RE-INSTALLED AT THE PROJECT, IN ACCORDANCE WITH APPLICABLE STANDARDS FROM NYCDOT DEPARTMENT OF STREET LIGHTING LIGHT POLES ARE TO REMAIN IN PLACE AND BE PROTECTED. ALL LIGHTING CIRCUITS SHALL MAINTAIN CONNINTERRUPTED POWER TO ALL OTHER LIGHT FIXTURES. STADIUM LIGHT POLES WITHIN THE LOW ARE NO	>RK SHALL BE REMOVED 3. WHERE A CH E CONCLUSION OF THE 3. WHERE A CH IG AND NYCDPR. STADIUM CROSSING AE INTINUITY AND SUPPLY BETWEEN THI I REQUIRED TO BE REMOVED. I REMOVED.	PE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR OVE AN EXISTING NYCDEP SEWER, A ONE-FOOT SIX-I BOTTOM OF THE CHPE DUCT BANK OR STRUCTURE #	R CONSTRUCTION VIA OPEN-CUT MEANS AND METHODS THAT IS NCH (1'-6") MINIMUM VERTICAL CLEARANCE SHALL BE ACHIEVED AND THE TOP OF NYCDEP SEWER STRUCTURE.
5. ALL EXISTING CURBS WHICH ARE WITHIN LIMIT OF WORK AND ARE IMPACTED BY THE PROPOSED WORK S ACCORDANCE WITH APPLICABLE STANDARDS FROM NYCDOT, NYCDPR AND AS PER THE DETAIL SHOWN OF	HALL BE REPLACED IN 4. WHERE A CHI C-631. CROSSING UN CLEARANCE CROSSING UN CLEARANCE CLEARANCE CE THE CHIP	YE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR IDER AN EXISTING NYCDEP DUCTILE IRON PIPE WATER SHALL BE ACHIEVED BETWEEN THE BOTTOM OF THE N'	R CONSTRUCTION VIA OPEN-CUT MEANS AND METHODS THAT IS MAIN, A ONE-FOOT SIX-INCH (1'-6") MINIMUM VERTICAL YCDEP DUCTILE IRON PIPE WATER MAIN STRUCTURE AND THE TOP
6. ALL EXISTING ROAD SIGNS WHICH ARE WITHIN LIMIT OF WORK AND ARE IMPACTED BY THE PROPOSED WO ACCORDANCE WITH THE APPLICABLE STANDARDS FROM NYCDOT AND MUTCD.	RK SHALL BE REPLACED IN 5. WHERE A CH	PE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR	R CONSTRUCTION VIA OPEN-CUT MEANS AND METHODS THAT IS
UTILITY NOTES	BE REPLACE STANDARDS.	WITH A NEW DUCTILE IRON PIPE WATER MAIN IF REQ A ONE-FOOT SIX-INCH (1'-6") MINIMUM VERTICAL CLI TTOM OF THE NYCDEP WATER MAIN SHALL BE ACHIEVE	EARANCE BETWEEN THE TOP OF CHPE DUCT BANK OR STRUCTURE
1. THE SUBSURFACE UTILITY INFORMATION SHOWN HERON IS BASED ON A FIELD INVESTIGATION COMPLETED LOCATORS ON JANUARY 26, 2022 AND BY McVAC IN AUGUST 2022.	BY BLOODHOUND UTILITY OF THE REPL	ACEMENT WATER MAIN SHALL BE THREE-FEET (3'-0")) TO FOUR-FEET $(4'-0'')$.
2. THE SUBSURFACE UTILITY INVESTIGATION WAS PERFORMED IN AREAS OF ANTICIPATED EXCAVATION AS SI REPRESENTATIVES OF MJ ENGINEERING AND LAND SURVEYING, P.C. ADDITIONAL SUBSURFACE UTILITIES M EXCAVATION AREA, WHICH WERE NOT INVESTIGATED.	'ECIFIED BY6. WHERE A CHIAY EXIST BEYOND THEMETHODS WILCLEARANCE I	L BE PARALLEL TO AN EXISTING NYCDEP CAST IRON F 3ETWEEN THE CHPE DUCT BANK OR STRUCTURE AND F	R CONSTRUCTION VIA OPEN-CUT OR TRENCHLESS MEANS AND PIPE WATER MAIN, A TWO-FOOT (2'-0") MINIMUM EDGE-TO-EDGE NYCDEP CAST IRON PIPE WATER MAIN SHALL BE ACHIEVED.
3. SELECT STORM MANHOLES AS WELL AS CATCH BASINS WERE NOT ABLE TO BE INVESTIGATED DUE TO A DEBRIS OBSTRUCTING THE STORM LINES.	LARGE AMOUNT OF 7. WHERE A CH METHODS WIL EDGE-TO-EE	PE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR L BE PARALLEL TO AN EXISTING NYCDEP DUCTILE IRO GE CLEARANCE BETWEEN THE CHPE DUCT BANK OR S	R CONSTRUCTION VIA OPEN-CUT OR TRENCHLESS MEANS AND IN PIPE WATER MAIN, A TWO-FOOT (2'-0") MINIMUM STRUCTURE AND THE NYCDEP DUCTILE IRON PIPE WATER MAIN.
4. THE SUBSURFACE UTILITIES SHOWN HEREON ARE OF QUALITY LEVEL "B" AS DEFINED BY THE AMERICAN ENGINEERS (ASCE) IN THE "STANDARD GUIDELINES FOR THE COLLECTION AND DEPICTION OF EXISTING SU	SOCIETY OF CIVIL BSURFACE UTILITY DATA." 8. WHERE A CH	PE DUCT BANK OR STRUCTURE THAT IS PLANNED FOR	R CONSTRUCTION VIA OPEN-CUT OR TRENCHLESS MEANS AND
5. THE SUBSURFACE UTILITY INVESTIGATION WAS PERFORMED UTILIZING RADIO FREQUENCY (RF) AND GROUN (GPR) METHODOLOGIES. ELECTROMAGNETIC INTERFERENCE AND SUBSURFACE SOIL AND GROUNDWATER CO ABILITY TO IDENTIFY AND TRACE SUBSURFACE UTILITIES. THE SUBSURFACE UTILITIES HEREON REPRESENT WERE IDENTIFIED UTILIZING THE RF AND GPR METHODOLOGIES. THE SUBSURFACE UTILITIES WERE NOT EXC THEIR PRESENCE, DEPTH, OR COMPOSITION.	D PENETRATING RADAR CHPE DUCT E NDITIONS IMPACT THE THE UTILITIES THAT 9. WHERE A CH VAVATED TO CONFIRM UNDER AN E AND AS DIRE	T BE PARALLEL TO AN EXISTING NYCDEP, A TWO-FOO 3ANK OR STRUCTURE AND THE NYCDEP SEWER AND SI PE DUCT BANK OR STRUCTURE IS PLANNED FOR CONS XISTING NYCDEP SEWER SUPPORT ON A DEEP FOUNDA CCTED BY THE ENGINEER, PER NYCDEP STANDARDS.	STRUCTION VIA TRENCHLESS MEANS AND METHODS IS CROSSING TION STRUCTURE IS TO BE REPLACED, IF REQUIRED
6. THE UTILITY DEPTHS SHOWN HEREON WERE DERIVED USING RADIO FREQUENCY (RF) METHODOLOGIES AND PRECISE DEPTHS ARE REQUIRED, EXPOSING SUBSURFACE UTILITIES UTILIZING VACUUM EXCAVATION OR O TECHNIQUES SHOULD BE CONSIDERED.	ARE APPROXIMATE. IF THER NON-DESTRUCTIVE 10. WHERE A CH IS CROSSING WITH A TWEL	PE DUCT BANK OR STRUCTURE IS PLANNED FOR CONS UNDER AN EXISTING NYCDEP CATCH BASIN CONNECTION VE-INCH (12") CLASS 56 DUCTILE IRON PIPE PER NYC	STRUCTION VIA OPEN-CUT OR TRENCHLESS MEANS AND METHODS ON, THE EXISTING CATCH BASIN CONNECTION SHALL BE REPLACED CDEP STANDARDS AND SHALL ACHIEVE A MINIMUM ONE-FOOT
7. DESIGNATED SUBSURFACE UTILITIES WERE SURVEYED UTILIZING CONVENTIONAL SURVEYING TECHNIQUES.	SIX-INCH (1'	-6") VERTICAL CLEARANCE.	
8. FIELD INVESTIGATED UTILITY INFORMATION SUPPLEMENTED BY PROVIDING RECORD UTILITY MAPPING.	11. WHERE A CH IS CROSSING BE REPLACE!	PE DUCT BANK OR STRUCTURE IS PLANNED FOR CONS UNDER AN EXISTING NYCDEP FIRE HYDRANT OR CONN), WITH THE CONNECTION BEING REPLACED WITH A SIX	STRUCTION VIA OPEN-CUT OR TRENCHLESS MEANS AND METHODS IECTION, THE EXISTING HYDRANT, VALVE, AND CONNECTION SHALL (-INCH (6") CLASS 56 DUCTILE IRON PIPE PER NYCDEP
RECORD UTILITY MAP REFERENCES	STANDARDS STRUCTURE.	AND SHALL ACHIEVE A MINIMUM ONE-FOOT SIX-INCH	(1'-6") VERTICAL CLEARANCE FROM THE CHPE DUCT BANK OR
1. "TOPOGRAPHICAL SURVEY OF RANDALL'S AND WARD'S ISLANDS", CONTRACT M-T-104-131, DECEMBER 1) 1994. 12. THE ELEVATION WATER MAIN	ON OF THE EXISTING GRADE MAY NOT BE INCREASED	ABOVE AN EXISTING NYCDEP OWNED GAS MAIN, SEWER MAIN, OR
2. 'RANDALL'S ISLAND IMPROVEMENTS FIELD DEVELOPMENT PROJECT", OCTOBER 5 2006.	WATER MAIN.		
3. 'WARD'S ISLAND INTERCEPTING SEWERS RECORD DRAWING", CONTRACT 3, JUNE 30 1938.	13. NYCDEP SHA (20'-0") OF	L BE NOTIFIED BY THE CONTRACTOR AT LEAST THIRT' ANY NYCDEP WASTEWATER TREATMENT PLANT ELECTR	Y (30) DAYS PRIOR TO ANY PLANNED WORK WITHIN TWENTY-FEET
4. "NEW 20" SUB-AQUEOUS WATER MAIN EXTENSION AND NEW 12" HIGH PRESSURE GAS MAIN FROM THE E RANDALL'S ISLAND", PROJECT HED-568, OCTOBER 3 2014.	RONX TO 14. NYCDEP OWN EDISON MAIN	S THE 12-INCH HIGH DENSITY POLYETHYLENE GAS MA TAINS THIS GAS MAIN NETWORK. THE CONTRACTOR SH	IN DISTRIBUTION NETWORK ON RANDALL'S ISLAND AND CON IALL COORDINATE WITH NYCDEP, NYCDPR, AND CON EDISON FOR
SURVEY NOTES	ANY ANTICIP CONSTRUCTIC HIGH DENSIT	ATED SERVICE INTERRUPTIONS PRIOR TO CONSTRUCTION IN VIA OPEN-CUT OR TRENCHLESS MEANS AND METHO Y POLYETHYLENE DISTRIBUTION CAS MAIN A TWO-EOC	N. WHERE A CHPE DUCT BANK OR STRUCTURE IS PLANNED FOR DDS WILL BE PARALLEL TO AN EXISTING NYCDEP OWNED 12-INCH
1. NORTH IS ORIENTED TO GRID NORTH FROM GPS OBSERVATIONS.	CHPE DUCT /	3ANK OR STRUCTURE AND THE GAS MAIN, A TWO-TOO	ACHIEVED. WHERE A CHPE DUCT BANK OR STRUCTURE IS PLANNED
2. ELEVATIONS BASED ON THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) IS US SURVEY FEET.	OWNED 12-IN CLEADANCE	ICH HIGH DENSITY POLYETHYLENE DISTRIBUTION GAS N	AAIN, A ONE-FOOT AND SIX INCH (1'-6") MINIMUM VERTICAL
3. INFORMATION SHOWN HEREON GENERATED FROM A CONVENTIONAL FIELD SURVEY CONDUCTED BY M.J. EN LAND SURVEYING, P.C. DURING DECEMBER / JANUARY 2022	GINEERING AND 15. DETAILED DE	SIGN DRAWINGS FOR THE PLANNED CHPE FACILITIES W	THE RESPECT TO NYCOEP INFRASTRUCTURE MUST BE SUBMITTED
4. UNITS ARE MEASURED IN U.S. SURVEY FEET.	IO NYCDEP F UNTIL AFTER	OK REVIEW AND APPROVAL PRIOR TO CONSTRUCTION NYCOEP'S APPROVAL HAS BEEN GRANTED AND CONS	TRUCTION PERMIT HAS BEEN ISSUED. ALL NYCDEP OWNED
5. ALL COORDINATES ARE IN NEW YORK STATE PLANE, NAD83, LONG ISLAND, US FOOT.	STRUCTURES BE COORDIN/	THAT ARE REQUIRED TO BE REPLACED OR RELOCATED TED, DESIGNED, AND CONSTRUCTED AT NO COST TO	D DUE TO CONFLICT WITH THE PROPOSED CHPE FACILITIES SHALL THE CITY OF NEW YORK.
EXCAVATION IN THE VICINITY OF CON EDISON FACILITIES	GENERAL C	<u>DN EDISON NOTES</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> 1. SUPPORT OF EXCAVATION NEAR CON EDISION FACILITY SHALL BE DESIGNED MEETING OSHA STANDARDS.	$\langle \rangle$ $\langle \rangle$ 1. Contractor	SHALL REFER/CONFORM TO CON ED SPECIFICATION C	E-SI 1080 FOR SUPPORT OF "OIL-O-STATIC" PIPES.
2. REFERENCE CON EDISON SPECIFICATION EO-8085 FOR BACK FILLING AROUND CON EDISON FACILITIES.	$\langle \rangle \rangle_{2}$ DAMAGE TO	ANY TRANSMISSION PIPE COATING MUST BE REPORTED	TO CON EDISON, CHPE IS RESPONSIBLE FOR ANY REPAIRS TO

- 3. ALL EXCAVATION IN THE VICINITY OF CON EDISON FACILITIES SHALL BE PERFORMED BY HAND USING HAND TOOLS.
- MAINTENANCE AND SUPPORT OF CON EDISON FACILITIES SHALL ADHERE TO THE MOST RECENT VERSION OF 'JOINT BIDDING
- MAINTENANCE AND SUPPORT OF CON EDISON OIL-O-STATIC FACILITIES MUST COMPLY WITH SPECIFICATION CE-DI1080.
- 3. A CON EDISON REPRESENTATIVE MUST BE IN ATTENDANCE DURING ALL EXCAVATION IN PROXIMITY TO CON EDISON FACILITIES.

SPECIFICATIONS.'

<u>/1</u>

Kiewit Engineering and Land Surveying, P.C.

PROJECT NO.: 21162

PROJECT NO.: 120174

ALTERED ON:

EP NOTES

AL CON EDISON NOTES

AGE TO ANY TRANSMISSION PIPE COATING MUST BE REPORTED TO CON EDISON. CHPE IS RESPONSIBLE FOR ANY REPAIRS TO THE COATING IN CONFORMANCE WITH CON EDISON SPECIFICATIONS.

CONTRACTOR SHALL PROVIDE DETAILS, SECTIONS OF PROPOSED SUPPORT OF EXCAVATION TO INCLUDE MAINTENANCE AND PROTECTION OF CON EDISON FACILITIES, AND TO DEMONSTRATE COMPLIANCE WITH ANGLE OF REPOSE REQUIREMENTS CONFORMING TO CON EDISON SPECIFICATION 920-1.

CONTRACTOR SHALL PROVIDE ANTICIPATED STIPULATION COMPLIANCE WITH RESPECT TO LENGTH OF TRENCH OPENINGS FOR SPECIFIC DURATIONS.

ALL PROPOSED MANHOLE LOCATIONS AND EXISTING CON EDISON FACILITIES MUST BE TEST PITTED PRIOR TO CONSTRUCTION TO DEMONSTRATE CLEARANCES.

5. ANY PROPOSED RELOCATIONS OF CON EDISON FACILITIES MUST BE DETAILED AND COORDINATED WITH CON EDISON.

CONTRACTOR SHALL PROVIDE ALL RELEVANT TEST PIT DATA TO CON EDISON FOR REVIEW OF CLEARANCES.

CONTRACTOR SHALL MAINTAIN AND PROTECT ALL CON EDISON AERIAL FACILITIES DURING CONSTRUCTION.

FIXED ON: 10/15/2024							
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.						
TE OF NEW HOA							
S TRADHAR VAL PY] т
		1	10/15/2024	FDC-0050 HDD 134A ADDITION	BL	CV	
105203	SPECIFIC DESCRIPTION OF THE ALTERATION.	0	07/31/2023	ISSUED FOR CONSTRUCTION SUBMISSION	MK	CV	
OFE SSION		No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DR

NYCDPR NOTES

- STANDARDS AND WILL BE SPECIFIED IN THE PERMIT.
- TREE VALUATION METHOD WILL BE REQUIRED.
- AGREEMENT.
- FACILITIES.

AMTRAK NOTES

- ANY INTERRUPTION TO RAILROAD OPERATION.

- DAMAGE.

1. CHPE LLC IS RESPONSIBLE FOR APPLYING FOR AND OBTAINING A NYCOPR CONSTRUCTION PERMIT BEFORE ANY WORK ASSOCIATED WITH THE SITE INVESTIGATION FOR OR THE INSTALLATION OF THE PLANNED CHPE FACILITIES. INCLUDING BUT NOT LIMITED TO SITE PREPARATION AND STAGING, CAN COMMENCE WITHIN RANDALL'S ISLAND PARK. THE PERMIT APPLICATION WILL REQUIRE IDENTIFICATION AND LOCATION OF ALL TREES AND PARK ASSETS WITHIN 50-FEET OF THE TRENCHING AREA, WORK ZONE, ACCESS PATHWAYS OR ROADWAYS, AND STAGING AREAS. A TREE SURVEY PREPARED BY A CERTIFIED ARBORIST WILL BE REQUIRED WITH THE APPLICATION FOR A SEPARATE NYCOPR FORESTRY PERMIT. RESTORATION OF PARK AREAS DISTURBED WILL REQUIRE RESTORATION ACCORDING TO NYCOPR REQUIREMENTS AND

2. IF CHPE OR ITS CONTRACTOR WILL BE PERFORMING WORK ON OR WITHIN 50-FEET OF A TREE UNDER CITY JURISDICTION, A TREE WORK PERMIT FROM NYCDPR WILL BE REQUIRED PRIOR TO THE START OF CONSTRUCTION AND ALL WORK WILL BE PERFORMED IN COMPLIANCE WITH NYCOPR TREE PROTECTION PROTOCOL AS IN EFFECT UPON A TREE WORK PERMIT APPLICATION. ANY TREES THAT ARE ENVISIONED TO BE IN CONFLICT WITH THE CABLE ROUTE SHALL BE BROUGHT TO NYCOPR'S ATTENTION FOR A PRELIMINARY EVALUATION PRIOR TO SUBMISSION OF A TREE WORK PERMIT. IN THE CASE OF TREE REMOVAL, TREE RESTITUTION VALUES SHALL BE DETERMINED AS PER THE NYC

3. NYCDPR ASSETS THAT ARE ADJACENT TO AND IN PROXIMITY WITH THE CHPE ALIGNMENT THAT WILL OR MAY REQUIRE PROTECTION, RESTORATION, OR RECONSTRUCTION SHALL INCLUDE, BUT ARE NOT LIMITED TO: CHAIN LINK FENCE, PARK SIGNAGE, PARK PATHWAY, BLEACHERS, PARK ROADWAY, GRASS LAWN, TREES, LIGHT POLES, BASEBALL FIELD FENCING. BASEBALL FIELD, AND UTILITY LINES. THESE ELEMENTS ARE DEPICTED ON THE 2010 CONSTRUCTION DRAWINGS [RANDALL'S ISLAND IMPROVEMENTS FIELD DEVELOPMENT PROJECT] PROVIDED BY NYCOPR TO CHPE LLC, AND WHICH WILL BE PROVIDED TO THE CONTRACTOR, AND ARE MADE PART OF THIS REVOCABLE CONSENT

4. RESTORATION OF AFFECTED AREAS WILL BE REQUIRED TO BE COMPLETED PER THE 2010 BALLFIELDS AND IRRIGATION PLAN SET DEPICTING THE PARK PATHWAYS AND NEARBY PARK AMENITIES. THE RESTORATION REQUIREMENTS WILL BE DETERMINED UPON APPLICATION TO NYCOPR FOR THE CONSTRUCTION PERMIT ASSOCIATED WITH PLANNED CHPE

ALL WORK ON OR ADJACENT RAILROAD PROPERTY MUST COMPLY WITH AMTRAK ENGINEERING PRACTICES EP3014 -SAFETY AND PROTECTION OF RAILROAD TRAFFIC AND PROPERTY.

DESIGN AND CONSTRUCTION MUST COMPLY WITH AMTRAK ENGINEERING PRACTICES EP3005 - PIPELINE OCCUPANCY. ANY VARIANCE REQUIRES AMTRAK APPROVAL. PRIOR TO CONSTRUCTION OPERATIONS, CONTRACTOR MUST SUBMIT, AT A MINIMUM, THE FOLLOWING TO AMTRAK FOR REVIEW AND APPROVAL: CONSTRUCTION PROCEDURE MEANS AND METHODS, SCHEDULE, DEWATERING SYSTEM (IF ANY), AND CALCULATIONS, AS APPLICABLE. ALL CALCULATIONS MUST BE SIGNED AND STAMPED/SEALED BY A LICENSED ENGINEERING REGISTERED IN THE STATE.

ALL UNDERGROUND UTILITIES, CABLE, AND FACILITIES MUST BE LOCATED AND PROTECTED BEFORE ANY EXCAVATING, DRILLING, BORING/DIRECTIONAL DRILLING, GROUND PENETRATING ACTIVITIES, OR CONSTRUCTION TAKES PLACE. THIS INCLUDES RAILROAD AND COMMERCIAL UTILITIES, CABLES, DUCT LINES, AND FACILITIES. THESE ACTIVITIES WILL NOT BE PERFORMED IN CLOSE PROXIMITY TO THE RAILROAD DUCT LINES UNLESS MONITORED BY ON-SITE AMTRAK COMMUNICATIONS AND SIGNAL (C&S) DEPARTMENT PERSONNEL. HAND DIGGING MAY BE REQUIRED, AS DIRECTED BY AMTRAK THROUGH THE ON-SITE AMTRAK C&S SUPPORT PERSONNEL. AMTRAK MAINTAINS THE RIGHT TO ACCESS ALL EXISTING CABLES AND CONDUITS THROUGHOUT CONSTRUCTION. AMTRAK ALSO RESERVES THE RIGHT TO UPGRADE AND INSTALL NEW CABLES AND CONDUITS IN THE AFFECTED AREA. THE "ONE-CALL" PROCESS MUST BE FOLLOWED. BE AWARE THAT AMTRAK IS NOT PART OF THE ONE-CALL PROCESS; CONTACT AMTRAK ENGINEERING TO HAVE ALL RAILROAD UNDERGROUND UTILITIES AND ASSETS LOCATED. IF REQUESTED BY AMTRAK, EXISTING DEPTHS OF UTILITIES BEING CROSSED MUST BE VERIFIED THROUGH TEST PITS PERFORMED BY THE CONTRACTOR AS DIRECTED BY AND UNDER THE DIRECT SUPERVISION OF AMTRAK C&S SUPPORT PERSONNEL. PRECAUTIONS MUST BE TAKEN TO PREVENT

ANY WORK (OR EQUIPMENT BEING STAGED ONSITE DURING CONSTRUCTION) PERFORMED AT OR NEAR A RAILROAD CROSSING MUST NOT OBSTRUCT THE VIEW OF FLASHING LIGHT UNITS OR GATES TO ONCOMING TRAFFIC.

PRIOR TO ENTERING AMTRAK'S PROPERTY FOR ANY WORK, THE CONTRACTOR MUST EXECUTE AMTRAK'S STANDARD TEMPORARY PERMIT TO ENTER UPON PROPERTY (PTE). THE FULLY EXECUTED PTE, WRITTEN NOTICE TO PROCEED FROM AMTRAK THAT ALL REQUIREMENTS OF THE PTE HAVE BEEN MET AND PROOF OF SAFETY TRAINING MUST, AT ALL TIMES, BE FURNISHED BY THE CONTRACTOR AT THE PROJECT SITE.

ALL PERSONS THAT ARE ON OR ADJACENT TO THE RAILROAD PROPERTY MUST SUCCESSFULLY COMPLETE THE CONTRACTOR ORIENTATION TRAINING. ALL CONTRACTORS MUST CARRY THEIR "AMTRAK CONTRACTOR ROADWAY WORKER PROTECTION" CARD WITH THEM AT ALL TIMES WHILE ON OR ADJACENT TO RAILROAD PROPERTY.

ANY DEBRIS OR DAMAGE RESULTING FROM WORK SHALL BE IMMEDIATELY REPORTED TO THE RAILROAD. RAILROAD SHALL BE REPAIRED BY RAILROAD FORCES AT PROJECT EXPENSE.

ELECTROMAGNETIC INTERFERENCE (EMI) CAUSED BY HIGH VOLTAGE TRANSMISSION LINES CAN HAVE AN IMPACT ON BURIED PIPELINES AND COMMUNICATION CABLE. EMI CAN HAVE AN IMPACT ON RAILROAD TRACK CIRCUITS, SIGNAL CIRCUITS AND FREQUENCIES ASSOCIATED WITH APPROACH OVERLAY AND ISLAND CIRCUITS FOR GRADE CROSSING EQUIPMENT. THE TRANSMISSION OWNER IS RESPONSIBLE FOR THE ELECTROMAGNETIC COMPATIBILITY BETWEEN THE TRANSMISSION LINES INSTALLED AND THE AMTRAK C&S SYSTEM TO MITIGATE THE RISK OF UNINTENTIONAL GENERATION. PROPAGATION AND RECEPTION OF ELECTROMAGNETIC WAVES THAT CAN CAUSE EMI OR EVEN PHYSICAL

SHOULD EMI BE FOUND AT THIS LOCATION, THE TRANSMISSION OWNER MUST CONDUCT APPROPRIATE EMI/EMF STUDIES AND PROVIDE REMEDIES TO CORRECT ANY INDUCTIVE INTERFERENCE WITH RAILROAD FACILITIES AT OWNER'S EXPENSE.

CHAMPLAIN HUDSON POWER EXPRESS SEGMENTS 13 TO 15 - PACKAGE 8 FRANSITION VAULT 5 TO ASTORIA CONVERTER STATION

PACKAGE 8 SPECIFIC GENERAL NOTES

AS SHOWN RAWN BY: MK DESIGNED BY: MK APPROVED BY: CV DATE: 07/31/2023

PERMIT DRAWING NO.

N/A

DRAWING NO.

G-003

<u>NOTES:</u>

1. CONTRACTOR SHALL RESTORE ALL AFFECTED ASPHALT AND GREEN AREAS TO ORIGINAL CONDITION TO THE SATISFACTION OF NYC PARKS.

2. ALL WORK SHALL BE CONTAINED WITHIN LOW SHOWN.

SPLIT TRENCH SECTION - (ROADWAY (SEE SHEET C-621, DETAIL 3B) 42" DUCTBANK WDTH, 28" CONDUIT & TO & TR SECTION (160 K.sm/W)	TRENCH SECTION - ROADWAY (SEE SHEET C-621, DETAIL 3A) 42" DUCTBANK WIDTH, 28" CONDUIT € TO € TR SECTION (160 K.cm/W)	APPROXI.
126" INTERCEPTING SEWER LINE (APPROX. 122' BELOW GRADE) 6" SEWER LINE DEPTH ASSUMED 36" STORM LINE APPROX 3.8' DEPTH 12" WATER LINE APPROX 2.5' DEPTH 30" STORM LINE APPROX 2.5' DEPTH 30" STORM LINE APPROX 2.5' DEPTH R: 200.0 R: 200.0 R: 200.0 R: 200.0 R: 200.0 Image: State of the state of	ELECTRIC LINE SIZE, T.O.P. ELEV=9.5± TO BE RELOCATED ELECTRIC LINE SIZE, T.O.P. ELEV=7.5± TO BE RELOCATED SPLICE VAULT 264 64'-6"x13' MANHOLE ELEV: 11.2 WATER LINE T.O.P ELEV=7.4± R: 200.0 R: 200.0 R: 200.0 EL. 2.5' EXISTING TELEPHO SIZE AND DEP TO BE CUT AND CAPPED AS NEEDED DIRECTION OF CABLE PULL (SEE SHEET C-621, DETAIL 3) 24" RCP STORM SI APPROX 6.0" DL	12" WATER LINE, APPROX. 2.8' DEF 12" HIGH PRESSURE HDPE GAS LINE 2" ABANDONED GAS LINE, APPRO 4" SEWER LINE APPROX. 3.1' DE 8" ABANDONED GAS LINE, APPRO 16" ELECTH R: 75.0 4" WATER NE ED INE EPTH LINE EPTH LINE HDD 134A
80031+00 80032+00 80033+00 80033+00 STA. 80028+00 TO STA. 8003 SCALE: N: 1 - 50 V: 1 -	$\frac{59+00 \text{ PROFILE}}{59+00 \text{ PROFILE}}$	<u>80036400</u> 8003

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS TH
ARE ACTING UNDER THE DIRECTION OF A LICENSED
PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITE
OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF
ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL
ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAF
ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUM
AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED B
THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND
SPECIFIC DESCRIPTION OF THE ALTERATION.

_						
						(
						–
	3	1015/2024	FDC-0050: HDD 134A ADDITION	BL	CV	
	2	06/28/2024	FDC-0052: SV264 RELOCATION	MK	CV	
	1	04/03/2024	NDC-0036: PROFILE REVISIONS & 3RD PARTY UPDATES	MK	CV	
	0	07/31/2023	ISSUED FOR CONSTRUCTION SUBMISSION	MK	CV	
	No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DRA
-	2 1 0 No.	06/28/2024 04/03/2024 07/31/2023 DATE	FDC-0052: SV264 RELOCATION NDC-0036: PROFILE REVISIONS & 3RD PARTY UPDATES ISSUED FOR CONSTRUCTION SUBMISSION SUBMITTAL / REVISION DESCRIPTION		MK MK MK DB	MKCVMKCVMKCVDBAPP

LOW EXTENTS AND PULLBACK AREA – RANDALL'S ISLAND SCALE: 1" = 100'

AFFIXED ON: 10/15/2024

					Т
0	10/15/2024	FDC-0050: ISSUED FOR CONSTRUCTION SUBMISSION	BL	CV	
No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DR

0	100	200
	Scale in feet	

CHAMPLAIN HUDSON POWER EXPRESS SEGMENTS 13 TO 15 - PACKAGE 8 TRANSITION VAULT 5 TO ASTORIA CONVERTER STATION LOW EXTENTS AND PULLBACK AREA - RANDALL'S ISLAND

PERMIT DRAWING NO.

N/A

DRAWING NO.

C-203

AS SHOWN RAWN BY: BL DESIGNED BY: MK APPROVED BY: CV SCALE DATE: 10/01/2024

B

FIXED ON:	10/15/2024								
thur C	NEW LOPT	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE. THE DATE OF SUCH ALTERATION, AND A	-						-
87	450 4	SPECIFIC DESCRIPTION OF THE ALTERATION.	-	0	10/15/2024	FDC-0050: ISSUED FOR CONSTRUCTION SUBMISSION	MCS	JEO	
ROFES	SIONAL			No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DF

				SCALE
XAWN BY:	JDL	DESIGNED BY: MCS	APPROVED BY: JEO	DATE: 07/31/202

PLAN VIEW - HDD 134A, CONDUIT 1

C-313

DRAWING NO.

PROJECT NO.: 066076

Drawing Copyright © 2024

III Winners Circle, PO Box 5269

Albany, NY 12205-0269 518.453.4500 - www.chacompanies.com

20 -

10 ·

PROJECT NO.: 21162

ALTERED ON:

						EXISTING E SIZE AND DEPTH A	ELECTRIC ASSUMED –					
				EXIS	TING ELECTRIC							Legend
				SIZE AND DE	PTH ASSUMED						ASPHALT	Asphalt
				EΧ	KISTING FIBER	BORING SV-2	65				Bedrock	Bedrock
				SIZE AND DEP		ELEVATION: 9.0					Boulder	Boulder
			3	6" EXISTING ELECTRIC I	DUCT BANK -						СН	Fat CLAY
				BOTTOM APPROX. EI	LEV. = 5.2'		PROPOSED	15,600 SF WORKZONE	00		CH-MH	SILTY Fat CLAY
	EVISTING STORM		EXIST						20			Lean CLAY
D SIZE	E AND DEPTH ASSUMED		SIZE AND DEF	PTH ASSUMED				11°				
		BORIN	G TR330.0-2.3						- 15		Fill	Fill
+	<u> </u>		VATION: 10.00'	_	─ [╹] ─┼┝┼┥┝ _╪			ELEVATION: 10.30'		JE JE	GC	CLAYEY GRAVEL
								0-0-0	- 10		GC-GM	SILTY CLAYEY GRAVEL
	EXISTIN	GRADE						<u>21</u> -20-9-			GM	SILTY GRAVEL
Ô 🔒								8-8-14	- 5	2005	GP	Poorly Graded GRAVEL
	l l					.H 3.9		100 🗸			GP-GC	Poorly Graded Gravel with CLAY
EXISTING WATER						R 9 3-4-0		6-13-6	- 0		GP-GM	Poorly Graded GRAVEL with SILT
AND DEPTH ASSUMED						2-2-6-4			0		GW	Well Graded GRAVEL
					4	1-3-2-1		5'X10'X5'			GW-GC	Well Graded GRAVEL with CLAY
						38-50-10-6		19-21-50 EXIT PIT	5		GW-GM	Well Graded GRAVEL with SILT
					PVT	2-2-2-2					Limestone	Limestone
				1.0		0-0-6-1		56%///0%	-10		MH	Elastic SILT
	TO HUPE UR 9 IPS				· //	6-2-7-3		30%/40%			ML	SILT
									15		DH	ORGANIC Fat CLAY
			DHT			1-50/2"		19-30	-15	[]]	۵L	ORGANIC Lean CLAY
						1 30/2	SHC				OL/OH	DRGANIC SDIL
	HORIZONTAL CURVE			PVC				14-7-15	-20		PT	PEAT
	R=600', ARC L=347.7'		56.8'			2-3-2-3					Rock	Rock
									25	······	Sandstone	Sandstone
	510.8'					0-0-3-2		12%/10%		///	SC	CLAYEY SAND
									-30		SC-SM	SILT, CLAYEY SAND
						2-3-3-2					SHALE	Shale
									75		SILTSTONE	Siltstone
											SM	SILIY SAND
										7.	25 25	Poorly Graded SAND with CLAY
00 4	+00 5+00	6+00	7-	+00	8+'00	9+(00	10+00			SP-SU	Poorly Graded SAND with SILT
											SH - 3M	Vell proded SAND
												Well Graded SAND with CLAY
											SW-SM	Well Graded SAND with SILT
											Topsoil	
											USGS 601	Gravel or Conglomerate 1
			NOTE:								USGS 654	Subgraywacke
			T) THE EX ASSUME	ISTING GEOTECHNICAL L	JATA AND GEUTE IS DRAWING ARF	CONSISTENT WITH					USGS 670	Interbedded Sandstone and Shale
			FEASIBI	LITY OF SUCCESSFULLY	COMPLETING TH	IE BORE.					USGS 702	Quartzite
			ADDITIO	NAL GEOTECHNICAL AN	D SUBSURFACE [DATA WILL BE					USGS 705	Schist
				LU. THIS DRAWING ONI	LY KEPRESENTS	THE ANALYSIS					USGS 705	Schist
			INTERIM	AND PLANNING PURPO	DSES, DO NOT US	SE THIS DRAWING		BORING LOG STRIP LEG	FND		USGS 708	Gneiss
			FOR SU	BSURFACE CONSTRUCT	ION ACTIVITIES. A	A MORE DETAILED		B101			USGS 708	Gneiss
			GEOPHY BE AVA	SICAL EXPLORATION AN	ND ANALYSIS OF	THIS AREA WILL		(77)			USGS 718	Granite 1
			2) THE US	E OF CONDUCTOR CAS	INGS AT BOTH F	NDS OF THF BORF	Blow Cou	Ints per 6" = 10-10-10			Void	Void
	PROPOSED HDD 134A F	PROFILE	IS RECO	DMMENDED TO GET THR	OUGH THE FILL L	LAYER AND	Recovery	%/RQD % = 95%/90% 11000ps	=UCS		Water	Water
	CONDUIT 1			E THE POTENTIAL RELE	ASE OF THE DRI	ILLING FLUID.		[]			Weathered Rock	: Undefined
			3) THE FIN AND CO	IAL AS-BUILT VERTICAL INDUIT 2 SHALL NOT B	L SEPARATION BE RF LESS THAN 4	ETWEEN CONDULT T		2D strip logs shown at 10x exagge	ration	T	Water Table	Water Table during drilling
			NKT CO	OKBOOK.				3D strip logs have no exaggerat	ion		Jelayed Water Table	Water Table after drilling
XED ON: 10/15/2024												
OF NEW							CHAI			VEK E	XPKE	<u> こ て て て て て て て て て て て て て て て て て て </u>
TE O'DOAL ON IT IS	A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY						1	SEGMENTS 13 T	Ο 15 - ΡΔ		= 8	C 24 A
PROFI	ARE AGING UNDER THE DIRECTION OF A LICENSED										 	
H. S. D. Longell ITEM	BEARING THE STAMP OF A LICENSED PROFESSIONAL IS DEED THE STAMP OF A LICENSED PROFESSIONAL IS							HUN VAULT 5 TU AS			ERJIAI	
	TECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT							PROFILE VIEW - HI	DD 134A,	CONDU	JIT 1	DRAWING NO.
ANL	R SIGNATURE, THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION											
087450	C. LOW O DECOMPTION OF THE REFERENCE.	() 10/15/2024 FDC-005	50: ISSUED FOR CONSTRU	CTION SUBMISSION	N MCS JEO						C-314
N TORAL ONAL										I SCALE		

BRONX KILL SWING BRIDGE

920.8', RHO=110(K*CM)/W

			(
] т
SUED FOR CONSTRUCTION SUBMISSION	MCS	JEO	
/ REVISION DESCRIPTION	DB	APP	DRA
	SUED FOR CONSTRUCTION SUBMISSION	SUED FOR CONSTRUCTION SUBMISSION MCS / REVISION DESCRIPTION DB	SUED FOR CONSTRUCTION SUBMISSION MCS JEO / REVISION DESCRIPTION DB APP

				SCALE
RAWN BY:	JDL	DESIGNED BY: MCS	APPROVED BY: JEO	DATE: 07/31/2023

В

PROFES	SIONAL		No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	D
UT CEL	STOR & G	SPECIFIC DESCRIPTION OF THE ALTERATION.	0	10/15/2024	FDC-0050: ISSUED FOR CONSTRUCTION SUBMISSION	MCS	JEO	-
11.14	JEI J	ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE THE DATE OF SUCH ALTERATION AND A						-
AHUNGA	Imel	ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE						-
		ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT						1.
ATE OF	NEW	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY						-
FIXED ON:	10/15/2024							-

SEGMENTS 13 TO 15 - PACKAGE 8 TRANSITION VAULT 5 TO ASTORIA CONVERTER STATION PLAN VIEW - HDD 134A, CONDUIT 2

C-315

DRAWING NO.

C-315

ALTERED ON:

ED GRADE (OL	UTSIDE SURFACE LIMITS)		36"	SIZE AND ' EXISTING ELECTI BOTTOM APPRO:	EXISTING FIBER DEPTH ASSUMED RIC DUCT BANK X. ELEV. = 5.4'	-
	EXISTING STORM SIZE AND DEPTH ASSUMED	BORING TR33	EXISTIN SIZE AND DEPT 0.0-2.3- : 10.00'	G ELECTRIC		
y 0		EXISTING GRADE				
EXISTING WA DEPTH ASSU				F.ZC ARC L=11	7.12 PL	$9^{3.3} - 4^{-6} - 6$ $9^{-2-10-24} - 2^{-2-6-4} - 1^{-3-2-1} - 3^{-3-50-10-6} - 6^{-7} - 2^{-2-2-2} - 2^{-2-2-2} - 2^{-0-0-6-1} - 6^{-7} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2} - 2^{-2-2-2} - 2^{-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2} - 2^{-2-2-2-2-2} - 2^{-2-2-2-2-2} - 2^{-2-2-2-2-2} - 2^{-2-2-2-2-2-2} - 2^{-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-$
РНС			PHT	5.	,o.	6-2-7-3
	HORIZONTAL CURVE R=610', ARC L=353.5'			PVC		2-3-2-3
▶ ◄	517.2'			-		0-0-3-2
						2-3-3-2
00	4+00 5+00	6+00	7+00		8+'00	9+'00
			NOTE: 1) THE EXISTIN ASSUMPTION FEASIBILITY ADDITIONAL OBTAINED. AND DATA INTERIM ANE FOR SUBSUF GEOPHYSICA BE AVAILABE 2) THE USE OF	G GEOTECHNICAL IS SUPPORTING T OF SUCCESSFULL GEOTECHNICAL A THIS DRAWING OI AVAILABLE WHEN) PLANNING PURF RFACE CONSTRUC L EXPLORATION / LE IN LATE 2024 CONDUCTOR CA	DATA AND GEOTECHNI HIS DRAWING ARE CON Y COMPLETING THE BO ND SUBSURFACE DATA NLY REPRESENTS THE SEALED. THIS DRAWING POSES, DO NOT USE TH TION ACTIVITIES. A MOI AND ANALYSIS OF THIS SINGS AT BOTH ENDS	CAL SISTENT WITH RE. WILL BE ANALYSIS IS FOR IS DRAWING RE DETAILED AREA WILL

PROPOSED HDD 134A PROFILE CONDUIT 2

926.6', RHO=110(K*CM)/W

IS RECOMMENDED TO GET THROUGH THE FILL LAYER AND MITIGATE THE POTENTIAL RELEASE OF THE DRILLING FLUID. 3) THE FINAL AS-BUILT VERTICAL SEPARATION BETWEEN CONDUIT 1 AND CONDUIT 2 SHALL NOT BE LESS THAN 4 FEET BASED ON NKT COOKBOOK.

BRONX KILL SWING BRIDGE

EXISTING ELECTRIC SIZE AND DEPTH ASSUMED

EXISTING ELECTRIC

BORING SV-265

SIZE AND DEPTH ASSUMED-

0	10/15/2024		MCS		CHAMP S TRANSITIO PR	LAIN EGME N VAU OFILE
U	10/15/2024	FUC-0050: ISSUED FOR CONSTRUCTION SUBMISSION	MCS	JEO		.
No.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DRAWN BY: JDL	DESIGNE

AFFIXED ON: 10/15/2024

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT

0

				SCALE
AWN BY:	JDL	DESIGNED BY: MCS	APPROVED BY: JEO	DATE: 07/31/2023

	·· · ·····			
		USGS 670	Interbed	ded Sandstone and Shale
		USGS 702		Quartzite
	<u>, , , , , , , , , , , , , , , , , , , </u>	USGS 705		Schist
		USGS 705		Schist
BORING LOG STRIP LEGEND	T C F	USGS 708		Gneiss
B101		USGS 708		Gneiss
		USGS 718		Granite 1
Blow Counts per 6" = $10-10-10$		Void		Void
Recovery %/RQD % = 95%/90% - 11000psi=UCS		Water		Water
		Weathered Rock		Undefined
2D strip logs shown at 10x exaggeration	T	Water Table	Wate	r Table during drilling
3D strip logs have no exaggeration	\Box	Delayed Water Table	Wate	r Table after drilling
		VDDEC	` C	PERMIT DRAWING NO.
		AFREC	5	
SEGMENTS 13 TO 15 - PAC	CKAGE	E 8		C-316
RANSITION VALUET 5 TO ASTORIA CON		FR STAT		0-310
PROFILE VIEW - HDD 134A, C	ONDU	JIT 2	-	DRAWING NO.
				C-316
	SCALE			

		Legend
	ASPHALT	Asphalt
	Bedrock	Bedrock
• • • • • •	Boulder	Boulder
	СН	Fat CLAY
	СН-МН	SILTY Fat CLAY
	CL	Lean CLAY
	CL-ML	SILTY CLAY
	CONCRETE	Concrete
$\left \right\rangle$	Fill	Fill
F3SF	GC	CLAYEY GRAVEL
2367	GC-GM	SILTY CLAYEY GRAVEL
POOP	GM	SILTY GRAVEL
2007	GP	Poorly Graded GRAVEL
1007	GP-GC	Poorly Graded Gravel with CLAY
100	GP-GM	Poorly Graded GRAVEL with SILT
	GW	Well Graded GRAVEL
	GW-GC	Well Graded GRAVEL with CLAY
525	GW-GM	Well Graded GRAVEL with SILT
	Limestone	Limestone
	МН	Elastic SILT
	ML	SILT
	ОН	DRGANIC Fat CLAY
555	OL	ORGANIC Lean CLAY
	OL/OH	DRGANIC SDIL
· · · · ·	PT	PEAT
	Rock	Rock
<u> </u>	Sandstone	Sandstone
1.1.1	SC	CLAYEY SAND
	SC-SM	SILT, CLAYEY SAND
	SHALE	Shale
$\overline{\mathbf{X}}$	SILTSTONE	Siltstone
	SM	SILTY SAND
	SP	Poorly Graded SAND
/	SP-SC	Poorly Graded SAND with CLAY
	SP-SM	Poorly Graded SAND with SILT
	SW	Well graded SAND
7-,	SW-SC	Well Graded SAND with CLAY
	SW-SM	Well Graded SAND with SILT
	Topsoil	Topsoil
$\overline{()}$	USGS 601	Gravel or Conglomerate 1
	USGS 654	Subgraywacke
	USGS 670	Interbedded Sandstone and Shale
	USGS 702	Quartzite
<u> </u>	USGS 705	Schist
	USGS 705	Schist
1 7 2	USGS 708	Gneiss
	USGS 708	Gneiss
	USGS 718	Granite 1
	Void	Void
	Water	Water
	Weathered Rock	Undefined
T	Water Table	Water Table during drilling

B

PERMIT DRAWING NO. CHAMPLAIN HUDSON POWER EXPRESS SEGMENTS 13 TO 15 - PACKAGE 8 N/A TRANSITION VAULT 5 TO ASTORIA CONVERTER STATION DRAWING NO. <u>/3</u> **C-402**

AS SHOWN
 DB
 APP
 DRAWN BY:
 MK
 DESIGNED BY:
 SCALE

 DB
 DRAWN BY:
 MK
 DESIGNED BY:
 SCALE
 DATE: 07/31/2023

В

PROJECT NO.: 21162

PROJECT NO.: 120174

ALTERED ON:

ΙAF

FIXED ON: 10/15/2024								
STATE OF NEW LOOP STATE OF NEW LOOP STATE OF NEW LOOP STATE OF NEW LOOP	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR TO ALTER AN ITEM IN ANY WAY. IF AN ITEM BEARING THE STAMP OF A LICENSED PROFESSIONAL IS ALTERED, THE ALTERING ENGINEER, ARCHITECT, LANDSCAPE ARCHITECT OR LAND SURVEYOR SHALL STAMP THE DOCUMENT AND INCLUDE THE NOTATION "ALTERED BY" FOLLOWED BY THEIR SIGNATURE, THE DATE OF SUCH ALTERATION, AND A CONCINCICO DESCRIPTION OF A LICENSTRA							
		2	2 1	10/15/2024	FDC-0050: HDD 134A ADDITION	BL	BD	
		1	1 C	04/03/2024	NDC-0036: HDD135 REVISIONS & 3RD PARTY UPDATES	MK	BD	
105756 UN	SPECIFIC DESCRIPTION OF THE ALTERATION.	() (07/31/2023	ISSUED FOR CONSTRUCTION SUBMISSION	MK	BD	
TOFESSION		Nc	D.	DATE	SUBMITTAL / REVISION DESCRIPTION	DB	APP	DF

PERMIT DRAWING NO. CHAMPLAIN HUDSON POWER EXPRESS SEGMENTS 13 TO 15 - PACKAGE 8 N/A TRANSITION VAULT 5 TO ASTORIA CONVERTER STATION (STA. 80039+00 TO STA. 80053+50) DRAWING NO. <u>/2</u>

AS SHOWN DRAWN BY: MK DESIGNED BY: SC APPROVED BY: BD SCALE DATE: 07/31/2023

B

CHPE LLC 623 Fifth Avenue, 20th Floor New York, NY 10022

Segment 13,14,15 (Package 8) EM&CP Appendix E Updates

APPENDIX E. PACKAGE 8 - SEGMENT 13 DEVIATION ZONE EXCURSIONS

CHPE EM&CP

New York County, New York

Deviation Zone Analysis

side ts East Harlem Yorkville Astoria East

Feet

180

CHPE LLC 623 Fifth Avenue, 20th Floor New York, NY 10022

Segment 13,14,15 (Package 8) EM&CP Appendix J HDD Design Summary Report Changes

HDD Report Revision Memo for HDD Design Change

HDD #: <u>134A</u>

Date: 10/15/24

Design Change Number(s): FDC-0050

Revision Description:

HDD 134A as an added feature to CHPE Section 8, Engineered by CHA.

For the typical report sections indicated below, information and analysis regarding HDD 134A provided in this in this memo:

Section	Section Title	Refer to IFC	Revised Herein	Notes:
		Submittal		
1.0	Introduction	NA	Χ	
2.0	Project Description	NA	Χ	
3.0	Background	NA	Χ	
4.0	Site Conditions	NA	Χ	
5.0	Design Summary	NA	Χ	
6.0	Construction	NA	Χ	
	Considerations			
7.0	References	NA	Χ	
	Work Zones			Note Included
	Overview Map	NA	X	
	HDD Geotechnical	NA	Χ	
	Data Reports			
	Calculations	NA	Х	BoreAid Report
	HDD Drawings	NA	Χ	
	Proposed Soil	NA	Χ	
	Properties			

Design Summary Report

Section	Section Title	Refer to IFC Submittal	Revised Herein	Notes:
1.0	Introduction	NA	X	
2.0	Description of HDD Process	NA	X	
3.0	Organization and Staffing Responsibilities	NA	X	
4.0	Fluid Release Minimization Measures	NA	X	
5.0	Inadvertent Release Monitoring and Notifications	NA	X	
6.0	Inadvertent Release Response (Upload and Road Areas)	NA	X	
7.0	Inadvertent Release Response (Wetland, railroad, and open water body areas)	NA	X	
8.0	Drill Hole Abandonment Plan	NA	Х	
9.0	Crossing Specific Discussion	NA	X	
	Calculation Package	NA	X	BoreAid Report
	HDD Design Drawings	NA	X	

Inadvertent Release Contingency Plan

Overview Map HDD 134A

Table of Contents

- I. Design Summary Report
- II. Inadvertent Release Contingency
- III. Supplements:
 - a. HDD Geotechnical Data Report for HDD 134A
 - b. BoreAid HDD Simulation Output for HDD 134A
 - c. HDD Design Drawings for HDD 134A

I. DESIGN SUMMARY REPORT

HDD Design Summary Report Crossing HDD 134A in Segments 13 to 15 – Package 8

Harlem River Yard to Astoria New York County, New York

CHA Project Number: 066076

Prepared for: Transmission Developers Inc. 1301 Avenue of the Americas, 26th Floor New York, NY 10019

> Prepared by: CHA Consulting, Inc. III Winners Circle Albany, New York 12205 (518) 453-4500

> > October 2024

THE ENGINEERING SUPPORTING THIS REPORT SUGGESTS ADDITIONAL GEOTECHNICAL AND SUBSURFACE DATA WOULD BE BENEFICIAL TO HDD#134A, AND ONLY REPRESENTS THE ANALYSIS AVAILABLE WHEN SEALED. DO NOT USE THIS REPORT RELATIVE TO HDD#134A FOR SUBSURFACE CONSTRUCTION ACTIVITIES.

TABLE OF CONTENTS

1.0	Intro 1.1	ODUCTION Purpose	1
3.0	BACH	KGROUND	1
4.0	SITE	CONDITIONS	2
		4.1.1 Project Datum and Topography	2
		4.1.2 Geotechnical Data	2
5.0	DESI	GN SUMMARY	3
	5.1	Geometry and Layout	4
	5.2	Subsurface Model Development	5
		5.2.1 BoreAid Analysis	6
		5.2.2 Inadvertent Return and Hydro-fracture Analysis	6
	5.3	Limitations	7
6.0	CONS	STRUCTION CONSIDERATIONS	9
	6.1	Risk Awareness and Assessment	9
	6.2	Site Analysis	9
	6.3	Erosion Control	9
	6.4	Surveillance and Monitoring	9
7.0	Refe	RENCES	10

1.0 INTRODUCTION

1.1 PURPOSE

The Champlain Hudson Power Express (CHPE) project consists of installing a pair of HVDC electrical transmission cables with an associated telecommunications line from Canada to New York City. The portion of the work addressed herein is located in the upland portion of the route from the south end of Lake Champlain to New York City along the uplands of the Hudson River Valley. This Design Summary Report addresses the design for the HDD 134A Package 8.

The purposes of this Design Summary Report are to provide the following:

- Review of the existing geological, hydrogeological, and geotechnical conditions for HDD 134A.
- Provide a descriptive narrative of the HDD Crossings in support of the attached design drawings and technical specifications.
- Present stress and inadvertent release analyses that support the proposed designs.
- Evaluate construction considerations including inadvertent return mitigation.

2.0 PROJECT DESCRIPTION

The HDD crossing addressed in this report are located as shown in Table 1 below:

HDD #	Start Station	End Station	HDD Length, ft	Obstruction Crossed
134A	80035+62	80044+83	920	Bridges, Utilities, Public
				Space

 Table 1: HDD Locations, Lengths, and Description

3.0 BACKGROUND

The underground construction of two HVDC electrical transmission cables is proposed to be housed in individual 10-inch-diameter DR 9 HDPE conduits spaced a distance dependent on depth and soil Thermal Resistivity (TR) values provided by NKT and as shown on drawing plans. A third, 3-inch-diameter DR 9 conduit will be bundled with one of the 10-inch diameter conduits for a telecommunications line. HDD is a widely used trenchless construction method to install conduits with limited disturbance to the ground around the bore alignment, minimal ground surface impacts above the alignment, and to minimize the potential of inadvertent releases of drilling fluids while boring. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of impact to congested areas, existing underground obstructions, and to the adjacent wetlands to the extent possible.

4.0 SITE CONDITIONS

4.1.1 Project Datum and Topography

HDD #134A

HDD #134A consists of horizontal curved HDD bores, approximately 920 feet long. Both bores start under the Robert F Kennedy Bridge, cross under the Randall's Island Fields 46 and 49 and under the Bronx Kill Swing Bridge. The bores end in the northern corner of Randall's Island Field #45 at approximately El. 10 reference datum NAVD 1988). The ground surface elevations along the path of HDD #134A relatively flat approximately starting El. 13 (reference datum NAVD 1988).

4.1.2 Geotechnical Data

HDD #134A

Subsurface investigations were conducted in 2022 by AECOM, in 2022 by Brierley Associates, and in 2024 by GZA GeoEnvironmental. There are seven borings to date near HDD #134A: BR-3, BA-103, BA-105, SV-264, TR330.0-1.0, TR330.0-2.3, and SV-265, which extended to depths of 40, 65, 40, 30, 14, 14, and 42 feet below grade, respectively. There appears to be an 8-foot layer of gravelly sand (fill) over a 4.5-foot layer of medium dense sand and gravel, over a 2.5-foot layer of soft to stiff silty clay, over a 7-foot layer of sand, all over moderately weathered to slightly fractured schist which reaches to the bore termination in boring BR-3. There appears to be a 2-foot layer of dense silty sand, over a 6-foot layer of very dense silty sand, over a 2-foot layer of firm clayey silt, over a 5-foot layer of very dense silty sand, over a 1-foot layer of very soft silty clayey peat, all over highly weathered to strong schist in boring BA-103. There appears to be a 0.5-foot

layer of top soil, over a 1.5-foot layer of fine sand, over a 6-foot layer of dense to very dense silty sand with possible cobbles/boulders, over a 2-foot layer of medium dense sandy silt, over a 5-foot layer of medium dense gravel, over a 10-foot layer of dense sand with gravel with highly weathered schist, over a 5-foot layer of dense gravel, over a 5-foot layer of medium dense silty sand, over a layer of peat in boring BA-105. There appears to be a 15.7-foot layer of medium dense fill over decomposed rock with no recovery in boring SV-264. There appears to be fill (fine to coarse sand with little gravel and little silt) in both borings TR330.0-1.0 and TR330.0-2.3. There appears to be a 28.5-foot layer of fill (loose to medium dense sand and dense to medium stiff silt and clay) over a 7.4-foot layer of medium stiff to soft silty clay, over loose sand in boring SV-265. The Geotechnical Data Report for this location is provided at the end of this document.

Based on the borings, the soil profile for the HDD #134A BoreAid analyses will be divided into four [4] layers: loose fill, medium stiff clay, loose sand, and rock. The soil profiles used for BoreAid analyses for the HDD in this segment are included in Part III Section B of this report.

5.0 DESIGN SUMMARY

The HDD construction process generally consists of three steps:

Step 1: Drill a small diameter (approximately 7 to 9 inches diameter) pilot hole along the preplanned bore path. During the pilot hole boring, the location of the drill bit is tracked to confirm that it is following the planned path. If the drilling is observed to start to deviate from the planned path, corrections are made using a "bent" lead drilling section and controlled rotation of drill pipe string. The drill bit is designed to cut through the soil in combination with pressurized drilling fluid assisting the cutting of the soil, and transport of the cuttings to the entry pit for removal. The drilling fluid is generally a combination of bentonite (a clay mineral) and water, combined with NSF certified additives to support sides of the borehole and to better carry the cuttings to the entry pit at lower pressures and velocities. The drilling fluids used under waterbodies and wetland areas are typically required in the project specifications to be "non-toxic and environmentally friendly". Once the pilot bore reaches the exit point, the next step of the process, hole enlargement begins.

Step 2: Enlarge the pilot hole to the diameter required for insertion of the conduits. This is accomplished by using successively larger reaming bits pulled through the pilot bore to gradually enlarge the bore from about 8 inches diameter to 16 to 22 inches diameter to accommodate in this case a HDPE conduit about 10 inches in diameter in one bore and a bundle of two conduits, one

10 inches diameter and the other 3 inches diameter, that are to be pulled into the enlarged bore hole. We estimate that one, and possibly a second reaming pass, will be used to create the 16-to-22-inch diameter borehole. This pulling in of a bundle of conduits is sometimes referred to as a slick bore. During this step, the borehole is still filled with drilling fluid to support the sides of the bore hole in preparation for Step 3, the insertion of the conduit.

Step 3: Pull the conduits into the enlarged hole. While the pilot hole and reaming operations are ongoing, the contractor will also be fabricating the conduits to be installed. The conduits come in about 40-foot-long sections and need to be fusion butt welded, debeaded internally, and arranged for the pullback into to the borehole. Ideally, the complete conduit (or bundle of conduits) will be welded (and bundled) into one long length for insertion. The goal is usually to pull the bundle into the bore in one, continuous, smooth, around the clock, operation. However, depending on work area and access constraints, sometimes the pipe is assembled in 2 or 3 lengths that then joined (welded), "on the fly" as the conduit (bundle) is slowly pulled into the borehole. As the conduit (bundle) is pulled into the hole it is usually ballasted with clean water, and some of the drilling fluid supporting the sides of the hole is displaced by the conduit and collected for eventual disposal. Upon completion of the conduit installation, the conduit will be allowed to relax and come to equilibrium in the hole, and the conduit will be cleaned and capped as described in the HDD technical specifications.

5.1 GEOMETRY AND LAYOUT

The HDD profiles are generally defined by the following parameters:

- Entry point location;
- Exit point location;
- Entry angle;
- Exit angle;
- Horizontal and vertical radius of Curvature;
- Lengths of tangent sections;
- Length of crossing;
- Depth of crossing and depth of cover;
- Site constraints and obstructions; and
- Available work and layout areas

The proposed bore paths entry angle, exit angle, and a vertical and horizontal design radii of curvature for each HDD crossing in this segment are shown in the design drawings attached. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The design drawings to summarize the proposed HDD installations are attached. The HDD technical specifications are found in Section 330507.13 of the Technical Specifications. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The site conditions posed various challenges in developing a design that is both constructible and minimizes the potential for negative environmental impacts. The proposed design has entry and exit pits areas constrained by available easements and traffic constraints. Available work areas may limit the lengths of the conduit that can be pre-assembled, necessitating having to pre-assemble the bundle several segments that will have to be welded together during the pull back. HDD specific work areas at the entry and exit ends of the bores are noted on the HDD drawings. In addition, space and easement constraints will require that during pullback, the above ground sections of the conduit will not be straight and will require rollers to accommodate a horizontal bend. Conduit assembly is expected to be performed at the ends of the alignment shown on the HDD drawings. In some cases, the limited work area at the one end of the HDD alignment, may require that the drilling and reaming prior to pullback be performed by the HDD rig located at the one end of the alignment, but the HDD rig may need to be relocated to the other end of the alignment for the pullback/conduit installation phase of the work. In addition, for some longer bores in soft/weak ground conditions, the intersection bore method may be used to better control the risk of inadvertent drilling fluid releases.

5.2 SUBSURFACE MODEL DEVELOPMENT

A subsurface model was developed based on the boring logs as approximate representation of subsurface conditions along the proposed HDD alignment. BoreAid Version 5.0.14 (2015) modeling software (a product of Vermeer) was used to model the HDD. Geotechnical input parameters of the soil were estimated as described below.

The internal friction angles (AASHTO LRFD, Ed. 7) were estimated using the Standard Penetration Test (SPT) blow counts. The shear modulus (G) of each layer was estimated using soil density or consistency based on SPT blow count (N-value) and representative soil layer descriptions were used to estimate Young's Modulus (E) using Hunt (1986). The shear modulus was estimated using the relationship $G = E/[2(1+\nu)]$, taking Poison's Ratio (ν) equal to 0.3. Dry and saturated unit weights were selected based on soil type using Table 2-8 from the Manual on Estimating Soil Properties for Foundation Design (EPRI, 1990). For cohesive soils, cohesion was estimated based on empirical correlations with SPT blow counts (EPRI 1990). Tables for soil properties that will be used for the HDDs in are presented in at the end of this report.

5.2.1 BoreAid Analysis

For the BoreAid analyses, the pipe configuration analyzed was for a pipe with a dimension ratio (DR) of 9 which is assumed to not be ballasted with water during pullback to create a near neutral buoyancy. The following conduit configurations will be used:

- 1) An individual 10-inch-diameter DR 9 HDPE conduit, and
- A bundle consisting of a 10-inch-diameter DR 9 HDPE conduit and a 3-inch-diameter DR
 9 HDPE conduit. The stresses and deflections of the pipe are evaluated and compared to allowable values as shown on the BoreAid runs presented here.

In addition, a run where 3-inch-diameter DR 9 HDPE conduit is modeled alone was performed to check stresses in that conduit.

5.2.2 Inadvertent Return and Hydro-fracture Analysis

BoreAid modeling software was used to perform inadvertent return analyses for each HDD alignment. The bore path alignment was selected and checked so that the allowable bore pressures are greater than the static and circulating pressures throughout most of the alignment except at the ends. The allowable pressures are related to in-situ ground and water stresses around the bore hole, and the strength of the ground. The Limiting Formation Pressure Figure indicates a generally

acceptable factor of safety against the potential for inadvertent return along the proposed bore paths except at the ends.

Based on the bore path selection process, areas with the greatest potential for an inadvertent return were examined and adjusted during the design process to further limit the risks associated with an inadvertent return when possible. The entry and exit points exhibited the greatest potential for inadvertent returns. The depth of the entry/exit pits should be considered by the Contractor to increase the effective soil stress and provide a storage volume for returns to and near the entry and exit points. Note that while the potential for inadvertent return has been reduced through the design process, inadvertent returns are still possible through existing fissures in the soil or rock, shrinkage cracks, weak soils, or porous deposits of coarse gravel.

Fractures within and/or inadvertent releases through the surrounding soils may cause loss of drilling fluid pressures or inadvertent return of drilling fluid into the wetlands. The areas of greatest concern are reduced soil cover over the bore alignment and where there is a risk of release to the wetlands. The contractor will be required to institute pre-emptive measures in this area to mitigate the effects of a release in the event that one should occur. Such measures may include containment booms and a standby vacuum truck to collect any released drilling fluids immediately. Ground heave or settlement from inadvertent releases also pose risks to structures such as roadways. The HDD alignment was designed with geometries to providing enough soil cover to reduce the risk of inadvertent return. The Inadvertent Release Contingency Plan details additional methods for mitigating inadvertent returns.

5.3 LIMITATIONS

The structural analysis and inadvertent return mitigation analysis were performed using the proposed design bore paths and typically anticipated equipment and means and methods. The HDD subcontractor must submit structural and inadvertent return mitigation calculations and analysis for each bore path, including their final bore path geometry reflecting its specific equipment and contractor's specific means, methods, drilling fluids, and proposed final contractor refined final planned alignment. It is important to note that the Kiewit Design Team's analysis has been done without consideration for point loading due to unpredictable subsurface features such as

encountering rocks, boulders, or other extremely dense material that may damage the conduit. The risk of such conduit damage is low yet has been reported on some projects in recent years.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 RISK AWARENESS AND ASSESSMENT

The risks to be aware of during HDD include: inadvertent returns or fluid loss; any potential obstructions blocking or causing large deviations from the planned bore path; and electromagnetic effects on the HDD steering equipment from nearby high voltage power lines.

6.2 SITE ANALYSIS

A site analysis must be performed prior to commencing HDD operations. Considerations might need to be taken for items such as for site access, construction of HDD entry and exit pits, and layout area for equipment and supplies.

6.3 EROSION CONTROL

The proposed bore paths typically cross under roads, parking lots, water, stormwater and gas and electric utility lines, as well as under streams/wetlands, bodies of water, and railroads. The soil erosion control drawing will show where primary soil erosion control measures are required. The technical specifications and Inadvertent Release Contingency Plan both detail the requirements for both primary and secondary sediment and erosion control measures to be followed in case of an inadvertent return, which ultimately could deposit the fine bentonite sediment into the stream or wetland or bodies of water if not controlled. Construction of the exit pit will be close to the stream/wetlands. Silt fence, straw bales, and other soil erosion control measures are to be readily accessible at or near the work areas in accordance with the project specifications and Inadvertent Release Contingency Plan.

6.4 SURVEILLANCE AND MONITORING

During installation of the pipe by HDD, monitoring the stream, wetlands, waterbodies and bore alignment for indications of potential inadvertent returns or inadvertent releases will be necessary. The contractor will have primary responsibility for this monitoring and associated response and reporting in real-time. This will be accomplished as detailed in the Inadvertent Release Contingency Plan. Continuous visual inspection of the entire path is the most significant method

of detection. However, an experienced drill crew can often prevent a return by monitoring drilling fluid pressures. A loss of pressure may indicate inadvertent release has occurred. Regardless of the level of preparation, inspection, monitoring, etc., inadvertent returns are not always possible to predict or prevent. However, a significant effort can minimize the possibility but not eliminate it.

7.0 **REFERENCES**

American Association of State Highway and Transportation Officials. (2014). AASHTO LRFD bridge design specifications, Seventh edition, U.S. customary units. Washington, DC: American Association of State Highway and Transportation Officials.

Mayne, P.W., and Kulhawy, F.H. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute (EPRI).

Hunt, R.E. (1986). Geotechnical Engineering Analysis and Evaluation, McGraw-Hill Book Company, New York.
						Undrained	Maximum
Soil Type		Wet unit	Dry unit	Bouyant		Shear	Shear
~~~~~	Ν	wgt, pcf	wgt, pcf	unit wgt,	Φ, °	strength,	Modulus,
				pcf		su, psf	psi*
Loose Sand	4-10	115	105	53	30		200
Med.							
Dense Sand	10-30	125	110	63	34		500
V Soft to							
Soft clay	0-4	100	70	38		450	200
Med Stiff							
Clay	4-8	110	80	48		800	300
(approx. 40							
feet deep)							
Stiff Clay							
(approx. 80	8-16	120	100	58		1200	400
ft deep)							
Loose Silt	4-10	100	80	38	28		50
Med Dense							
Silt	10-30	110	90	48	32		100
Rock	>50	140	120	80	37		1000
Fill/Highly							
Weather							
Rock							
Jointed		170	160	110	37	3000 psi	2000 psi
Rock Mass							
-							
Shale							

## Proposed Soil Properties for CHPE Package 8 HDD 134A

• where BoreAid default values are less than these shear moduli, can use the default values, but may tend to be overly conservative.

**II. INADVERTENT RELEASE CONTINGENCY** 



# Inadvertent Release Contingency Plan For Horizontal Directional Drilling Crossing HDD 134A Segments 13 to 15 - Package 8

Harlem River Yard to Astoria New York County, New York

CHA Project Number: 066076

Prepared for: Transmission Developers Inc. 1301 Avenue of the Americas, 26th Floor New York, NY 10019



Prepared by: CHA Consulting, Inc. III Winners Circle Albany, New York 12205 (518) 453-4500

October 2024

THE ENGINEERING SUPPORTING THIS REPORT SUGGESTS ADDITIONAL GEOTECHNICAL AND SUBSURFACE DATA WOULD BE BENEFICIAL TO HDD#134A, AND ONLY REPRESENTS THE ANALYSIS AVAILABLE WHEN SEALED. DO NOT USE THIS REPORT RELATIVE TO HDD#134A FOR SUBSURFACE CONSTRUCTION ACTIVITIES.

#### TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	DESCRIPTION OF THE HDD PROCESS	. 2
3.0	ORGANIZATION AND STAFFING RESPONSIBILITIES	. 5
	<ul> <li>Responsibilities of Various Organizations</li></ul>	.6 .6 .6 .7 .7 .7 .8
	3.10 Training	. 8 . 8
4.0	<ul> <li>FLUID RELEASE MINIMIZATION MEASURES.</li> <li>4.1 Geotechnical Investigation.</li> <li>4.2 HDD Design.</li> <li>4.3 Contingency Plan</li></ul>	.9 .9 .9 10 12 13
5.0	NADVERTENT RELEASE MONITORING AND NOTIFICATIONS	15
6.0	NADVERTENT RELEASE RESPONSE (UPLAND AND ROAD AREAS)	16
7.0	INADVERTENT RELEASE RESPONSE (WETLAND, RAILROAD, AND OPEN WATER BODY AREA $17$	<b>\</b> S)
8.0	DRILL HOLE ABANDONMENT PLAN	18
9.0	P 1 HDD Crossing #134A	19 19
		1)

### **1.0 INTRODUCTION**

This Inadvertent Release Contingency Plan (IRCP) is for HDD 134A of Package 8.

HDD is a widely used trenchless construction method to install conduits with limited disturbance to the ground around the bore alignment and minimal ground surface impacts above the alignment. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of impact on water bodies, to congested areas, to existing underground obstructions, and to wetlands, to the extent possible.

A primary potential environmental concern associated with HDD involves the inadvertent release of drilling fluids, also referred to as drilling mud, during the drilling process, which is addressed in this plan. The purpose of this plan is to establish general procedures to prevent a fluid release (sometimes referred to as a frac-out) during HDD construction and to present steps to manage, control and minimize the impacts if an inadvertent release of drilling fluid occurs. The objectives of this plan are to:

- Provide an overview of the HDD process with a specific focus on the composition, management and use of drilling fluids;
- Identify controls to be implemented during construction to minimize the potential of an inadvertent release;
- Identify the planned means of monitoring to permit early detection of inadvertent releases;
- Identify planned means to protect areas that are considered environmentally sensitive (rivers, wetlands, other biological resources or cultural resources);
- Establish site-specific environmental protection measures to be utilized prior to, during, and following drilling and conduit installation activities to minimize and control erosion and sediment releases to adjoining wetlands or watercourses;
- Have site specific preplanned general response programs in place at the start of construction that is understood and can be implemented immediately by all field crews in the event of an inadvertent release of drilling fluid occurs; and
- Establish a chain of command for reporting and notifying, in a timely manner, the construction management team, the Certificate Holders, and the proper authorities in the event of an inadvertent release of drilling fluid and of the preplanned mitigation actions that are to be implemented.

It is important to note that the plan in this document serves as the guiding framework for

confirming that the HDD Construction Subcontractor (HDD Subcontractor) is adhering to the specifications and provisions to be protective of the environment. Since there are a variety of potential measures listed in this document available for preventing inadvertent releases and mitigating the effects of a release should one occur. The specifications require that each HDD Subcontractor submit to the project design team, for its review and acceptance, a supplemental site and HDD Subcontractor specific means and methods plan for each HDD crossing reaffirming and detailing how the HDD Subcontractor will conform with the requirements of this plan and the project specifications to prevent inadvertent releases and to mitigate any effects of a release should one occur. The supplemental plan by the HDD Subcontractor shall be consistent with the site conditions and constraints, and the Subcontractor's selected means, methods and equipment. The selected HDD Subcontractor will be responsible for incorporating specific permit conditions, applicable regulatory requirements, site specific environmental features and geotechnical information not available at this time into its submittal. The submittal shall be reviewed and approved by the design team and the Environmental Inspector prior to the start of construction of a specific HDD location.

#### 2.0 DESCRIPTION OF THE HDD PROCESS

The Horizontal Directional Drilling process begins by mechanically excavating shallow (approximately 5 feet wide by 10 feet long by 4 to 5 feet deep entry and exit pits at either end of the directional bore alignment within a designated work area. Typical work areas and equipment layouts are discussed in the Design Summary Report. However, final individual work areas and equipment layouts will be site specific and depend on the length of bore, size of drill rig to be used, and site constraints. A small diameter (on the order of 5 to 9 inches in diameter) pilot bore is then drilled from the entry pit using directional boring methods. During the pilot bore, a drilling fluid (typically bentonite and water based with selected, NSF certified (formally National Sanitation Foundation) additives to improve and modify fluid stability, carrying capacity, and drilling properties to address site-specific ground characteristics and HDD Subcontractor preferences is pumped through nozzles in the drill head to support the hole and to hydraulically transport drill cuttings from the drill bit back to the entry pit. Environmentally NSF certified, additives are required by specification for use on this project and those planned for use by the HDD Subcontractor will be checked for compliance by the design team prior to their use.

A guidance system is mounted immediately behind the drilling head to allow the crew to track and steer the path of the drilling so that it follows the preplanned alignment within the specification's permitted tolerances. The drilling fluid holds the cuttings in suspension and carries the drill cuttings back through the annular space between the drill rods and the bore hole wall to the entry pit where it is collected and processed for re-used by a recycling system. The cuttings are separated from the bentonite, using screens, centrifuges, and desanding units which prepares the bentonite for re-use. Once the pilot bore reaches the exit pit, a larger diameter, back-reaming head is then attached to the drill string and pulled back through the pilot hole to enlarge the hole. Depending on the size of the conduit to be installed and the ground conditions, several successively larger reaming passes may be needed. Again, a slurry (bentonite and water) is pumped into the bore hole during reaming to remove cuttings and to stabilize the bore hole. Lastly, the drill string is pulled back through the bore hole with the new, preassembled conduit attached to it in one continuous process until the lead end of the conduit emerges at the entry pit. Final reaming or swabbing and conduit pull back may be combined.

Specific to this plan, it is important to have an awareness of the function and composition of the HDD drilling fluids. The drilling fluid composition and drilling fluid management are integral components of the HDD process with the following primary purposes:

- Support and stabilize the drill hole,
- Suspend and transport cuttings from drill bit through the drill hole annulus,
- Control fluid loss through the bore's side walls by forming a filter cake on the bore hole walls,
- Managing and modifying the drilling fluid mix to improve its cutting carrying characteristics, its pumpability, and its hole stabilization and support characteristics,
- Power the downhole cutting tools (e.g., via mud motors if required); and,
- Serve as a coolant and lubricant to the drill bit during the drilling process and lubricant during the conduit insertion process.

The drilling fluids are composed primarily of potable water, which will likely be obtained from nearby sources selected and permitted by the HDD Subcontractor. As mentioned above, the drilling fluid also contains bentonite clay as a viscosifier. Bentonite is a naturally occurring, nontoxic, inert substance that meets NSF/ANSI 60 NSF Drinking Water Additives Standards and is frequently used for drilling potable water wells. While bentonite is non-toxic and commonly used in farming practices, it has the potential to impact plants, fish and their eggs if discharged

to waterways in significant quantities. Frequently, additives are used to: amend the drilling fluid, improve its compatibility with the ground and groundwater chemical characteristics, improve its cutting suspension and carrying characteristics, improve its hole stabilization ability, and reduce seepage loss through the ground characteristics. Environmentally acceptable (i.e. NSF certified) additives are required by specification for this project and before the start of work at a specific HDD, the HDD Subcontractor is required to submit for each crossing, environmental and toxicity data including Safety Data Sheets (SDS) regarding any additives for review and acceptance by the design team.

During the HDD process and subsequent conduit insertion, the drilling fluid pumped downhole will tend to flow along the path of least resistance. Generally, this will be though the annulus between the drill string and the drill hole side wall. However, the bore alignment may encounter ground conditions where the path of least resistance is an existing fracture, fissure, hole of anthropogenic origin, areas with low overburden confinement, areas of hole collapse, or coarse gravel zones in the soil or rock substrate. When this occurs, circulation can be lost or reduced. This is a common occurrence in the HDD process but does not necessarily prevent completion of the bore or result in a release to the environment. However, the environment may be impacted if the fluid inadvertently releases to the surface at a location on a waterway's banks or within a waterway or wetland. Again, additives to amend the properties of the drilling fluid may be used as necessary to prevent and limit releases and losses through such paths of lower flow resistance.

#### 3.0 ORGANIZATION AND STAFFING RESPONSIBILITIES

The organizational chart shown below lists the contact information of the principal organizations involved in this project. The remainder of Section 3 discusses the roles and responsibilities of these principal organizations.

#### **Organizational Chart**

Entity	Contact Information								
Certificate Holders	Name, Title TDI Phone Email								
Construction Manager	TBD								
HDD Design Engineer Team	TDB - CHA contact								
HDD Construction Subcontractor	TBD								
Environmental Inspector	TBD								
U.S. Army Corps of Engineers, New York District Office	New York District Upstate Regulatory Field Office ATTN; CENAN-OP-UR, Bldg. 10, 3 rd Floor North 1 Buffington Street Watervliet, NY 12189-4000 518-266-6350 <u>cenan.rfo@usace.army.mil</u>								
New York State Department of Public Service	Matthew Smith Department of Public Service Empire State Plz 3 Albany, NY 12223 (518) 402-5141 matthew.smith@dps.ny.gov								
New York State Department of Environmental Conservation	Regional Office(s) Information <b>NYSDEC</b> Division of Environmental Permits 625 Broadway, 4 th Floor Albany, NY 12233-1750 518-402-9167 <u>depenergy@dec.ny.gov</u>								
New York State Department of Environmental Conservation (Spills)	NYS Spill Hotline: 1-800-457-7362								

#### 3.1 **RESPONSIBILITIES OF VARIOUS ORGANIZATIONS**

The principal organizations involved in this project include the Regulatory Agencies, Certificate Holders, Design Engineer, HDD Construction Subcontractor, Construction Manager, and Environmental Inspector. The roles and responsibilities of the principal organizations are discussed in the following subsections and are shown in the organizational chart included above.

#### **3.2 REGULATORY AGENCIES**

The Certificate of Conditions issued by the NY Public Service Commission is the primary regulatory agency for the requirements associated with the project. The Champlain Hudson Power Express (CHPE) Route Project also has permits from the Department of Energy, and the US Army Corps of Engineers, and the New York Water Quality Certification. Various HDDs within this package take place within or adjacent to wetlands, underneath or adjacent to bodies of water, and underneath or adjacent to roads (DOT, public & private) and rails. Measures are discussed throughout this report to control/mitigate any potential releases before environmentally sensitive boundaries are reached or impacted.

#### **3.3** CERTIFICATE HOLDERS

The project Certificate Holder is TDI. TDI's Project Manager will have the overall responsibility to coordinate this project for TDI. The Project Manager, will be responsible for correspondence and coordination among all parties and will have the authority to stop work as necessary.

#### **3.4 DESIGN ENGINEER**

The Front End Engineering and Design (FEED) Design Engineer for the HDD Design is CHA and Kiewit in collaboration with BCE. During construction, the Design Engineer will be responsible for reviewing and approving required Subcontractor submittals, shop drawings, and material certificates. Transmission Developers Inc will also take responsibility for review and acceptance of submittals, and documenting the materials and methods used in performance of the construction work to document that the construction complies with the contract documents.

#### 3.5 THIRD-PARTY ENGINEER

The Third-Party Engineer for the HDD inadvertent return analysis has yet to be confirmed. During construction, selected Third Party engineer will be assisting Transmission Developers Inc. with the review of the HDD Subcontractors Inadvertent Release Plan and providing technical assistance as needed with the HDD installation.

#### 3.6 CONSTRUCTION MANAGER

The Construction Manager for this project has yet to be selected. The Construction Manager will be responsible for on-site management of the project for the Certificate Holders to ensure overall Subcontractor compliance with the EM&CP documents, environmental permits, and, local and federal regulations.

#### 3.7 HDD CONSTRUCTION SUBCONTRACTOR

The HDD Construction Subcontractors (HDD Subcontractors) for the various HDD crossing of this project have yet to be selected. The Subcontractor will be responsible for completion of the conduit installation by HDD methods in accordance with the design criteria, contract documents, environmental compliance permits and federal regulations. The Subcontractor will be expected to use the appropriate construction procedures and techniques to complete the project, including supplemental site specific and means and methods specific Inadvertent Release Prevention and Contingency Plans reviewed and accepted by the design team for each crossing in accordance with the contract documents.

The HDD Drill Operator (Drill Operator) will be responsible for operating the HDD drill rig and observing and managing changes in annular fluid pressure or loss of circulation. The Drill Operator will communicate with other members of the drill crew as needed when issues arise. The Subcontractor will be responsible for developing the specific lines of communication within their organization and shall dedicate a responsible person(s) for monitoring and communicating inadvertent releases to the Construction Management team and Environmental Inspector.

#### **3.8** Environmental Inspector

The Environmental Inspector for this project has not yet been determined. In general, the Environmental Inspector will perform full-time observation and documentation during the HDD activities at a specific site. The Environmental Inspector will be responsible for coordination with all county, state and federal resource agencies, compliance with and changes to any environmental permits.

The Environmental Inspector shall have the authority to stop work when the environmental permit conditions are not being followed or when appropriate environmental precautions are being disregarded by the HDD Subcontractor.

#### 3.9 LINES OF COMMUNICATION AND AUTHORITY

Formal lines of communication will generally follow the established lines of authority. However, open communications between all parties will be encouraged to facilitate more efficient communication and coordination.

#### 3.10 TRAINING

The HDD Subcontractor will verify and document that all construction personnel have appropriate environmental training before they begin work. The Environmental Inspector will also conduct a project orientation meeting for staff assigned with specific roles during the HDD installation and will review the site-specific environmental concerns and permit conditions. The Certificate Holders and Design Engineer will also attend the orientation meeting to review the procedures that will be used to document inadvertent releases in accordance with the HDD specifications.

#### 4.0 FLUID RELEASE MINIMIZATION MEASURES

#### 4.1 GEOTECHNICAL INVESTIGATION

The first steps taken to minimize the potential risk of an inadvertent release included conducting a geotechnical investigation at the site to develop an understanding of the ground around the planned HDD bores. Test borings were conducted near the proposed cable alignment within or immediately adjacent to the HDD sites. We understand that each boring has been backfilled and sealed with cement or cement/bentonite grout, and located off the planned bore path, to limit the risk of a release through an abandoned bore hole during the HDD construction. Some historical project bores were made for purposes other than HDD geotechnical investigations and were unavoidable in HDD design. These bore locations need to be included in site specific plans for periodic monitoring.

#### 4.2 HDD DESIGN

Each HDD crossing is designed to reduce the potential risk of an inadvertent fluid release during construction. General design considerations for HDD include:

- Depth of cover during profile design (based on soilt borings) to limit the potential inadvertent break through to the water body, road, wetlands, or ground surface;
- Typically, potential exists for releases near the entry and exit pits of a bore. The distance where there is a potential for releases at the ends depends on the soil conditions, the slope of the ground surface and the length of the bore. Generally, the longer and deeper the bore the greater the slurry pressures required to hold the borehole open and to carry the cuttings back to the entry or exit pit;
- Specific provisions regarding exit pit design for underwater cable installation (i.e. via the use of temporary dredged cofferdams or steel conduit riser pipes for pressure relief);
- Generally, for the formation of inadvertent releases, the more critical stage of the HDD process tends to be during the initial pilot hole drilling when the annular space between the bore sidewall and the drill string is the smallest and therefore requires larger slurry pressures to overcome flow resistance to carry cuttings back to the entry pit;
- Adjusting the drill alignment to miss existing infrastructure including

existing utilities, and other obstacles;

- Establishing a drill alignment line that allows for gradual angular changes to minimize pressure build-up and limit pull back stresses and bending stresses in the conduit, as well as being compatible with the bending capacity of the drill steel;
- Requiring drilling fluid composition, and drilling procedures that minimize drilling fluid pressures;
- Requiring drilling fluids that adequately address site-specific drilling concerns while posing the least threat to the environment;
- Recommending the use of conductor casings/conduits at the entry and exit ends of bores when ability of the ground to provide sufficient confinement to resist the drilling slurry pressures is expected;
- Requiring monitoring and controlling drilling fluid pressures with down-the-hole sensors during pilot hole drilling; and
- Requiring that, during the performance of any HDD waterbody crossing, contractors monitor the use of NSF certified drilling slurry additives (Article VII: General Condition No. 114 [m]) and, in the event of a detected release of fluid, implement the procedures specified in the approved EM&CP. For any release occurring in a waterbody, the Certificate Holders shall immediately notify DPS Staff and NYSDEC Region 5 Staff of details of the release and the course of action they recommend taking.

#### 4.3 CONTINGENCY PLAN

As mentioned above, prior to construction the selected Subcontractor will be required to submit a supplemental site and Subcontractor-Specific Inadvertent Release Contingency Plan for review and approval by design team. The project specifications require that the following major elements be addressed in detail in the HDD Subcontractor's Plan:

- Work plan and detailed description of the drilling program (details for executing pilot hole, reaming, pull-back operations, and schedule), this plan shall include necessary procedures for addressing problems that are typically encountered during HDD installations through the anticipated subsurface for each drill location and to prevent inadvertent releases of drilling fluid;
- Drilling fluid composition design and on-hand amendments to alter fluid properties to reduce pressures, potential for plugging, and seepage losses;
- Description of the planned drilling equipment and drill site layout;

- SDS information for all drilling fluid products proposed for use;
- Procedures for drilling fluid pressure control, and fluid and pressure loss monitoring and management to aid in prevention and the detection of an inadvertent release (i.e., metering of makeup water, recording of drilling fluid product quantities utilized, fluid return volumes, fluid and cuttings disposal quantities, turbidity of river water, etc.);
- Contingency plans for addressing inadvertent releases into wetlands, or other sensitive areas, which includes the specific procedures used to halt the release and then contain, clean-up, and remove materials from the release site;
- Notification procedures and chain-of-command in the event of a release;
- Criteria for evaluating the need for a drill hole abandonment and the associated plan for sealing the drill hole if abandoned;
- Drilling fluid management and disposal procedures;
- The work plan and detailed drilling program description should include documentation regarding site restoration, vegetation management, sedimentation and erosion control, and hazardous material usage (if applicable). The intended approach shall be in compliance with those measures presented in the Project EM&CP.
- Notice shall be provided to residents, businesses, and building, structure, and facility (including underground, above ground and underwater facilities) Certificate Holders and operators within one hundred (100) feet of any HDD staging area or trenching activity with an offer to inspect foundations before, during, and after construction. Additional detail regarding this notice, associated inspections, intended benefits, proof of notice, cost reimbursements and associated construction initiation schedule is included in General Condition 154.

In addition to providing a site-specific Inadvertent Release Contingency Plan, the specifications require that the Subcontractor implement the additional necessary safeguards to minimize the likelihood of a fluid release and management/control should a release occur. This includes having a readily available supply of spill response devices (containment booms, pumps, straw bales, silt fence, sediment logs, sandbags, vacuum trucks, and storage tanks) and any other materials or equipment necessary to contain and clean up inadvertent releases. To maximize protection to sensitive environmental areas these measures shall be pre-positioned at the site, readily available and operational prior to the start of any drilling. If needed, additional spill response measures shall be employed immediately, as secondary measures, in the event of a fluid release.

The workspace layout for HDD materials and equipment will be configured to reduce the

likelihood of a release. Final dimensions and equipment layouts are to be adjusted based on actual space available and constraints shown on the drawings for each HDD crossing.

#### 4.4 DRILLING FLUIDS MANAGEMENT

As described in the Project EM&CP document, drilling fluid (typically bentonite and water based with selected additives) will be NSF certified and all recycling and reuse regulations will be followed where applicable. The drilling fluid management system and subsequent disposal is the responsibility of the subcontractor performing the HDD. However, the drilling fluid management system and subsequent disposal will adhere to the following requirements:

- Drilling fluid will be processed through an initial clearing that separates the solid materials from the fluid;
- Solids will be sifted out by a screening apparatus/system and the solids deposited into a roll-off or a dump truck and periodically transported off-site and disposed of at an approved disposal facility determined by the HDD construction subcontractor;
- Drilling fluid that is deemed unacceptable to be reused during construction or left over at the end of drilling will be collected and transferred into a tanker truck for disposal at an approved disposal facility determined by the HDD construction subcontractor;
- Petroleum-based fluids and other potentially hazardous materials associated with drilling operations that are spilled during HDD construction will be contained following the mitigation measures described in the SPCC (Appendix K of the EM&CP) and disposed of at an approved disposal facility as determined by the HDD construction subcontractor and included in the EM&CP;
- Supply of spill containment equipment and measures shall be maintained and readily available around drill rigs, drilling fluid mixing system, entry and exit pits and drilling fluid recycling system, if used, to prevent spills into the surrounding environment. Pumps, vacuum trucks, and/or storage of sufficient size will be in place to contain excess drilling fluid; and,
- Under no circumstances will drilling fluid that has escaped containment be reused in the drilling system.

An overview of the drilling fluid system will be submitted to the Environmental Inspector for approval once determined and prior to any HDD installation activities. The role of the Environmental Inspector is discussed in Chapter 3 of the EM&CP.

#### 4.5 EARLY FLUID RELEASE DETECTION

The HDD method has the potential for seepage or fluid loss into pervious geologic formations that the bore path crosses. This may occur due to the presence of fractures in the rock, low overburden confinement, or from seepage through porous soils such as coarse gravels or via prior exploratory boreholes. It is important to note that inadvertent releases of drilling fluid can occur even if the down-hole pressures are minimal. Subsurface conditions that could be conducive and lead to inadvertent releases or drill difficulties include:

- Highly permeable soil such as cobbles and gravel;
- Presence of rock joints, solution features, or other subsurface fractures;
- Considerable differences in the elevations of HDD entry and exit points (typically greater than 50 feet);
- Disturbed soil, such as unconsolidated fill;
- Soft/weak soils with low overburden confining capacity;
- Low density soils in areas where the HDD bore is relatively shallow;
- Longer bore alignments; and,
- The presence of archeological or anthropogenic features such as, existing wells, piles and culverts, in close proximity to the HDD bore that may provide a preferential path for the drilling slurry to escape from the bore path.

Risks associated with the above conditions at specific crossings are discussed in Section 9 of this report.

An experienced drill crew is the most effective approach to detecting reaction to drilling fluid seepage prior to a surface release. They can promptly stop the drilling, modifying the drilling fluid composition, fluid properties, and pressures to address indications of loss of drill fluid. The HDD Subcontractor is required to utilize experienced drill crews particularly in and adjacent to environmentally sensitive areas. The following factors can be used for identifying the potential for drill fluid release:

• The loss of pressure within the drill hole utilizing a downhole pressure monitoring

system;

- A large rapid buildup of pressure within the drill hole utilizing a downhole pressure monitoring system or at the drill rig;
- A substantial reduction in the volume of return fluid (loss of circulation); and
- The lack of drill cuttings returning in the drill fluid.

In addition to an experienced drill crew, the HDD Subcontractor will be required to perform periodic (at least twice a day) visual inspection and monitoring of the stream channel bottom and wetlands in the vicinity of the drill bit or reaming bit for signs of an inadvertent release. The Environmental Inspector will monitor the status of each HDD waterbody crossing while construction activities are underway until the crossing has been completed and the stream and stream banks have been restored. In the event of any potential or actual failure of the crossing, the Certificate Holders shall have engaged adequate staff, materials, and equipment to take necessary steps to prevent or avoid adverse environmental impacts. If visual monitoring indicates a potential release, additional measures such as turbidity measurements and bentonite accumulation measurements both upstream and downstream of the current active location of the drill bit are required.

#### 5.0 INADVERTENT RELEASE MONITORING AND NOTIFICATIONS

The HDD Subcontractor is responsible for monitoring of the drilling operation to detect a potential inadvertent release by observing and documenting the flow characteristics of drilling fluid returns to the HDD entry/exit pits and by visual inspection along the drill path. If drilling fluid to the HDD entry/exit pits are lost, the Subcontractor shall implement the following steps:

- The Drill Operator will monitor and document pertinent drilling parameters and conditions and observe and monitor the drill path for evidence of an inadvertent release, if there is evidence (typically visual) of a release, the Subcontractor will be required to stop the drilling immediately;
- The Subcontractor shall notify the lead Environmental Inspector of any significant loss of drilling fluid returns at the drill rig; and, in the event of a detected release of drilling fluid during the performance of any HDD waterbody crossing, implement the procedures specified in the approved EM&CP. The Certificate Holders shall immediately notify New York State Department of Public Service (NYSDPS) Staff and New York State Department of Environmental Conservation of details of the release and the course of action they recommend taking.
- The subcontractor will take steps to modify the drill fluid properties and pressures to reduce the potential of drill fluid loss or release; and
- The Drill Operator will take steps to restore drilling fluid circulation in accordance with the requirements of the HDD technical specifications.

If a fluid release is identified, an immediate response is necessary and the Subcontractor is required to take proper corrective actions to minimize impacts, particularly to environmentally sensitive resources (e.g. watercourse, waterbodies, and wetlands).

#### 6.0 INADVERTENT RELEASE RESPONSE (UPLAND AND ROAD AREAS)

A common reason for upward movement and release of drill fluid is a borehole collapse or blockage and a resulting increase in the pressure exerted by drill pumps. Lowering drill fluid pressure is a first step to limiting the extent of a release and can be accomplished by stopping drill rig pumps and allowing pressure to bleed off. With no pumping pressure in the hole, surface seepage will generally stop, then the Subcontractor can trip the drill steel back a selected distance and attempt to clear cuttings from the annulus to re-establish circulation.

The HDD Subcontractor will be required to contain/isolate and remove any fluid that has migrated from the surface. On land this can be done through use of berms, straw bales, shovels as needed, or silt fence to contain the release in conjunction with excavating a small sump pit and/or use of vacuum collection equipment, if needed. Sufficient spill-absorbent material will also be required on-site.

If a release is identified in an upland area, the Subcontractor will be required to immediately respond as described above to limit the extent of the release. After containment is established, cleanup and removal can be conducted by hand, with vacuum trucks, or other equipment. The Environmental Inspector will be present during clean up and removal activities, as they may need to be conducted outside of the pre-authorized temporary workspace areas. The Environmental Inspector, Construction Manager, and the HDD Subcontractor will work closely to determine the best course of action for inadvertent releases occurring within upland areas.

Upon containment of the release, the HDD Subcontractor will be required to evaluate the cause of the seepage and develop mitigation strategies to limit the likelihood of recurrence. The location of the seepage and the area around the seep will be monitored upon the re-start of the HDD operations for changes in conditions. The segments of borehole nearest the entry and exit points and other areas of low overburden cover tend to be the most susceptible to surface seepage as they have the least amount of soil confinement. These locations will generally be in areas of dry land where seepage detection is easily identified and contained. If areas of high risk for inadvertent releases are identified during the HDD design phase, they can be protected from an uncontrolled release through use of strategically placed confinement/filter beds, straw bales, silt fence, or earth berms place prior to the start of drilling or the use of conductor conduits if at entry and exit areas.

# 7.0 INADVERTENT RELEASE RESPONSE (WETLAND, RAILROAD, AND OPEN WATER BODY AREAS)

For any release occurring in a waterbody, the Certificate Holders shall immediately notify DPS Staff and NYSDEC of details of the release and the course of action they recommend taking. During the performance of any HDD waterbody crossing, contractors monitor the use of an approved drilling solution and, in the event of a detected release of fluid, implement the procedures specified in the approved EM&CP. If an inadvertent release occurs when working beneath the waterway, wetland, or railroad the HDD Subcontractor will be required to cease drilling operations and reduce pressures in borehole immediately, and notify the Environmental Inspector, the Railroad (i.e. when within railroad property), the construction management team and the Certificate Holders. The Environmental Inspector, with input from the Drill Operator, will evaluate the potential impact of the release on a site-specific basis and will determine the appropriate course of action. Prior to construction, the HDD Subcontractor is required to develop a detailed, site-specific submittal for general in-stream or in-rail response methods and pre-place necessary materials and equipment at or near the site prior to construction. Specific response actions will be determined in consultation with the Environmental Inspector and HDD Subcontractor and could include the following:

- Shutting down or slowing the drill fluid pumps;
- Modifying the drill fluid properties, add agents to reduce drilling fluid pressures and/or to plug/seal release path;
- Tripping the drill steel back a selected distance and attempt to clear cuttings from the annulus to re-establish circulation
- Stopping drilling activities for 24 hours to allow the bentonite in the subsurface pathways to gel and seal the pathways;
- Evaluate the current drill methods to identify site specific improvements to lower the risk of additional inadvertent releases and,
- Implementation of proper in-wetlands and in upland, road and railroad, handplaced sedimentation control measures including, but not limited to straw bales, vacuum trucks, silt curtains, containment cells, turbidity curtains, or if suitable, sand bags and confinement/filter beds. These activities will require that qualified construction personnel and other support equipment, and supplies be prepositioned and readily available at or near the site.
- Use of a relief well installed at the location of the release. A well or pit

equipped with a subsurface pump to control slurry pressures and future releases at that location by evacuating drilling fluid as it accumulates can also be used. The relief well can be utilized to immediately lower the borehole pressures in the event of an inadvertent release and later to control and manage the release as the drilling continues.

#### 8.0 DRILL HOLE ABANDONMENT PLAN

In the event the HDD Subcontractor must abandon the drilled hole, a plan to fill the abandoned hole will be implemented as detailed in the HDD Subcontractor's supplemental Inadvertent Release Contingency Plan and an alternative plan/alignment for crossing shall be evaluated. If it becomes necessary to abandon a partially completed hole, the abandoned hole will be filled with a mixture of high-yield bentonite, water, and drill spoil. The first ten feet of the bore path will be compacted and filled with soil or a cement-bentonite mix to prevent future settlement. The Subcontractor submitted site-specific abandonment plan shall be approved by the Design Engineer and the Construction Manager prior to being performed in the field.

After the abandoned hole has been filled, an alternative entry and exit hole and bore path alignment will be evaluated by the HDD Subcontractor, Construction Manager, and the Design Engineer. The new alignment shall be offset from the abandoned hole by at least 10 feet (except at the ends where a 5- foot offset may be used) to help limit the risk of steering difficulties due to the presence of a hydraulic connection causing drill fluid loss to the abandoned hole.

#### 9.0 CROSSING SPECIFIC DISCUSSION

#### 9.1 HDD CROSSING #134A

HDD #134A consists horizontal curved HDD bores, approximately 920 feet long. Both bores start under the Robert F Kennedy Bridge, cross under the Randall's Island Fields 46 and 49 and under the Bronx Kill Swing Bridge. The bores end in the northern corner of Randall's Island Field #45 at approximately El. 10 reference datum NAVD 1988). The ground surface elevations along the path of HDD #134A relatively flat starting at approximately El 13 (reference datum NAVD 1988).

Given the presence of waterways near the work areas, we recommend the use of barriers to contain potential releases to the ground surface near the exit pits and work area. The proposed work for HDD 134A must be constructed in accordance with the Article VII Certificate and associated EM&CP.

<u>Ground conditions at HDD #134A</u> - Based on the borings, the soil profile for the HDD #134A BoreAid analyses will be divided into four [4] layers: loose fill, medium stiff clay, loose sand, and rock. The soil profiles used for BoreAid analyses for the HDD in this segment are presented in Part III Section B of this report.

Specific design considerations for HDD #134A currently include:

- General depth of cover under the ground surface is around 32 feet. Preliminary analyses of the bore indicate the lowest maximum allowable pressure capacity in the middle of the bore to be approximately 70 psi. The total circulating pressure estimated to occur in the middle portion of the bore is approximately 24 psi assuming standard HDD drilling methods. In the remainder of the bores the maximum allowable pressure ranges from approximately 0 to 75 psi and the approximate applied slurry pressure during drilling ranges from 0 to 30 psi. Sketches showing the maximum allowable pressure and the applied pressure is provided in the summary BoreAid analyses in Part III Section B of this report.
- It appears that a potential for releases in the ending 15 feet of each bore near the exit pits exist. These should be relatively easily controlled through the use of conductive conduit, straw bales, silt fences, erosion control measures and vacuum trucks.
- Generally, for the formation of inadvertent releases, the more critical stage of the HDD process tends to be during the initial pilot hole drilling when the annular space between the bore sidewall and the drill string is the smallest.

- Adjusting the drill alignment to miss existing infrastructure including existing utilities, and other obstacles,
- Establishing a drill alignment line that allows for gradual angular changes to minimize pressure build-up,
- Requiring drilling fluid composition and drilling procedures that minimize drilling fluid pressures,
- Requiring drilling fluids that adequately address site-specific drilling concerns while posing the least threat to the environment,
- Requiring monitoring and controlling drilling fluid pressures with down-the-hole sensors during pilot hole drilling, and
- Recommended the use of conductor casings, temporary steel casing, at both ends of the bore to get through the fill layer and mitigate the potential release of the drilling fluid.

**III. APPENDICES** 

Appendix A

HDD Geotechnical Data Report for HDD 134A

# MEMORANDUM



DATE:	October 14, 2024
TO:	Morgan Snyder, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. <b>MKH</b> Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 14 – Package 8 – HDD Crossing 134A Champlain Hudson Power Express Project Randall's Island, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in New York. This HDD crossing is located on Randall's Island in New York City. The approximate station for the start of HDD crossing number 134A is STA 80035+50 (40.7978° N, 73.9196° W).

The geotechnical data near this HDD crossing is attached. The available data is taken from the investigations by AECOM, Brierley, and GZA, referenced below.

- AECOM, Geotechnical Data Report (Rev. 2), Downstate Segment: Randall's Island, Bronx and Queens Counties, NY, Champlain Hudson Power Express, dated August 11, 2022.
- Brierley Associates, Geotechnical Data Report, Champlain Hudson Power Express Segment 8, Randall's Island, New York, dated August 12, 2022.
- GZA GeoEnvironmental, Geotechnical Data Report, Champlain Hudson Power Express (CHPE), High-Voltage Direct Current (HVDC) Cable Line, Area 5, Segments 12, 14, and 15, Bronx to Queens, New York, dated February 16, 2024.

Contact us if you have questions or require additional information.

HDD 134A Borings BR-3, BA-103, BA-105, SV-264, TR330.0-1.0, TR330.0-2.3, SV-265 Segment 14 - Design Package 8

# CHPE Segment 14 Package 8 Soil Boring Coordinates and Elevations

Eirpo	Poring	Northing	Easting	Ground Surface
FILIN	DOTING	(feet)	(feet)	Elevation (feet)
AECOM	BR-3	230106.9	1006207.6	10.4
Priorlov	BA-103	230281.0	1006168.1	10.4
ыненеу	BA-105	229752.4	1007419.7	10.3
	SV-264	230026.2	1006388.5	12.0
674*	TR330.0-1.0	229971.0	1006566.0	12.0
GZA	TR330.0-2.3	229945.0	1007198.7	10.0
	SV-265	229773.5	1007384.4	9.0

Notes:

- Northings and Eastings are provided in NAD83 New York Long Island State Plane Zone 3104.

- Elevations are referenced to the NAVD88 datum.

* Coordinates on GZA boring logs are UTM Zone 18T and have been translated to State Plane Zone 3104 for inclusion in this table.



Locations

Route Randalls Island Boring

Mav

laps for

Boring

Alternative

Consensus

DATA SOURCES: ESRI, NYSDOT, NOAA, USACE, NYDOS, TDI, TRC



DATA SOURCES: ESRI, NYSDOT, NOAA, USACE, NYDOS, TDI, TRC

ReportAlt Route Randalls Island Boring Mav laps for -ocatio Routes/Boring Alternative Consensus_

	BORING CO	NTRACTOR:											SHEET 1 OF 1		
	ADT					~ ~							PROJECT NAME: CHPE -		
	DRILLER:	I						PROJECT NO.: 60323056							
	Chris Chaillou			-				HOLE NO.: BR-3							
	SOILS ENGI	1										START DATE: 06/08/21			
	Michael Izdel						Borin								
LOCATION: Randall's Island NV MP 0.8															
GROU				CA	SING	SAM	SAMPLER								
GROC								California		Tricone		OONE DAWNEE			
	Groundwater	~10 ft. bgs		TYPE		Flush Joint Steel		Moc	Modified		Roller Bit		Q	BORING TYPE: SPT	
				SIZE I.D.			4"		2.5"				7/8"	BORING O.D.: 4.5"	
				SIZE O.D.		4	.5"	3"		3	3 7/8"		8"	SURFACE ELEV.: 10.4' (NAVD88)	
				HAMMER WT.		140 lbs		140 lbs						NORTHING: 230106.946	
D	CORING	SAMPLE	T) (DE	HAMME	R FALL	3	80"	3	0"			OTDAT	1	EASTING: 1006207.642	
E P	RATE MIN/ET	EROM - TO		PEN.	REC.	BL OW	S PER 6	in ON SAI		Corr (2)	CLASS	CHNG		FIELD IDENTIFICATION OF SOILS	
Т	IVIII V/I I	(FEET)	NO.			(ROCK		/ DESIGN	IATION)	0011.	OLAGO.	DEPTH		TIEED IDEINTITION OF GOILS	
н									,						
							Hand	Cleared	1				Brown f	tine to coarse SAND, some fine to coarse gravel, trace	
1.0										-			clayey s	silt, trace organics (FILL)	
										-					
2.0										-					
3.0										-		=		y'-6' y fine to coarse(+) SAND, some fine to coarse gravel;	
		3'-5'	S-1									id/Fi	TD 1.2		
4.0												San	11.1, 3		
										4		/elly	4'; Gray		
5.0										-		Grav	angular		
6.0										-					
0.0		6'-8'	S-2	24"	7"	5	3	3	2	4			Brown f	ine to coarse SAND, some silt, little fine to coarse (+)	
7.0		00	02				0		-				gravel;	subrounded	
													7'; Gray	coarse (+) to fine SAND, some fine to medium	
8.0										4			gravel;	angular	
		8'-10'	S-3	24"	15"	3	2	3	4	3			Black c	oarse angular GRAVEL, trace fine to coarse sand	
9.0										-		0			
10.0										-		Brav			
		10'-12'	S-4	24"	5"	6	8	6	3	9	SW	0 pu	Black fi	fine to coarse SAND, some fine to medium gravel; lar	
11.0												e pu	angular		
										_		Sa			
12.0		101.111	0.5		10"	-									
13.0		12-14	5-5	24	12	2	2	1	1	- 2	ОН		5AA 12 5'' G	aray silty CLAY little organics	
15.0										-	011	ay	TR-2: 1	3.0'-13.5'	
14.0												Ö	,		
		14'-16'	S-6	24"	2"	23	18	18	11	23		Silt			
15.0													45.51.0		
10.0										-	SP/SM		15.5°; B to coars	se gravel; sunrounded	
16.0														-	
17.0										1					
										1		P			
18.0												Sa			
										4					
19.0										-					
20.0										1					
	NOTES:	<u> </u>				1	1	1	1	1			The info	prmation contained on this log is not warranted	
	(1) Thick-wall ri	ng lined drive sampler (C	alifornia sa	impler) used	d for SPT s	amples. Rir	igs dimensio	ons = 2-1/2"	O.D. by 2-	7/16" I.D. b	y 6" length.		to show	the actual subsurface condition. The contractor	
	(2) Correction fa	actor: Ncorr=N*(2.0 ² -1.37	75 ⁻ )in./(3.0	~-2.4 ⁻ )in. =	N*0.65.								agrees	that he will make no claims against AECOM	
1													IT NO THE	ius mat the actual conditions do not conform e indicated by this log	
	Soil description	on represents a field	identifica	tion after D.M. Burmister unless otherwise noted.											
SAMPI	LE TYPE:		S= SPLI	T SPOON		U=SHEL	BY TUBE		R=ROC	K CORE					
PROPORTIONS:         TRACE=1-10%         LITTLE=10-20%         SOME=20-35%         AND=35-50%															

	BORING CO	NTRACTOR:										S	HEET 2 OF 2	
	ADT										P	PROJECT NAME: CHPE -		
	DRILLER:				Δ			M			P	PROJECT NO.: 60323056		
Chris Chaillou													H	IOLE NO.: BR-3
SOILS ENGINEER:													s	TART DATE: 06/08/21
Michael Izdebski								F	INISH DATE: 06/08/21					
	LOCATION:	Randall's Island, NY	', MP 0.86	DEN	DEC	1				N	11808	OTDAT	C	DFFSET: N/A
D E P T	RATE MIN/FT	FROM - TO (FEET)	AND NO.	in	in in BLOWS PER 6 in ON SAMPLER Corr. CLASS. CHNG. DEPTH							FIELD IDENTIFICATION OF SOILS		
		20'-22'		5"	5"	50/5"						_	Brown fine	e to coarse SAND, some fine to coarse gravel;
21.0											SP/SM	Sanc	subangula	ar
22.0														
23.0														
24.0														
25.0		25'-30'	R-1	60"	51.5"	F	RQD= 39"	/60"= 65%	6				Lightly fra	ctured, moderately weathered, white-grey low
20.0													fractures	nor, nard, oxidation stanning present in most
28.0													TR-3; 27.8	3'-28.35'
20.0														
20.0												ST		
30.0		30'-35'	R-2	60"	40.5"		RQD=4"	/60"=7%				SCH	Dark gray	SCHIST, moderately fractured, moderately
31.0												TAN	weathered	ed, very hard, oxidation staining
32.0												IHAT	TD 4: 22 F	5' 24 10'
33.0												MAN	11.4, 33.0	5-54.10
34.0													64 4 MIL	
35.0													moderatel	v weathered, oxidation staining, hard
36.0		35'-40'	R-3	60"	58.5"		RQD=49"	/60"=82%						
37.0													36.3'; SAA	A Schist, lower grade, slightly fractured
38.0														
39.0													TR-5; 38.7	7'-39.25'
40.0														
41.0													Boring ter	minated at 40' bgs, grouted to surface
42.0														
43.0														
44.0														
45.0														
	NOTES:												The inform	nation contained on this log is not warranted
													to show th	e actual subsurface condition. The contractor
													if he finds	at the will make no claims against AECOM
Soil description represents a field identification after D.M. Burmister unless otherwise noted.									to those in	indicated by this log.				
SAMP	LE TYPE:		S= SPLIT	SPOON	Built	U=SHEL	BY TUBE		R=ROCK	CORE				
PROP	ORTIONS:		1-10% LITTLE=10-20% SOME=20-35%					0-35%		AND=35-50%				
Table 3: Summary of Geotechnical Laboratory Test Results: Soil Samples														
------------------------------------------------------------------------	------------------------------------------------------	----------------	-------------------	--------------	---------------	------------	--------	-----------------------	-----------------------	-----------------------	--------------	---------		
	Bronx, Randall's Island to AGC Receiving Pit Segment													
							U	Ŭ			Water	Org.		
Boring ID	Sample ID	Depth (ft)	USCS Symbol	% Gravel	% Sand	% Silt	% Clay	LL ⁽¹⁾ (%)	PL ⁽²⁾ (%)	PI ⁽³⁾ (%)	Content	Content		
	6.2	7.0		14	74	F	2				(%)	(%)		
BR-1	3-3	/-9 15 17		10	/0 86.8	0 10.2	3 3	-	-	-	10.0 21.7			
	- S-5	20-22		36	52	0	3				10.7			
BR-2	<u> </u>	44 5-46 5	SC	17	59 59		7	26	- 15	- 11	8.9	_		
	<u> </u>	10-12	SW/	38	61	1	,	-	-	-	22.8	_		
BR-3	S-5	12-14	OH	2	4	61	33	99	35	64	73.1	4.2		
	S-7	20-22	SP-SM	38	55	6	1	-	-	-	8.4	-		
	S-6	20-22	GP	79	19	1	1	-	-	-	7.2	-		
	S-7	25-27	СН	0.1	5.3	94.6	-	77	30	47	56.1	-		
	S-8	30-32	SP-SM	0.8	87.7	8.5	3	-	-	-	26.3	-		
BK-4	S-10	40-42	SP-SM	4	94	1	1	-	-	-	19.4	-		
	S-15	60-61.5	ML	0	32.1	67.9	-	-	-	-	26.5	-		
	S-16	61.5-62	CL	0	4.5	95.5	-	36	18	18	32.6	-		
RA-1	No lab testing c	onducted on so	il from this bori	ng due to ir	nsufficient s	ample reco	overy					-		
	S-1	5-7	SC	18	60	19	3	-	-	-	28.2	-		
RA-2	S-7	20-22	GP	95	4	1	0	-	-	-	9.4	-		
1012	S-11A	40-41.5	СН	6	34	39	21	70	32	38	71.0	3.2		
	S-12	45-47	SM	40	45	12	3	-	-	-	14.0	-		
	S-2	5-7	GP-GM	63	31	5	1	-	-	-	11.9	-		
RA-3	<u>S-3</u>	7-9	GW	85	13	2	0	-	-	-	4.9	-		
	<u>S-6</u>	13-15	CL	7	25	58	10	38	22	16	35.3	2.6		
	S-9	26-26.5	GP-GIVI	61	33	5		-	-	-	0.0	-		
	5-4	9-11	SIVI	21	65 10		3	-	-	-	16.6	-		
	<u> </u>	10-17	GP SM/ SM/	/9 7	19	Z F	0	-	-	-	4.Z	-		
КА-4	5-9 C 11	30-32		7	87 00 5	о р	1 2	-	-	-	10.1	-		
	S-11	<u> </u>		0	09.0 0/ 0	0.0 3.0	 1	-	-	-	20.0	-		
Nutur	512	10 10	51	0.7	74.7	5.2	I				24.5			
NOTES:	-1 1 too 14													
(1) LL = LIQUI	a Limit													
(2) PL = PidSl (2) DI = Diacti	icity Indox													
3) PT = Plasticity index 4) SG = Specific Gravity														
(-) 30 - 3per	Sine Gravity													



Table 4: Summary of Geotechnical Laboratory Test Results: Rock Samples														
				DIONA					Jeginent					
Poring ID	Coro Dun	Donth (ft)	Dook Typo	000.0/	Water	Dry Unit	Mohs	Unconfined	Compressive S	trength Test	Point Load Test			
Boring ID	Core Run	Depth (IT)	коск туре	RQD %	Content %	(pcf)	Hardness	Compressive Strength (psi)	Axial Strain (%)	Estimated Elastic Modulus (psi)	Sample Orientation	Strength Index (Is50) (psi)	Estimated Compressive Strength (psi)	
	R-1	20-25		47	-	-	-	-	-	-	-	-	-	
	R-2	25-30		79	0.1	166	5	27930	0.32	9.00E+06	-	-	-	
	R-3	30-33		100	-	-	-	-	-	-	-	-	-	
	R-4	33-35		65	-	-	-	-	-	-	-	-	-	
	R-5	35-40		91	-	-	-	-	-	-	-	-	-	
BR-1	R-6	40-45	Gneiss	78	-	-	-	-	-	-	-	-	-	
	R-7	45-50		86	0.2	164	6	30720	0.39	8.00E+06	-	-	-	
	R-8	50-55		92	-	-	-	-	-	-	-	-	-	
	R-9	55-60		79	-	-	-	-	-	-	-	-	-	
	R-10	60-65		93	-	-	-	-	-	-	-	-	-	
	R-11	65-70		98	0.2	162	5	31050	0.35	9.00E+06	-	-	-	
	R-1	25-30		65	0.3	164	9	8040	0.26	4.00E+06	-	-	-	
BR-3	R-2	30-35	Schist	7	-	-	-	-	-	-	-	-	-	
	R-3	35-40		82	0.2	167	8	12030	0.21	7.00E+06	-	-	-	
	R-1	32-35		93	0.2	177	8	20100	0.24	9.00E+06	-	-	-	
	R-2	35-40		96	-	-	-	-	-	-	-	-	-	
	R-3	40-45		98	0.2	178	9	17510	0.21	9.00E+06	-	-	-	
	R-4	45-40		64	-	-	-	-	-	-	-	-	-	
DA 1	R-5	50-55	Choise	90	0.1	186	8	21120	0.2	1.00E+07	-	-	-	
INA- I	R-6	55-60	GHEISS	95	-	-	-	-	-	-	-	-	-	
	R-7	60-65		100	-	-	-	-	-	-	-	-	-	
	R-8	65-70		92	0.1	177	9	14130	0.21	8.00E+06	-	-	-	
	R-9	70-75		94	-	-	-	-	-	-	-	-	-	
	R-10	75-80		90	-	-	-	-	-	-	-	-	-	
	R-1	55-60		38	-	-	-	-	-	-	-	-	-	
	R-2	55-60		81	0.2	173	8	8990	0.25	4.00E+06	-	-	-	
DA 0	R-3	70-75	Grades	83	-	-	-	-	-	-	-	-	-	
KA-2	R-4	70-75	Gneiss	90	-	-	-	-	-	-	-	-	-	
	R-5	70-75	1	100	0.2	168	9	8880	0.22	5.00E+06	-	-	-	
	R-6	70-75	1	74	-	-	-	-	-	-	-	-	-	
<b>DA</b> A	R-1	31.8-34.0	<u> </u>	53	-	-	-	-	-	-	-	-	-	
KA-3	R-2	34-39	Gneiss	40	0.1	172	7-8	10280	0.18	6.00E+06	-	-	-	



#### **ROCK CORE PHOTOGRAPHIC LOG**

AECOM Project No: 60323056 Project Name: CHPE Geotechnical Investigation Location: Bronx, Randall's Island to AGC Receiving Pit Segment, Bronx and Queens Co's, NY





#### 4.0 TEST BORING PROGRAM

Three (3) land-based test borings, designated as BA-103, BA-104 & BA-105, were drilled and sampled onsite on Randall's Island to depths of 40 to 65 feet below grade, at the locations shown in Figure 2. The land-based test borings were conducted between May 23 and May 27, 2022. Note that these borings were originally designated K-103 through K-105, but were later changed at the request of Kiewit. However, the core photographs (Appendix B) and laboratory test results (Appendices C and D) show the original K- prefix for these boreholes.



Figure 2: Land-based Boring Location Plan. Scale Approximate. Photograph from www.googleearth.com.

Three (3) marine borings were completed in the East River between June 1, 2022, to June 16, 2022. Designated as BA-101, BA-102 & BA-106, these borings were drilled and sampled to depths of 108 to 125 feet below the river mudline. The locations of the marine test borings are shown on Figure 3.





Figure 3: Marine Boring Location Plan. Scale Approximate. Photograph from www.googleearth.com.

Test boring logs presenting descriptions of the materials encountered are included in Appendix A, along with a soil and bedrock classification key. The as-drilled coordinates and elevations of each borehole are presented in Table 1.

Boring ID	Easting	Northing	Elevation				
BA-101	1009905	227831	-18				
BA-102	1010122	227509	-12				
BA-103 (K-103)	1006168	230281	10.4				
BA-104 (K-104)	1005980	230572	9.5				
BA-105 (K-105)	1007420	229752	10.3				
BA-106	1008320	229287	-22				
State Plane Zone 3104, US Survey Feet, NAVD88							

Table 1: Borehole	Coordinates	and	Elevations
-------------------	-------------	-----	------------

The onshore and offshore test borings were supervised by a Brierley field engineer, who directed drilling activities, logged the samples, photographed the rock cores, and prepared the field logs. Field sampling, laboratory testing, soil classifications and strata descriptions are in general accordance with methods, procedures, and practices set forth by 1) the Unified Soil



# BORING NUMBER BA-103 (K-103) PAGE 1 OF 2

								E an	Creating	g Space Ui	nderground	1
				<u>.</u>		<u>npiain Huo</u> Randall's	lsland		55			
	DATE	STAR	TED 5/26/22	COMPLETED 5/26/22	GROUND ELEVATION	10.36 ft N	VAVD8	8 NORTHI	NG 230	)281		
	DRILL	ING C	ONTRACTOR Warren G	eorge, Inc.	GROUND WATER LEVE	ELS:		EASTIN	<b>G</b> 1006	168.1		
	DRILL	ING M	ETHOD Mud Rotary		$\overline{\mathbb{V}}$ at time of dril	LING 8.	50 ft /	Elev 1.86 ft				
	DRILL	. RIG _	Acker Soil Max	DRILLER Greg Williams	AT END OF DRIL	LING						
	LOGG	ED BY	Colby Jesset, P.E.	CHECKED BY Dave Sackett, P.G.	AFTER DRILLING	)						
	DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE)	UCS (psi)	CERCHAR	BULK DENSITY (pcf)	FINES (%)
RINGS.GPJ			Silty fine-medium SA	ND, dense, gray, moist, few coarse sa	nd, trace fine gravels	A SPT S-1	42	14-22-27 (49)				
D MARINE BO			Sandy SILT, very der rounded to sub-round	nse, blackish gray, moist, few medium Jed	to coarse gravels,	A SPT S-2	50	25-34-38 (72)				
S ISLAND ANI	5		- 4.0' - 4.5' silty layer -4.5' to 6', Silty fine to	, red, with little coarse sand o coarse SAND, gray	0.	SPT S-3	58	35-46-44 (90)				
PE RANDALL			Fine SAND with Silt,	very dense, black to brown gray, trace	fine gravel, rounded	4 SPT S-4	38	76-8-4 (12)				
ESKTOP/CHI	  10	· · · · · · · · · · · · ·	∑ Clayey SILT, firm,  gi	ay, wet, few fine to coarse sand, trace	e fine gravel, angular	SPT S-5	50	2-4-4 (8)				
RATION/E			Silty fine SAND, very	dense, gray, wet	0.	SPT	4	100				
Y ASSOCIATES CORPO	  				-4	6						
BRIERLE		<u><u>, , , ,</u> , *////////////////////////////////////</u>	Silty Clayey PEAT, ve	ery soft, dark gray, wet, strong odor, pa	artially decomposed	6 SPT	83	0-0-0/0"				
DRIVE -			SCHIST, very weak,	grey white black, highly weathered		SPT S-7B	83	(142)				
VBUCHER\ONE	  20					O NR S-8	0	100				
KBREITER			20.0' - 30.0' medium	strong, lightly fractured, redish brown	staining on joints							
2 17:11 - C:\USERS\						RC R-1	90 (87)					
9.GDT - 7/28/2:	25		-29.4' - 30' highly we	athered, moderately fractured								
R0 - BRIERLEY_2018091	  					RC R-2	100 (78)					
ROCK	30		-30' - 35' slightly frac	tured								
TECH BH PLOTS	 		-fresh below 31.0'			RC R-3	95 (95)					
3A - GEC	 35											

# BORING NUMBER BA-103 (K-103) PAGE 2 OF 2

CLIE	NT <u>Kie</u>	wit Engineering (NY) Corp.	PROJECT NAME Champlain Hudson Power Express							
PRO	JECT N	JMBER 322004.001	PROJECT LOCATION _	kandali	s Island.	, IN Y				
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE)	UCS (psi)	CERCHAR	BULK DENSITY (pcf)	FINES (%)
- 35		SCHIST, strong, gray white, fresh, redish brown staining or	n joints							
F	->>>>	35' to 40' moderately fractured clight weathering of joints								
	-	- 55 to 40 moderately fractured, slight weathering of joints		R( R-	2 98 4 (87)					
GB GP	-888	-40' - 45' moderately fractured				-				
ND MARINE BORINGS		- highly weathered from 44.2' to 44.7'		R( R-	C 100 5 (92)					
45	-	-45' - 50' slightly fractured				-				
	-			R( R-	C 100 6 (92)					
		-50' - 55' moderately fractured				-				
ASSOCIATES CORPORAT		- 50.4' to 53.6' feldspar in pegmatite intrusions, pink		R( R-	C 100 7 (100)		8114	4.12	161	
<u>}</u> 55	-86	-55' - 60' moderately fractured				-				
- BRIEF	-2003									
	-	- 56.6' to 56.8' feldspar in pegmatite intrusions, pink		R( R-	C 97 8 (92)					
2 60	->>>>	-60' - 65' slightly fractured				-				
8/22 17:11 - C:\USERSWBR				R( R-	C 100 9 (97)					
[№] 65	V//>	Bottom of borehole at 65.0 feet								L
GE OTECH BH PLOTS_ROCK_R0 - BRIERLEY_20180919.GD1		Bottom of borenoie at 65.0 feet. -Boring coordinates are in State Plane System: State Plane Zone 3104 US Survey Feet								
BA - GEOTECH B										

# BORING NUMBER BA-105 (K-105) PAGE 1 OF 2

	CLIEI	NT Ki	ewit Engineering (NY) Cor	p		PROJECT NAME Ch	amplain	Hudson	Power Expre	ess			
	PROJ		UMBER <u>322004.001</u>	•		PROJECT LOCATION	Randa	all's Islar	id, NY				
	DATE		TED _5/27/22	COMPLETED	5/27/22	GROUND ELEVATION	10.3	ft NAVD	BB NORTH	ING _22	9752.4		
	DRIL		ONTRACTOR Warren G	George, Inc.		GROUND WATER LE	VELS:		EASTIN	<b>IG</b> 1007	7419.7		
	DRIL	LING N	ETHOD Mud Rotary			$\overline{{ar ar {}}}$ at time of df	RILLING	8.00 ft	/ Elev 2.30 f	ft			
	DRIL	RIG	Acker Soil Max	_ DRILLER _ Gre	eg Williams	AT END OF DR	ILLING						
	LOGO	ED B	Colby Jesset, P.E.	_ CHECKED BY	Dave Sackett, P.G.	AFTER DRILLIN	IG						
	o DEPTH (ft)	GRAPHIC LOG		MATERIAL	DESCRIPTION		SAMPLE TYPE	RECOVERY %	(אמט) NVALUE)	UCS (psi)	CERCHAR	BULK DENSITY (pcf)	FINES (%)
SS.GPJ		<u></u>	Top Soil				9.8 V S	SPT 17	,				
BORING			Fine SAND, brown,	moist			8.3	5-1 ''					
ND MARINE E			Silty fine to medium coarse gravel	SAND, dense to v	ery dense, gray/brow	n, moist, trace fine to	S	SPT 67	, 21-20-9 (29)				
LS ISLAND A	5							SPT S-3	8-8-14 (22)				
HPE RANDAL			-Possible cobble/bou $ abla$	ulder, split spoon b	ouncing		2.3	NR 0 5-4 0	100				
DESKTOP/CI	- 10	-	[−] Sandy SILT, mediun	n dense, brown, we	et, little red gravel		0.3	SPT 17 S-5 17	, 6-13-6 (19)				
SOCIATES CORPORATION			Silty fine to coarse C fine sand	GRAVEL, medium (	dense, red black whi	te, wet, some silty brown		SPT 29	) 10-13-14 (27)	_			
RLEY AS	15		Silty fine to medium	SAND with gravel	dense trace fine to		4.7			-			
E - BRIEI				of a to the man gravel,		obaroo graver		SPT 88	3 19-21-50 (71)				
ENBUCHER\ONEDRIV			-16.5' cobble tragme	ent of highly weath	ered schist					-			
7/28/22 17:11 - C:\USERS\KBREI	   25		-20.0 driller switche -20.0' - 20.5' - cobbl	d to rock coring le fragment of weat	thered schist		F	RC 56 R-1 (40	6 ))				
IERLEY_20180919.GDT -	 		Silty fine to coarse C fine to medium sand	GRAVEL, dense, bl I	ack, wet,sub-rounde	-1 d to sub-angular, little	<u>5.1</u>	SPT 50	) 19-30	-			
_R0-BR							9.7						
H PLOTS_ROCK			Silty fine to medium to coarse gravel - 31' to 32' light chat	SAND, medium de tter while drilling, p	ense, black, wet, little ossible gravel	e coarse sand, some fine		SPT 42 S-9 42	2 14-7-15 (22)				
BA - GEOTECH B.			- 33' top of possible	cobble/boulder		-2	4.7						

(Continued Next Page)

## BORING NUMBER BA-105 (K-105) PAGE 2 OF 2

BRIERLEY ASSOCIATES Creating Space Underground

#### CLIENT Kiewit Engineering (NY) Corp.

PROJECT NAME Champlain Hudson Power Express

PROJECT NUMBER _ 322004.001
-----------------------------

PROJ	ECT N	UMBER 322004.001	_ PROJECT LOCATION _ Randall's Island, NY							
C DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE)	UCS (psi)	CERCHAR	BULK DENSITY (pcf)	FINES (%)
   40		PEAT, black, wet, odorous 35.0' driller switched to rock coring 35.0' to 35.8' small cobble of weathered schist	-29.7	RC R-2	12 (10)					

#### Bottom of borehole at 40.0 feet.

-Boring coordinates are in State Plane System: State Plane Zone 3104 US Survey Feet

















summary of the results of the geotechnical laboratory testing program are presented in Appendix C.

Thermal resistivity testing of recovered soil and rock samples was performed by GeothermUSA in their Cypress, Texas laboratory during July 2022. Four rock core samples were tested "as is". The soil samples were recompacted at the "as received" moisture content and at 95% of the single point standard Proctor density as directed by Brierley. A complete summary of the results of the thermal resistivity laboratory testing program are presented in Appendix D.

#### 5.1 Soil Geotechnical Test Results

Geotechnical laboratory testing was performed on select samples from Borings BA-103 and BA-105. The summaries are listed below. The grain size test was performed on a composite sample from boring BA-105. An Atterberg Limits test was performed on a potentially clayey sample from Boring BA-103, but the sample was described by the lab to be non-plastic.

Moisture Content								
Boring ID	Depth (Ft BGS)	Value (%)						
ВА-103 (К-103) 8.0-10.0 13.1								

#### Table 2: Moisture Content Results

		Grain Size		
Boring ID	Depth (Ft BGS)	Value (% GRAVEL)	Value (%, SAND)	Value (%, Fines)
BA-105 (K-105)	Mix of Sample 6 and Sample 9	64.6	30.6	4.8

#### Table 3: Grain Size Distribution Results

#### Table 4: Atterberg Limits Results

Atterberg Limits									
Boring ID	Depth	Value							
	FL DOSJ	(#, NP) Non-							
BA-103 (K-103)	8.0-10.0	Plastic							



#### 5.2 Rock Geotechnical Laboratory Test Results

Unconfined Compressive Strength (UCS) testing (ASTM D7012) was performed on twelve (12) recovered rock core samples from Borings BA-101, BA-102, BA-103, BA-104, and BA-106. Table 5 presents a summary of the sample depths, bulk density, and strength test values.

Unconfined	Compressive Stre	ngth (UCS) and Bulk De	nsity
Boring ID	Depth (ft BGS)	Bulk Density Value (pcf)	UCS Value (psi)
BA-101	41-41.39	170	7,594
BA-101	80.26-80.63	165	12,471
BA-101	111.51-111.87	173	6,025
BA-102	78.59-78.97	178	12,363
BA-102	91.37-91.75	170	16,387
BA-102	100.56-100.89	162	19,499
BA-102	101.65-102.03	174	15,501
BA-103 (K-103)	52.78-53.15	161	8,114
BA-104 (K-104)	55.39-55.77	169	2,814
BA-106	40.04-40.37	169	17,245
BA-106	87.26-87.64	166	16,264
BA-106	104.51-104.88	163	14,240

#### Table 5: Unconfined Compressive Strength Results

Cerchar abrasivity index (CAI) tests were performed in accordance with ASTM D7625 on twelve (12) rock core samples. Table 6 presents the range of CAI Index Values as assigned by ASTM D7625. The CAI test results are summarized in Table 7. D7625.

Cerchar Values Based on AS	TM D7625 (2010)
Very low abrasiveness	0.30-0.50
Low abrasiveness	0.50-1.00
Medium abrasiveness	1.00-2.00
High abrasiveness	2.00-4.00
Extremely abrasiveness	4.00-6.00
Quarzitic	6.00-7.00

#### Table 6: Cerchar Abrasivity Index Value Ranges per ASTM D7625





<u>LEGEND</u>	
● TV-XX	APPROXIMATE TEST BORING LOCATION AT TRANSITION VA
● sv-xx	APPROXIMATE TEST BORING LOCATION AT SPLICE VAULT
A TR-XX	APPROXIMATE THERMAL RESISTIVITY SOIL BORING
● HDD-XX	APPROXIMATE HORIZONTAL DIRECTIONAL DRILLING SOIL E

								TEST BORIN	G LOG							
G		GZA ( f New ngineel	G <b>eoEn</b> v York rs and S	viro S Cientis	nme sts	ntal		Kiewit Engineering CHPE - HVDC Segment Queens, N	Group, In s 13, 14, a NY	c. nd 15	EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 1 c : 41 Y: D	D.: S of 2 .01632 . Patel	√-264 05.10		
Log Dril For Date	ged By: ling Co.: eman: e Start:	M. Sis Craig G. Za 12/6/2	sodiya Geotecł ckman 2023	hnical Finis	Testi h: 12	ng. Inc /6/2023	Tyj Rig Dri Mu	pe of Rig: Truck g Model: CME 75 Illing Method: d Rotary	Boring L Stationin Ground S Final Bo	ocation: S Ig (ft.): Surface Ele ring Depth	ee Plan Offset (ft. evation (ft.): 12 (ft.): 30	):		H. Da V. Da Norti East	atum: NAI atum: NAV hing: 451 ing: 591	D 83 /D 88 6896.42 103.69
Han	nmer Typ	e: Au	tomatic	Hamr	ner		Sa	mpler Type: SS		Data	Groundy		Depth	n (ft.)	Stab 7	Timo
Han Han Aug	nmer We nmer Fal Jer or Ca	ight (l l (in.): sing C	b.): 14 30 ).D./I.D	0 Dia (i	<b>n.):</b> 4	."	Sai Sai Ro	mpler O.D. (in.): 2.0 mpler Length (in.): 24 ck Core Size: N/A		12/14/202	23 9:00am		12	spin	Estima	ated
Dept (ft)	Casing h Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an I Burmister	d Identifica Procedure	tion )	Remark	Field Test Data	Depth (ft.)	Stratum Descriptio	Elev. (ft.)
5_		S-1	6.0-8	24	23	10 10	16	S-1: Medium dense, bro	own, fine to	coarse SA	ND, little					
10	-	S-2	8.0- 10	24	11	7 7 3 3	10	S-2: Medium dense, bro Gravel, little Silt, brick fra	own, fine to agments.	coarse SA	ND, little				FILL (NYCBC	7)
	-	S-3	10.0- 12	24	0	2 WOH 1 2	1	S-3: No recovery.								
	-	S-4	12.0- 14	24	0	2 2 1 1	3	S-4: No recovery.								
15 _	-	S-5 S-6	14.0- 15.7 16.0-	20	3	7 50/2" 50/3"	13 R	S-5: Medium dense, bro Gravel, little Silt, micace S-6: Verv dense, brown	own-gray, n ous. -grav. fine f	to coarse S	AND. some	2		15.7		-3.7
	-	S-7	16.2 18.0-	2	0	50/2"	R	Gravel, little Silt, micace S-7: No recovery.	ous.		,					
20	-		18.1											DEC	OMPOSEE (NYCBC 1	) ROCK d)
23 <u>-</u> 30	-	S-8	25.0- 25	0	0	50/0"	R	S-8: No recovery.						30		-18.0
REMARKS	1 - Boreł 2 - Rig c	iole wa natterir	as hand	excav appro	ated t ximat	o 5 feet. ely 16 feet to	o 18 fe	eet.				L				-10.0
See boui time time	Log Key ndaries b s and un s the me	for e etweer der the asuren	xploratio n soil an e conditi nents we	on of id bec ions s ere m	samp drock tated. ade.	le descriptic types. Actua Fluctuation	n and al tran: s of g	l identification procedures sitions may be gradual. V roundwater may occur du	s. Stratifica Vater level le to other	tion lines i readings h factors tha	epresent approx ave been made n those present	kimat at th at th	e e e	xplo S	oration N SV-264	lo.:

	TEST BORING LOG															
G		GZA ( f New Inginee	GeoEn v York rs and S	<b>viro</b> K Scienti:	nme sts	ntal		Kiewit Engineering CHPE - HVDC Segment Queens, N	Group, In s 13, 14, a NY	c. nd 15	EXPLORATIO SHEET: PROJECT NO: REVIEWED B	N NC 2 c : 41 : D	D.: S' of 2 .01632 . Patel	V-264 205.10		
Logo Drill Fore Date	ged By: ing Co.: eman: Start:	M. Sis Craig G. Za 12/6/2	sodiya Geotec ckman 2023	hnical <b>Finis</b>	Testi h: 12/	ng. Inc /6/2023	Ty Rig Dri Mu	pe of Rig: Truck g Model: CME 75 illing Method: id Rotary	Boring Lo Stationin Ground S Final Bor	ocation: S Ig (ft.): Surface Ele ring Depth	ee Plan Offset (ft.) evation (ft.): 12 (ft.): 30	:		H. Dat V. Dat North Eastin	tum: NAD tum: NAV ing: 4516 ng: 5911	83 D 88 896.42 03.69
Ham	mer Ty	<b>be:</b> Au	tomatic	Hamr	mer		Sa	mpler Type: SS		Date	Groundw	ater	Depti	n (ft.)	Stah T	ime
Ham Ham Auge	mer We mer Fal er or Ca	ight (l l (in.): sing C	b.): 14 30 ).D./I.D	.0 Dia (i	<b>n.):</b> 4		Sa Sa Ro	mpler O.D. (in.): 2.0 mpler Length (in.): 24 ck Core Size: N/A		12/14/202	23 9:00am		12		Estima	ted
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription and Burmister	d Identifica Procedure	tion )	Remark	Field Test Data	Depth (ft.)	Stratum Descriptior	Elev. (ft.)
-	-	3-9	30		U	30/0	к	End of exploration at 30	feet.			3				
35 _																
40 _																
-																
45 _	-															
50 _ -	-															
- 55	-															
-	-															
REMARKS	60       3 - Upon completion, borehole was backfilled with soil cuttings and bentonite.         Stars       3 - Upon completion, borehole was backfilled with soil cuttings and bentonite.															
See boun times times	Log Key idaries b s and ur s the me	/ for e etweer ider the asuren	xploration soil ar condit nents w	on of nd bec ions s ere m	samp Irock tated. ade.	le descriptio types. Actua Fluctuation	on and al tran is of g	d identification procedures sitions may be gradual. V roundwater may occur du	s. Stratifica Vater level le to other	ation lines r readings h factors tha	represent approx ave been made n those present	imat at th at th	e e e	Explo S	ration N V-264	o.:

									TEST BORIN	G LOG								
G		GZA ( f New nginee	GeoEn v York rs and S	viro K Cientis	nme sts	ntal		c	Kiewit Engineering CHPE - HVDC Segment: Queens, N	Group, In s 13, 14, a IY	c. nd 15	EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 1 c : 41. Y: D	).: TH of 1 .01632 . Patel	R330. 05.10	0-1.0		
Log Dril Fore Date	ged By: ling Co.: eman: e Start:	M. Sis Craig G. Za 12/6/2	sodiya Geotecl ckman 2023	hnical Finis	Testi <b>h:</b> 12	ng. Inc /6/2023	•	Type Rig I Drill Mud	e of Rig: Truck Model: CME 75 ing Method: Rotary	Boring L Stationin Ground S Final Bo	ocation: S g (ft.): Surface Ele ring Depth	ee Plan Offset (ft.) evation (ft.): 12 (ft.): 14	):		H. Da V. Da Nort East	atum: N atum: N hing: 4 ing: 5	IAD 83 IAVD 8 51688 91157	3 38 0.24 .95
Han	nmer Tvr	e: Au	Itomatic	Hamr	ner		:	Sam	pler Type: U			Groundv	vater	Depth	1 (ft.)			
Han Han Aug	nmer We nmer Fal er or Ca	ight (l l (in.): sing C	<b>b.):</b> 14 30 <b>D.D./I.D</b>	0 Dia (i	n.): 4	."		Sam Sam Rock	pler O.D. (in.): 3.0 pler Length (in.): 24 k Core Size: N/A		Date 12/6/202	Time           3         12:00pm	Wa	ater De 12	epth	Stat Esti	<b>b. Time</b> imated	9
Deptl (ft)	Casing Blows/ Core	No	Depth	Samp Pen.	le Rec.	Blows	SF	PT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	 tion )	emark	Field Test	(ft.)	Stratu Descrip	um	(ft.)
()	Rate		(ft.)	(in)	(in)	(per 6 in.	)  Val	lue	12" Asphalt	2411110101		/	<u>r</u> 1	Data				_
	-	S-1	1.0-3					5	S-1: Brown, fine to coar	se SAND, I	ittle Gravel	, little Silt.			1			11.0
5 _	-	S-2	3.0-5					S	S-2: Brown, fine to coar	se SAND, I	ittle Gravel	, little Silt.						
	S-3 6.0-8 S-3: Brown, fine to coarse SAND, little Gravel, little Silt.																	
10 _	S-4 9.0- 11 S-4: Brown, fine to coarse SAND, little Gravel, little Silt.																	
	-	S-5	12.0- 14					ę	S-5: Brown, fine to coar	se SAND, I	ittle Gravel	, little Silt.			14			-2.0
15	-							E	End of exploration at 14	feet.			2					-2.0
	-																	
20 _	-																	
25 _	-																	
30	1 - Soil -	ample			ad for	thermal -		vity +	acting Standard Danatur	ation and T	esting (SD	[] was not perfor	mod	in this	tooth	oring		
REMARKS	2 - Upon	compl	etion, bo	brehol		backfilled	l with	soil	coung. Otanuard Penetra cuttings and bentonite, a	and surface	esting (SP1	i was not perfor ith asphalt cold	patch	111 U11S	ies( D	onng.		
See bour time time	Log Key ndaries b s and un s the me	for ex etweer der the asuren	xploration n soil ar e condition nents wo	n of id bec ions s ere m	samp Irock tated. ade.	le descrip types. Act Fluctuati	tion a ual tr ons o	and i ransit of gro	identification procedures tions may be gradual. V bundwater may occur du	. Stratifica /ater level e to other	tion lines i readings h factors tha	represent approx ave been made n those present	kimati at the at the	e e e	Explo TR	oration 330.0-	No.: 1.0	:

	GZ		GZA ( f New nginee	GeoEn v York rs and S	<b>iviro</b> K Scientis	nme sts	ntal		Kiewit Engineering CHPE - HVDC Segments Queens, N	Group, In s 13, 14, a IY	c. nd 15	EXPLORAT SHEET: PROJECT N REVIEWED	ion No 1 ( io: 41 BY: D	D.: T of 1 .01632 . Pate	R330.( 205.10 I	)-2.3	
	Logg Drilli Forei Date	ed By: ng Co.: man: Start:	M. Fro Craig S. Scl 12/14	ey Geotec hute /2023	hnical <b>Finis</b>	Testi	ng. Inc /14/2023	Ty Rig Dr Di	<b>pe of Rig:</b> Geoprobe <b>g Model</b> : 7822DT illing Method: rect Push	Boring Lo Stationin Ground S Final Bor	ocation: S g (ft.): Surface Ele ring Depth	ee Plan Offset (f evation (ft.): (ft.): 14	<b>ft.):</b> 10		H. Da V. Da North Easti	itum: NA itum: NA ning: 45 ing: 59	AD 83 AVD 88 16874.52 1350.87
	Hamr	ner Tvr	De: Au	Itomatic	Hamr	ner		Sa	mpler Type: U		• •	Groun	dwater	Dept	h (ft.)	•	
	Hamr	ner We	ight (l	<b>b.):</b> 14	0			Sa	mpler O.D. (in.): 3.0		Date 12/14/202	23 Not		<b>ater D</b> Veasu	epth red	Stab.	Time
	Auge	r or Ca	sing C	30 D.D./I.D	Dia (i	<b>n.)</b> : 4	."	R	ock Core Size: N/A								
_ C	Depth	Casing Blows/ Core	No	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample Des (Modified	cription and	d Identifica Procedure	tion	emark	Field Test	epth (ft.)	Stratur Descripti	n . (.: ion .: (.:
-	(11)	Rate	140.	(ft.)	(in)	(in)	(per 6 in.)	Value	6" Asphalt	Durmister	Troccoure	)	<u> </u>	Data	0.5	ASPHA	LT 9.5
	-		S-1	0.5-2					S-1: Brown, fine to coars	se SAND, s	some Grav	el, little Silt.					
	- 5_	S-2     3.0-5       S-2     3.0-5       S-2     S-2: Brown, fine to coarse SAND, some Gravel, little Silt, brick fragments.															
	-	S-3 6.0-8 S-3: Brown, fine to coarse SAND, some Gravel, little Silt, brick fragments.															
	- 10	S-4 9.0- 10.5 S-4: Brown, fine to coarse SAND, some Gravel, little Silt, brick fragments.															
103205.10.6F	-	S-5 12.0- 14 S-5: Brown, fine to coarse SAND, some Gravel, little Silt, brick fragments.														-4.0	
3ASES/41.0.103200/41.0	15 _ - -								End of exploration at 14	feet.			2				
	- 20 _ - -																
5)	- 25 _ -																
10.01 01 20.01	- 30 1	- Soil s	ample	s were d		ed for	thermal res	sistivity	/ testing. Standard Penetra	tion and Te	esting (SP1	() was not perf	ormed	in this	test bo	pring.	
AIE IENI DURING -	2 - Upon completion, borehole was backfilled with soil cuttings and bentonite, and surface patched with asphalt cold patch.																
GZA LEINIFL	See I bound times times	Log Key daries b and un the me	/ for e etweer der the asuren	xploration soil ar condit nents w	on of nd bec ions s ere ma	samp Irock tated. ade.	le descripti types. Actu Fluctuation	on an al trar ns of g	d identification procedures isitions may be gradual. W groundwater may occur du	. Stratifica /ater level e to other	tion lines i readings h factors tha	represent appr ave been mad n those preser	roximat le at th nt at th	e e e	Explo TR	oration 330.0-2	No.: 3

								TEST BORIN	G LOG									
GZ	G of Er	GZA ( f New ngineer	G <b>eoEn</b> v <b>York</b> rs and S	viro S cienti:	onme sts	ntal		Kiewit Engineering CHPE - HVDC Segment Queens, N	Group, In s 13, 14, a NY	c. nd 15	EX SH PR RE	PLORATIO EET: OJECT NO: VIEWED B`	N NC 1 c : 41. Y: D	0.: SN of 2 01632 . Patel	/-265 05.10			
Logge Drillir Foren Date \$	ed By: ng Co.: nan: Start:	M. Sis Craig G. Za 12/5/2	sodiya Geotecl ckman 2023	hnical Finis	Testi h: 12/	ng. Inc /5/2023	Ty Rig Dri Mu	<b>pe of Rig:</b> Truck g <b>Model:</b> CME 75 illing Method: id Rotary	Boring L Stationin Ground S Final Bo	ocation: So ng (ft.): Surface Ele ring Depth	ee Pl evati (ft.):	an <b>Offset (ft.)</b> on (ft.): 9 42	:		H. Da V. Da Nort East	atum: NAD atum: NAV hing: 4516 ing: 5914	83 D 88 8823 108	
Hamm	ner Typ	e: Au	tomatic	Hamr	mer		Sa	mpler Type: SS		Dato		Groundw	ater	Depth	n (ft.)	Stah T	imo	
Hamn Hamn Augei	ner Wei ner Fall r or Cas	ight (l l (in.): sing C	b.): 14 30 ).D./I.D	0 Dia (i	<b>n.):</b> 4	"	Sa Sa Ro	mpler O.D. (in.): 2.0 mpler Length (in.): 24 ck Core Size: N/A		12/5/2023	3	3:00pm		8	pui	Estima	ted	
Depth	Casing Blows/ Core	No.	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identificat Procedure)	tion )		emark	Field Test	Jepth (ft.)	Stratum Description	Llev. (ft.)	
	Rate	110.	(ft.)	(in)	(in)	(per 6 in.)	Value	9" Asphalt.	Barrilotor		2 1	Data	0.8	ASPHALT	8.2			
														-				
-		S-1	6.0- 8.0	24	8	34 46	8	S-1: Loose, brown, fine Silt, brick fragments.	to coarse \$	SAND, little	Grav	el, little						
-		S-2	8.0- 10.0	24	11	9 12 10 24	22	S-2: Medium dense, bro GRAVEL, trace Silt, bric	own-gray, fi k fragment	ne to coars s.	e SA	ND and						
10		S-3	10.0- 12.0	24	0	22 64	8	S-3: No recovery.										
-		S-4	12.0- 14.0	24	7	13 21	5	S-4: Loose, dark gray, f Gravel, brick fragments.	ine to carse	e SAND and	d SIL	T, trace	3					
15 _		S-5	14.0- 16.0	24	9	38 50 10 6	60	S-5: Very dense, gray, f trace Silt.	ine to coars	se SAND, li	ittle G	Gravel,	3			FILL (NYCBC 7	)	
_		S-6	16.0- 18.0	24	15	2 2 2 2	4	S-6: Soft, dark gray, SIL	T and CLA	Y, little Gra	avel, l	ittle Sand.	3					
20 _		5-7	20.0	24	13	WOH WOH 6 1	6	Ittle Sand.	gray, SILI		little	Gravel,						
-		3-0	22.0	24	10	62 73	9	Clay, little Gravel. (PP =	1.0 tsf)	um sand,	SOM	Silly	3					
- 25 _ - -		S-9	25.0- 27.0	8	7	1 50/2"	R	S-9: Very dense, dark g Gravel, little Silt.	ray, fine to	coarse SAN	ND, li	ttle	3					
30	Borok		- bord		lated t	o 5 foot								-	28.5	SILTY CLA NYCBC 4c	<u>-19.5</u> Y ⁄6)	
REMARKS	- Boreh - Brick - Petrol - Pocke	wedge eum o et Pene	as nand ad in tip o dor in sa etromete	excav of spli ample er (PP	t spoc s: S-4 ) read	o 5 reet. on in sample I, S-5, S-6,9 ling in tons	e S-3. S-8, ar per sq	nd S-9. uare foot (tsf).										
See L bound times times	og Key aries b and un the mea	for ex etweer der the asuren	xploratic n soil ar e conditi nents we	n of id bec ions s ere m	samp drock tated. ade.	le descriptio types. Actu Fluctuatior	on and al tran ns of g	d identification procedure: isitions may be gradual. V proundwater may occur du	s. Stratifica Vater level le to other	ation lines r readings ha factors thar	repre ave b n tho	sent approx been made se present	imate at the at the	e e e	xplc S	oration N SV-265	<b>o</b> .:	

								TEST BORIN	G LOG								
6		GZA ( f New ngineer	GeoEn v York rs and S	<b>viro</b> K Cientis	nme sts	ental		Kiewit Engineering CHPE - HVDC Segment Queens, N	Group, In s 13, 14, a \Y	c. nd 15	EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NC 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c	D.: SV of 2 .01632 . Patel	/-265 05.10			
Logg Drilli Fore Date	ged By: ing Co.: man: Start:	M. Sis Craig G. Za 12/5/2	odiya Geotecl ckman 2023	hnical <b>Finis</b>	Testi h: 12	ng. Inc /5/2023	Tyj Rig Dri Mu	<b>be of Rig:</b> Truck <b>3 Model:</b> CME 75 Illing Method: d Rotary	Boring Lo Stationin Ground S Final Bor	ocation: S g (ft.): Surface El ring Depth	ee Plan Offset (ft. evation (ft.): 9 (ft.): 42	):		H. Da V. Da North Easti	atum:NAD 83atum:NAVD 88ning:4516823sing:591408		
Ham	mer Typ	<b>be:</b> Au	tomatic	Hamr	ner		Sa	mpler Type: SS			Groundv	vater	Depth	n (ft.)	o <del>.</del> .		
Ham Ham Auge	mer We mer Fal er or Ca	ight (ll l (in.): sing C	b.): 14 30 ). <b>D./I.D</b>	0 Dia (i	n.): 4	."	Sai Sai Ro	mpler O.D. (in.): 2.0 mpler Length (in.): 24 ck Core Size: N/A		12/5/202	3 3:00pm		8	ptn	Estimated		
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription and Burmister	d Identifica Procedure	tion )	Remark	Field Test Data	Depth (ft.)	Stratum	(п.)	
-	-	S-10	30.0- 32.0	24	8	23 23	5	S-10: Medium stiff, gray Sand, shell fragments.	/, Silty CLA	Y, some G	ravel, trace						
-	-													(	SILTY CLAY NYCBC 4c/6)		
35 _ -	-	S-11	35.0- 37.0	24	19	WOH WOH 32	3	S-11: Top 10": Soft, gray, Silty CLAY, root fragments. Bottom 9": Very loose, gray-brown, fine to coarse SAND, trace Gravel, trace Silt.									
- _ 40 _	-	S-12	40.0- 42.0	24	10	23 32	6	S-12: Loose, gray, fine t Gravel.	to coarse S	AND, little	Silt, trace			ι	JPPER SAND (NYCBC 6)		
-	-							End of exploration at 42	feet.			5		42	-3:	3.0	
45 - - 50 -																	
- _55 _ - -	-																
-																	
REMARKS	5 - Upon	compl	etion, bo	orehol	e was	s backfilled v	with so	l cuttings and bentonite, a	and surface	e patched v	<i>i</i> ith asphalt cold	patch	ı.	L			
See boun times times	Log Key daries b and un the me	/ for ex etweer der the asuren	xploratic soil ar conditi nents we	on of nd bed ions s ere m	samp drock tated. ade.	le descriptic types. Actua Fluctuation	on and al trans is of g	l identification procedures sitions may be gradual. V roundwater may occur du	s. Stratifica Vater level le to other	tion lines readings h factors tha	represent approx ave been made n those present	ximat at th at th	e e e	xplo S	oration No.: SV-265		

	195 Frances Avenue	Client In	formation:	Project	Information:
	Cranston RI, 02910	GZA GeoEr	nvironmental	Champlin Hudson Pov	ver Express - HVDC Area 5
Thiolsch	Phone: (401)-467-6454	New Y	′ork, NY	Queens	to Bronx, NY
	Fax: (401)-467-2398	Project Manager:	Dharmil Patel	Project Number:	41.0163206.10
DIVISION OF THE RISE GROUP	cts.thielsch.com	Assigned By:	Dharmil Patel	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By:	M. Sisodye	Report Date:	12.22.23

#### LABORATORY TESTING DATA SHEET, Report No.: 7423-M-157

							Ide	entificatio	n Tests				Proctor / CBR / Permeability Tests								
Boring No.	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	OD LL	Gravel %	Sand %	Fines %	Org. %	рН	g _d <u>MAX (pcf)</u> W _{opt} (%)	g _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Dry unit wt. (pcf)	Test Moisture Content %	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	1318			D6913		D2974	D4792	D1	557							
SV-264	S-5	14-16	23-5-5033	22.4				10.3	73.8	15.9											Dark Brown f-m SAND, little Silt,
57 204	5	14 10	25 5 5055	22.4				10.5	75.0	13.5											little fine Gravel
SV-264	S-6	16-18	23-S-5034	29.1				29.1	53.7	17.2											Dark Brown f-c SAND, some fine
																					Gravel, little Silt
SV-265	S-2	8-10	23-S-5035	6.3				54.5	40.3	5.2											Light Brown f-c GRAVEL and f-c
			-												-						SAND, trace Silt
SV-265	S-8	20-22	23-S-5036	43.5				11.4	55.0	33.6											& Clay, little f-c Gravel
																					Grev CLAY some f-c Gravel, trace
SV-265	S-10	30-32	23-S-5037	68.5	81	39		24.6	6.6	68.8											f-m Sand
01/ 265	6 12	40,42	22 6 5020	25.4				1.0	02.5	147											Dark Grey f-m SAND, little Silt,
SV-265	5-12	40-42	23-5-5038	25.1				1.8	83.5	14.7											trace fine Gravel
HDD-135-18	5-3	10-12	23-5-5039	93				50.3	121	76											Dark Brown f-c GRAVEL and f-c
1100-133-10	3-3	10-12	23-3-3039	5.5				50.5	42.1	7.0											SAND, trace Silt
HDD-135-1B	S-8	20-22	23-S-5040	14.3				40.1	49.0	10.9											Dark Grey f-c SAND and f-c
		-																			GRAVEL, little Silt
HDD-135-1C	S-11	35-37	23-S-5041	14.8				27.7	60.2	12.1											Dark Grey f-c SAND, some f-c
			-												-						Gravel, little Silt Brown f-c SAND little Silt trace
HDD-135-1C	S-12	40-42	23-S-5042	12.1				7.1	75.0	17.9											fine Gravel
			1			-				<u> </u>											

Date Received:

12.12.23

Reviewed By:

fiftet

Date Reviewed:

12.22.23

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

	195 Frances Avenue	Client Info	rmation:	Project l	nformation:
Thielsch	Cranston RI, 02910	GZA GeoEnv	ironmental	Champlin Hudson Pow	er Express - HVDC Area 5
	Phone: (401)-467-6454	New Yo	rk, NY	Queens t	o Bronx, NY
	Fax: (401)-467-2398	Project Manager:	Dharmil Patel	Project Number:	41.0163205.10
	cts.thielsch.com	Assigned By:	Dharmil Patel	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By:	M. Sisodye	Report Date:	12.22.23

#### LABORATORY TESTING DATA SHEET, Report No.: 7423-M-158

				Identification Tests					Corrosivity Tests											
Material Source	Sample ID	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	Gravel %	Sand %	Fines %	Resistivity (Mohms-cm)	Chloride (mg/kg)	Sulfate (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	рН	Electrical Resist. As Rcvd Ohm-cm @ 60°F	Electrical Resist. Saturated Ohm-cm @ 60°F	Electrical Resist. Saturated Ohm-cm @ 60°F	Electrical Resist. Saturated Ohm-cm @ <u>60°F</u>	Laboratory Log and Soil Description
				D2216	D4	1318		D6913	1		EP/	4	1	G200	G51	G	57	G-	187	
SV-264	S-1 / S-2	6-10	S-5043								48	56	ND	348.8	6.7	5090	2970	7560	4500	Corrosivity Only
SV-265	S-5 / S-6	14-18	S-5044								2680	240	ND	175.5	6.9	166	160	213	201	Corrosivity Only
				1								EP	4							
HDD-135- 1B	S-4 / S-5	12-16	S-5045							0.002	60	14.00	ND	279.0	8.34					Corrosivity Only
	1		S	ample HDD	-135-	1В со	uld not b	be teste	ed by <i>i</i>	ASTM Standa	rds for pH	, ORP, G57	or G187 R	esistivity,	the sample	e did not conta	ain enough fine	e material for t	esting.	
Ph, ORP, and Resistivity tested by RB on 12.20.23																				
Date Received: 12.12.23 Reviewed By: Date Reviewed:								12.22.23												

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

Date Received: 12.12.23

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

Reviewed By:















Appendix B

Calculations BoreAid HDD Simulation Output for HDD 134A



### **Generated Output**

**WARNING:** The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

#### CALL YOUR ONE-CALL SYSTEM FIRST

**WARNING:** Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

### **Project Summary**

General:	CHPE HDD 134A
	P8
	Start Date: 07-10-2024
	End Date: 09-16-2024
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	СНА
Designer:	MCS
	CHA

Description:

FDC-0050 HDD 134A Conduit 1 10-inch DR 9

### Input Summary

Start Coordinate	(0.00, 0.00, 13.19) ft
End Coordinate	(892.21, 0.00, 9.80) ft
Project Length	892.21 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

#### **Soil Summary**

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #3 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #4 Rock, Geological Classification, Metamorphic Rocks From Assistant Unit Weight: 158.4576 (dry), 177.6384 (sat) [lb/ft3] Phi: 35.00, S.M.: 1450.40, Coh: 4351.10 [psi]

Powered by 💘 | BOreAid
#### **Bore Cross-Section View**





### **Bore Plan View**

#### Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 929.98 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

## **In-service Load Summary:**

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.7	16.0
Water Pressure	8.3	8.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.0	24.3
Deflection		
Earth Load Deflection	1.211	4.366
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.343	4.498
Compressive Stress [psi]		
Compressive Wall Stress	54.1	109.4

### **Installation Load Summary:**

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	18418.9	18418.9
Pullback Stress [psi]	513.7	513.7
Pullback Strain	8.934E-3	8.934E-3
Bending Stress [psi]	0.0	42.9
Bending Strain	0	7.465E-4
Tensile Stress [psi]	513.7	552.3
Tensile Strain	8.934E-3	1.035E-2

Net External Pressure = 17.1 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

# In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.343	7.5	5.6	OK
Unconstrained Collapse [psi]	21.0	124.6	5.9	OK
Compressive Wall Stress [psi]	54.1	1150.0	21.2	OK

# Installation Analysis

	Calculated	Allowable	<b>Factor of Safety</b>	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	31.0	223.8	7.2	OK
Tensile Stress [psi]	552.3	1200.0	2.2	OK

### Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	75.611 psi	78.375 psi
1	8.00 in	12.00 in	75.432 psi	78.196 psi
2	12.00 in	16.13 in	75.175 psi	77.939 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

### **Estimated Circulating Pressure Summary**

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

Fluid Consistency Index (K): 63.17

Power Law Exponent (n): 0.14

Effective Viscosity (cP): 333.0

### Virtual Site



















# **Generated Output**

**WARNING:** The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

#### CALL YOUR ONE-CALL SYSTEM FIRST

**WARNING:** Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.