

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 168.00) ft End Coordinate (1050.00, 0.00, 175.00) ft

Project Length 1050.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1065.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	11.7
Water Pressure	12.4	12.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.9	23.8
Deflection		
Earth Load Deflection	0.505	3.194
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.534	3.223
Compressive Stress [psi]		
Compressive Wall Stress	62.5	107.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	962.3	962.3
Pullback Stress [psi]	549.8	549.8
Pullback Strain	9.562E-3	9.562E-3
Bending Stress [psi]	0.0	4.7
Bending Strain	0	8.247E-5
Tensile Stress [psi]	549.8	551.8
Tensile Strain	9.562E-3	9.679E-3

Net External Pressure = 20.1 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.534	7.5	14.0	OK
Unconstrained Collapse [psi]	23.6	132.8	5.6	OK
Compressive Wall Stress [psi]	62.5	1150.0	18.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Спеск
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	33.6	224.7	6.7	OK
Tensile Stress [psi]	551.8	1200.0	2.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 30

P3

Start Date: 08-26-2022 End Date: 08-26-2022

Project Owner: TDI

Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer: MB

 \mathbf{BCE}

Description: HDD 30 12-inch DR7 - 8-inch Pilot Bore

Input Summary

Start Coordinate (0.00, 0.00, 197.00) ft End Coordinate (1920.00, 0.00, 220.00) ft

Project Length 1920.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 12.750 in

Pipe DR 7.0
Pipe Thickness 1.82 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SW

From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

From Assistant

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Soil Layer #3 USCS, Clay (C), CH

From Assistant

Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3]

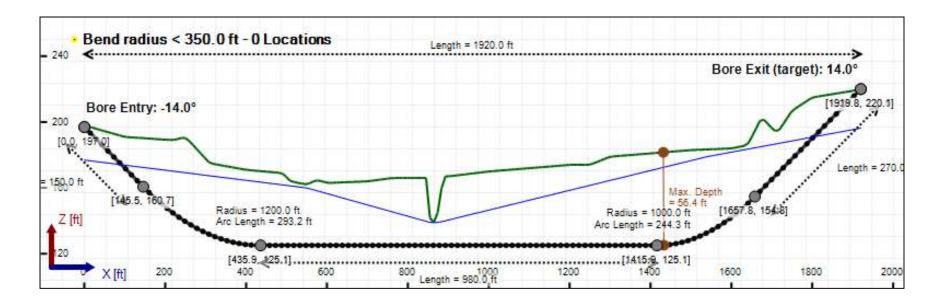
Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]

Soil Layer #4 USCS, Gravel (G), GW

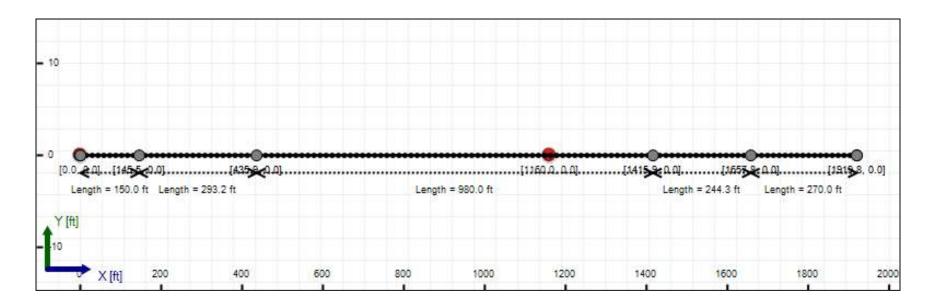
From Assistant

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 500.00, Coh: 0.00 [psi]


Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

From Assistant


Unit Weight: 165.0000 (dry), 177.0000 (sat) [lb/ft3]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 12" (12.75")

Pipe DR: 7

Pipe Length: 1950.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.59400002161662 ft

Silo Width: 1.59400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	21.5	31.9
Water Pressure	12.8	20.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	34.3	52.4
Deflection		
Earth Load Deflection	2.472	3.673
Buoyant Deflection	0.074	0.074
Reissner Effect	0	0
Net Deflection	2.545	3.747
Compressive Stress [psi]		
Compressive Wall Stress	120.0	183.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	47241.4	47241.4
Pullback Stress [psi]	755.4	755.4
Pullback Strain	1.314E-2	1.314E-2
Bending Stress [psi]	0.0	30.5
Bending Strain	0	5.313E-4
Tensile Stress [psi]	755.4	778.5
Tensile Strain	1.314E-2	1.398E-2

Net External Pressure = 50.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 798.4 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.545	7.5	2.9	OK
Unconstrained Collapse [psi]	63.7	302.7	4.7	OK
Compressive Wall Stress [psi]	120.0	1150.0	9.6	OK

Installation Analysis

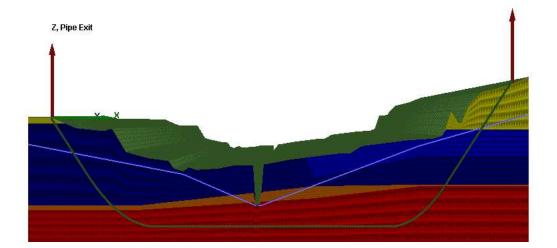
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.036	7.5	207.6	OK
Unconstrained Collapse [psi]	73.6	495.6	6.7	OK
Tensile Stress [psi]	778.5	1200.0	1.5	OK

Maximum Allowable Bore Pressure Summary

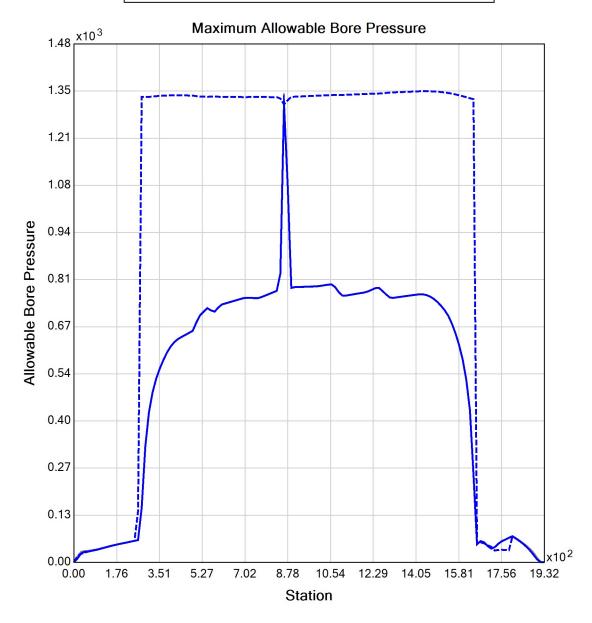
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1316.382 psi	1349.726 psi
1	8.00 in	12.00 in	1314.437 psi	1349.608 psi
2	12.00 in	16.13 in	1311.619 psi	1349.435 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

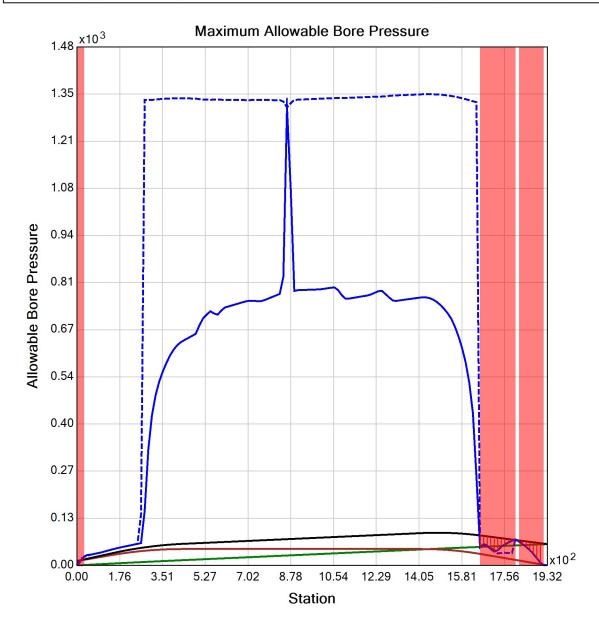
Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3


Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 197.00) ft End Coordinate (1920.00, 0.00, 220.00) ft

Project Length 1920.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 3.500 in Pipe DR 7.0 Pipe Thickness 0.50 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5")

Pipe DR: 7

Pipe Length: 1950.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.625 ft

Silo Width: 0.625 ft Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	21.5	31.9
Water Pressure	12.8	20.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	34.3	52.4
Deflection		
Earth Load Deflection	2.472	3.673
Buoyant Deflection	0.020	0.020
Reissner Effect	0	0
Net Deflection	2.492	3.694
Compressive Stress [psi]		
Compressive Wall Stress	120.0	183.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	3672.5	3672.5
Pullback Stress [psi]	779.3	779.3
Pullback Strain	1.355E-2	1.355E-2
Bending Stress [psi]	0.0	8.4
Bending Strain	0	1.458E-4
Tensile Stress [psi]	779.3	783.9
Tensile Strain	1.355E-2	1.375E-2

Net External Pressure = 50.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.492	7.5	3.0	OK
Unconstrained Collapse [psi]	54.2	261.9	4.8	OK
Compressive Wall Stress [psi]	120.0	1150.0	9.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.010	7.5	756.1	OK
Unconstrained Collapse [psi]	73.6	495.7	6.7	OK
Tensile Stress [psi]	783.9	1200.0	1.5	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

Ref: Fort Ann, NY Washington cty

J2105

Start Date: 03-06-2023 End Date: 03-06-2023

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA-BCE

Designer: MDB

BCE

Amherst, MA

Description: North to South

10" DR 9 updated

Input Summary

Start Coordinate (0.00, 0.00, 269.00) ft End Coordinate (1059.00, 0.00, 270.00) ft

Project Length 1059.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SP

From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

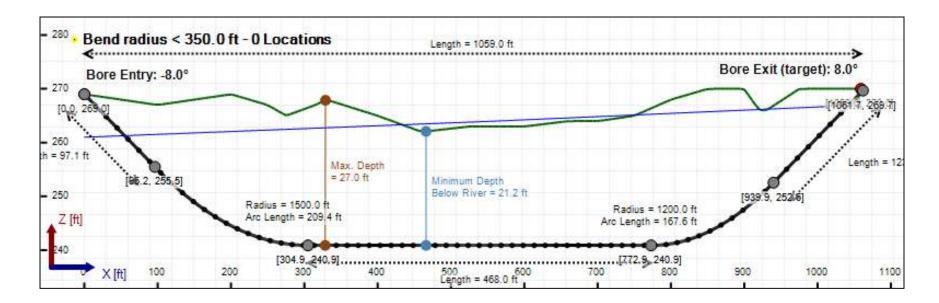
Phi: 32.00, S.M.: 300.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CH

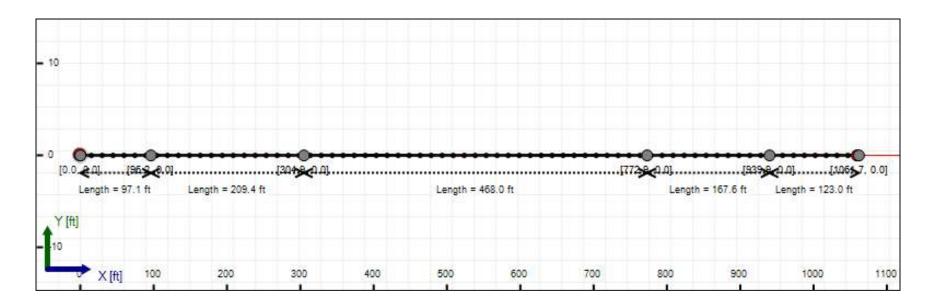
From Assistant

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]


Soil Layer #3 USCS, Sand (S), SP

From Assistant


Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1065.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.9	9.4
Water Pressure	10.6	10.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.5	19.8
Deflection		
Earth Load Deflection	0.925	2.774
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.057	2.906
Compressive Stress [psi]		
Compressive Wall Stress	60.5	89.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16688.0	16688.0
Pullback Stress [psi]	465.4	465.4
Pullback Strain	8.094E-3	8.094E-3
Bending Stress [psi]	0.0	21.5
Bending Strain	0	3.733E-4
Tensile Stress [psi]	465.4	480.8
Tensile Strain	8.094E-3	8.660E-3

Net External Pressure = 18.6 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.057	7.5	7.1	OK
Unconstrained Collapse [psi]	18.7	126.0	6.7	OK
Compressive Wall Stress [psi]	60.5	1150.0	19.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	28.7	228.4	8.0	OK
Tensile Stress [psi]	480.8	1200.0	2.5	OK

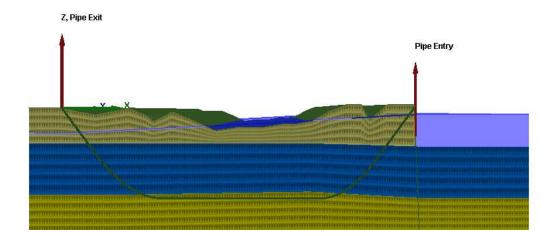
Maximum Allowable Bore Pressure Summary

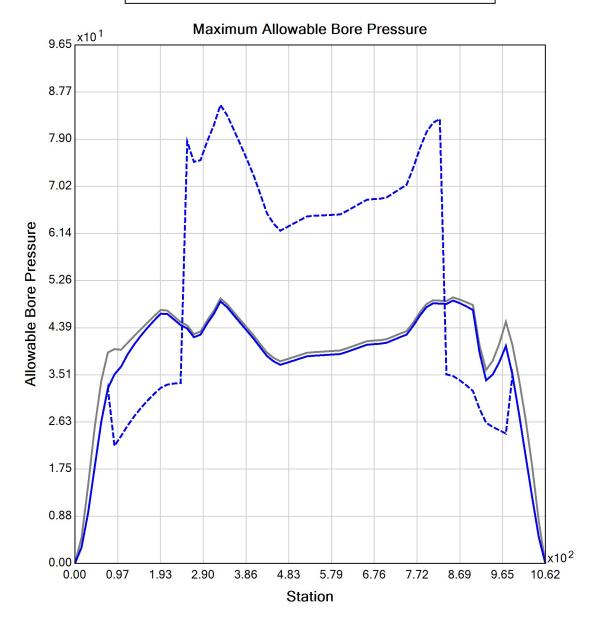
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	49.513 psi	87.697 psi
1	8.00 in	12.00 in	49.267 psi	86.697 psi
2	12.00 in	16.13 in	48.924 psi	85.328 psi

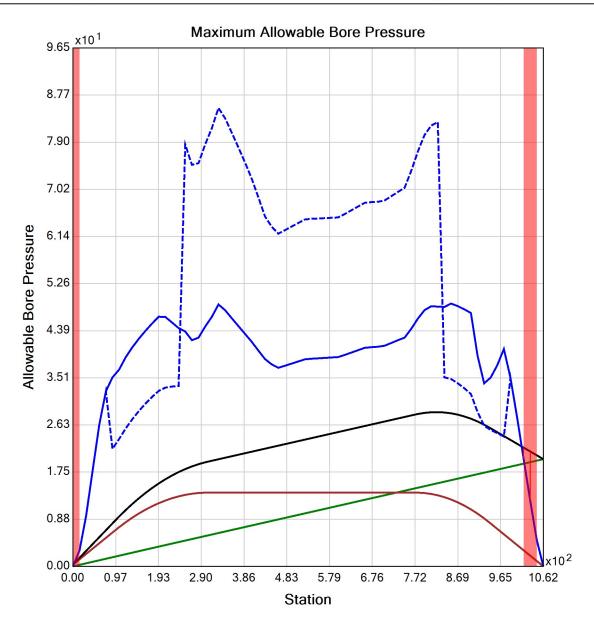
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53


Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 269.00) ft End Coordinate (1059.00, 0.00, 270.00) ft

Project Length 1059.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1065.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.2	9.4
Water Pressure	10.6	10.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.8	19.8
Deflection		
Earth Load Deflection	0.518	2.774
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.547	2.803
Compressive Stress [psi]		
Compressive Wall Stress	53.0	89.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	924.1	924.1
Pullback Stress [psi]	528.0	528.0
Pullback Strain	9.183E-3	9.183E-3
Bending Stress [psi]	0.0	4.7
Bending Strain	0	8.247E-5
Tensile Stress [psi]	528.0	530.0
Tensile Strain	9.183E-3	9.284E-3

Net External Pressure = 18.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.547	7.5	13.7	OK
Unconstrained Collapse [psi]	18.7	133.2	7.1	OK
Compressive Wall Stress [psi]	53.0	1150.0	21.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Cneck
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	28.7	226.1	7.9	OK
Tensile Stress [psi]	530.0	1200.0	2.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 32

P3

Start Date: 12-10-2021 End Date: 12-10-2021

Project Owner: TDI

Project Contractor: Kiewit

Project Consultant: CHA/BCE

Designer: AB

CHA

Description: HDD 32 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 305.13) ft End Coordinate (872.00, 0.00, 306.14) ft

Project Length 872.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SW

Depth: 2.00 ft

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

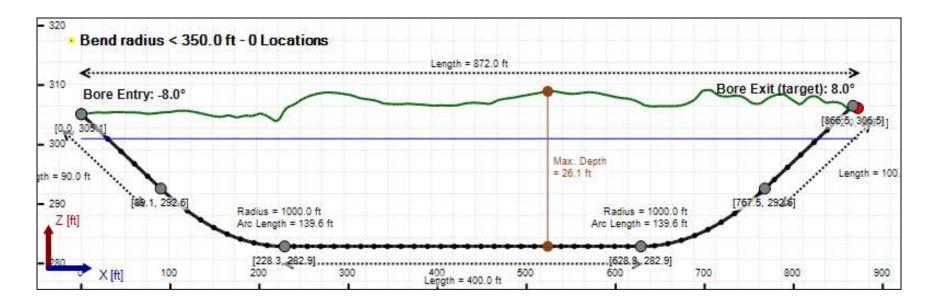
Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SM

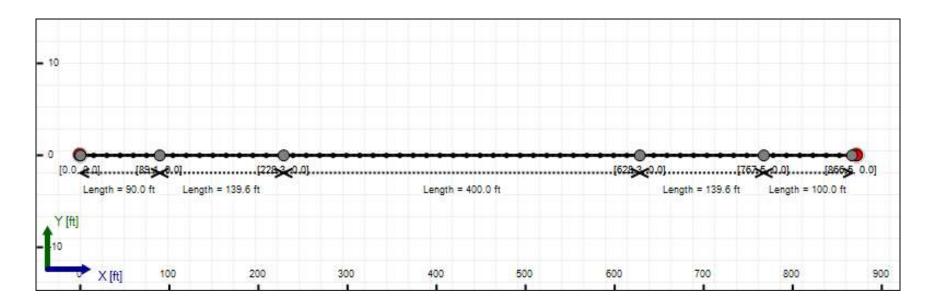
Depth: 13.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Sand (S), SM

Depth: 23.00 ft


Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 870.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.7	13.1
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.6	21.0
Deflection		
Earth Load Deflection	1.017	3.576
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.149	3.708
Compressive Stress [psi]		
Compressive Wall Stress	52.1	94.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	13804.1	13804.1
Pullback Stress [psi]	385.0	385.0
Pullback Strain	6.695E-3	6.695E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	385.0	406.9
Tensile Strain	6.695E-3	7.524E-3

Net External Pressure = 17.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.149	7.5	6.5	OK
Unconstrained Collapse [psi]	15.4	124.6	8.1	OK
Compressive Wall Stress [psi]	52.1	1150.0	22.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	25.4	232.6	9.1	OK
Tensile Stress [psi]	406.9	1200.0	2.9	OK

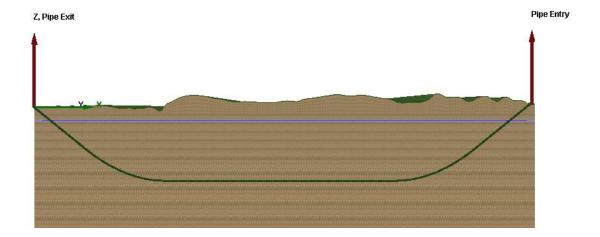
Maximum Allowable Bore Pressure Summary

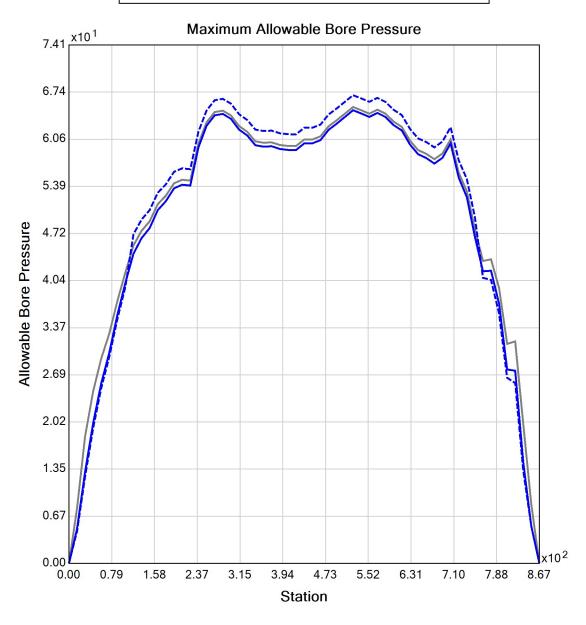
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	65.228 psi	67.382 psi
1	8.00 in	12.00 in	65.041 psi	67.191 psi
2	12.00 in	16.13 in	64.773 psi	66.918 psi

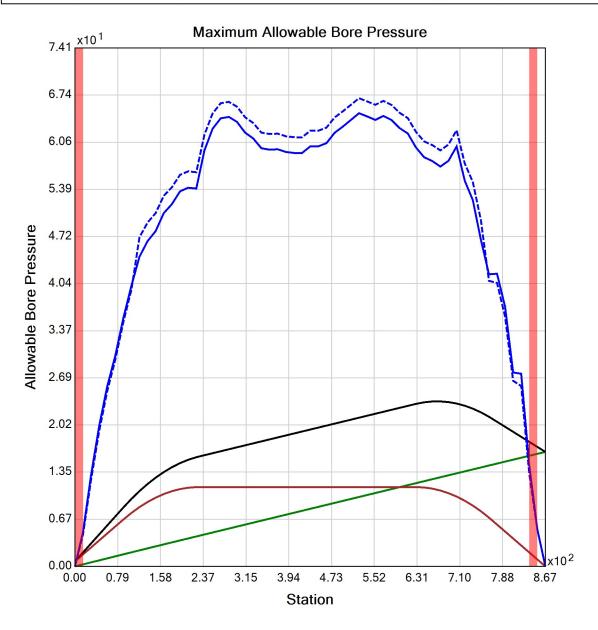
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53


Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Rod Diameter

Start Coordinate (0.00, 0.00, 305.13) ft End Coordinate (872.00, 0.00, 306.14) ft

Project Length 872.00 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 2.375 in
Pipe DR 9.0
Pipe Thickness 0.26 in
Rod Length 15.00 ft

Drill Rig Location (0.00, 0.00, 0.00) ft

3.5 in

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 870.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	13.1
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	9.4	21.0
Deflection		
Earth Load Deflection	0.550	3.576
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.579	3.605
Compressive Stress [psi]		
Compressive Wall Stress	42.2	94.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	783.4	783.4
Pullback Stress [psi]	447.6	447.6
Pullback Strain	7.784E-3	7.784E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	447.6	449.4
Tensile Strain	7.784E-3	7.915E-3

Net External Pressure = 17.8 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.579	7.5	13.0	OK
Unconstrained Collapse [psi]	15.4	132.7	8.6	OK
Compressive Wall Stress [psi]	42.2	1150.0	27.3	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Спеск
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	25.4	230.8	9.1	OK
Tensile Stress [psi]	449.4	1200.0	2.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 32A

P3

Start Date: 12-10-2021 End Date: 12-10-2021

Project Owner: TDI

Project Contractor: Kiewit

Project Consultant: CHA/BCE

Designer: AB

CHA

Description: HDD 32A 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 305.50) ft End Coordinate (633.00, 0.00, 301.50) ft

Project Length 633.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

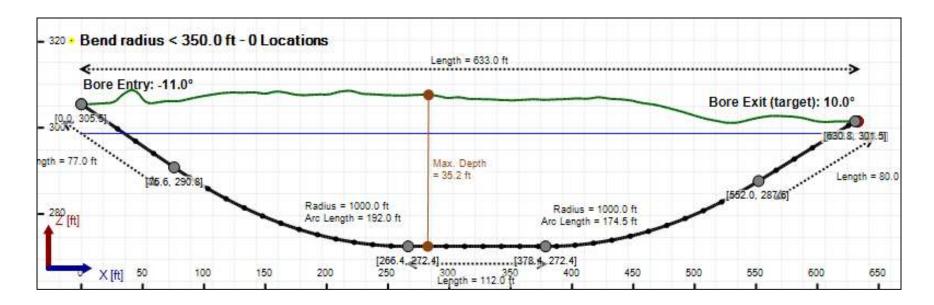
Number of Layers: 2

Soil Layer #1 USCS, Sand (S), SP

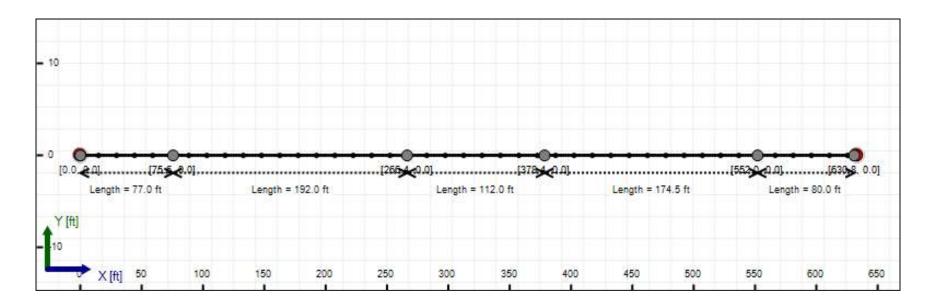
Depth: 2.70 ft

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Sand (S), SM

Depth: 35.00 ft


Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 645.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.5	16.3
Water Pressure	11.4	11.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.8	27.7
Deflection		
Earth Load Deflection	1.122	4.499
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.254	4.631
Compressive Stress [psi]		
Compressive Wall Stress	66.8	124.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10914.1	10914.1
Pullback Stress [psi]	304.4	304.4
Pullback Strain	5.294E-3	5.294E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	304.4	329.2
Tensile Strain	5.294E-3	6.173E-3

Net External Pressure = 19.3 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.254	7.5	6.0	OK
Unconstrained Collapse [psi]	21.5	125.4	5.8	OK
Compressive Wall Stress [psi]	66.8	1150.0	17.2	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	31.4	237.5	7.6	OK
Tensile Stress [psi]	329.2	1200.0	3.6	OK

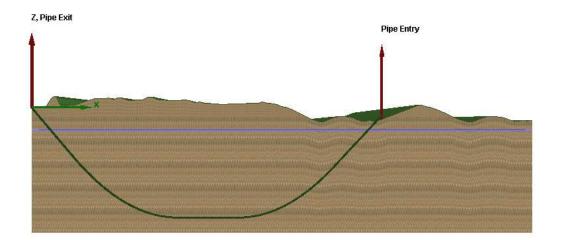
Maximum Allowable Bore Pressure Summary

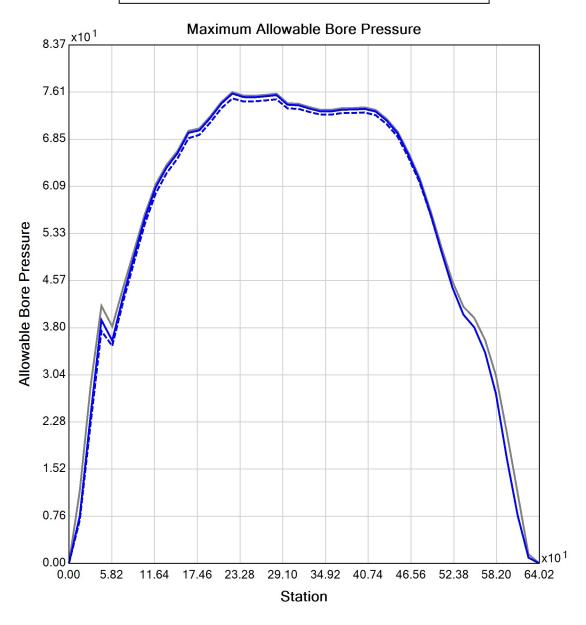
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	76.085 psi	75.295 psi
1	8.00 in	12.00 in	75.990 psi	75.200 psi
2	12.00 in	16.13 in	75.851 psi	75.063 psi

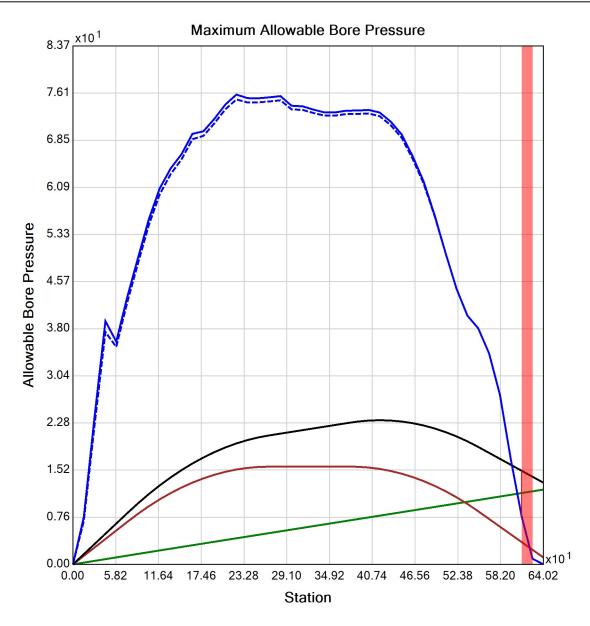
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53


Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 305.50) ft End Coordinate (633.00, 0.00, 301.50) ft

Project Length 633.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 645.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.4	16.3
Water Pressure	11.4	11.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.8	27.7
Deflection		
Earth Load Deflection	0.555	4.499
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.584	4.529
Compressive Stress [psi]		
Compressive Wall Stress	57.4	124.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	642.3	642.3
Pullback Stress [psi]	367.0	367.0
Pullback Strain	6.383E-3	6.383E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	367.0	371.8
Tensile Strain	6.383E-3	6.564E-3

Net External Pressure = 19.3 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.584	7.5	12.8	OK
Unconstrained Collapse [psi]	21.5	133.2	6.2	OK
Compressive Wall Stress [psi]	57.4	1150.0	20.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	31.4	235.8	7.5	OK
Tensile Stress [psi]	371.8	1200.0	3.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 33 Conduit 1

P3

Start Date: 11-04-2022 End Date: 11-04-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer: MB

BCE

Description: HDD 33 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 318.00) ft End Coordinate (1843.00, 0.00, 313.00) ft

Project Length 1843.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Gravel (G), GM

From Assistant

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

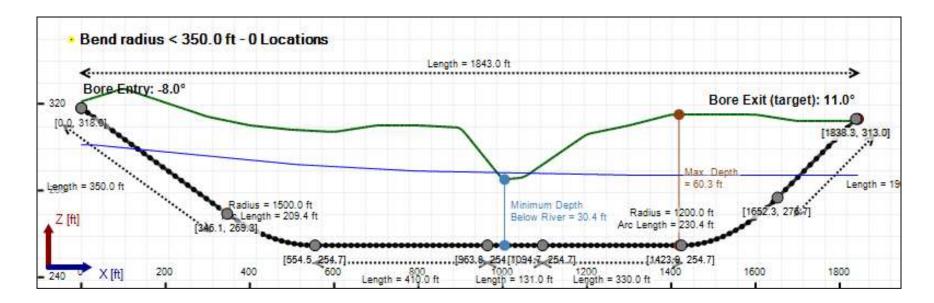
Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SP

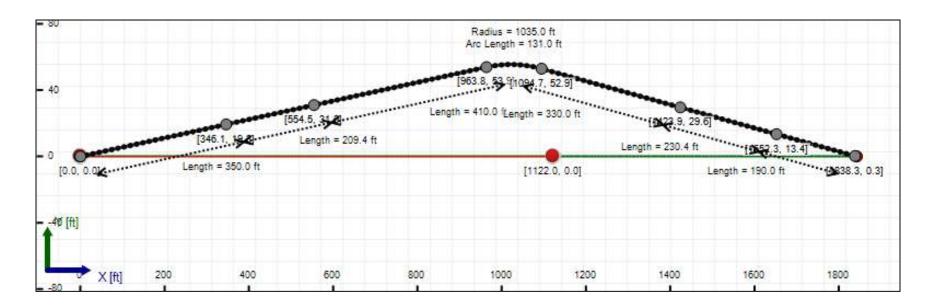
From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]


Soil Layer #4 USCS, Sand (S), SP

From Assistant


Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1860.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.9	35.1
Water Pressure	16.0	14.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	19.9	49.1
Deflection		
Earth Load Deflection	1.681	9.554
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.813	9.686
Compressive Stress [psi]		
Compressive Wall Stress	89.4	220.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	30370.6	30370.6
Pullback Stress [psi]	847.0	847.0
Pullback Strain	1.473E-2	1.473E-2
Bending Stress [psi]	0.0	24.9
Bending Strain	0	4.328E-4
Tensile Stress [psi]	847.0	860.2
Tensile Strain	1.473E-2	1.526E-2

Net External Pressure = 39.9 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.813	7.5	4.1	OK
Unconstrained Collapse [psi]	41.2	122.3	3.0	OK
Compressive Wall Stress [psi]	89.4	1150.0	12.9	OK

Installation Analysis

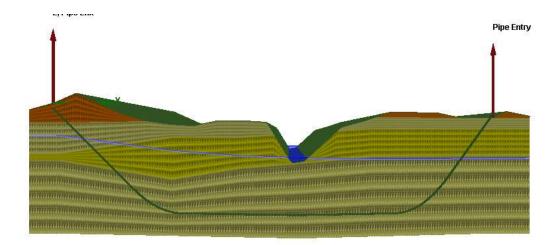
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	51.1	201.8	4.0	OK
Tensile Stress [psi]	860.2	1200.0	1.4	OK

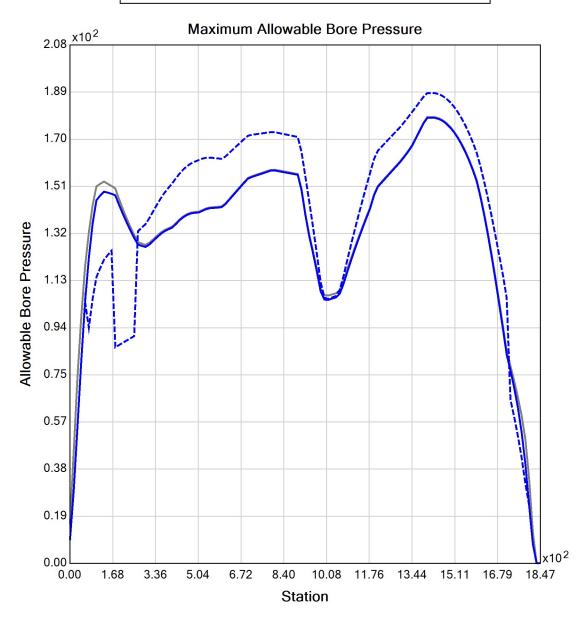
Maximum Allowable Bore Pressure Summary

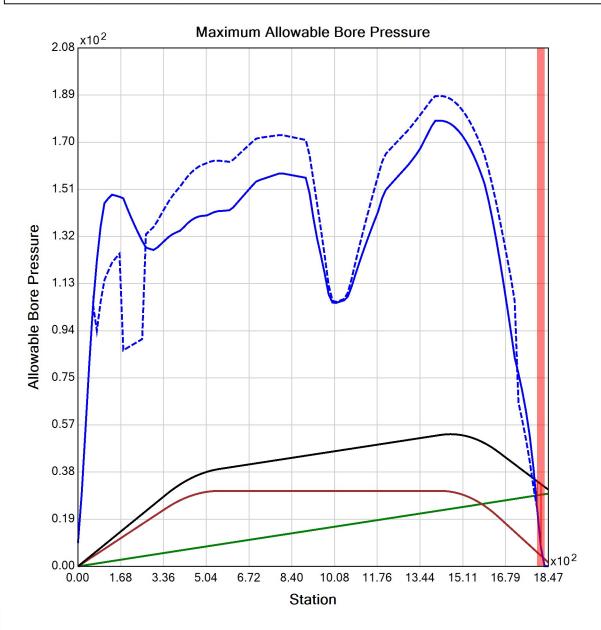
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	178.654 psi	188.618 psi
1	8.00 in	12.00 in	178.539 psi	188.481 psi
2	12.00 in	16.13 in	178.371 psi	188.283 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 318.00) ft End Coordinate (1843.00, 0.00, 313.00) ft

Project Length 1843.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1860.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	35.1
Water Pressure	16.0	14.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	17.5	49.1
Deflection		
Earth Load Deflection	0.718	9.554
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.747	9.583
Compressive Stress [psi]		
Compressive Wall Stress	78.9	220.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1592.0	1592.0
Pullback Stress [psi]	909.6	909.6
Pullback Strain	1.582E-2	1.582E-2
Bending Stress [psi]	0.0	5.5
Bending Strain	0	9.561E-5
Tensile Stress [psi]	909.6	909.6
Tensile Strain	1.582E-2	1.588E-2

Net External Pressure = 39.9 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.747	7.5	10.0	OK
Unconstrained Collapse [psi]	41.2	131.9	3.2	OK
Compressive Wall Stress [psi]	78.9	1150.0	14.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	51.1	198.8	3.9	OK
Tensile Stress [psi]	909.6	1200.0	1.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 33 Conduit 2

P3

Start Date: 11-04-2022 End Date: 11-04-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer: MB

BCE

Description: HDD 33 Conduit 2 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 318.00) ft End Coordinate (1843.00, 0.00, 313.00) ft

Project Length 1843.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

From Assistant

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP

From Assistant

Unit Weight: 1.0000 (dry), 15.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SM

From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

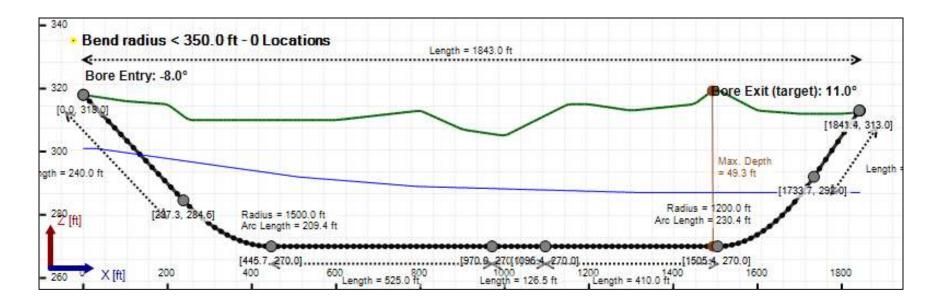
Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP

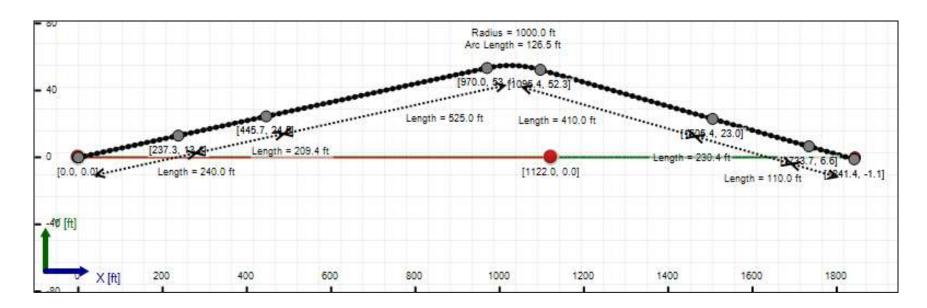
From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Sand (S), SP

From Assistant


Unit Weight: 110.0000 (dry), 124.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1860.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.4	26.8
Water Pressure	10.1	7.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.6	34.2
Deflection		
Earth Load Deflection	1.137	7.307
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.269	7.439
Compressive Stress [psi]		
Compressive Wall Stress	56.5	153.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	29961.4	29961.4
Pullback Stress [psi]	835.6	835.6
Pullback Strain	1.453E-2	1.453E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	835.6	847.2
Tensile Strain	1.453E-2	1.503E-2

Net External Pressure = 30.4 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.269	7.5	5.9	OK
Unconstrained Collapse [psi]	31.2	123.2	3.9	OK
Compressive Wall Stress [psi]	56.5	1150.0	20.3	OK

Installation Analysis

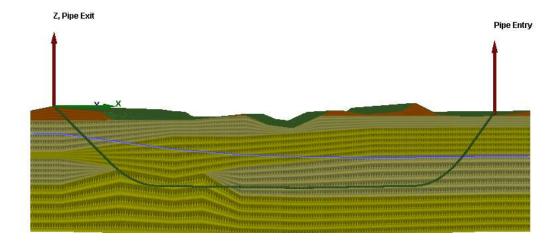
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	41.2	202.9	4.9	OK
Tensile Stress [psi]	847.2	1200.0	1.4	OK

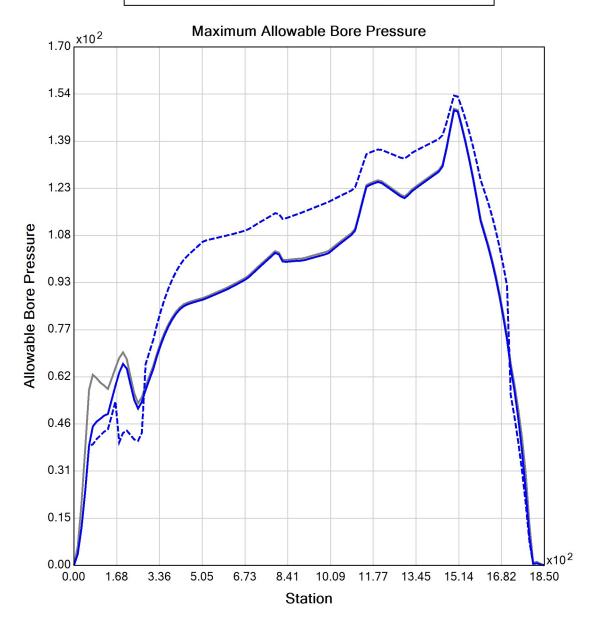
Maximum Allowable Bore Pressure Summary

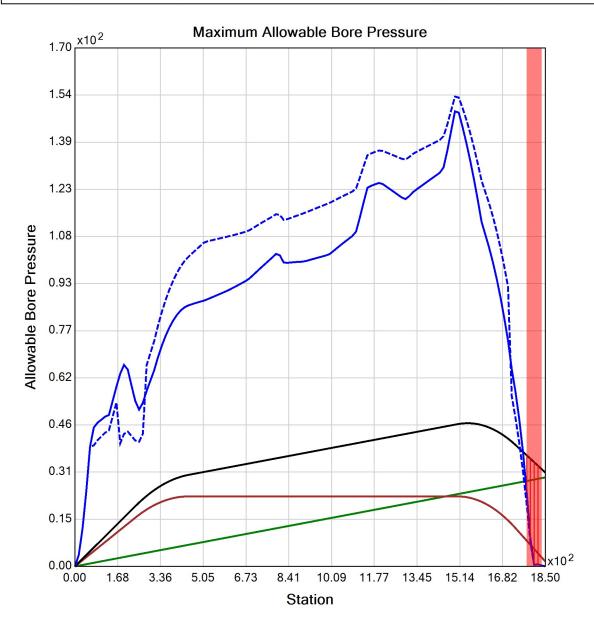
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	149.451 psi	154.309 psi
1	8.00 in	12.00 in	149.243 psi	154.085 psi
2	12.00 in	16.13 in	148.943 psi	153.764 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 318.00) ft End Coordinate (1843.00, 0.00, 313.00) ft

Project Length 1843.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1860.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	0.9	26.8
Water Pressure	10.2	7.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.1	34.2
Deflection		
Earth Load Deflection	0.648	7.307
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.677	7.336
Compressive Stress [psi]		
Compressive Wall Stress	50.0	153.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1572.0	1572.0
Pullback Stress [psi]	898.2	898.2
Pullback Strain	1.562E-2	1.562E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	898.2	898.2
Tensile Strain	1.562E-2	1.566E-2

Net External Pressure = 30.4 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.677	7.5	11.1	OK
Unconstrained Collapse [psi]	31.2	132.3	4.2	OK
Compressive Wall Stress [psi]	50.0	1150.0	23.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Спеск
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	41.2	199.8	4.9	OK
Tensile Stress [psi]	898.2	1200.0	1.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

Ref: Fort Ann, NY Washington cty

J2105

Start Date: 11-14-2022 End Date: 11-14-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA-BCE

Designer: MDB

BCE

Amherst, MA

Description: North to South

10" DR9

Input Summary

Start Coordinate (0.00, 0.00, 319.50) ft End Coordinate (2550.00, 0.00, 324.30) ft

Project Length 2550.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SP

From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP

From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SM

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

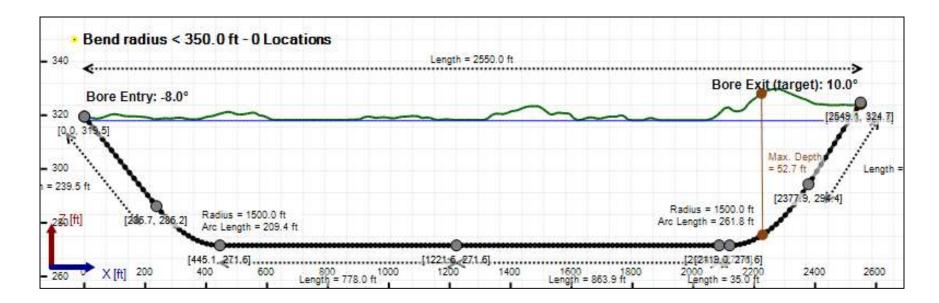
Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SM

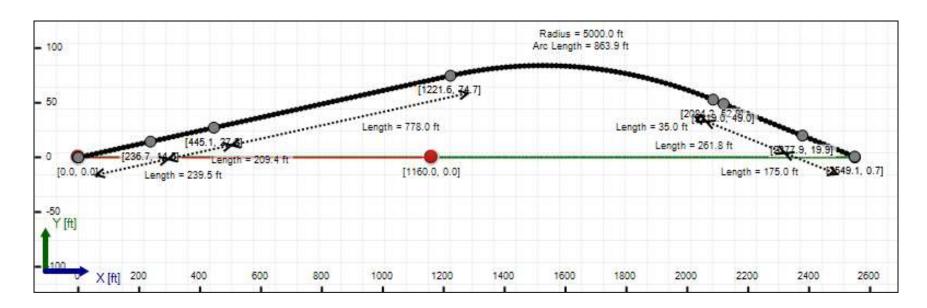
From Assistant

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]


Soil Layer #5 USCS, Sand (S), SM

From Assistant


Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 2565.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.5	23.5
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	23.6	43.6
Deflection		
Earth Load Deflection	0.963	6.606
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.095	6.738
Compressive Stress [psi]		
Compressive Wall Stress	106.2	196.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	41099.6	41099.6
Pullback Stress [psi]	1146.2	1146.2
Pullback Strain	1.993E-2	1.993E-2
Bending Stress [psi]	0.0	17.2
Bending Strain	0	2.986E-4
Tensile Stress [psi]	1146.2	1160.7
Tensile Strain	1.993E-2	2.048E-2

Net External Pressure = 34.0 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.095	7.5	6.8	OK
Unconstrained Collapse [psi]	34.8	125.4	3.6	OK
Compressive Wall Stress [psi]	106.2	1150.0	10.8	OK

Installation Analysis

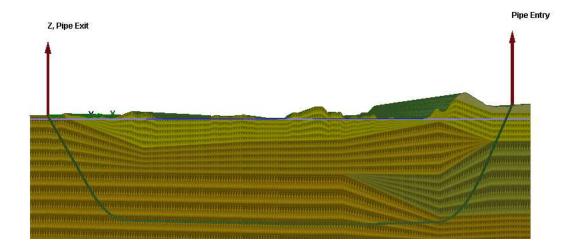
	Calculated	Allowable	Factor of Safety	Спеск
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	44.7	177.8	4.0	OK
Tensile Stress [psi]	1160.7	1200.0	1.0	OK

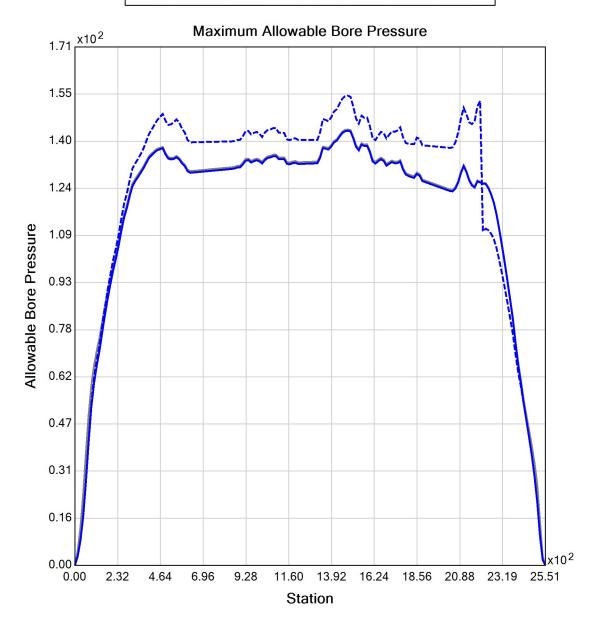
Maximum Allowable Bore Pressure Summary

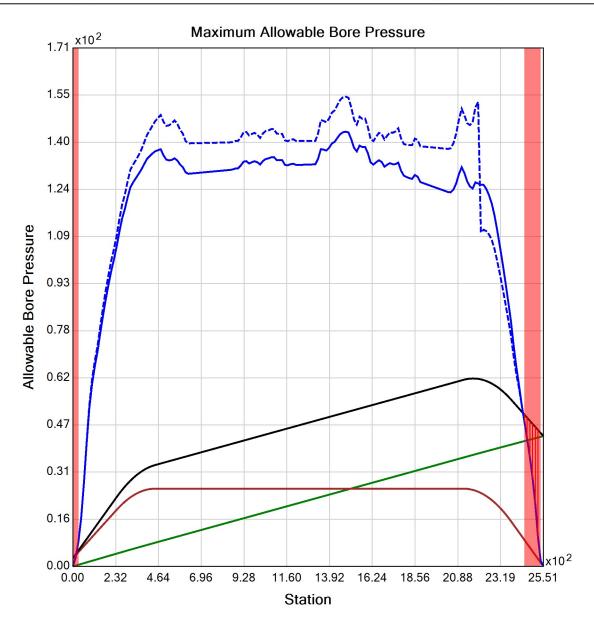
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	143.434 psi	155.089 psi
1	8.00 in	12.00 in	143.271 psi	154.877 psi
2	12.00 in	16.13 in	143.036 psi	154.570 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 319.50) ft End Coordinate (2550.00, 0.00, 324.30) ft

Project Length 2550.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 2565.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.4	23.5
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.5	43.6
Deflection		
Earth Load Deflection	0.497	6.606
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.526	6.635
Compressive Stress [psi]		
Compressive Wall Stress	96.8	196.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	2115.7	2115.7
Pullback Stress [psi]	1208.8	1208.8
Pullback Strain	2.102E-2	2.102E-2
Bending Stress [psi]	0.0	3.8
Bending Strain	0	6.597E-5
Tensile Stress [psi]	1208.8	1209.9
Tensile Strain	2.102E-2	2.111E-2

Net External Pressure = 34.0 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.526	7.5	14.3	OK
Unconstrained Collapse [psi]	34.8	133.2	3.8	OK
Compressive Wall Stress [psi]	96.8	1150.0	11.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	44.7	174.0	3.9	OK
Tensile Stress [psi]	1209.9	1200.0	1.0	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 36 Conduit 1

P3

Start Date: 12-10-2021 End Date: 12-10-2021

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer: AB

CHA

Description: HDD 36 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 313.75) ft End Coordinate (621.00, 0.00, 324.25) ft

Project Length 621.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SM

Depth: 9.20 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

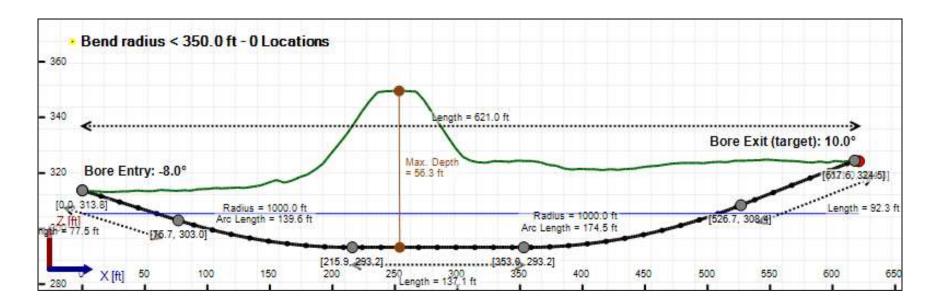
Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP

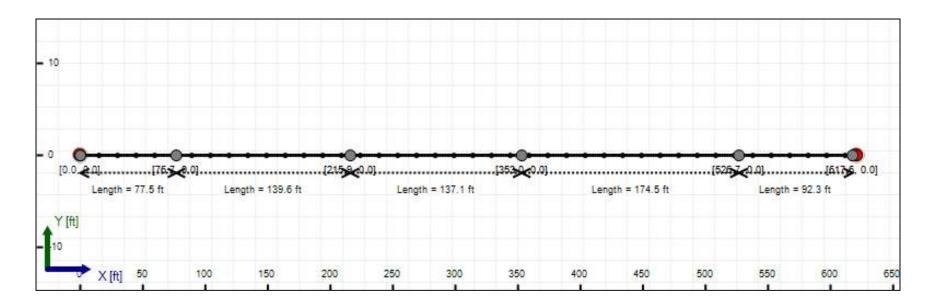
Depth: 9.50 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #3 USCS, Sand (S), SM

Depth: 13.50 ft


Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 630.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.9	36.6
Water Pressure	5.3	5.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.2	41.9
Deflection		
Earth Load Deflection	1.367	9.972
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.499	10.104
Compressive Stress [psi]		
Compressive Wall Stress	45.7	188.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10937.7	10937.7
Pullback Stress [psi]	305.0	305.0
Pullback Strain	5.305E-3	5.305E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	305.0	328.7
Tensile Strain	5.305E-3	6.164E-3

Net External Pressure = 23.4 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.499	7.5	5.0	OK
Unconstrained Collapse [psi]	21.3	121.1	5.7	OK
Compressive Wall Stress [psi]	45.7	1150.0	25.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	31.3	237.3	7.6	OK
Tensile Stress [psi]	328.7	1200.0	3.7	OK

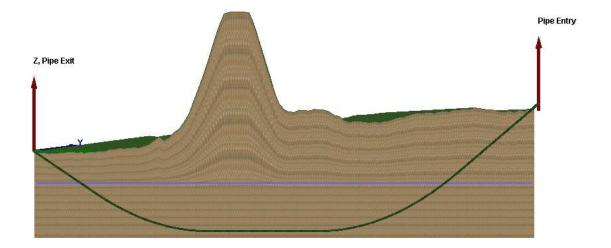
Maximum Allowable Bore Pressure Summary

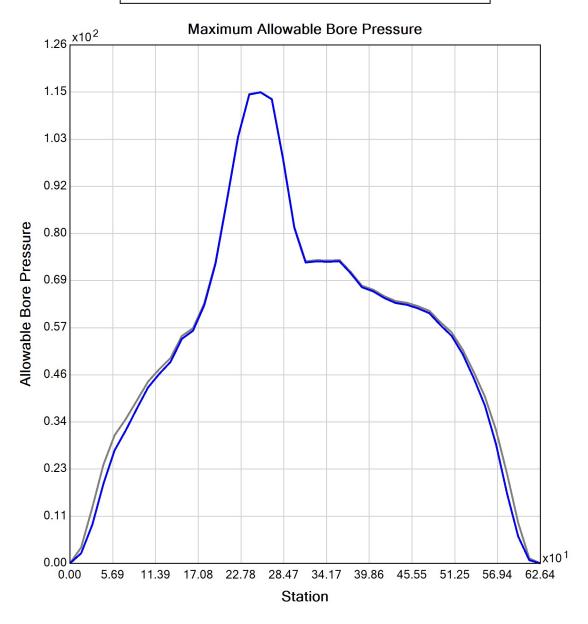
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	114.735 psi	114.735 psi
1	8.00 in	12.00 in	114.707 psi	114.707 psi
2	12.00 in	16.13 in	114.666 psi	114.666 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

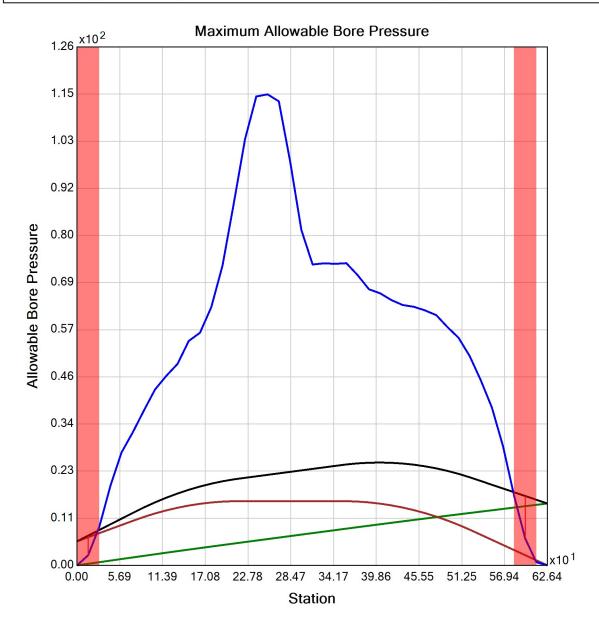
Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min


Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0

Virtual Site

