

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH SAMPLE NO. K DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	21 -158.3-RC2 05/03/22 DL
	E	efore Picture	
NOTES	INCHES 1 OGOD 2 COM INCHES	A INGINEERS AND A INGINEERS AN	
Picture File: File name:	5.JPG 2161016Brazilian ASTM D3967_0.x	sm	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH 21 SAMPLE NO. K-158.3-RC2 DATE SAMPLED DATE TESTED 05/03/22 TECHNICIAN DL ROCK TYPE
	After Picture	9
NOTES	<image/>	A COMPANY A COMP
NOTES		
Picture File: File name:	5a.JPG 2161016Brazilian ASTM D3967_0.xlsm	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO.DEPTH30SAMPLE NO.K-158.3-RC4DATE SAMPLEDDATE TESTED05/03/22TECHNICIANDLROCK TYPE
	Before Picture	2
NOTES	CLEN MARKING ALS AND A CONSTRUCTION OF A CONSTRU	A MINEERS S
NOTES		
Picture File: File name:	6.JPG 2161016Brazilian ASTM D3967_0.xlsm	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTDBORING NO.2161-016DEPTH30Champlain Hudson Power ExpressSAMPLE NO.K-158.3-RC4CD10279DATE SAMPLEDDATE TESTEDDATE TESTED05/03/22TECHNICIANDLROCK TYPET
	After Picture
NOTEO	THE REAL PROPERTY AND
NOTES	
Picture File: File name:	6a.JPG 2161016Brazilian ASTM D3967_0.xlsm

CERCHAR Abrasiveness ASTM D7625

ADVANCED TERRA TESTING

CLIENT	Atlantic Testing Labs	LTD		JOB NO.	2161-016
PROJECT PROJECT NO.	Champlain Hudson F CD10279	Power Express		LOCATION	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		77.0 K-140.0-RC1 05/05/22 HN	65 K-140.1-RC1 05/05/22 HN	28.0-29.0 K-158.1-RC1 05/05/22 HN	34.0 K-158.2-RC1 05/06/22 HN
Surface Type: Moisture Conditio	n	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in): Average Reading Average Reading Uncorrected CAI:	(in): (mm): or CAI _s :	0.00344 0.00547 0.00539 0.00570 0.00219 0.00550 0.00539 0.00469 0.00625 0.00422 0.00482 0.1225 1.23 1.69	0.00344 0.00523 0.00461 0.00359 0.00344 0.00352 0.00430 0.00555 0.00297 0.00352 0.00402 0.1020 1.02 1.02 1.49	0.00828 0.00188 0.00102 0.00359 0.00484 0.00570 0.00336 0.00203 0.00227 0.00602 0.00390 0.0990 0.999 1.46	0.00375 0.00164 0.00438 0.00297 0.00273 0.00336 0.00213 0.00266 0.00281 0.00320 0.00296 0.0753 0.75 1.23
NOTES		CAI _s is the CAI of Corrected CAI for Suggested form Applied pins had	calculated on sa or saw cut speci ula CAI = 0.99*(a Rockwell Ha	w cut specimens mens based on CAIs + 0.48. rdness of 54-56.	s. R. Plinger and H. Kasling
Data entry by: Checked by: File name:	HN DL 2161016CHERCH	AR ASTM D762	5_0.xlsm	Date: Date:	: 05/06/22 : 05/06/22

CHERCHAR Abrasiveness ASTM D7625

CLIENT Atlantic Testing Labs LTD BORING NO. --JOB NO. 2161-016 DEPTH 28.0-29.0 PROJECT **Champlain Hudson Power Express** SAMPLE NO. K-158.1-RC1 PROJECT NO. CD10279 DATE SAMPLED ---LOCATION DATE TESTED 05/05/22 ---TECHNICIAN ΗN ROCK TYPE --**Before Picture** minimum mmmmm 066 APPROPRIATE CONTRACTOR OF THE OWNER CLIENT Atlantic Testing Labs LTD BORING NO. 2161-016 DEPTH 28-29 JOB NO. wer Express SAMPLE NO. PROJECT K-158.1-RC1 PROJECT NO. CD10279 TEST CERCHAR LOCATION ROCK ATT NOTES Picture File: 3.JPG File name: 2161016_CHERCHAR ASTM D7625_0.xlsm

F

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 28.0-29.0 K-158.1-RC1 05/05/22 HN
	After Picture	•	
NOTES	Image: Design of the second	A Cogine cross A Cogine cross	
Picture File: File name:	3a.JPG 2161016CHERCHAR ASTM D7625_0.xlsm		

F

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 34.0 K-158.2-RC1 05/06/22 HN
		Before Picture	
NOTES	INCHES 1 0665 2 CONTROL OF THE STATE OF THE	A ENGINEERS S A ENGINEERS A ENGINEERS S A ENGINEERS S A ENGINEERS S A ENGINE	
Picture File: File name:	4.JPG 2161016CHERCHAR ASTM D7625	5_0.xlsm	

Г

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 34.0 K-158.2-RC1 05/06/22 HN
	After	Picture	
NOTES	Image: State Stat	ABURANCE ADURAN	
Picture File: File name:	4a.JPG 2161016CHERCHAR ASTM D7625_0.xls	m	

CERCHAR Abrasiveness ASTM D7625

ADVANCED TERRA TESTING

CLIENT	Atlantic Testing Labs	LTD		JOB NO.	2161-016
PROJECT PROJECT NO.	Champlain Hudson F CD10279	Power Express		LOCATION	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		21.0 K-158.3-RC2 05/06/22 HN	30.0 K-158.3-RC4 05/06/22 HN		
Surface Type: Moisture Conditio	n	Saw Cut As Received	Saw Cut As Received		
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in): Average Reading Average Reading	(in): (mm):	0.00276 0.00181 0.00228 0.00344 0.00375 0.00236 0.00126 0.00197 0.00307 0.00313 0.00258 0.0656	0.00272 0.00207 0.00260 0.00299 0.00205 0.00197 0.00157 0.00346 0.00299 0.00252 0.00249 0.00249		
Uncorrected CAI	or CAI _s :	0.66 1.13	0.63 1.11		
NOTES		CAI _s is the CAI of Corrected CAI for Suggested form Applied pins hac * Test surface an	alculated on sa or saw cut speci ula CAI = 0.99*0 l a Rockwell Ha ea was broken.	w cut specimens mens based on CAIs + 0.48. rdness of 54-56.	s. R. Plinger and H. Kasling
Data entry by:	HN			Date	: 05/06/22
File name:	2161016CHERCH	AR ASTM D762	5_1.xlsm	Dale	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO DEPTH 21.0 SAMPLE NO. K-158.3-R DATE SAMPLED DATE TESTED 05/06/22 TECHNICIAN HN ROCK TYPE	C2
	CHES 066D CUERCOS CHES CUERCOS CENTES CHES CUERCOS CENTES COLOR CENTES CENTES COLOR CENTES CENTES	Picture	
NOTES Picture File:	* Test surface area was b	roken.	

Г

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing La 2161-016 Champlain Hudson CD10279 	bs LTD n Power Express	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 21.0 K-158.3-RC2 05/06/22 HN
		After Pict	ure	
NOTES		а по са сила са сила сила сила сила сила сил	A ENGINEERS S A ENGINEERS A ENGINEERS S A ENGINEERS A ENGI	
NOTES		[*] Test surface area was broker	n.	
Picture File: File name:	5a.JPG 2161016CHER(CHAR ASTM D7625_1.xlsm		

Б

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Expres CD10279 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 30.0 K-158.3-RC4 05/06/22 HN
		Before Picture	
NOTES		A BINERS OF A BINE	
NOTES	* Test surface a	irea was broken.	
Picture File: File name:	6.JPG 2161016CHERCHAR ASTM D	7625_1.xlsm	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Atlantic Testing Labs LTD 2161-016 Champlain Hudson Power Express CD10279 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	 30.0 K-158.3-RC4 05/06/22 HN
		After Picture	
	S.S.I S S.S.I <td< th=""><th>A S.A S.A S.A S.A S.A S.A S.A S.A S.A S.A S.A</th><th></th></td<>	A S.A S.A S.A S.A S.A S.A S.A S.A S.A S.A S.A	
NOTES	* Test surface are	a was broken.	
Picture File: File name:	6a.JPG 2161016CHERCHAR ASTM D76	25_1.xlsm	

Champlain Hudson Power Express Kiewit Engineering (NY) Corp.

<image>

K-158.2 - Runs 1 and 2

K-158.3 - Run 5

JOB NO: CD10279 CLIENT: Kiewit BORING: K+158 3	0.0
RUN: 5/ (34.0-39.0') RUN:	 8
RUN:	

MEMORANDUM

DATE:	December 7, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 5 - Package 3 - HDD Crossing 50 – Revision 1 Champlain Hudson Power Express Project Ballston Spa, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located east of Ballston Spa, New York. The approximate station for the start of HDD crossing Number 50 is STA 31368+00 (43.0075°N, 73.8381°W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and data from a recent investigation by Atlantic Testing Laboratories (ATL), referenced below.

- AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 3, Glens Falls to Ballston Spa, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

HDD 50 Borings BM-1A, K-158.5 Segment 5 - Design Package 3

Firm	Poring	Northing	Easting	Ground Surface
FILIT	Bornig	(feet)	(feet)	Elevation (feet)
	A136.0-1	1611762.7	732951.9	146.6
	A137.9-1	1602848.9	729488.6	157.2
	B134.6-1	1617614.3	737160.7	140.2
	B135.1-1	1615942.5	735298.2	130.7
	B135.35-1	1615043.9	734326.1	147.7
	B140.0-1	1594313.7	721767.2	205.0
	B144.2-1	1577578.6	707868.0	307.5
	B144.3-1	1577307.0	707733.5	307.4
	B144.5-1	1576380.0	707249.6	308.5
	B144.8-1	1574825.2	706447.7	310.8
	B145.0-1	1574014.3	706034.4	312.7
	B145.48	1571450.2	704693.3	320.4
	B146.1-1	1568896.3	703364.4	321.4
IKC	B146.5-1	1566773.3	702083.1	323.6
	B148.4-1	1561976.4	694067.5	326.0
	B148.4-5	1561817.7	693531.9	327.4
	B149.87-1	1559610.1	686723.2	325.2
	B151.58-1	1551257.2	677175.4	336.4
	B152.6-0	1550004.2	676432.6	329.3
	B153.1-1	1547302.8	676031.8	322.5
	B154.3-1	1541375.5	674232.0	321.5
	B155.2-1	1536685.4	674403.7	313.7
	B155.7-1	1534202.1	674175.1	340.0
	B157.9-1	1524284.2	668932.6	246.0
	B158.1-1	1523474.2	668924.1	243.0
	B158.22-1	1522640.9	669168.4	279.1
	BM-1A	1521184.8	669107.0	292.4
	FES-3	1616410.4	736040.4	143.9
	FES-3A	1616311.4	735904.6	139.3
	FES-3B	1611359.3	732784.5	142.5
	FES-4	1608699.4	732017.0	142.6
	FES-5	1605493.6	731399.7	147.1
	FES-6	1598212.9	725299.3	174.4
AECOIVI	FES-9	1583302.9	711497.9	271.6
	FES-10A	1563547.6	698025.3	321.4
	FES-12	1560130.5	687972.2	322.5
	SB-1A	1547803.7	676160.2	321.0
	SB-1B	1551257.2	677175.4	327.5
	SB-2	1540348.5	674275.0	316.3
	SB-3	1540348.5	670744.8	322.4

CHPE Segment 4&5 - Package 3 HDD Soil Boring Coordinates and Elevations

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

* TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.

** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Surficial_May_2021 Ballston_Boring_Locations 2 Mav Alternative Routes Consensus_

by: AECOM

Bedrock May 2021

Boring Locations

Mav

so utes

Alternative Routes

Consensus_

DATA SOURCES: ESRI, NYSDOT, NOAA, USACE, NYDOS, TDI, TRC

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT													PROJECT NAME: CHPE -
	DRILLER:								()					PROJECT NO.: 60323056
	Francisco Ma	artinez												HOLE NO.: BM-1A
	SOILS ENGI	NEER/GEOLOGIST	:											START DATE: 3/1/21
	Alexandra Go	olden						BORIN	G LOG	ì				FINISH DATE: 3/2/21
	LOCATION:	Ballston, NY MP 15	8.51											OFFSET: N/A
GRC	UND WATER	R OBSERVATIONS				CAS	SING	SAM	PLER	DRI	LL BIT	CORE E	BARREL	DRILL RIG: Geoprobe 7822 DT
	No water obs	served		TYPE		Flush J	oint Steel	Calif Mod	ornia hified	Trie Roll	cone er Bit	N	0	BORING TYPE: SPT/Core
				SIZE I.C).		4"	2	.5"			17	7/8"	BORING O.D.: 4.5"/3"
				SIZE O.	D.	4	.5"	:	3"	3	7/8"	3	3"	SURFACE ELEV.:
				HAMME	R WT.	140	0 lbs	140) lbs					LONGITUDE:
D	CORING	SAMPLI	E	HAMME	R FALL	3	80"	3	0"					LATITUDE:
E	RATE	DEPTHS	TYPE	PEN.	REC.					N (2)	USCS	STRAT.		
Р	MIN/F I	FROM - TO (FEET)	AND NO	in	in	BLOW	OUALITY	IN ON SA		Corr.	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS
Ĥ		(1 = = 1)	no.			(11001)	QUALIT	DEGION				DEI III		
		0'-5'		60	60		Hand (Cleared	1		SP/GP		0.0': Bro	wn medium-coarse SAND, subangular medium-
1.0										-			coarse y	lavel, liace organics
2.0														
												_		
3.0												AND	TD 4 (0	
10		3'-5'	S-1									elly S	TR-1; (3	.0'-5.0')
4.0												Brave		
5.0												Ŭ		
		5'-7'	S-2	24	24	7	22	30	35	34	SP/GP		5.0': Bro coarse g	wn fine-medium SAND and angular gray shale
6.0										-			6.0': Sha	le cobble fragment, angular
7.0										-			0.0100	
		7'-9'	S-3	9	9	49	50/3"	-	-	-	GP/SP	/EL	7.0': Bro	wn-gray fine-coarse GRAVEL, trace fine-medium
8.0												SRA\	7 5' [.] Sha	
9.0												Ŭ	7.0,010	
10.0										-			Drill to 1	1' bgs
11.0														
11.0	10 min	11'-'16'	R-1	60	60		RQD: (0" = 0%					11.0': Gr	ay shale, thinly laminated, moderately-intensely
12.0													fractured	I, 70 pieces
										-			TR-2; (1	1.7'-12.1')
13.0										-				
14.0												щ		
1										1		SHAL		
15.0										-				
16.0										1				
	10.0	16'-21'	R-2	60	50		RQD: 4	4" = 7%		1			16.0':SA	A, 50 pieces
17.0										4				
18.0	11.0													
10.0	12.0													
19.0										1				
20.0	10.0									-				
20.0	NOTES												The info	rmation contained on this log is not warranted
	(1) Thick-wall r	ing lined drive sampler	(California	sampler) u	sed for SP	T samples.	Rings dime	ensions = 2	-1/2" O.D.	by 2-7/16"	I.D. by 6" le	ngth.	to show	the actual subsurface condition. The contractor
	(2) Correction f	actor: Ncorr=N*(2.0 ² -1.3	375 ²)in./(3	.0 ² -2.4 ²)in. :	= N*0.65.								agrees th	hat he will make no claims against AECOM
1													It he find	as that the actual conditions do not conform indicated by this log
L	Soil descripti	on represents a field	identifica	ation after	D.M. Bur	mister un	less other	wise note	d					
SAM	PLE TYPE:		S= SPLI	T SPOON	1	U=SHEL	BY TUBE		R=ROC	K CORE				
PRO	PORTIONS:		TRACE=	=1-10%		LITTLE=	10-20%		SOME=	20-35%		AND=3	5-50%	

	BORING CO	NTRACTOR:							-	41		SHEET 2 OF 2			
-							N								
	Francisco Ma	artinez							U					HOLE NO.: BM-1A	
	SOILS ENGI	NEER:												START DATE: 3/1/21	
	Alexandra Go	olden						BORIN	G LOG					FINISH DATE: 3/2/21	
	LOCATION:	Ballston, NY MP 15	8.51								-		-	OFFSET: N/A	
D E P	CORING RATE	DEPTHS FROM - TO	TYPE AND	PEN. in	REC. in	BLOWS	S PER 6 i	n ON SAM	MPLER	N Corr.	USCS CLASS.	STRAT. CHNG.		FIELD IDENTIFICATION OF SOILS	
т Н	MIN/FT	(FEET)	NO.			(ROCK)	QUALITY	' DESIGN	ATION)			DEPTH			
21.0	10.0												<i>.</i>		
22.0	10.0	21'-26'	R-3	60	60		RQD: 20)" = 34%					SAA- fra TR-3; (2	actured-intensely fractured, 34 pieces (4.0'-24.5')	
23.0	11.0														
24.0	9.0														
25.0	13.0														
26.0	10.0														
27.0	13.0	26.0-31.0	R-4	60"	55"		RQD: 49	9" = 82%				SHALE	SAA, slig TR-4; (2	ghtly/moderately fractured, 11 pieces 9.8'-30.5')	
28.0	8.0														
29.0	10.0														
30.0	6.0														
31.0	5.0														
32.0		31.0'-33.0'	R-5	24"	24"		RQD: 10	5" = 44%					SAA, 20	pieces	
33.0															
34.0													BM-1A t	erminated at 33' bgs, grouted to surface	
35.0															
36.0															
37.0															
38.0															
39.0															
40.0															
41.0															
42.0															
43.0															
44.0															
45.0															
	NOTES:												The info	rmation contained on this log is not warranted	
													to show agrees t	the actual subsurface condition. The contractor hat he will make no claims against AECOM	
	Soil descriptio	on represents a field	identifica	tion after	D.M. Bun	nister unle	ss other	vise noter	ł.				if he find	ds that the actual conditions do not conform indicated by this log.	
SAMF	PLE TYPE:	a nelu	S= SPLI	r SPOON	2.111. Dull	U=SHELE	BY TUBE		R=ROCH	CORE			.0 01030	analogiou by this log.	
PROF	ORTIONS:		TRACE=	1-10%		LITTLE=1	0-20%		SOME=2	20-35%		AND=35	5-50%		

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: CHPE – Upstate New York Upland Geotechnical Investigation Location: Ballston - Mohawk Segment

											C	Report No.:			CD10279D-01	1-04-22
	Client:	_ K	iewit Eng	gineering	g (NY) (Corp.						Boring Loca	tion:	See B	oring Location	Plan
	Project:	S	ubsurfac	e Invest	tigation											
		_ <u>_</u> C	hamplair	n Hudso	n Powe	er Exp	ress	, Des	ign P	ackage 3						
		V	arious Lo	ocations	, New Y	York						Start Date:	3/24/20	022	Finish Date:	3/24/2022
	Boring N	No.: _	K-158.	5		Shee	et _	1	of	2		Date	Gro T	undwate ime	er Observations Depth	Casing
	Northing	Coordi	nates 20773			Wei	Sai aht:	mpler	Ham 1 40	mer Ibs.		3/24/2022	F	PM	*7.8'	10.0'
	Easting	<u> </u>	116.9		Hamm	F F	-all:		30	in.						
	0	- 1	•		Tarrir	сту	pe.	Aut	omati			+Massilia at				
	Ground	Elev.:	2	öö.4		m 0-	Bori		vance	Botor (*)	V C	<u>^iviay be af</u>	nected by	water	utilized to adva	Ince the
					HW (4		sing/	s //8	vvet	Kotary/N	X Core	porenole.				
	METHOD OF ADVANCE	SAMPLE NO.	DEI C SAN	PTH)F 1PLE	SAMPLE TYPE		BLO SAN PE 2" SAN	WS C IPLE R 6" O.D. IPLE	DN R R	DEPTH OF CHANGE	f - fine m - medium	CLASS	IFICAT	ion c	OF MATERIA	and - 35-50% some - 20-35% little - 10-20%
	<u> -</u>	<i></i>	From	То							c - coarse					trace - 0-10%
	C	1	0.0	2.0	SS	WH	1/24"				Grey c	mf SAND; and	d mf GRA	VEL; tra	ce SILT (moist,	non-plastic)
	s									2.0	500					
_		2	2.0	4.0	SS	1	1	1	1		Brown	cmf SAND; a	nd SILT; I	ittle mf (GRAVEL (moist,	non-plastic)
_	G										vv – 17	.070, 70 Filles	- 30.0 %	SIVI		
_		3	4.0	6.0	SS	1	1	3	5		Grey m	nf SAND; som	ie SILT; so	ome mf	GRAVEL (moist,	,
_										6.0	non-pia					
_		4	6.0	8.0	SS	6	6	4	4		Grey c	MF SAND; littl Ie WEATHER		VEL; tra K Fragn	ace SILT (moist,	non-plastic)
_											possible					
_		5	8.0	10.0	SS	14	15	18	20		Grey c plastic	mf SAND; littl) possible WI	e SILT; tra EATHERE	ace CLA ED ROC	XY (moist, very sl K Fragments w	ightly = 8.8%, LL
_	WET					<u> </u>				-	= 25, F	PL = 17, PI = 8	8, % Fines	s = 18.5	% SM	
_	R									-						
_						-				-	Advan	ced casing to	10 0 feet	Advanc	ed 3 7/8" tri-con	e roller bit
_	R										wet rot	ary open hole	to 14.0 fe	et and b	began coring.	
_	Y NX	6	14.0	14 1	SS I	50/	1"			14.1	_\ WFAT	HERED ROC	K Fragme	ents		_
_	- Č	-	14.2	19.0	NX	RU	N 1				Greyisl	h-Black SHAL	.E	-		/
_	R				+						58" or	97% Recover	у			
_	E (WFT)					-					29 Piec	ces (36") - 38 es longer than	% Chips a	and Fraq ROD = (gments n%	
-	()					-					UPIEC	uidi uidi	· - (v)-	- (QD - 1	070	
_			19.0	23.0	NX	RU	N 2			19.0	Grevis	h-Black SHAL	 E			
_						-	-				44" or	92% Recover	у			
_					+						20 Piec	ces (22") - 50	% Chips a	and Frag	gments	
						-					U Piece	es longer than	14 (U ["])-	KQD = (U 70	
		TR-1	23.0	25.0	NX	TR	-1			23.0	Grevis	h-Black SHAI	 .E			
		<u> </u>								-	NX Ro	ck Core samp	le collecte	ed from	23.0 to 25.0 feet	for TR
										1 05 0 1						

ATLANTIC TESTING LABORATORIES, Limited

Subsurface Investigation

From To Ince 0.10% 25.0 29.0 NX RUN 3 Ince 0.10% 25.0 29.0 NX RUN 3 Ince 0.10% 25.0 29.0 NX RUN 3 Ince 0.10% 25.0 29.0 34.0 NX RUN 4 Creyish-Black SHALE 29.0 34.0 NX RUN 4 Creyish-Black SHALE 60° or 100% Recovery 6 70.00% Recovery 61° or 100% Recovery 61° or 100% Recovery 13 Pieces (10°) - 79% Chips and Fragments 3 91eces (10°) - RQD = 32% 34.0 35.0 NX RUN 5 35.0 Greyish-Black SHALE 34.0 35.0 NX RUN 5 35.0 Greyish-Black SHALE 12" 34.0 35.0 NX RUN 5 35.0 Greyish-Black SHALE 12" 14" or 100% Recovery 12" or 100% Recovery 5 5 91eces (0°) - 25% Chips and Fragments 91eces (0°) - 25% Chips and Fragments 91eces (0°) - 25% Chips and Fragments

ATLANTIC TESTING LABORATORIES

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express - Design Package 3

		Sample		Percent Moisture Atterburg Limits Organic		Water-	Water-		De statistas	Rock Unconfined	Rock Splitting	Rock				
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	Ы	Content (%)	Soluble Sulfate (ppm)	Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-2	2.0-4.0	Brown cmf SAND; and m+f GRAVEL; little SILT	11.0	8.7											
	S-5	8.0-9.5	DEBRIS; and c SAND; trace SILT		18.0											
K-155.7	TR-1A	30.0-32.0	Brown c-mf+ SAND; trace mf GRAVEL; trace SILT; trace DEBRIS	4.0	23.9											
	TR-2A	40.0-42.0	Brown cmf SAND; little mf GRAVEL; trace SILT; trace DEBRIS		7.8											
× 450 4	S-4	6.0-8.0	Grey cm+f SAND; little mf+ GRAVEL; little SILT	16.0	16.4							-				
K-158.1	S-6	14.0-16.0	Grey cmf SAND; some SILT	27.8	8.2	NP	NP	NP								
	RC-1	25.0-30.0	Greyish-Black SHALE											21,840	1716	1.46
	S-2/3	2.0-6.0	Brown cmf SAND; some mf GRAVEL; trace SILT							1,800	30	6.26	19,350			
K 150 3	S-5	8.0-10.0	Light Brown SILT; little f SAND	84.0	25.7											
K-158.2	S-7	19.0-20.5	Grey cmf SAND; some SILT; little mf GRAVEL; little CLAY	42.0	10.4											
	RC-1	25.0-30.0	Greyish-Black SHALE											6,070	640	1.23
K-158.3	S-3	4.0-6.0	Brownish-Grey cmf SAND; some SILT; little mf+ GRAVEL	30.0	9.5											
	RC-2	19.0-24.0	Greyish-Black SHALE											12,960	1560	1.13
	RC-4	29.0-34.0	Greyish-Black SHALE											3,920	1746	1.11
K-158 5	S-2	2.0-4.0	Brown cmf SAND; and SILT; little mf GRAVEL	36.0	17.6											
K-130.5	S-5	8.0-10.0	Brown cmf SAND; little mf GRAVEL; trace SILT	18.5	8.8	25	17	8								

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS

ASTM D 2216

Page 1 of 2

PROJECT INFORMATION

- Client: Kiewit Intrastructure Co.
- Project: Champlain Hudson Power Express United Cable Installation Various Locations, New York

 ATL Report No.:
 CD10279E-11-04-22

 Report Date:
 April 11, 2022

 Date Received:
 March 30, 2022

TEST DATA											
Boring	Sample	Depth	Moisture								
No.	No.	(ft)	Content (%)								
K-140.2	S-2 ¹	2-4	25.6								
	S-5	8-10	9.4								
	S-8	24-26	39.4								
	TR-1	46-48	40.7								
K-153.1	S-2	2-4	14.1								
	S-5	8-10	23.4								
	TR-1	23-25	22.1								
	S-9	34-36	21.4								
K-155.7	S-2 ¹	2-4	8.7								
	S-5	8-9.5	18.0								
	TR-1 ¹	30-32	23.9								
	TR-2 ¹	40-42	7.8								
K-158.5	S-2 ¹	2-4	17.6								
	S-5 ¹	8-10	8.8								

ATLANTIC TESTING LABORATORIES

ATLANTIC TESTING LABORATORIES

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co. Project: Champlain Hudson Power Express United Cable Installation

Various Locations, New York

ATL Report No.:CD10279E-11-04-22Report Date:April 11, 2022Test Date:April 7, 2022Performed By:H. Brownell

		٦	TEST DATA			
Boring	Sample	Depth	Method	Soak Time	Initial Dry	% Finer
No.	No.	(ft)	(A or B)	(min)	Weight (g)	than #200
K-140.2	S-2	2-4	А	10	67.21	52.3
K-140.2	S-8	24-26	A	10	65.84	57.1
K-140.2	TR-1	46-48	A	10	97.87	84.5
K-158.5	S-5	8-10	А	10	126.91	18.5

Reviewed By: ______

Date: 04/11/22

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL ASTM D 4318

PROJECT	INFORM	ATION
---------	--------	-------

Client:	Kiewit Instrastructure Co.	ATL Report No.:	CD10279E-11-04-22
Project:	Champlain Hudson Power Express	Report Date:	April 11, 2022
	United Cable Installation	Date Received:	March 30, 2022
	Various Locations, New York		

TEST DATA						
Boring No.	Sample No.	LL	PL	PI		
K-140.2	S-2	38	16	22		
K-140.2	S-8	47	17	30		
K-140.2	TR-1	52	20	32		
K-158.5	S-5	25	17	8		

SAMPLE INFORMATION

		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-140.2	S-2	9.51	14	25.6
K-140.2	S-8	0.25	0	39.4
K-140.2	TR-1	0.149	0	40.7
K-158.5	S-5	12.7	60	8.8

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Materia
K-140.2	S-2	Air Dry	Pulverizing and Screening
K-140.2	S-8	Air Dry	Not Necessary
K-140.2	TR-1	Air Dry	Not Necessary
K-158.5	S-5	Air Dry	Pulverizing and Screening
K-158.5	S-5	Air Dry	Pulverizing and Screening

Appendix D

BoreAid HDD Simulation Output

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.
Project Summary

General: CHPE HDD 21B Conduit 1	
	P3
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	AJB
	CHA
Description:	HDD 21B 10-inch DR 9 Conduit 1

Input Summary

Start Coordinate	(0.00, 0.00, 142.70) ft
End Coordinate	(903.00, 0.00, 136.00) ft
Project Length	903.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SC From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 5.56 [psi]

Soil Layer #4 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 914.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.7	19.0
Water Pressure	13.2	13.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	16.9	32.2
Deflection		
Earth Load Deflection	1.255	5.277
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.387	5.409
Compressive Stress [psi]		
Compressive Wall Stress	75.9	145.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16153.8	16153.8
Pullback Stress [psi]	450.5	450.5
Pullback Strain	7.835E-3	7.835E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	450.5	475.3
Tensile Strain	7.835E-3	8.713E-3

Net External Pressure = 22.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.387	7.5	5.4	OK
Unconstrained Collapse [psi]	27.4	124.8	4.6	OK
Compressive Wall Stress [psi]	75.9	1150.0	15.2	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	37.4	228.8	6.1	OK
Tensile Stress [psi]	475.3	1200.0	2.5	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	86.709 psi	84.374 psi
1	8.00 in	12.00 in	86.625 psi	84.273 psi
2	12.00 in	16.13 in	86.503 psi	84.127 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min Drill Fluid Density: 68.670 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 142.70) ft
End Coordinate	(903.00, 0.00, 136.00) ft
Project Length	903.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 914.99 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	19.0
Water Pressure	13.2	13.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.7	32.2
Deflection		
Earth Load Deflection	0.565	5.277
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.594	5.306
Compressive Stress [psi]		
Compressive Wall Stress	65.9	145.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	898.1	898.1
Pullback Stress [psi]	513.1	513.1
Pullback Strain	8.924E-3	8.924E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	513.1	517.8
Tensile Strain	8.924E-3	9.104E-3

Net External Pressure = 22.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.594	7.5	12.6	OK
Unconstrained Collapse [psi]	27.4	132.9	4.9	OK
Compressive Wall Stress [psi]	65.9	1150.0	17.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	37.4	227.0	6.1	OK
Tensile Stress [psi]	517.8	1200.0	2.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 21B Conduit 2	
	P3	
	Start Date: 12-10-2021	
	End Date: 12-10-2021	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	CHA/BCE	
Designer:	AJB	
	СНА	
Description:	HDD 21B 10-inch DR9 Conduit 2	

Input Summary

Start Coordinate	(0.00, 0.00, 144.00) ft
End Coordinate	(947.20, 0.00, 135.50) ft
Project Length	947.20 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SC From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 5.56 [psi]

Soil Layer #4 USCS, Sand (S), SW From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 960.09 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.0	24.8
Water Pressure	13.3	13.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	17.3	38.1
Deflection		
Earth Load Deflection	1.117	6.756
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.249	6.888
Compressive Stress [psi]		
Compressive Wall Stress	77.7	171.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	16821.9	16821.9
Pullback Stress [psi]	469.1	469.1
Pullback Strain	8.159E-3	8.159E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	469.1	493.0
Tensile Strain	8.159E-3	9.018E-3

Net External Pressure = 24.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.249	7.5	6.0	OK
Unconstrained Collapse [psi]	28.4	123.9	4.4	OK
Compressive Wall Stress [psi]	77.7	1150.0	14.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	38.4	227.6	5.9	OK
Tensile Stress [psi]	493.0	1200.0	2.4	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	98.726 psi	84.643 psi
1	8.00 in	12.00 in	98.680 psi	84.548 psi
2	12.00 in	16.13 in	98.613 psi	84.412 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.670 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

- Allowable (Avg.) -- Allowable (Local) -- Friction Loss -- Static -- Circulating |||||| Potential Hydrofracture Locations

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 144.00) ft
End Coordinate	(947.20, 0.00, 135.50) ft
Project Length	947.20 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 960.09 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.6	24.8
Water Pressure	13.3	13.3
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.9	38.1
Deflection		
Earth Load Deflection	0.601	6.756
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.631	6.785
Compressive Stress [psi]		
Compressive Wall Stress	67.0	171.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	930.7	930.7
Pullback Stress [psi]	531.8	531.8
Pullback Strain	9.248E-3	9.248E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	531.8	535.6
Tensile Strain	9.248E-3	9.414E-3

Net External Pressure = 24.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.631	7.5	11.9	OK
Unconstrained Collapse [psi]	28.4	132.6	4.7	OK
Compressive Wall Stress [psi]	67.0	1150.0	17.2	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	38.4	225.6	5.9	OK
Tensile Stress [psi]	535.6	1200.0	2.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 22 Conduit 1
	P3
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	AJB
	СНА
Description:	HDD 22 10-inch DR 9 Conduit 1

Input Summary

Start Coordinate	(0.00, 0.00, 140.50) ft
End Coordinate	(1280.00, 0.00, 141.50) ft
Project Length	1280.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 8

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Gravel (G), GW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Gravel (G), GW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #6 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi] Soil Layer #7 USCS, Sand (S), SW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #8 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1290.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.8	18.2
Water Pressure	9.2	9.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.0	27.4
Deflection		
Earth Load Deflection	1.274	4.957
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.406	5.089
Compressive Stress [psi]		
Compressive Wall Stress	58.7	123.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	22019.9	22019.9
Pullback Stress [psi]	614.1	614.1
Pullback Strain	1.068E-2	1.068E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	614.1	637.9
Tensile Strain	1.068E-2	1.154E-2

Net External Pressure = 20.8 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.406	7.5	5.3	OK
Unconstrained Collapse [psi]	24.1	124.3	5.2	OK
Compressive Wall Stress [psi]	58.7	1150.0	19.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	34.1	218.6	6.4	OK
Tensile Stress [psi]	637.9	1200.0	1.9	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	77.852 psi	77.852 psi
1	8.00 in	12.00 in	77.762 psi	77.762 psi
2	12.00 in	16.13 in	77.633 psi	77.633 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min Drill Fluid Density: 68.670 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Powered by

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 140.50) ft
End Coordinate	(1280.00, 0.00, 141.50) ft
Project Length	1280.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1290.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	18.2
Water Pressure	9.2	9.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.7	27.4
Deflection		
Earth Load Deflection	0.586	4.957
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.615	4.986
Compressive Stress [psi]		
Compressive Wall Stress	48.4	123.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1184.4	1184.4
Pullback Stress [psi]	676.7	676.7
Pullback Strain	1.177E-2	1.177E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	676.7	680.5
Tensile Strain	1.177E-2	1.193E-2

Net External Pressure = 20.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

-

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.615	7.5	12.2	OK
Unconstrained Collapse [psi]	24.1	132.7	5.5	OK
Compressive Wall Stress [psi]	48.4	1150.0	23.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	34.1	216.4	6.4	OK
Tensile Stress [psi]	680.5	1200.0	1.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 22 Conduit 2	
	Р3	
	Start Date: 12-10-2021	
	End Date: 12-10-2021	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	CHA/BCE	
Designer:	AJB	
	СНА	
Description:	HDD 22 10-inch DR 9 Conduit 2	

Input Summary

Start Coordinate	(0.00, 0.00, 140.50) ft
End Coordinate	(1280.00, 0.00, 141.50) ft
Project Length	1280.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 8

Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Gravel (G), GW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Gravel (G), GW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #6 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi] Soil Layer #7 USCS, Sand (S), SW From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #8 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1290.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.8	18.2
Water Pressure	9.2	9.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.0	27.4
Deflection		
Earth Load Deflection	1.275	4.957
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.407	5.089
Compressive Stress [psi]		
Compressive Wall Stress	58.7	123.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	21993.8	21993.8
Pullback Stress [psi]	613.4	613.4
Pullback Strain	1.067E-2	1.067E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	613.4	637.2
Tensile Strain	1.067E-2	1.153E-2

Net External Pressure = 20.5 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.407	7.5	5.3	OK
Unconstrained Collapse [psi]	23.8	124.3	5.2	OK
Compressive Wall Stress [psi]	58.7	1150.0	19.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.8	218.6	6.5	OK
Tensile Stress [psi]	637.2	1200.0	1.9	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	77.852 psi	77.852 psi
1	8.00 in	12.00 in	77.762 psi	77.762 psi
2	12.00 in	16.13 in	77.633 psi	77.633 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Powered by

- Allowable (Avg.) -- Allowable (Local) -- Friction Loss -- Static -- Circulating |||||| Potential Hydrofracture Locations

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 140.50) ft
End Coordinate	(1280.00, 0.00, 141.50) ft
Project Length	1280.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1290.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	18.2
Water Pressure	9.2	9.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.7	27.4
Deflection		
Earth Load Deflection	0.582	4.957
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.611	4.986
Compressive Stress [psi]		
Compressive Wall Stress	48.4	123.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1183.1	1183.1
Pullback Stress [psi]	676.0	676.0
Pullback Strain	1.176E-2	1.176E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	676.0	679.8
Tensile Strain	1.176E-2	1.192E-2

Net External Pressure = 20.5 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.611	7.5	12.3	OK
Unconstrained Collapse [psi]	23.8	132.7	5.6	OK
Compressive Wall Stress [psi]	48.4	1150.0	23.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	33.8	216.5	6.4	OK
Tensile Stress [psi]	679.8	1200.0	1.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE Package 2 HDD 24 Draft
	J2105
	Start Date: 10-03-2022
	End Date: 10-03-2022
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA-BCE
Designer:	MDB
	BCE
	Amherst, MA
Description:	North to South 12" DR7 curved alignment

Input Summary

Start Coordinate	(0.00, 0.00, 135.00) ft
End Coordinate	(3320.00, 0.00, 162.00) ft
Project Length	3320.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	12.750 in
Pipe DR	7.0
Pipe Thickness	1.82 in
Rod Length	20.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM From Assistant Unit Weight: 117.1584 (dry), 132.8832 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.00 [psi]

Soil Layer #3 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 32.00, S.M.: 250.00, Coh: 0.00 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 107.8272 (dry), 177.6384 (sat) [lb/ft3] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Powered by 💘 | BOreAid

1200

41]

Length =

Length = 314.2 ft

Bore Plan View

400

X [ft]

400

800

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 12" (12.75") Pipe DR: 7 Pipe Length: 3379.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.59400002161662 ft Silo Width: 1.59400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.4	63.5
Water Pressure	24.7	24.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	32.1	88.2
Deflection		
Earth Load Deflection	0.845	7.294
Buoyant Deflection	0.074	0.074
Reissner Effect	0	0
Net Deflection	0.919	7.368
Compressive Stress [psi]		
Compressive Wall Stress	112.2	308.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	57985.6	57985.6
Pullback Stress [psi]	927.2	927.2
Pullback Strain	1.613E-2	1.613E-2
Bending Stress [psi]	0.0	25.5
Bending Strain	0	4.427E-4
Tensile Stress [psi]	927.2	943.6
Tensile Strain	1.613E-2	1.685E-2

Net External Pressure = 31.5 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 798.4 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.919	7.5	8.2	OK
Unconstrained Collapse [psi]	64.6	301.5	4.7	OK
Compressive Wall Stress [psi]	112.2	1150.0	10.3	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.036	7.5	207.6	OK
Unconstrained Collapse [psi]	31.5	451.0	14.3	OK
Tensile Stress [psi]	943.6	1200.0	1.3	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1303.855 psi	1380.179 psi
1	8.00 in	12.00 in	1303.692 psi	1380.123 psi
2	12.00 in	16.13 in	1303.455 psi	1380.041 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Shear Rate [rpm]	Shear Stress [Fann Degrees]
600	37
300	32
200	29
100	25
6	17
3	15
	Shear Rate [rpm] 600 300 200 100 6 3

Flow Rate (Q): 0.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): Infinity

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 135.00) ft
End Coordinate	(3320.00, 0.00, 162.00) ft
Project Length	3320.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	3.500 in
Pipe DR	7.0
Pipe Thickness	0.50 in
Rod Length	20.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft
Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5") Pipe DR: 7 Pipe Length: 3379.99 ft Internal Pressure: 0 psi Borehole Diameter: 0.625 ft Silo Width: 0.625 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.9	63.5
Water Pressure	24.7	24.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	27.6	88.2
Deflection		
Earth Load Deflection	0.332	7.294
Buoyant Deflection	0.020	0.020
Reissner Effect	0	0
Net Deflection	0.352	7.315
Compressive Stress [psi]		
Compressive Wall Stress	96.5	308.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	4482.2	4482.2
Pullback Stress [psi]	951.1	951.1
Pullback Strain	1.654E-2	1.654E-2
Bending Stress [psi]	0.0	7.0
Bending Strain	0	1.215E-4
Tensile Stress [psi]	951.1	951.1
Tensile Strain	1.654E-2	1.663E-2

Net External Pressure = 31.5 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.352	7.5	21.3	OK
Unconstrained Collapse [psi]	64.6	317.2	4.9	OK
Compressive Wall Stress [psi]	96.5	1150.0	11.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.010	7.5	756.1	OK
Unconstrained Collapse [psi]	31.5	450.6	14.3	OK
Tensile Stress [psi]	951.1	1200.0	1.3	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 24A Conduit 1
	P3
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Designer:	AJB
	СНА
Description:	HDD 25 10-inch DR 9 Conduit 1

Input Summary

Start Coordinate	(130.00, 0.00, 157.20) ft
End Coordinate	(1014.10, 0.00, 158.20) ft
Project Length	884.10 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SM From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Gravel (G), GC From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Soil Layer #5 USCS, Gravel (G), GW From Assistant Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #6 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1450.40, Coh: 2000.00 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 900.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.7	20.5
Water Pressure	0.5	0.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	8.2	21.1
Deflection		
Earth Load Deflection	2.092	5.590
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.224	5.722
Compressive Stress [psi]		
Compressive Wall Stress	37.0	94.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15318.0	15318.0
Pullback Stress [psi]	427.2	427.2
Pullback Strain	7.430E-3	7.430E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	427.2	451.2
Tensile Strain	7.430E-3	8.295E-3

Net External Pressure = 21.3 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.224	7.5	3.4	OK
Unconstrained Collapse [psi]	23.7	113.1	4.8	OK
Compressive Wall Stress [psi]	37.0	1150.0	31.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.7	230.4	6.8	OK
Tensile Stress [psi]	451.2	1200.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	56.951 psi	56.951 psi
1	8.00 in	12.00 in	56.614 psi	56.614 psi
2	12.00 in	16.13 in	56.140 psi	56.140 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(130.00, 0.00, 157.20) ft
End Coordinate	(1014.10, 0.00, 158.20) ft
Project Length	884.10 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 900.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.6	20.5
Water Pressure	0.5	0.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	4.1	21.1
Deflection		
Earth Load Deflection	0.978	5.590
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.008	5.619
Compressive Stress [psi]		
Compressive Wall Stress	18.6	94.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	857.3	857.3
Pullback Stress [psi]	489.8	489.8
Pullback Strain	8.518E-3	8.518E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	489.8	493.7
Tensile Strain	8.518E-3	8.686E-3

Net External Pressure = 21.3 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.008	7.5	7.4	OK
Unconstrained Collapse [psi]	23.7	126.2	5.3	OK
Compressive Wall Stress [psi]	18.6	1150.0	61.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	33.7	228.5	6.8	OK
Tensile Stress [psi]	493.7	1200.0	2.4	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 24A Conduit 2
	P3
	Start Date: 12-10-2021
	End Date: 12-10-2021
Project Owner:	TDI
Project Contractor:	Kiewit
Designer:	AJB
	СНА
Description:	HDD 25 10-inch DR 9 Conduit 2

Input Summary

Start Coordinate	(130.00, 0.00, 157.20) ft
End Coordinate	(1014.10, 0.00, 158.50) ft
Project Length	884.10 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 6

Soil Layer #1 USCS, Sand (S), SM From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Gravel (G), GC From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Sand (S), SP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Clay (C), CL From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Soil Layer #5 USCS, Gravel (G), GW From Assistant Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #6 Rock, Geological Classification, Sedimentary Rocks From Assistant Unit Weight: 160.0000 (dry), 170.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1450.40, Coh: 2000.00 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 900.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	8.9	25.2
Water Pressure	0.4	0.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	9.2	25.6
Deflection		
Earth Load Deflection	2.417	6.870
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	2.549	7.002
Compressive Stress [psi]		
Compressive Wall Stress	41.5	115.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15325.5	15325.5
Pullback Stress [psi]	427.4	427.4
Pullback Strain	7.433E-3	7.433E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	427.4	451.2
Tensile Strain	7.433E-3	8.296E-3

Net External Pressure = 21.6 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	2.549	7.5	2.9	OK
Unconstrained Collapse [psi]	23.7	109.9	4.6	OK
Compressive Wall Stress [psi]	41.5	1150.0	27.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.7	230.2	6.8	OK
Tensile Stress [psi]	451.2	1200.0	2.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	61.579 psi	43.322 psi
1	8.00 in	12.00 in	61.538 psi	42.534 psi
2	12.00 in	16.13 in	61.478 psi	41.484 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Powered by

Powered by

Powered by