

PROJECT NUMBER

Segment 12 Package 7B HDD Borings - Rockland Champlain Hudson Power Express New York

- Kiewit Borings (2022)
- O Borings by Others

BORING NO: K-294.9-3.6

OJ	ECT NI	UMBER	20001480	LOGGED BY		Jia	alin Li		COORDINATES			925.9 278.0		
	STAR		04/18/2022	DRILLER/RIG	Rio	:k / Di	edrich	D-90	GROUND ELEV.		100).4 ft		
	FINISH	I DATE	04/18/2022	ORILL CONTRACTO	२	Pari	att Wo	olff	HAMMER TYPE/E	FF	Au	utoma	atic	
	Elevation (ft)	Graphic Log	Material Des	cription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT N MC (% PL & Fines	e gend N Value %) LL (%) Conter	e nt (%)	Т
_	ш 100.2			/	<u>ທ</u> ບ	-	-	ш	Boring advanced	20	40	60	8	80
			Silty SAND (SM) (based of excavated materials) 0 - 7.42 ft was excavated b vacuum truck						with 3.5" ID HSA					
-									-					
	93.0		Silty SAND (SM), with grav reddish brown, dense, dry						-					
-					XI	50%		20-12-22-14	_					+
) _								(34)	_		-			-
-														+
-									-					+
_			$\overline{\Delta}$		\square	0%		18-20-27-13						
					M	0%		(47)	-					
_									-					
-									_					-
-														
-					XI	0%		27-15-16-23 (31)	_					-
-	80.4	//////	Clayey SAND (SC), with g very dense, moist	ravel, grayish brown,					-					-
		////	very dense, moist			100%		100/3"	3-inch ring sampler	• 1	8			-
		////				0%		100/1"						_
.		[[]]]				0 78		100/1	_					-
-	75.4		Siltstone, fresh, closely spa	and fractional first					-					-
_		X X X X X X X X X X X X X X X	grained, maroon, very stro						_					1
-		X X X X X X X X X X X X X X X				100% 67			_					-
-		x x x x x x x x x x x x x x x x							-		+		_	+
_		X X X X X X X X X X X X X X X				89%					+			+
) 1		X X X X X X X X			11	25								Ť

BORING NO: K-294.9-3.6

	NU	JMBER	20001480	LOGGED BY		Jia	alin Li		COORDINATES			925.9 278.0		
Image: Second	٩RT	DATE	04/18/2022	DRILLER/RIG	Ric	ck / Di	edrich l	D-90	GROUND ELEV.		100).4 ft		
10- 100% 10- 100%	ISH		04/18/2022	DRILL CONTRACTOR	2	Parr	att Wol	Iff	HAMMER TYPE/EF	F	Αι	Itoma	atic	_
Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: solution of the shift closely spaced fractures, fine grained, marcon, very strong Image: soluticlos fractures, fine grained, marcon, very strong		raphic Log	Material D	escription	ample Type ore Run No.	tecovery % RQD	ocket Pen. (tsf)	low Counts (N Value)	Notes	▲ ● ₽	Le SPT MC (% PL & Fines	gend N Value %) LL (%) Conter	nt (%))
- -			Siltstone fresh closely		တိုပ်	8	۵.	B		20	40	60	8	80
)))))))))))))))))))	X X X X X X X X X X X X X X X X X X X X	grained, maroon, very s	trong		100% 44								
														+

BORING NO: K-294.9-3.7

so1	ECT N		20001480	LOGGED BY		Jia	alin Li		COORDINATES			2210 4533		
	STAR		04/14/2022	DRILLER/RIG	Ric	ck / Di	edrich	D-90	GROUND ELEV.		12	24.7 f	t	
	FINIS	H DATE	04/14/2022	DRILL CONTRACTO	R	Parr	ratt Wo	lff	HAMMER TYPE/	EFF.	Α	utor	natic	
	Elevation (ft)	Graphic Log	Material Des	cription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		▲ SP1 ● MC ● PL ▼ Fine	. egen 「 N Valı (%) & LL (% es Cont	ue 6) ent (%	6)
	ш	0	18" Asphalt		တ ပ		<u>ш</u>	Ξ	Boring advanced	20) 4	06	0	80
_	123.2		·						with 3.25" ID HSA					-
-	120.2		Silty SAND (SM) (based of excavated materials)											+
_			0 - 7.5 ft was excavated b vacuum truck	y air knife and										+
-														+
-														-
_														-
_														
_	117.2	╞	SAND with SILT (SP-SM)	with gravel, reddish					Water added to hole					_
_			brown, loose to medium d	ense, dry to moist	M	38%		2-8-8-9		• •				_
) –					\square			(16)						_
														_
													\square	-
-		Z	Z										\square	
-			Trace clay		Μ									-
-					Ň	58%		2-3-4-4 (7)			•			-
5 -														_
_														-
_														-
-														+
_					IXII -	54%		24-10-9-8		-	•			
) -					\square			(19)						
_														_
_														
_									3-inch ring sampler					
-					X	0%		55-100/5"						
5 -														_
_					X	100%		28-100/4"		Ø				
-													\square	
						100%		50/4"					\square	+
														+
-					N	100%		40 50 50/4"						+
з⊥						10070		40-52-50/4"						

BORING NO: K-294.9-3.7

STAR	UMBER _ T DATE	20001480 04/14/2022	LOGGED B DRILLER/RIC			alin Li edrich	D-90	COORDINATES GROUND ELEV.	E	124.	533.31 7 ft	
	H DATE	04/14/2022	DRILL CONTRACTO			ratt W		HAMMER TYPE/EF	F		omati	с
Elevation (ft)	Graphic Log	Material	Description	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT N MC (% PL & L Fines (J end Value) L (%) Content (
5 - 89.7 	Gra	Clay seams in soil Boring Terminated at 3	35 ft	San	84%	Bo	o€ 10-8-9-22 (17)				60 60	
0 -												

BORING NO: K-294.9-3.8

N 861940.25

Champlain Hudson Power Express

	START		20001480	DRILLER/RIG	<u> </u>		el Sala	E 550	GROUND ELEV.			84747 24.7 1		
	FINISH	_		DRILL CONTRACTO			att W		HAMMER TYPE/E	FF.		Auton		
	Elevation (ft)	Graphic Log	Material Des	cription	Sample Type Core Run No.		Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	(L SP1 MC PL	.egen T N Vali	nd ue %)	
•	Ĕ	ษั			Sa Co	ž	Å	B		20) 4	і Ю б	50	80
	123.6		13" Asphalt Silty SAND (SM), with grav (based on observation of e 0 - 7 ft was excavated usir vacuum truck	excavated soils)					Boring advanced with 3.25" ID HSA					
	117.7		Silty SAND (SM), with grave coarse sand, coarse grave brown, dense, moist	vel, medium to I, subangular,		42%		20-30-13-14 (43)						
	111.7 110.7		SILT (ML), with gravel, fine hard, moist Auger refusal at 14 ft, abou switched to NQ rock coring	ut 3.5 ft boulder,	\square	67%		25-50/3"						
- - - - - -			Could not progress further would cave in to about 20 core barrel, with no recove	ft during extrusion of		40% 0								
			core runs			0								
-						0							\square	+
_									_					-
-	95.7		Boring Terminated at 29 ft						_				+	+

BORING NO: K-294.9-3.8R

		Graphic Log	00/02/2022	DRILLER/RIG	R		/ CME		GROUND ELEV. HAMMER TYPE/			4.7 f utom		
	Elevation (ft)						att W	olff	HAMMER TYPE/	EFF.	Α	utom	natic	
-	_	Graphic Log	Material Descriptio		vpe. No.									
	_	0		חל	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	9	SPT MC PL	egen N Valu (%) & LL (% es Cont	ue 6) ent (%	Ť
- - 1 - -	123.2		18" Asphalt		ပ		L	<u> </u>	Boring advanced	20	4	0 6	0	80
-			Silty SAND (SM) (based on obse excavated materials) 0 - 6.67 ft was excavated by air k vacuum truck						with 3.5" ID HSA					
1 - - - - - - - - - - - - - - - - - - -	118.0		SAA, with conglomerate fragmen brown to tan, medium dense to v	nts, reddish /ery dense					Boring advanced to 13 ft without sampling					
5-		z	Z		\boxtimes	100%		43-50/4"						
) - - - - - - - - - - - - - - - - - - -			With little gravel		\square	42%		19-10-11-12 (21)						
					8	100%		50/1"	3-inch ring sampler					_
5 - - -					X	100%		43-50/4"		•				
					X	40%		32-50/4''						
4						40%		3∠-30/4					\square	╡

BORING NO: K-294.9-3.8R

NOJE		UMBER	20001480	LOGGED BY		Jia	alin Li		COORDINATES		E 63	4741	8.90 1.05	
S	STAR	T DATE	05/02/2022	DRILLER/RIG	С	orey	/ CME	550	GROUND ELEV.		12	24.7	ft	
F	FINISH		05/02/2022	DRILL CONTRACTO	R	Parı	att Wo	lff	HAMMER TYPE/E	FF	A	uton	nati	с
Depth (ft)	Elevation (ft)	Graphic Log	Material	Description	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	5	SPT MC PL a Fine	(%) & LL (% s Con	lue %)	
40			GRAVEL with SILT (G reddish brown to tan, Siltstone, fine grained spaced fractures, red, Boring Terminated at	, closely to very closely strong to very strong		100% 100% 80 100% 97 100% 81		50/3"						

SOIL LEGEND

Explanation of Symbols and Terms Used on Boring and Test Pit Logs for Sampling and Description of Soils

5	SAMPLE AND DRILL METHODS		COMMON ABBREVIAT	IONS AND	ACRONYMS
	Standard Penetration Split-Spoon	MR	Mud Rotary	Bulk	Bulk Sample
	Sample	HSA	Hollow Stem Auger	EOB	End of Boring
	Undisturbed Sample	SSA	Solid Stem Auger	AR	Auger Refusal
H	Piston Sampler	SS	Split Spoon Sampler	N-Value	Sum of blows for last two 6-in.
1993 1993	Grab Sample	UD	Undisturbed Sample	in-value	increments of SPT
\square	Bulk Sample	WOR	Weight of Rods	USCS	Unified Soil Classification
	Auger Cuttings	WOH	Weight of Hammer	0303	System
	Rock Core	SPT	Standard Penetration Test		
	Modified California Sample	REC	Recovery		
	WATER LEVEL SYMBOLS	RQD	Rock Quality Designation	CRO	DSS SECTION LEGEND
∇	Observation at time of drilling	MC	Moisture Content		
V	Observation after drilling	PI	Plasticity Index	N	I(bpf)
T	Delayed observation	PL	Plastic Limit		Moisture Content
Ŧ	Perched water observed at drilling	LL	Liquid Limit	Recove	a
Â	Ø Observed Seepage	CPT	Cone Penetration Test		
lel	Cave-in Depth	PP	Pocket Penetrometer		

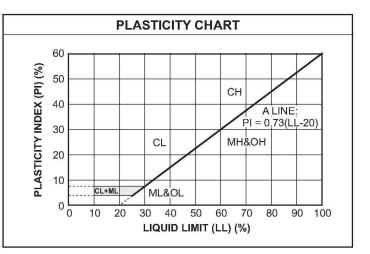
	RELATIVE D	ENSITY / CONSI	STENCY	
Coarse-g	rained Soils	Fir	ne-grained Soil	s
N-Value	Density	N-Value	Consistency	Pocket Pen (TSF)
0 - 4	Very Loose	0 - 1	Very Soft	0.0 - 0.25
5 - 10	Loose	2 - 4	Soft	0.25 - 0.50
11 - 30	Medium	5 - 8	Firm	0.51 - 1.00
		9 - 15	Stiff	1.01 - 2.00
31 - 50	Dense	16 - 30	Very Stiff	2.01-4.00
> 50	Very Dense	> 30	Hard	> 4.00

RELATIVE PROPORTIONS OF GRAVEL, SAND, AND FINES									
Trace	> 5 %								
Few	5 to 10 %								
Little	15 to 25 %								
Some	30 - 45 %								
Mostly	50 to 100 %								

SOIL GRAIN SIZE

				U.S. Stan	dard Siev	'e			
6	" 3	3" 3/4	1" ∠	4 1	0 4	0 2	00		
Douldoro	Cabblaa	Gra	vel		Sand		Cilt		Clay
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt		Clay
15	52 76	5.2 19	.1 4.	76 2.	00 0.4	20 0.	074	0.0	02 (mm)

CRITERIA	FOR DESCRIBING MOISTURE CONDITION	C	RITERIA FOR DESCRIBING CEMENTATION
Description	Criteria	Description	Criteria
Dry	Absence of moisture, dusty, dry to the touch	Weak	Crumbles or breaks with handling or little finger pressure
Moist	Damp but no visible free water	Moderate	Crumbles or breaks with considerable finger pressure
Wet	Visible free water, typically soil is below water table	Strong	Will not crumble or break with finger pressure


CRITERIA FOR DESCRIBING STRUCTURE			
Description	Criteria		
Stratified	Alternating layers of varying material or color with layers at least 1/4 in. thick; note thickness		
Laminated	Alternating layers of varying material or color with the layers less than 1/4 in. thick; note thickness		
Fissured	Breaks along definite planes of fracture with little resistance to fracturing		
Slickensided	Fracture planes appear polished or glossy, sometimes striated		
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown		
Lensed	Inclusion of small pockets of different soils, such as lenses of sand scattered through a mass of clay; note thickness		
Homogeneous	Same color and appearance throughout		

SOIL SYMBOLS

USCS SOIL TYPES				
Symbol	Group	Description		
	GW	Well-graded gravels, gravel sand mixtures with trace or no fines		
	GP	Poorly-graded gravels, gravel-sand mixtures with trace or no fines		
	GW-GM	Well-graded gravels, gravel-sand mixtures with silt fines		
	GW-GC	Well-graded gravels, gravel-sand mixtures with clay fines		
	GP-GM	Poorly-graded gravels, gravel-sand mixtures with silt fines		
	GP-GC	Poorly-graded gravels, gravel-sand mixtures with clay fines		
	GM	Silty gravels, gravel-silt-sand mixtures		
\$1. P.J.S.	GC	Clayey gravels, gravel-sand-clay mixtures		
	GC-GM	Clayey gravels, gravel-sand-clay-silt mixtures		
	SW	Well-graded sands, sand-gravel mixtures with trace or no fines		
	SP	Poorly-graded sands, sand-gravel mixtures with trace or no fines		
	SW-SM	Well-graded sands, sand-gravel mixtures with silt fines		
	SW-SC	Well-graded sands, sand-gravel mixtures with clayfines		
	SP-SM	Poorly-graded sands, sand-gravel mixtures with silt fines		
	SP-SC	Poorly-graded sands, sand-gravel mixtures with clay fines		
	SM	Silty sands, sand-gravel-silt mixtures		
	SC	Clayey sands, sand-gravel-clay mixtures		
	SC-SM	Clayey sands, sand-gravel-clay-silt mixtures		
	ML	Inorganic silts with low plasticity		
	CL	Inorganic clays of low plasticity, gravelly or sandy clays, silty clays, lean clays		
	CL-ML	Inorganic clay-silts of low plasticity, gravelly clays, sandy clays, silty clays, lean clays		
<i>}}}}</i>	OL	Organic silts and organic silty clays of low plasticity		
	MH	Inorganic silts of high plasticity, elastic silts		
	СН	Inorganic clays of high plasticity, fat clays		
	ОН	Organic clays and organic silts of high plasticity		
<u>6 26 26 2</u> 26 26 26	PT	Peat, humus, swamp soils with high organic contents		

OTHER MATERIALS		
Symbol	Description	
	Asphalt	
	Concrete	
	Crushed Stone/Aggregate Base	
	Fill	

ROCK LEGEND

Explanation of Symbols and Terms Used on Boring and Test Pit Logs for Sampling and Description of Rock

	TERMS AND ABBREVIATIONS
Fracture	Collective term for any seperation in a geologic formation
Joint (JT)	Natural break in a layer or body of rock that lacks visible offset
Bedding	Layers of sedimentary rocks that are distinctly different from overlying and underlying beds
Mechanical Break (MB)	Breaks due to drilling or handling in rock or sediment cores
RQD	Rock Quality Designation
REC	Percent Recovery
Shear (SH)	Surface of differential movement evident by presence of slickensides, striations, or polishing
Shear Zone (SZ)	Zone of gouge and rock fragments bounded by planar shear surfaces
Fault (FT)	Planar fracture with significant displacement

Very Soft	Can be deformed by hand (has a rock-like character but can be broken easily by hand)
Soft	Can be scratched by fingernail (cannot be crumbled between fingers but can be easily pitted with light blows of a geology hammer)
Moderately Hard	Can be scratched easily with a knife; cannot be scratched with a fingernail (can be pitted with moderate blows of a geology hammer)
Hard	Difficult to scratch with a knife (cannot be pitted with a geology hammer but can be chipped with moderate blows of the hammer)
Very Hard	Cannot be scratched with a knife (chips can be broken off only with heavy blows of the geology hammer)

BEDDING THICKNESS			JOINT AND FRACTURE DENSITY		
Laminated	< 0.04 in.	< 1 mm	Very Tight	< 2 in.	< 5.1 cm
Parting	0.04 - 1/4 in.	1 - 6 mm	Tight	2 in 1 ft.	5.1 - 30.5 cm
Banded	1/4 - 1 in.	6 mm - 3 cm	Moderately tight	1 - 3 ft.	30.5 - 91.4 cm
Thin	1 - 4 in.	3 - 9.1 cm	Wide	3 - 10 ft.	91.4 cm - 3 m
Medium	4 in 1 ft.	9.1 - 30.5 cm			
Thick	1 - 3 ft.	30.5 cm - 1 m		WEATHERING	
Massive	> 3 ft.	> 1 m	n nweaneren	-	chanical or chemic
	VOIDS		alterati	on.	

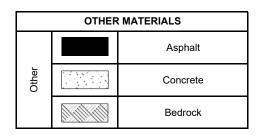
	VOIDS
Porous	Smaller than a pinhead. Their presence is indicated by the degree of absorbency.
Pitted	Pinhead size to a 1/4 in. If only thin walls separate the individual pits, the core may be described as honeycombed.
Vug	1/4 in. to the diameter of the core. The upper limit will vary with core size.
Cavity	Larger than the diameter of the core.

TEXTURE

Aphanitic	Individual grains or crystals are too small to be seen with the naked eye.
Fine-grained, finely crystalline	Grain diameters between 0.1 and 1 mm; grains or crystals can be seen with naked eye.
Medium-grained, crystalline	Grain diameters between 1 and 5 mm.
Coarse-grained, coarsely crystalline	Grain diameters greater than 5 mm.

Superficial discoloration, alteration, and/or discoloration along discontinuities; less Slightly than 10% of the rock volume is altered; strength is essentially unaffected.

Discoloration is evident; surface is pitted and altered, with alterations penetrating Moderately well below rock surfaces; 10 to 50% of the rock is altered; strength is noticeably less than unweathered rock. Entire section is discolored; alteration is

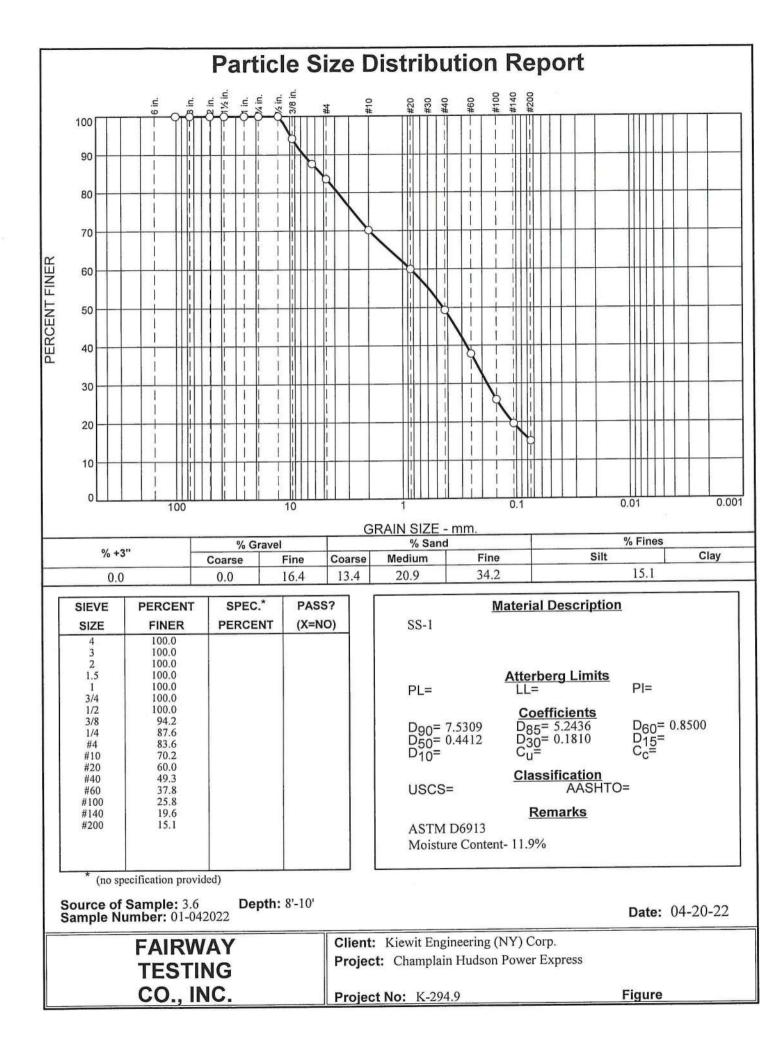

greater than 50%; some areas of slightly weathered rock are present; some minerals Highly are leached away; retains only a fraction of its original strength (wet strength is usually lower than dry strength).

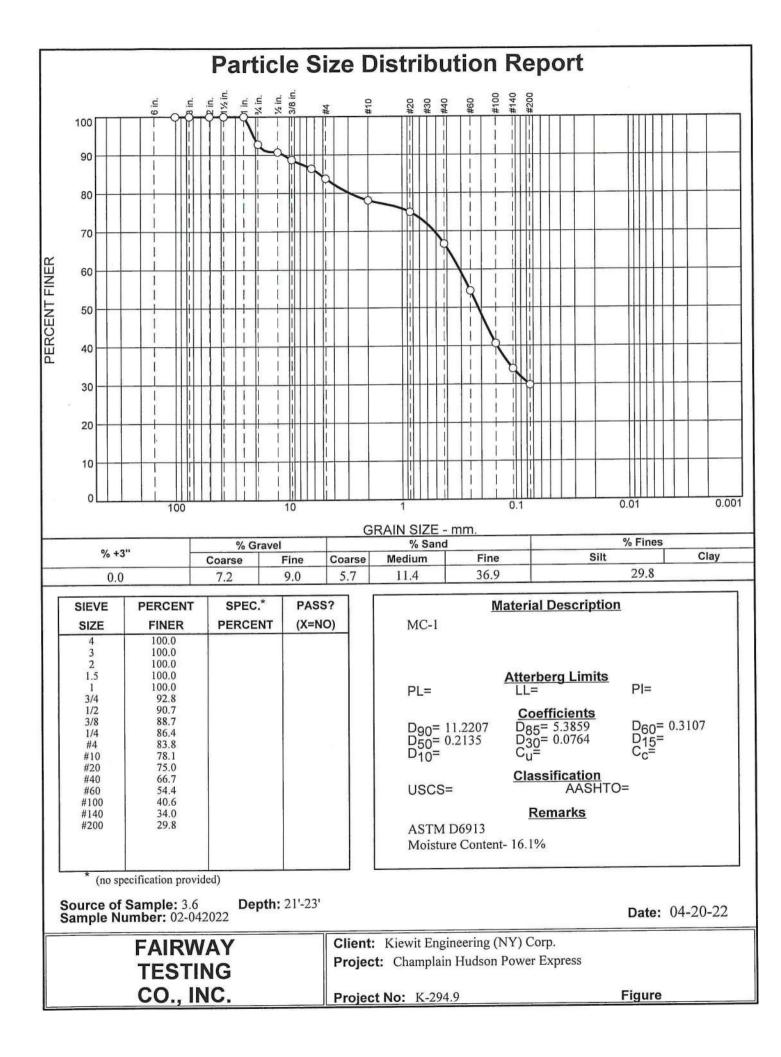
Saprolite; rock is essentially reduced to a Decomposed soil with a relic rock texture; can be molded or crumbled by hand.

ROCK SYMBOLS

ROCK TYPES			
		Shale	
		Siltstone	
		Sandstone	
	00 00 00	Conglomerate	
Rocks		Breccia	
Sedimentary Rocks		Limestone	
Sedim		Dolomite	
		Gypsum	
		Coal	
	್ಲೆಂ	Coral	
		Chalk	
		Slate	
sks		Schist	
hic Roo		Gneiss	
Metamorphic Rocks		Quartzite	
We	5 5 6 6 6 5 6 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Serpentinite	
	+ +	Greenstone	
		Granite	
S		Tuff	
Igneous Rocks	7 4	Rhyolite	
lgneou	× + , * + ,	Dacite	
	=	Andesite	
		Basalt	

ROCK QUALITY DESIGNATION (RQD) AND RECOVERY			
% RQD	Quality		
< 25	Very Poor	Recovery (%) = $\frac{\text{Length of Core Sample Recovered}}{\text{Length of the Core Run}} \times 100$	
25 - 50	Poor	Length of the Core Run	
50 - 75	Fair	RQD (%) = Sum of Lengths of Intact Rock Pieces of 4 in. and Longer x 100	
75 - 90	Good	RQD (%) = Sum of Lengths of Intact Rock Pieces of 4 in. and Longer Length of the Core Run x 100	
90 - 100	Excellent		


22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

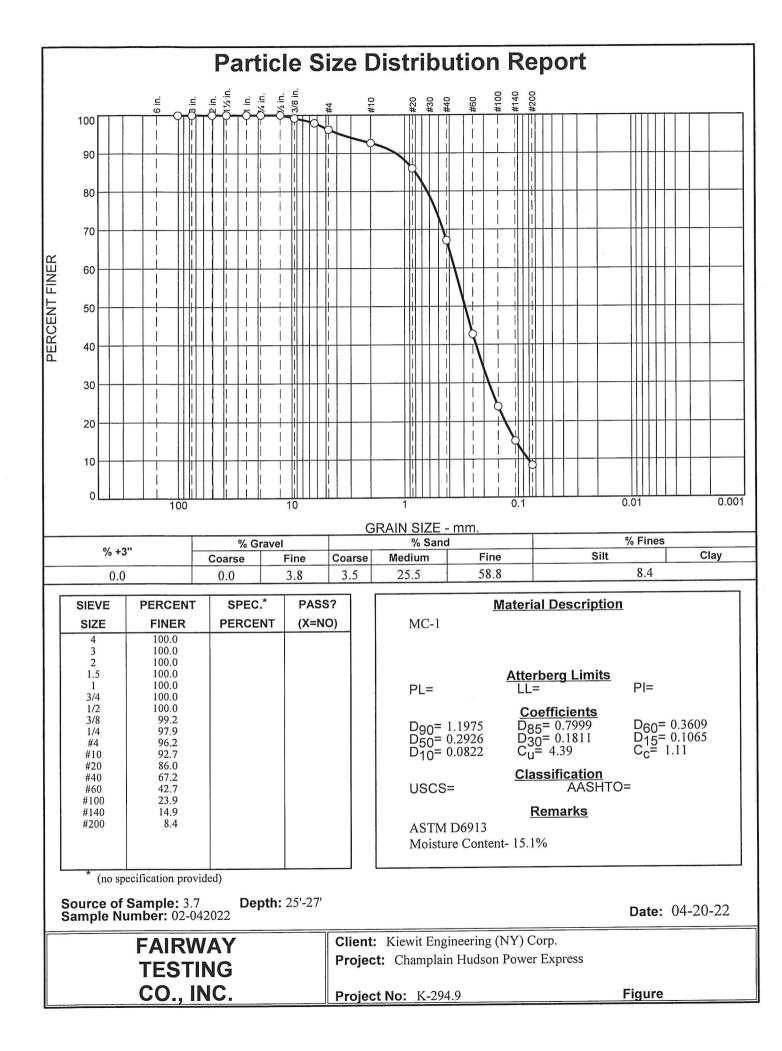

Report Date: Project:	6/20/22 Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

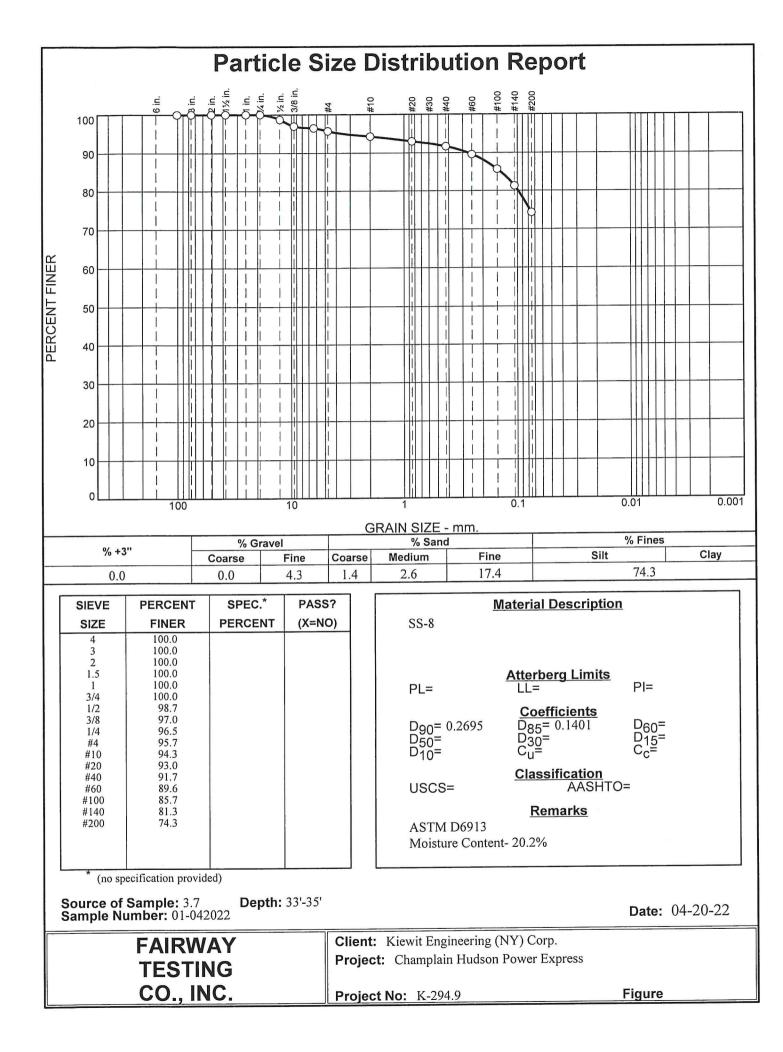
See attached reports for testing requested by the client as per attached submittals for locations K.294.9-3.6.

Respectfully Submitted, Fairway Testing

Hopil & O'lounell

22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

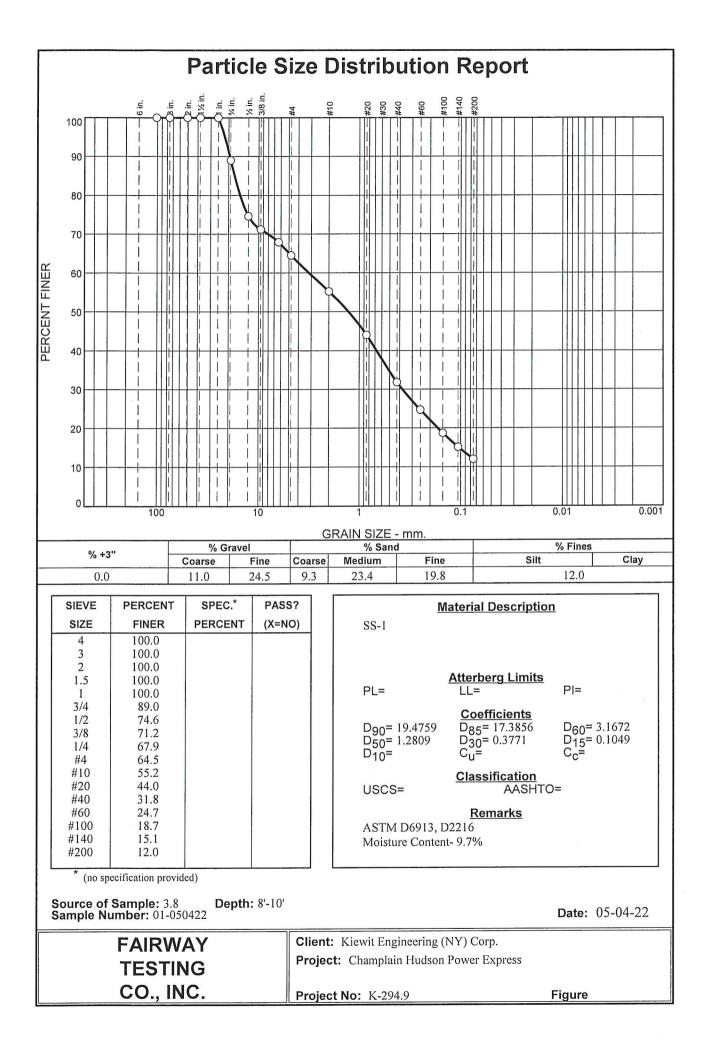

Report Date:	6/20/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis


See attached reports for testing requested by the client as per attached submittals for locations K.294.9- 3.7. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
SS-2 (8'- 10')	7.0%
SS-4 (13'-15')	19.1%

Respectfully Submitted, Fairway Testing

Aspil J O'lonnell


22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

Report Date:	6/24/2022
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

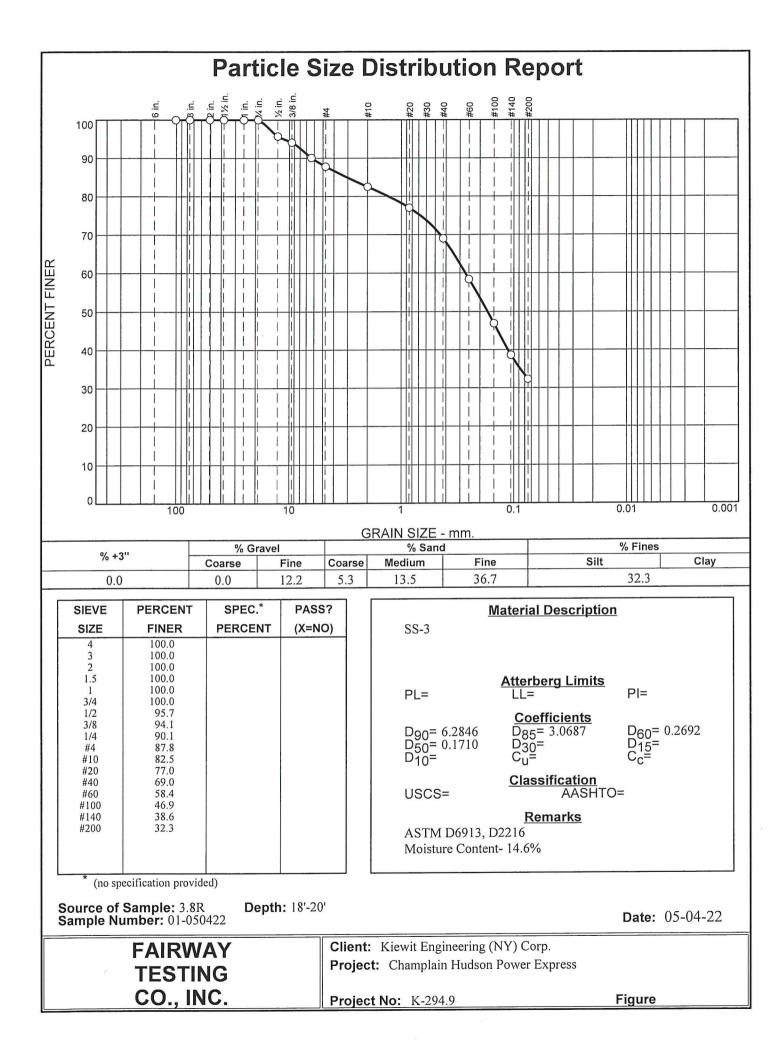
See attached reports for testing requested by the client as per attached submittals for locations K.294.9-3.8. Test results are listed on attached reports.

Respectfully Submitted, Fairway Testing

Hopil J D'Connell

		4	
100	•	6	
FAIRV	VAY	TES	TING


Report Date:	6/24/2022
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis


See attached reports for testing requested by the client as per attached submittals for locations K.294.9-3.8R. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
MC-2 (25'-27')	9.0%

Respectfully Submitted, Fairway Testing

Hopil & O'loundl

K-294.9-3.4B - Runs 1 and 2

K-294.9-3.6 - Runs 1 through 3

kiewit CHIPE 25-35'	K-2949-3.6 <u>Run Depth</u> <u>Rec</u> 1 25'-285' 445" 2 285'-30' 133' 3 30'-35' 5'	112

K-294.9-3.8R - Runs 1 through 3

K-294.9-4.2A - Runs 1 and 2

CERCHAR Abrasiveness ASTM D7625

ADVANCED TERRA TESTING

CLIENT	Fairway Testing Con	npany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		RC2 55.0-60.0 3.3R 06/16/22 HN	RC2 28.5-30.0 3.6 06/16/22 HN	RC2 75.0-80.0 3.4B 06/16/22 HN	RC1 25.0-30.0 4.2A 06/16/22 HN	
Surface Type: Moisture Conditio	n	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received	
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in):		0.00360 0.00380 0.00510 0.00490 0.00310 0.00300 0.00390 0.00480 0.00550	0.00330 0.00430 0.00540 0.00360 0.00370 0.00320 0.00420 0.00460 0.00380 0.00380	0.00300 0.00380 0.00220 0.00260 0.00260 0.00260 0.00380 0.00380 0.00300 0.00220 0.00330	0.00330 0.00350 0.00420 0.00300 0.00430 0.00370 0.00350 0.00320 0.00500 0.00420	
Average Reading Average Reading		0.00413 0.1049	0.00399 0.1013	0.00291 0.0739	0.00379 0.0963	
Uncorrected CAI Corrected CAI:	or CAI _s :	1.05 1.52	1.01 1.48	0.74 1.21	0.96 1.43	
NOTES		Corrected CAI for Suggested form	or saw cut speci ula CAI = 0.99*(R. Plinger and H. K	asling
Data entry by: Checked by: File name:	HN DL 3151001 CHERCH	IAR ASTM D762	5 0.xlsm		: 06/17/22 : 06/17/22	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC2 28.5-30.0 3.6 06/16/22 HN
	Before	e Picture	
	CLENT Descent and	DEPTH 28.5-30	
NOTES			
Picture File: File name:	2.JPG 3151001CHERCHAR ASTM D7625_0.xls	sm	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC2 28.5-30.0 3.6 06/16/22 HN
		After Picture	
NOTES	CLIENT Fairwa	S. S. S. S. A S. A S. S. S. S. A S. S. S. A S. S. S	
Picture File: File name:	2a.JPG 3151001CHERCHAR ASTM D762	5_0.xlsm	

Splitting Tensile Strength ASTM D3967

CLIENT Fairway	Testing Compa		ASTM D3967	JOB NO.	3151-001	
PROJECT Champla	in Hudson Po	-		LOCATION	New York	
PROJECT NO. K-294.9						
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED		RC2 55-60 3.3R	RC2 28.5-30 3.6	RC2 75-80 3.4B	RC1 25-30 4.2A	RC3 21-26 0.7
DATE TESTED TECHNICIAN ROCK TYPE		06/16/22 DL	06/16/22 DL	06/16/22 DL	06/16/22 DL	06/16/22 DL
Diameter (in): Height (in): Mass of Wet Rock (g):		1.971 0.999 127.50	1.982 1.018 131.70	1.979 1.084 134.40	1.966 1.093 137.10	1.989 1.036 138.20
Wet Density (lbs/ft³): Wet Density (g/cm³):		159.4 2.553	159.7 2.559	153.6 2.460	157.4 2.522	163.6 2.620
Peak Load (lbs): Splitting Tensile Strength (p Splitting Tensile Strength (k Failure Type:	Pa):	3099 1002 6907 Single Plane	1286 406 2799 Single Plane	1128 335 2307 Multiple Plane	2924 866 5972 Single Plane	4536 1401 9662 Single Plane
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						
Diameter (in): Height (in): Mass of Wet Rock (g):						
Wet Density (lbs/ft³): Wet Density (g/cm³):						
Peak Load (lbs): Splitting Tensile Strength (p Splitting Tensile Strength (k Failure Type:						
NOTES						
Data entry by: DL Checked by: HN File name: 3151001	Brazilian AS	STM D3967_0.:	xlsm			06/16/22 06/17/22

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC2DEPTH28.5-30SAMPLE NO.3.6DATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE	
	Before	Picture	
NOTES	CLENT Dirway Testing Comparison DD MODE Dirway Testing Comparison DD DE Dirway Testing Comparison	W BORING NO. RC2 28.5-39	
NUTES			
Picture File: File name:	2.JPG 3151001Brazilian ASTM D3967_0.xlsm		

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC2DEPTH28.5-30SAMPLE NO.3.6DATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE	
	Before	Picture	
NOTES	CLENT CLENT CLENT S151-00 JOB NO. JS15-00 S151-00 CLENT CLENT S151-00 JOB NO. JS15-00 S151-00 CLENT CLENT S151-00	W BORING NO. DEPTH RC2 28.5-39	
NOTES			
Picture File: File name:	2.JPG 3151001Brazilian ASTM D3967_0.xlsm		

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC2DEPTH28.5-30SAMPLE NO.3.6DATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE
	After	Picture
		A MEINERS S A MEINERS A MEINERS S A MEINERS A MEINERS S A MEINERS S A MEINERS S A MEINERS S A MEINERS
	The second second	The state of the state
NOTES		
Picture File: File name:	2a.JPG 3151001Brazilian ASTM D3967_0.xlsm	

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT	Fairway Testing Con	npany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		RC2 55-60 3.3R 06/17/22 DL	RC2 28.5-30 3.6 06/17/22 DL	RC2 75-80 3.4B 06/17/22 DL	RC1 25-30 4.2A 06/17/22 DL	RC3 21-26 0.7 06/17/22 DL
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/ Wet Density (g/cr Peak Load (lbs): Compressive Stre Compressive Stre	ft³): n³): ength (psi)	1.975 4.194 527.20 156.3 2.50 38252 12486 86	1.975 3.954 511.20 160.8 2.58 19993 6526 45	1.973 4.075 525.10 160.6 2.57 14999 4906 34	1.974 4.321 550.40 158.6 2.54 28736 9389 65	1.982 3.977 542.30 168.4 2.70 28043 9089 63
Failure Type:		Shear / Fracture	Fracture / Void	Shear	Fracture / Bedding	Fracture / Bedding
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/ Wet Density (g/cr	ft ³):					
Peak Load (lbs): Compressive Stre Compressive Stre Failure Type:						
NOTES						
Data entry by: Checked by: File name:	DL HN 3151001 Rock UC	S-TCS ASTM D7	012 Method A a	and C_0.xlsm		06/17/22 06/17/22

Unconfined Compressive Strength ASTM D7012 Method C

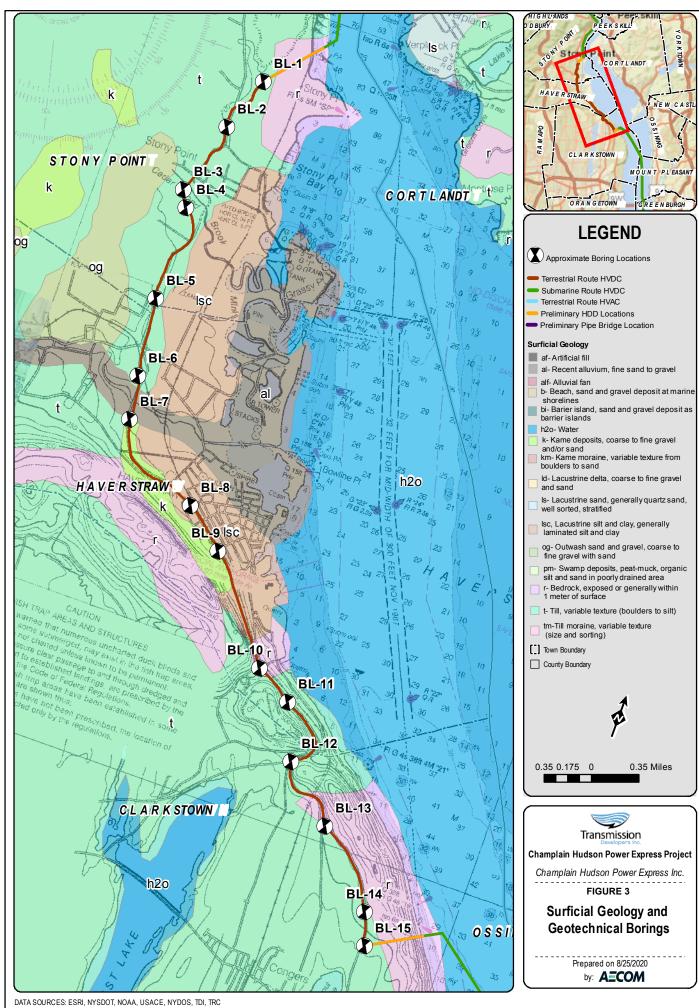
1		ASTM D7012 Me		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power K-294.9 New York		BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC2 28.5-30 3.6 06/17/22 DL
NOTES	CLIENT JOB NO. PROJECT LOCATIO	Fairway Testing Company BOR S151-001 DEP Camputer Players BAR TWO. K-24 Yor Testing Company BOR S151-001 DEP	ING NO. RC2 TH 28.5-30 RPLE NO. 3.6 TY UCS	
Picture File: File name:	2.JPG 3151001Rock UCS-TCS	S ASTM D7012 Method A	. and C_0.xlsm	

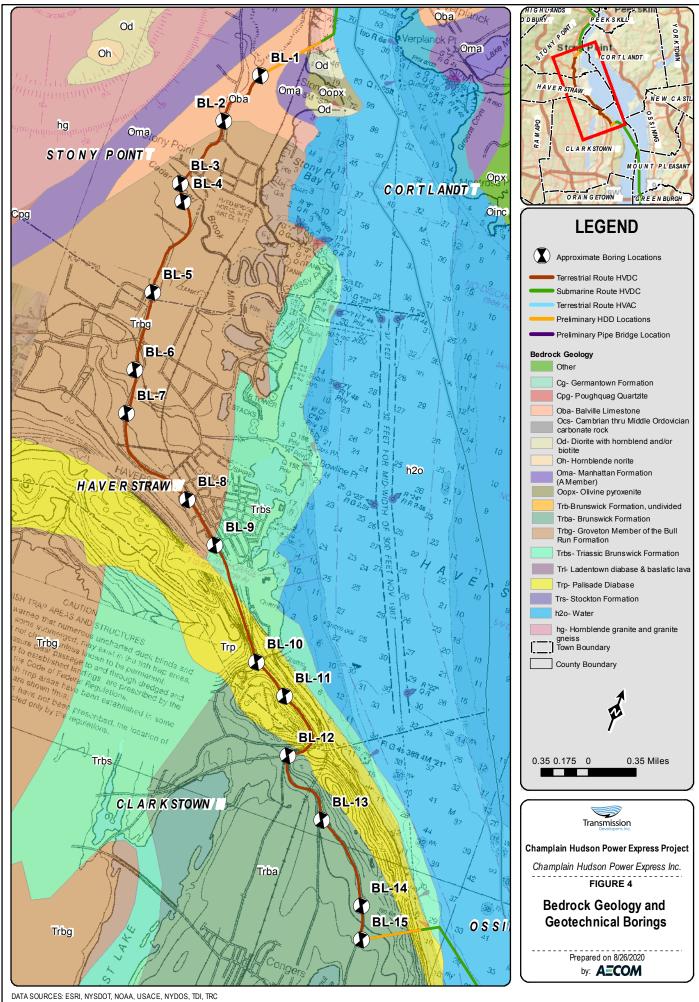
Unconfined Compressive Strength ASTM D7012 Method C

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC2 28.5-30 3.6 06/17/22 DL
		After Picture	
NOTES		A REALE AS AND	
NOTES			
Picture File: File name:	2a.JPG 3151001Rock UCS-TCS ASTM D70	12 Method A and C_0.xlsm	

MEMORANDUM

DATE:	July 14, 2022
TO:	Zachary Bauer; Tetra Tech Rooney
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 12 - Package 7B - HDD Crossing 132/133 Champlain Hudson Power Express Project Haverstraw, New York


Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located in Haverstraw, New York. The approximate station for the start of HDD crossing number 132/133 is STA 72678+50 (41.19736° N, 73.9776° W).


The geotechnical data at this HDD crossing is attached. The available data is taken from the previous investigation by AECOM and data from a recent investigation by Kiewit, referenced below.

- AECOM, Geotechnical Data Report, Upland Segment, Rockland County, NY, Champlain Hudson Power Express, dated September 18, 2020.
- Kiewit Engineering (NY) Corp., Segment 12 Package 7B HDD Borings Rockland, Champlain-Hudson Power Express, dated July 5, 2022.

Contact us if you have questions or require additional information.

HDD 132/133 Borings K-294.9-4.1, K-294.9-4.2A, K-294.9-4.2B, BL-8 Segment 12 - Design Package 7B

	BORING	CONTRACTOR:												SHEET 1 OF 1
	ADT													PROJECT NAME: CHPE - Rockland Co. Borings
-	DRILLER			1					Ö					PROJECT NO.: 60323056
	Chris Cha	illou												HOLE NO.: BL-8
		IGINEER:		1										START DATE: 7/9/2020
	Roberto L							BORIN	GLOG					FINISH DATE: 7/9/2020
		N: Route 9W in from	nt of cem	etery Hay	/erstraw 1	NY		Dorard	0 200					OFFSET: N/A
GRO		TER OBSERVATIO			cistaw, i		SING	SAM	PLER	DRII	L BIT	CORE E	BARREI	DRILL RIG: Geoprobe
	ncountere			TYPE			oint Steel		POON ⁽¹⁾	Brite	-		-	BORING TYPE: SPT
				SIZE I.D).	4.0"		2.4"			-		-	BORING O.D.: 4.5"
				SIZE O.	D.	4.5"		3.0"			-		-	SURFACE ELEV.: 113.886
				HAMME	R WT.	140 lb	(AUTO)	140 lb			-		-	NORTHING 861016.248
D	CORING	SAMPLI		HAMME	RFALL	30"		30"			-		-	EASTING 637485.511
E	RATE	DEPTHS	TYPE	PEN.	REC.					N (2)		STRAT.		
P T	MIN/FT	FROM - TO (FEET)	AND NO.	in	in		S PER 6 i QUALIT			Corr. ⁽²⁾	CLASS.	DEPTH		FIELD IDENTIFICATION OF SOILS
H		(1221)	NO.			(11001)	QUALIT	DEGION	ATION)					
													Grass	s Area
1.0		Hand Cleared		<u> </u>							CL		Crow	brown silty CLAX trace fine cond
2.0		0.0 - 6.0		+							UL		moist	brown, silty CLAY, trace fine sand,
2.0		0.0 0.0											molot	
3.0													(2)	
				_								lay	TR ⁽³⁾ -	1 (3.0'-6.0')
4.0				+								Silty Clay		
5.0												Sil		
6.0				──	<u> </u>									
7.0		6.0 - 8.0	S-1	24.0	24.0	9	13	19	22	21	CL		S-1: Brow	Brown-yellow, silty CLAY, some fine
7.0		0.0 - 0.0	0-1	24.0	24.0	3	10	13	22	21	0L			some fine gravel, moist, very stiff
8.0														(7.0'-7.5')
												-ər		
9.0		8.0 - 10.0	S-2	24.0	17.0	78	60	73	68	86	ML	becomposed siltstone- sandstone		Red-brown, SILT, and fine sand, dry, dense
10.0												d sil	verye	
												ands		
11.0		10.0 - 12.0	S-3	24.0	22.0	53	25	22	20	31	SM	dmo		Red-brown, f-m SAND, some silt,
12.0					<u> </u>							Dec		fine gravel, dry, dense (11.0'-11.5')
12.0				 										f boring at 12.0' below grade
13.0														ole grouted
				<u> </u>	<u> </u>									
14.0					<u> </u>									
15.0														
16.0				<u> </u>	L									
17.0					. <u> </u>									
17.0				+										
18.0														
				<u> </u>	L									
19.0					. <u> </u>									
20.0														
	NOTES	B:											The inf	ormation contained on this log is not warranted
		all ring lined drive samp on factor: Ncorr=N*(2.0					s. Rings dir	mensions =	2-1/2" O.D	. by 2-7/16'	' I.D. by 6"	length.		v the actual subsurface condition. The contractor
1		on factor: Ncorr=N*(2.0 mple for thermal resistiv		. ,	ni. – N°U.6	υ.							~	that he will make no claims against AECOM nds that the actual conditions do not conform
1	(-) Ja		., .coung.											e indicated by this log.
<u> </u>		iption represents a f												
	PLE TYPE			T SPOON	I		BY TUBE		R=ROCH					
PRO	PORTION	5:	TRACE=	-1-10%		LITTLE=	10-20%		SOME=2	:0-35%		AND=3	5-50%	

Aquifer / AECOM #60323056 CHPE - Rockland County Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH			II	DENTIFI	CATION TE	STS			REMARKS
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDRO.	SPECIFIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	GRAVITY	
							(1)	NO. 200	2 µm		
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(-)	
BL-2	S-1b	7.2-8.0	22.1	28	19	9	CL	86	17		
BL-2	S-2	8-10	18.6	27	19	8	CL	75	13		
BL-3	S-1	6-8	12.5				ML	96.1	20		
BL-3	S-2	8-10	16.3				ML	93	14		
BL-3	S-3	10-10.7	12.4				ML	66	14		
BL-5	S-1	5-7	10.6				SM	40	8		
BL-5	S-3	9-11	7.0				SM	23	4	2.728	
BL-5	S-4	11-13	8.6				SM	24	4		
BL-5	S-6	15-17	8.2				SM	22	3		
BL-6	S-1	4-6	4.1				GW-GM	7	2		
BL-7	S-1	5-7	5.1				SP-SM	8	2		
BL-7	S-3	9-11	5.3				GW-GM	10	2		
BL-7	S-4	11-13	7.5				SM	25	4		
BL-7	S-6	15-17	6.0				SM	14	2		
BL-8	S-1	6-8	17.9	35	20	15	CL	51	11		
BL-8	S-3	10-12	10.2				SM	32	6		
BL-9	S-1	6-8	10.0				SP-SM	9	2		
BL-9	S-3	10-12	7.0				SM	14	3		
BL-9	S-5	14-16	4.9				SW-SM	11	3		
BL-11	S-4	11-13	10.1				SM	24	5		
BL-12	S-1	6-8	8.9				SM	24	6		
BL-13	S-1	4.5-6.5	9.3				SM	15	4	2.722	
BL-13	S-3	8.5-10.5	6.6				SM	13	3		
BL-13	S-4	10.5-12.5	9.9				SM	19	5		
BL-14	S-1	6-8	10.0				SM	27	6		
BL-14	S-2	8-10	8.1				SM	24	5		
BL-15	S-3	9-11	9.5				SM	32	8		
BL-15	S-9	21-23	7.9				SM	26	4		
BL-15	S-14	31-33	6.1				SM	33	4		
BL-15	S-17	45-47	11.9				SM	20	3		
BL-15	S-21	65-67	8.2				SP-SM	10	1		

Note:

(1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

COBBL	ES	G	RAV	EL			;	SAND	SIL	T or CLAY		Symbol		\diamond	0
		DARSE		FINE	С	OARSE	MEDI	UM FINE	1			Boring	BL-8	BL-8	
		=										Sample	S-1	S-3	
	-	1/2	/4"	3/8"	4			#40 #60 #100 #100	007			Depth	6-8	10-12	
10		- 	>R≷	र्र् गो	<u>∔</u>			<u> </u>	[≇]		· · ·]	% +3"	0	0	
		- P	<u>₹</u>	~								% Gravel	21	9	
9	90 	++	\rightarrow			\leftarrow						% SAND	28	59	
		++			<u><u> </u> </u>							%C SAND	5	5	
8	30 	++	_				<u> </u>					%M SAND	9	12	
		++	+				⊾∦		₩₩₩₩₩₩₩			%F SAND	14	42	
높 7	70 	++	+			+ +		kiiiiki i lii				% FINES	51	32	
EIG		++										D ₁₀₀ (mm)	38.1	19.1	
≥ 6	50 ++++++	++	_			\rightarrow						D ₆₀ (mm)	0.219	0.241	
B		++	_			+						D ₃₀ (mm)	0.026	0.062	
N S	50 ++++++	++			┊┊┊							D ₁₀ (mm)	0.001	0.005	
SS		++	_									Cc	2.4	3.5	
4	40 	++	+		╞┊┊╞	+ +						Cu	168.5	52.4	
PERCENT PASSING BY WEIGHT												Sieve			
RCE 3												Size/ID #		Percent Finer Data	
PEI												6"	100	100	
2	20									╼┟╧┽┼┼┼┼┼		4"	100	100	
									╙╵╵╵ ╵ ╓╷╷╷			3"	100	100	
1	10 ++++++++	++	_								┡┿╼┓┥	1 1/2"	100	100	
			_									1"	96	100	
	0 111111	11					Į!					3/4"	94	100	
	100			10			1	0.1 PARTICLE SIZE -mm		0.01	0.001	1/2"	87	97	
Open Sy	mbols: Sie	ve an	alvsis	by AS	TM D69	913						3/8"	85	95	
							928 corr	rected for complete sa	mple			#4	79	91	
												#10	74	86	
SYMBOL	w (%)	LL	PL	PI	USC	S A	ASHTO	USCS DESC	RIPTION AND RE	MARKS	DATE	#20	70	81	
	17.9	35	20	15	CL			Brown, Sandy lean clay			08/04/20	#40	65	74	
				-				,				#60	61	61	
\diamond	10.2				SM			Brown, Silty sand			08/04/20	#100	57	46	
*								, , -				#140	54	38	
0												#200	51	32	
Ť												5μ m	14	10	
Ααυί	fer / AE	CON	Λ		#603	32305	6					2μ m	11	6	
_							-	CHPE - Rockland County Borings				1μ m	10		
👖 Terr	aSens	e, Ll	LC		#7853	3-2000)3			, 0				SIZE DISTRIBUTION 913 & ASTM D7928	
– TerraSense A		-		CDav1	oF (06/2	20)								Siev3h.xlsx	8/20/2020

TerraSense Analysis File: GrainSizeV6Rev1a5 (06/20)

Siev3h.xlsx 8/20/2020

PROJECT NUMBER

Legend Key

Kiewit Borings (2022)

41

N

O Borings by Others

BORING NO: K-294.9-4.1

Champlain Hudson Power Express

ROJ	DJECT NUMBER		20001480	LOGGED BY		Rafae	el Sala	S	COORDINATES		N 861 E 636				
	STAR		04/13/2022	DRILLER/RIG	Ric	ck / Die	edrich	D-90	GROUND ELEV.		109	9.3 ft			
	FINIS	H DATE	04/13/2022	DRILL CONTRACTO	R	Parra	att Wo	lff	HAMMER TYPE/	EFF.	Au	Itom	atic		
Depth (ft)	Elevation (ft)	Graphic Log	Material De	scription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	-	Le SPT I MC (% PL & Fines	%) LL (%	e)) 	
	Ξ	ত চারকরা	Silty GRAVEL (GM), with	sand (based on	တ္ ဂ္ဂ	22	д.	ā	Boring advanced	20	40	60) 8	80)
5	96.3		SAND with SILT (SP-SM grained gravel, red, medi with 3" layer of red slight medium dense	d materials) by air knife and), with gravel, fine um to coarse sand, ly cemented silt, SC-SM), with gravel		38%		11-9-4-4 (13) 4-5-6-6 (11)	Boring advanced with 3.5" ID HSA						
5			Ζ			100% 60% 86%	1	(17) 17-41-71-72 20-80/4" 54-50/1"	3-inch ring sampler						
_					\boxtimes	100%		100/4"		•				+	
-		111111111111111					1					-		+	

BORING NO: K-294.9-4.1

Champlain Hudson Power Express

	CTA DI	DATE	20001480	DRILLER/RI	Y		el Sala		COORDINATES		636			
		_	04/13/2022	-		ick / Di	edrich	D-90	-			9.3 ft		
	FINISH	I DATE	04/13/2022	DRILL CONTRACTO	OR	Par	ratt Wo	lff	HAMMER TYPE/	:FF	Au	utom	atic	
nepun (m)	Elevation (ft)	Graphic Log	Material Do	escription	Sample Type	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	▲ ● ►	Le SPT N MC (% PL & Fines	%) LL (% Conte	e) ent (%))
_	Ξ	.			ů č	3 🗠	م	BI		20	40	60	<u> </u>	80
-			Clayey and Silty SAND increasing with depth, re very dense, dry	d, medium dense to					-					
-	76.3		SILT (ML), with sand, litt moist	le gravel, red, hard,		99%		70/4"	-					
5 -	74.3		Boring Terminated at 35	ft					-					
-									-				+	
-									-					
- - -									-					
-									-					+
-									-					
5-									-					
									-					+
-									-					
) – -									-					-
-									-				+	+
-									-					
5 -									-					
-									-				_	+
-									-					

BORING NO: K-294.9-4.2A

N 861435.89

Champlain Hudson Power Express

	START	DATE	04/13/2022 DRILLER/RIC	Core	ey Brov	wn / C	ME 550	GROUND ELEV.		111	l.1 ft		
	FINISH		04/13/2022 DRILL CONTRACTO)R	Par	ratt Wo	olff	HAMMER TYPE/EF	F	Αι	utom	atic	
	Elevation (ft)	Graphic Log	Material Description	Sample Type	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	•	Le SPT MC (% PL & Fines	%) LL (%	e)	
	ш	0	18" Asphalt	ທ ບ			<u> </u>	Boring advanced	20	40	60	<u>) i</u>	80
• - - - - - - - - - - - - - - - - - - -	109.6		Silty SAND (SM), with gravel (based on observations of excavated materials) 0 - 7.2 ft was excavated by air knife and vacuum truck	_				with 3.5" ID HSA					
 	103.9		Clayey SAND (SC), reddish brown, loose to medium dense		85%		7-9-8-7 (17)						
5					35%		3-5-5-6 (10)		•				
- - - - - - - -	93.1	2	Clayey and Silty SAND (SC-SM), red, medium dense to very dense, dry		83%		4-4-12-13 (16)						
- - - - - - -			Siltstone fragments Siltstone/Sandstone, fresh, closely spaced		100%		49-50/2")) 				
		X X X X X X X X X X X X X X X X X X X X	fractures, fine grained, reddish brown, very strong		<u>100%</u> 52								
0		X X X X X X X X X X X X X X X								+-+	\rightarrow		_

BORING NO: K-294.9-4.2A

ROJECT NUMBER 			20001480	LOGGED BY		Jia	ılin Li		COORDINATES		861 636			
	STAR		04/13/2022	DRILLER/RIG C	orey l	Brov	vn / CM	1E 550	GROUND ELEV.		111	1.1 fi	i	
	FINIS	H DATE	04/13/2022	DRILL CONTRACTOR	ļ	Parr	att Wol	ff	HAMMER TYPE/EF	F	Αι	utom	atic	
Ueptn (rt)	Elevation (ft)	Graphic Log	Material De	escription and be water a construction and be water a cons	Core Run No.	RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT MC (^o PL &	e gen N Valu %) LL (%	d ie o) ent (%))
-	Ξ	*****	Siltstone/Sandstone, fre	sh, closely spaced	ŭ ª	2	•	Ξ		20	40	6	<u>3 C</u>	80
			fractures, fine grained, restrong	eddish brown, very	9	0 <u>2%</u> 74								
5 - - - -	76.1		Boring Terminated at 35	ft										
- - - - C														
-														
-														
- - - 0 - 0														
														-
- - 5 - -														
														-
- - 0 -														

BORING NO: K-294.9-4.2B

Champlain Hudson Power Express

JEO	CT NU	JMBER	20001480	LOGGED BY		Jia	alin Li				861 636			
S	TART		04/20/2022	DRILLER/RIG	Ric	k / Di	edrich	D-90	GROUND ELEV.		115	5.1 ft		
F	INISH	DATE_	04/21/2022 DI	RILL CONTRACTO	R	Parr	att Wo	olff	HAMMER TYPE/EI	°F	Au	Itoma	atic	
	Elevation (ft)	Graphic Log	Material Desc	ription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	•_	Leg SPT N MC (% PL & I Fines	6) LL (%)	e)	,)
-	ш	0	18" Asphalt		ο Ū		<u>а</u>	۵	Boring advanced	20	40	60	<u> </u>	80
- 1	13.6		SILT (ML), with sand, grave	l and cobbles					with 3.5" ID HSA				+	-
_			(based on observation of ex	cavated materials)									_	_
_			0 - 7 ft was excavated by air truck	r knife and vacuum									_	-
_													_	_
_													_	-
_													_	
- 10	07.1		Silty SAND (SM), with grave subangular to angular grave	el, fine to coarse	Μ								_	-
-			fragments, red, medium der dry	ise to very dense,	M	50%		6-11-12-11 (23)					_	-
-			ury										_	-
_													_	_
_					\boxtimes	0%		50/4"			-		+	_
-													+	-
-	,												_	-
-													_	-
-											-		_	-
					\square	47%		44-50-50/4"	•					_
_													_	_
-													_	-
-													_	
-						73%		22-50/5"		PM			_	_
-													_	-
-			Moist at 25 ft										-	-
-													\pm	
-	,				N	100%		50/1"				+	_	
-											+	+	+	+
-										+	+	+		+

BORING NO: K-294.9-4.2B

ROJ	OJECT NUMBER 		20001480	LOGGED BY		Jia	alin Li		COORDINATES			935.	.79 .05	
	STAR	T DATE	04/20/2022	DRILLER/RIG	Ric	k / D	iedrich l	D-90	GROUND ELEV.		115	.1 ft		
	FINIS	H DATE	04/21/2022	DRILL CONTRACTO	R	Pari	ratt Wol	ff	HAMMER TYPE/EF	F	Au	tom	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material	Description	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT N MC (% PL & I Fines		e) ent (%)	-
40	ш 85.1		Siltstone, fresh, closel spaced fractures, fine very strong	y spaced to very closely grained, red, strong to 45 ft		92% 82 88% 38 100% 97								
_														+

SOIL LEGEND

Explanation of Symbols and Terms Used on Boring and Test Pit Logs for Sampling and Description of Soils

5	SAMPLE AND DRILL METHODS		COMMON ABBREVIAT	IONS AND	ACRONYMS			
	Standard Penetration Split-Spoon	MR	Mud Rotary	Bulk	Bulk Sample			
	Sample	HSA	Hollow Stem Auger	EOB	End of Boring			
	Undisturbed Sample	SSA	Solid Stem Auger	AR	Auger Refusal			
H	Piston Sampler	SS	Split Spoon Sampler	N-Value	Sum of blows for last two 6-in.			
1 Alexandre	Grab Sample	UD	Undisturbed Sample	in-value	increments of SPT			
\square	Bulk Sample	WOR	Weight of Rods	USCS	Unified Soil Classification			
	Auger Cuttings	WOH	Weight of Hammer	0303	System			
	Rock Core	SPT	Standard Penetration Test					
	Modified California Sample	REC	Recovery					
	WATER LEVEL SYMBOLS	RQD	Rock Quality Designation	CRO	DSS SECTION LEGEND			
∇	Observation at time of drilling	MC	Moisture Content					
V	Observation after drilling	PI	Plasticity Index	N	I(bpf)			
T	Delayed observation	PL	Plastic Limit		Moisture Content			
Ŧ	Perched water observed at drilling	LL	Liquid Limit	Recove	a			
Â	Ø Observed Seepage	CPT	Cone Penetration Test					
lel	Cave-in Depth	PP	PP Pocket Penetrometer					

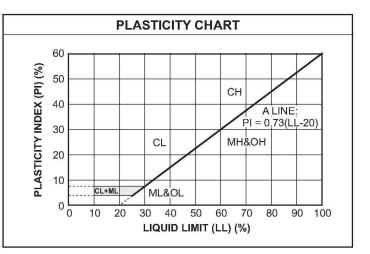
	RELATIVE D	ENSITY / CONSI	STENCY	
Coarse-g	rained Soils	Fir	ne-grained Soil	s
N-Value	Density	N-Value	Consistency	Pocket Pen (TSF)
0 - 4	Very Loose	0 - 1	Very Soft	0.0 - 0.25
5 - 10	· · · · · · · · · · · · · · · · · · ·		Soft	0.25 - 0.50
11 - 30	Medium	5 - 8	Firm	0.51 - 1.00
		9 - 15	Stiff	1.01 - 2.00
31 - 50	Dense	16 - 30	Very Stiff	2.01-4.00
> 50	Very Dense	> 30	Hard	> 4.00

	RTIONS OF GRAVEL, SAND, ND FINES
Trace	> 5 %
Few	5 to 10 %
Little	15 to 25 %
Some	30 - 45 %
Mostly	50 to 100 %

SOIL GRAIN SIZE

				U.S. Stan	dard Siev	'e			
6	" 3	3" 3/4	1" ∠	4 1	0 4	0 2	00		
Douldoro	Cabblaa	Gra	vel		Sand		Cilt		Clay
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt		Clay
15	52 76	5.2 19	.1 4.	76 2.	00 0.4	20 0.	074	0.0	02 (mm)

CRITERIA	FOR DESCRIBING MOISTURE CONDITION	CRITERIA FOR DESCRIBING CEMENTATION		
Description	Criteria	Description	Criteria	
Dry	Absence of moisture, dusty, dry to the touch	Weak	Crumbles or breaks with handling or little finger pressure	
Moist	Damp but no visible free water	Moderate	Crumbles or breaks with considerable finger pressure	
Wet	Visible free water, typically soil is below water table	Strong	Will not crumble or break with finger pressure	


	CRITERIA FOR DESCRIBING STRUCTURE				
Description	Criteria				
Stratified	Alternating layers of varying material or color with layers at least 1/4 in. thick; note thickness				
Laminated	Alternating layers of varying material or color with the layers less than 1/4 in. thick; note thickness				
Fissured	Breaks along definite planes of fracture with little resistance to fracturing				
Slickensided	Fracture planes appear polished or glossy, sometimes striated				
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown				
Lensed	Inclusion of small pockets of different soils, such as lenses of sand scattered through a mass of clay; note thickness				
Homogeneous Same color and appearance throughout					

SOIL SYMBOLS

USCS SOIL TYPES					
Symbol	Group	Description			
	GW	Well-graded gravels, gravel sand mixtures with trace or no fines			
	GP	Poorly-graded gravels, gravel-sand mixtures with trace or no fines			
	GW-GM	Well-graded gravels, gravel-sand mixtures with silt fines			
	GW-GC	Well-graded gravels, gravel-sand mixtures with clay fines			
	GP-GM	Poorly-graded gravels, gravel-sand mixtures with silt fines			
	GP-GC	Poorly-graded gravels, gravel-sand mixtures with clay fines			
	GM	Silty gravels, gravel-silt-sand mixtures			
\$1. P.J.S.	GC	Clayey gravels, gravel-sand-clay mixtures			
	GC-GM	Clayey gravels, gravel-sand-clay-silt mixtures			
	SW	Well-graded sands, sand-gravel mixtures with trace or no fines			
	SP	Poorly-graded sands, sand-gravel mixtures with trace or no fines			
	SW-SM	Well-graded sands, sand-gravel mixtures with s fines			
	SW-SC	Well-graded sands, sand-gravel mixtures with clayfines			
	SP-SM	Poorly-graded sands, sand-gravel mixtures with silt fines			
	SP-SC	Poorly-graded sands, sand-gravel mixtures with clay fines			
	SM	Silty sands, sand-gravel-silt mixtures			
	SC	Clayey sands, sand-gravel-clay mixtures			
	SC-SM	Clayey sands, sand-gravel-clay-silt mixtures			
	ML	Inorganic silts with low plasticity			
	CL	Inorganic clays of low plasticity, gravelly or sandy clays, silty clays, lean clays			
	CL-ML	Inorganic clay-silts of low plasticity, gravelly clays, sandy clays, silty clays, lean clays			
<i>}}}}</i>	OL	Organic silts and organic silty clays of low plasticity			
	MH	Inorganic silts of high plasticity, elastic silts			
	СН	Inorganic clays of high plasticity, fat clays			
	ОН	Organic clays and organic silts of high plasticity			
<u>6 26 26 2</u> 26 26 26	PT	Peat, humus, swamp soils with high organic contents			

OTHER MATERIALS					
Symbol	Description				
	Asphalt				
	Concrete				
	Crushed Stone/Aggregate Base				
	Fill				

ROCK LEGEND

Explanation of Symbols and Terms Used on Boring and Test Pit Logs for Sampling and Description of Rock

	TERMS AND ABBREVIATIONS			
Fracture	Collective term for any seperation in a geologic formation			
Joint (JT)	Natural break in a layer or body of rock that lacks visible offset			
Bedding	Layers of sedimentary rocks that are distinctly different from overlying and underlying beds			
Mechanical Break (MB)	Breaks due to drilling or handling in rock or sediment cores			
RQD	Rock Quality Designation			
REC	Percent Recovery			
Shear (SH)	Surface of differential movement evident by presence of slickensides, striations, or polishing			
Shear Zone (SZ)	Zone of gouge and rock fragments bounded by planar shear surfaces			
Fault (FT)	Planar fracture with significant displacement			

Very Soft	Can be deformed by hand (has a rock-like character but can be broken easily by hand)
Soft	Can be scratched by fingernail (cannot be crumbled between fingers but can be easily pitted with light blows of a geology hammer)
Moderately Hard	Can be scratched easily with a knife; cannot be scratched with a fingernail (can be pitted with moderate blows of a geology hammer)
Hard	Difficult to scratch with a knife (cannot be pitted with a geology hammer but can be chipped with moderate blows of the hammer)
Very Hard	Cannot be scratched with a knife (chips can be broken off only with heavy blows of the geology hammer)

BE	DDING THICKNESS		JOINT A	ND FRACTURE	DENSITY
Laminated	< 0.04 in.	< 1 mm	Very Tight	< 2 in.	< 5.1 cm
Parting	0.04 - 1/4 in.	1 - 6 mm	Tight	2 in 1 ft.	5.1 - 30.5 cm
Banded	1/4 - 1 in.	6 mm - 3 cm	Moderately tight	1 - 3 ft.	30.5 - 91.4 cm
Thin	1 - 4 in.	3 - 9.1 cm	Wide	3 - 10 ft.	91.4 cm - 3 m
Medium	4 in 1 ft.	9.1 - 30.5 cm			
Thick	1 - 3 ft.	30.5 cm - 1 m		WEATHERING	
Massive > 3 ft. > 1 m		Inweameren	•	chanical or chemic	
	VOIDS		alterati	on.	

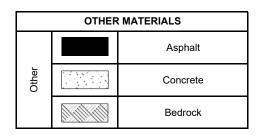
VOIDS			
Porous	Smaller than a pinhead. Their presence is indicated by the degree of absorbency.		
Pitted	Pinhead size to a 1/4 in. If only thin walls separate the individual pits, the core may be described as honeycombed.		
Vug	1/4 in. to the diameter of the core. The upper limit will vary with core size.		
Cavity	Larger than the diameter of the core.		

TEXTURE

Aphanitic		Individual grains or crystals are too small to be seen with the naked eye.
	Fine-grained, finely crystalline	Grain diameters between 0.1 and 1 mm; grains or crystals can be seen with naked eye.
	Medium-grained, crystalline	Grain diameters between 1 and 5 mm.
	Coarse-grained, coarsely crystalline	Grain diameters greater than 5 mm.

Superficial discoloration, alteration, and/or discoloration along discontinuities; less Slightly than 10% of the rock volume is altered; strength is essentially unaffected.

Discoloration is evident; surface is pitted and altered, with alterations penetrating Moderately well below rock surfaces; 10 to 50% of the rock is altered; strength is noticeably less than unweathered rock. Entire section is discolored; alteration is


greater than 50%; some areas of slightly weathered rock are present; some minerals Highly are leached away; retains only a fraction of its original strength (wet strength is usually lower than dry strength).

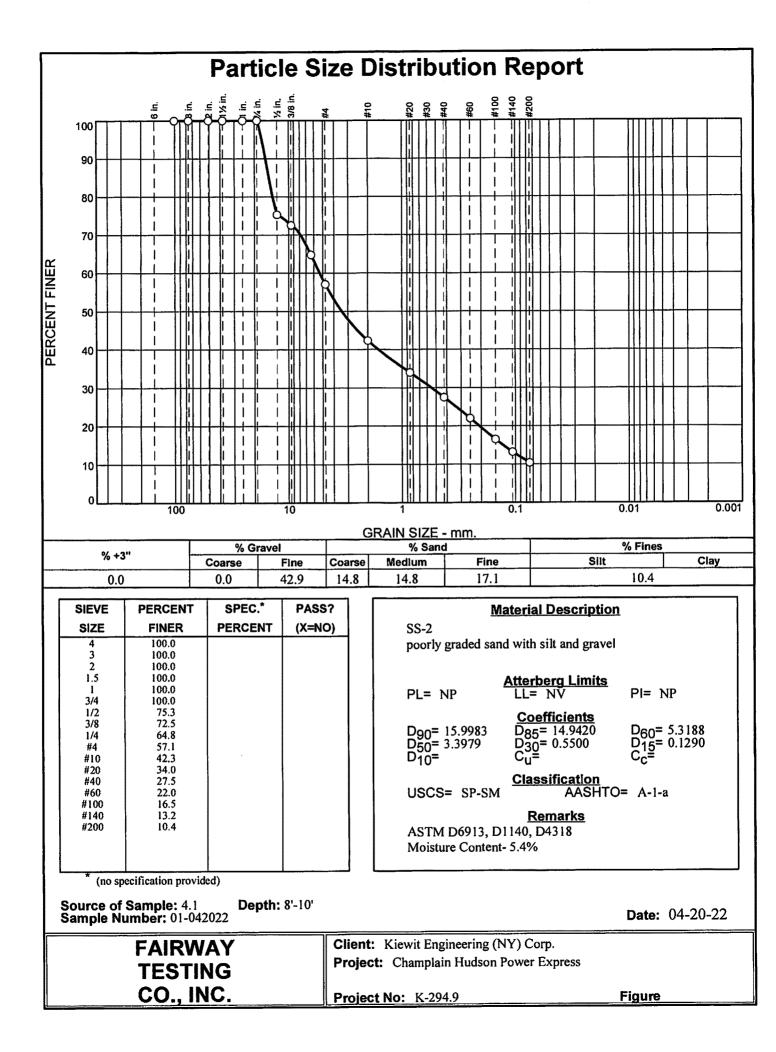
Saprolite; rock is essentially reduced to a Decomposed soil with a relic rock texture; can be molded or crumbled by hand.

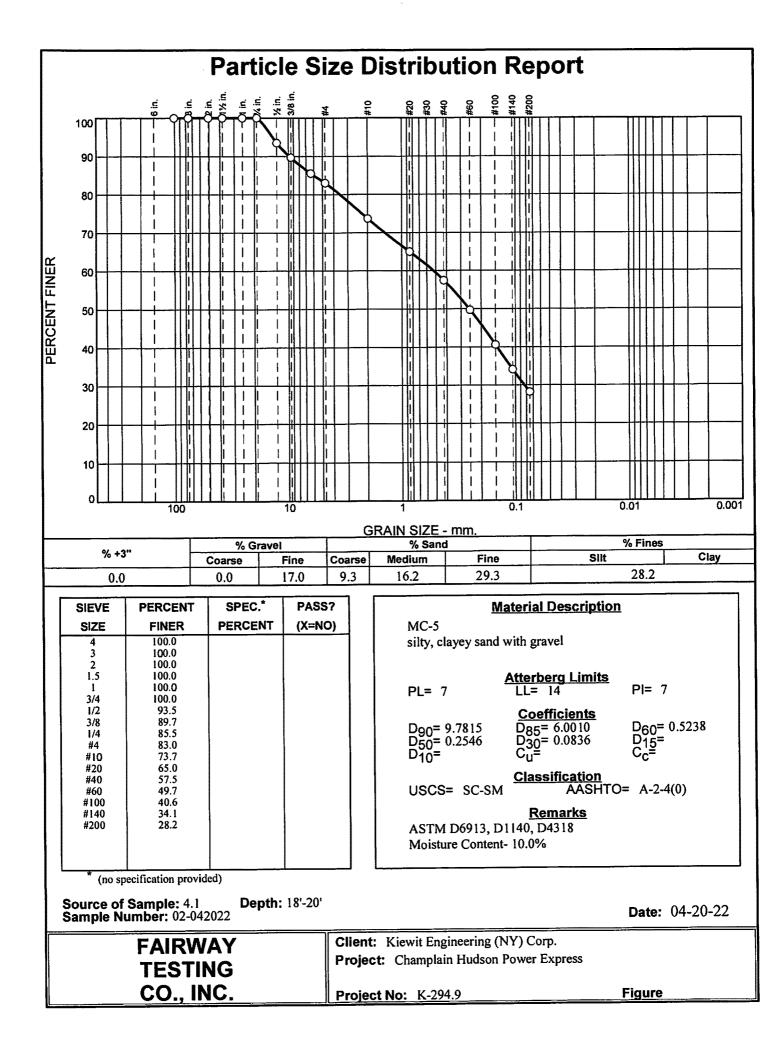
ROCK SYMBOLS

ROCK TYPES					
		Shale			
		Siltstone			
		Sandstone			
	00 00 00	Conglomerate			
Rocks		Breccia			
Sedimentary Rocks		Limestone			
Sedim		Dolomite			
		Gypsum			
		Coal			
	್ಲೆಂ	Coral			
		Chalk			
		Slate			
sks		Schist			
hic Roo		Gneiss			
Metamorphic Rocks		Quartzite			
We	5 5 6 6 6 5 6 6 6 6 6 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Serpentinite			
	+ +	Greenstone			
		Granite			
S		Tuff			
Igneous Rocks	7 4	Rhyolite			
lgneou	× + , * + ,	Dacite			
	=	Andesite			
		Basalt			

ROCK QUALITY DESIGNATION (RQD) AND RECOVERY					
% RQD	Quality				
< 25	Very Poor	Recovery (%) = $\frac{\text{Length of Core Sample Recovered}}{\text{Length of the Core Run}} \times 100$			
25 - 50	Poor	Length of the Core Run			
50 - 75	Fair	RQD (%) = Sum of Lengths of Intact Rock Pieces of 4 in. and Longer x 100			
75 - 90	Good	RQD (%) = Sum of Lengths of Intact Rock Pieces of 4 in. and Longer Length of the Core Run x 100			
90 - 100	Excellent				

Report Date:	6/8/2022
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis


See attached reports for testing requested by the client as per attached submittals for locations K.294.9-4.1. Moisture content test results are listed below.

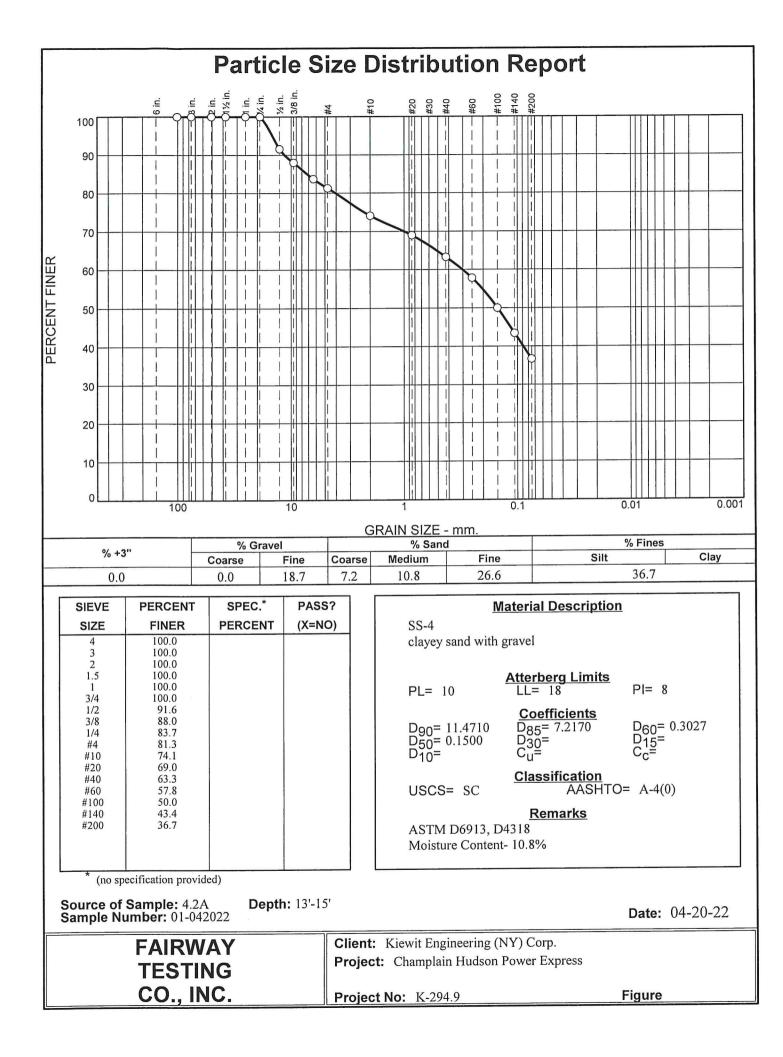

Sample ID (sample depth, ft.)	Moisture Content	
SS-8 (28'-30')	10.0%	

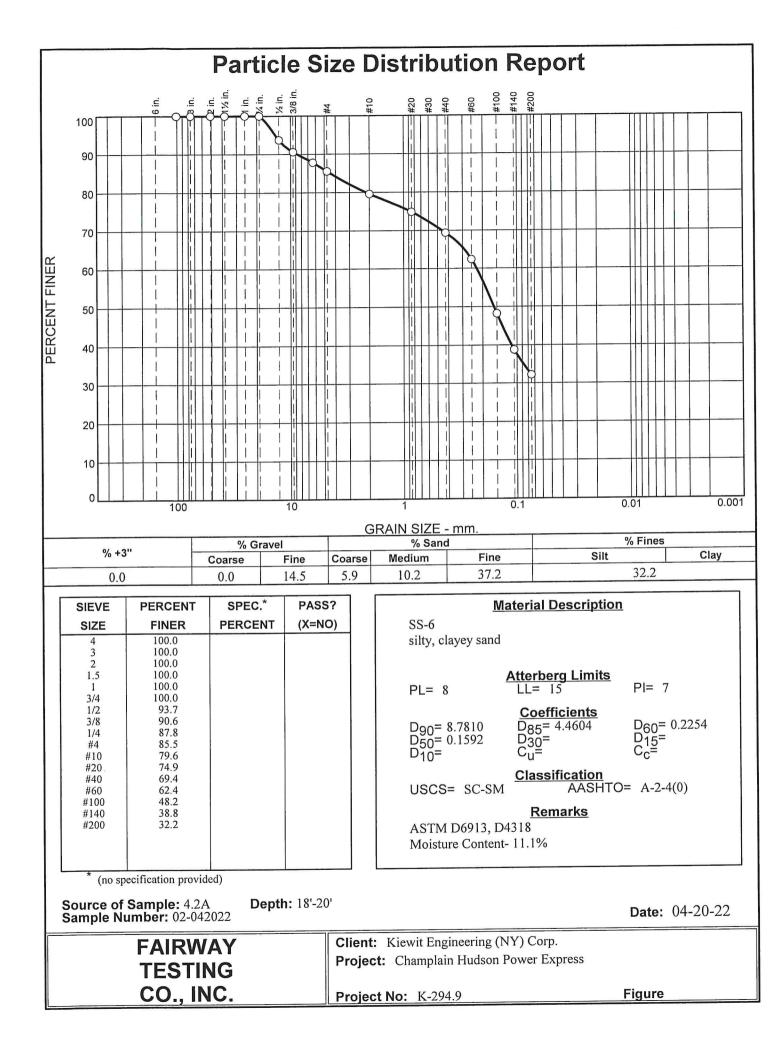
Respectfully Submitted, Fairway Testing

Astil J O'lonnell

Gabriel J. O'Connell, P.E.

Report Date:	6/20/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

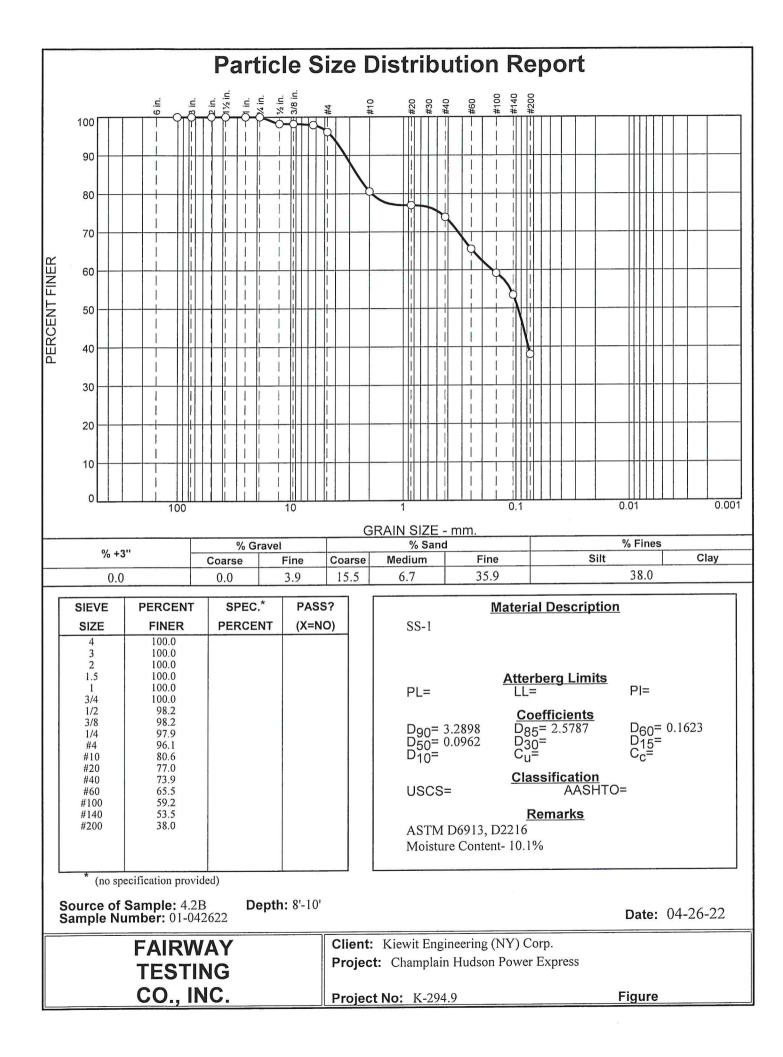

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-4.2A. Moisture content test results are listed below.

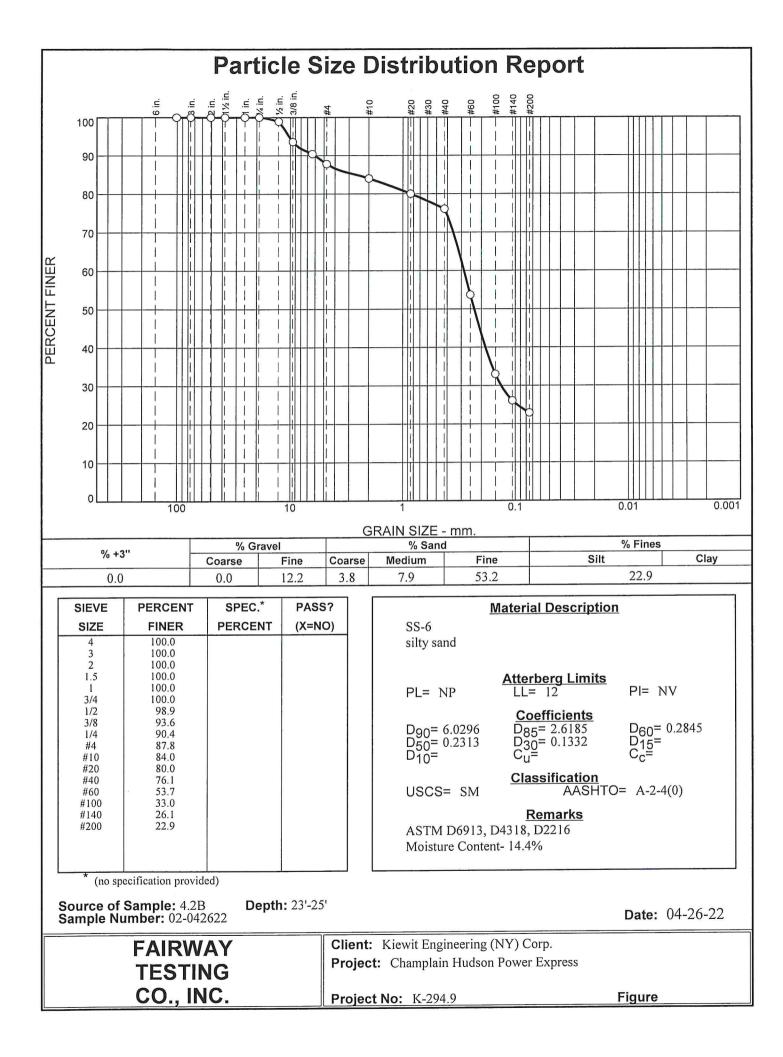

Moisture Content
16.8%
8.7%

Respectfully Submitted, Fairway Testing

Hopil & O'loundl

Gabriel J. O'Connell, P.E.


Report Date:	6/22/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis


See attached reports for testing requested by the client as per attached submittals for locations K.294.9-4.2B. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content		
SS-4 (18'- 20')	4.1%		

Respectfully Submitted, Fairway Testing

il & O'loundl

K-294.9-3.8R - Runs 1 through 3

K-294.9-4.2A - Runs 1 and 2

CERCHAR Abrasiveness ASTM D7625

ADVANCED TERRA TESTING

CLIENT	Fairway Testing Con	npany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		RC2 55.0-60.0 3.3R 06/16/22 HN	RC2 28.5-30.0 3.6 06/16/22 HN	RC2 75.0-80.0 3.4B 06/16/22 HN	RC1 25.0-30.0 4.2A 06/16/22 HN	
Surface Type: Moisture Conditio	n	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received	Saw Cut As Received	
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in):		0.00360 0.00380 0.00510 0.00490 0.00310 0.00300 0.00390 0.00480 0.00550	0.00330 0.00430 0.00540 0.00360 0.00370 0.00320 0.00420 0.00460 0.00380 0.00380	0.00300 0.00380 0.00220 0.00260 0.00260 0.00260 0.00380 0.00300 0.00220 0.00330	0.00330 0.00350 0.00420 0.00300 0.00430 0.00370 0.00350 0.00320 0.00500 0.00420	
Average Reading Average Reading		0.00413 0.1049	0.00399 0.1013	0.00291 0.0739	0.00379 0.0963	
Uncorrected CAI of Corrected CAI	or CAI _s :	1.05 1.52	1.01 1.48	0.74 1.21	0.96 1.43	
NOTES		CAI _s is the CAI calculated on saw cut specimens. Corrected CAI for saw cut specimens based on R. Plinger and H. Kasling Suggested formula CAI = 0.99*CAIs + 0.48. Applied pins had a Rockwell Hardness of 54-56.				asling
Data entry by: Checked by: File name:	HN DL 3151001 CHERCH	IAR ASTM D762	5 0.xlsm		: 06/17/22 : 06/17/22	

CHERCHAR Abrasiveness ASTM D7625

٦

Г

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC1 25.0-30.0 4.2A 06/16/22 HN
		Before Picture	
	JOB NO. 315 PROJECT Champlain Huds	Image: Company 1-001 BORING NO. RC1 1-001 DEPTH 25-30 0n Power Express SAMPLE NO. 4-2A 94.9 TEST CERCHAR	
NOTES			
Picture File: File name:	4.JPG 3151001CHERCHAR ASTM D762	5_0.xlsm	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC1 25.0-30.0 4.2A 06/16/22 HN
	CLENT Barway Testing Club JOB NO. 3151-001 PROJECT NO. K-294.9 LOCATION K-294.9 New York		
NOTES Picture File: File name:	4a.JPG 3151001CHERCHAR ASTM D7625_0).xlsm	

Splitting Tensile Strength
ASTM D3967

CLIENT	Fairway Testing Com	ipany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED		RC2 55-60 3.3R	RC2 28.5-30 3.6	RC2 75-80 3.4B	RC1 25-30 4.2A	RC3 21-26 0.7
DATE TESTED TECHNICIAN ROCK TYPE		06/16/22 DL	06/16/22 DL	06/16/22 DL	06/16/22 DL	06/16/22 DL
Diameter (in):		1.971	1.982	1.979	1.966	1.989
Height (in): Mass of Wet Rocl	< (g):	0.999 127.50	1.018 131.70	1.084 134.40	1.093 137.10	1.036 138.20
Wet Density (lbs/f Wet Density (g/cm		159.4 2.553	159.7 2.559	153.6 2.460	157.4 2.522	163.6 2.620
Peak Load (lbs): Splitting Tensile S Splitting Tensile S Failure Type:		3099 1002 6907 Single Plane	1286 406 2799 Single Plane	1128 335 2307 Multiple Plane	2924 866 5972 Single Plane	4536 1401 9662 Single Plane
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						
Diameter (in): Height (in): Mass of Wet Rocł	< (g):					
Wet Density (lbs/f Wet Density (g/cn						
Peak Load (lbs): Splitting Tensile S Splitting Tensile S Failure Type:						
NOTES						
Data entry by: Checked by: File name:	DL HN 3151001 Brazilian	ASTM D3967_0.	xlsm			06/16/22 06/17/22

Splitting Tensile ASTM D3967

<text><text><text><text><text><text></text></text></text></text></text></text>		//011	1 80001
	JOB NO. PROJECT PROJECT NO.	3151-001 Champlain Hudson Power Express K-294.9 New York	DEPTH 25-30 SAMPLE NO. 4.2A DATE SAMPLED DATE TESTED 06/16/22 TECHNICIAN DL ROCK TYPE
CLIERT Fairway Testing Company 318-000 BORING NO. EVEN RC1 22-300 DE NO. TEST 22-300 PROJECT TO LOCATION K-394.9 TEST Boresto Rock		Before	e Picture
NOTES	ΝΟΤΓΩ	CLIENT Fairway Testing Comp JOB NO. 3151-001 PROJECT Champlain Hudson Power PROJECT NO. K-294.9	Pary BORING NO. RC1 DEPTH 25:30 INDRESS SAMPLE NO. 4.2A TEST Brazilian ROCK
Picture File: 4.JPG		4 IPG	

I

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC1DEPTH25-30SAMPLE NO.4.2ADATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE	
	A	fter Picture	
	CLIENT Fairway Testin JOB NO. 3151-0	11 DEPTH 25-30 Power Express SAMPLE NO. 4.2A 9 TEST Brazilian	
NOTES Picture File:	4a.JPG		

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT	Fairway Testing Con	npany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE		RC2 55-60 3.3R 06/17/22 DL	RC2 28.5-30 3.6 06/17/22 DL	RC2 75-80 3.4B 06/17/22 DL	RC1 25-30 4.2A 06/17/22 DL	RC3 21-26 0.7 06/17/22 DL
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/ Wet Density (g/cr Peak Load (lbs): Compressive Stre Compressive Stre	ft³): n³): ength (psi)	1.975 4.194 527.20 156.3 2.50 38252 12486 86	1.975 3.954 511.20 160.8 2.58 19993 6526 45	1.973 4.075 525.10 160.6 2.57 14999 4906 34	1.974 4.321 550.40 158.6 2.54 28736 9389 65	1.982 3.977 542.30 168.4 2.70 28043 9089 63
Failure Type:		Shear / Fracture	Fracture / Void	Shear	Fracture / Bedding	Fracture / Bedding
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/ Wet Density (g/cr	ft ³):					
Peak Load (lbs): Compressive Stre Compressive Stre Failure Type:						
NOTES						
Data entry by: DL Date: 06/17/22 Checked by: HN Date: 06/17/22 File name: 3151001 Rock UCS-TCS ASTM D7012 Method A and C 0.xlsm						

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	RC1 25-30 4.2A 06/17/22 DL
	Bef	ore Picture	
	INCHES 1 0660 CLIENT JOB NO. CLIENT JOB NO. CLIENT	y BORING NO. RC1 DEPTH 2530	
NOTES			
Picture File: File name:	4.JPG 3151001Rock UCS-TCS ASTM D7012	2 Method A and C_0.xlsm	

Unconfined Compressive Strength ASTM D7012 Method C

(r		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC1DEPTH25-30SAMPLE NO.4.2ADATE SAMPLEDDATE TESTED06/17/22TECHNICIANDLROCK TYPE
	Aft	er Picture
		S-3 5-4
NOTES		
Picture File: File name:	4a.JPG 3151001Rock UCS-TCS ASTM D7012	Method A and C_0.xlsm

Appendix C

BoreAid HDD Simulation Output

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

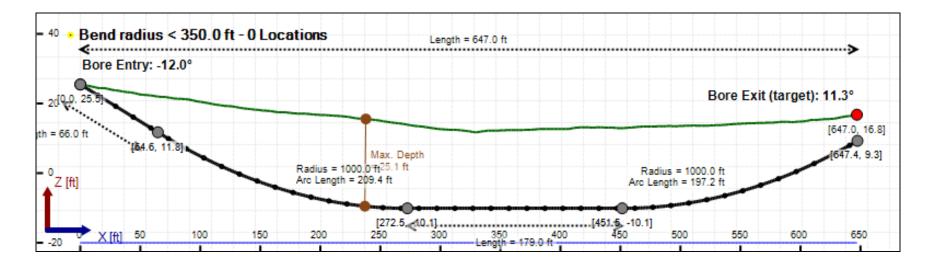
General:	Kiewit CHPE
	Ref: New York
	204-3701
	Start Date: 04-29-2022
	End Date: 04-14-2023
Designer:	Aaron Coady
	Tetra Tech Rooney
	115 Inverness Drive East, Suite 300
	Englewood, Colorado
	United States 80112
	aaron.coady@tetratech.com
Description:	Segment 12 (Package 7B) Conduit 1 HDD 124 DWG C-324

Input Summary

Start Coordinate	(0.00, 0.00, 25.48) ft
End Coordinate	(647.00, 0.00, 16.80) ft
Project Length	647.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

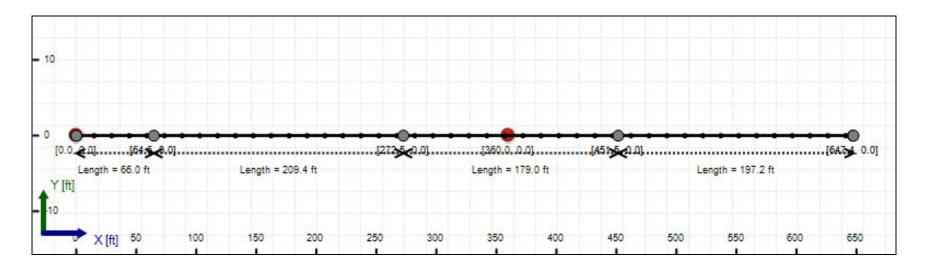
Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Gravel (G), GM Depth: 8.00 ft Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML Depth: 4.00 ft Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon] Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks Depth: 18.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]


Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks Depth: 35.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

HDD Rev. D 4/14/2023

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 660.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.6	18.8
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	5.6	18.8
Deflection		
Earth Load Deflection	1.524	5.112
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.656	5.244
Compressive Stress [psi]		
Compressive Wall Stress	25.2	84.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10615.5	10615.5
Pullback Stress [psi]	296.1	296.1
Pullback Strain	5.149E-3	5.149E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	296.1	321.6
Tensile Strain	5.149E-3	6.041E-3

Net External Pressure = 18.1 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.656	7.5	4.5	OK
Unconstrained Collapse [psi]	23.1	119.1	5.1	OK
Compressive Wall Stress [psi]	25.2	1150.0	45.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.1	238.0	7.2	OK
Tensile Stress [psi]	321.6	1200.0	3.7	OK

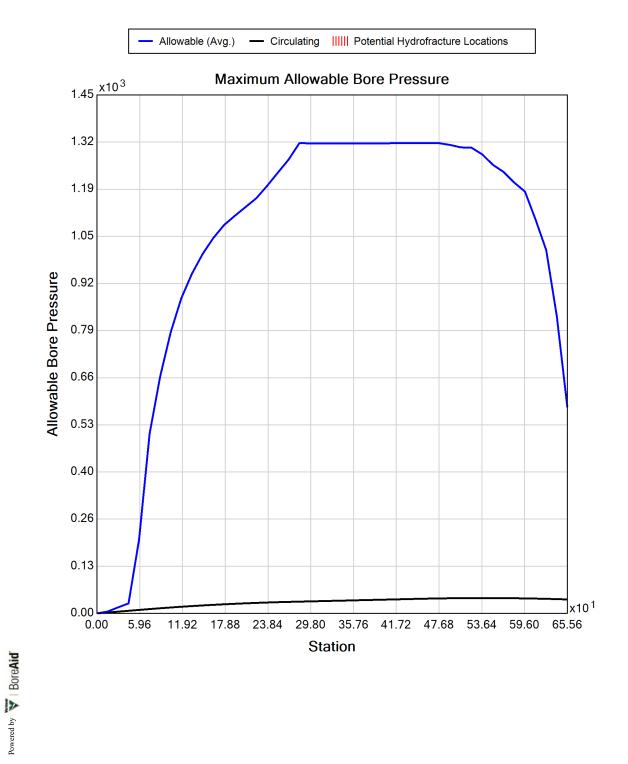
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.00 in	1316.898 psi	1318.040 psi
1	6.00 in	12.00 in	1315.959 psi	1317.229 psi
2	12.00 in	16.13 in	1314.950 psi	1316.358 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon Rheological model: Bingham-Plastic

Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 85.5

HDD Rev. D 4/14/2023

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

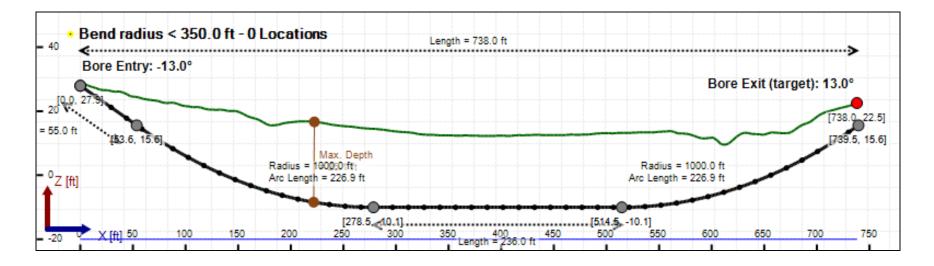
General:	Kiewit CHPE
	Ref: New York
	204-3701
	Start Date: 04-29-2022
	End Date: 04-14-2023
Designer:	Aaron Coady
	Tetra Tech Rooney
	115 Inverness Drive East, Suite 300
	Englewood, Colorado
	United States 80112
	aaron.coady@tetratech.com
Description:	Segment 12 (Package 7B) Conduit 2 HDD 124 DWG C-324.2

Input Summary

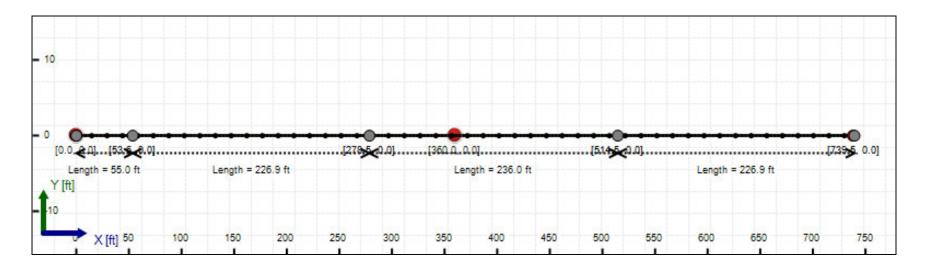
Start Coordinate	(0.00, 0.00, 27.94) ft
End Coordinate	(738.00, 0.00, 22.54) ft
Project Length	738.00 ft
Ріре Туре	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Gravel (G), GM Depth: 8.00 ft Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML Depth: 4.00 ft Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon] Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]


Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks Depth: 18.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks Depth: 35.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 750.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.6	18.8
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	5.6	18.8
Deflection		
Earth Load Deflection	1.537	5.121
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.669	5.253
Compressive Stress [psi]		
Compressive Wall Stress	25.4	84.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12446.2	12446.2
Pullback Stress [psi]	347.1	347.1
Pullback Strain	6.037E-3	6.037E-3
Bending Stress [psi]	25.8	25.8
Bending Strain	4.479E-4	4.479E-4
Tensile Stress [psi]	372.9	372.9
Tensile Strain	6.932E-3	6.932E-3

Net External Pressure = 18.8 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.669	7.5	4.5	OK
Unconstrained Collapse [psi]	24.7	119.0	4.8	OK
Compressive Wall Stress [psi]	25.4	1150.0	45.3	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	34.7	235.0	6.8	OK
Tensile Stress [psi]	372.9	1200.0	3.2	OK

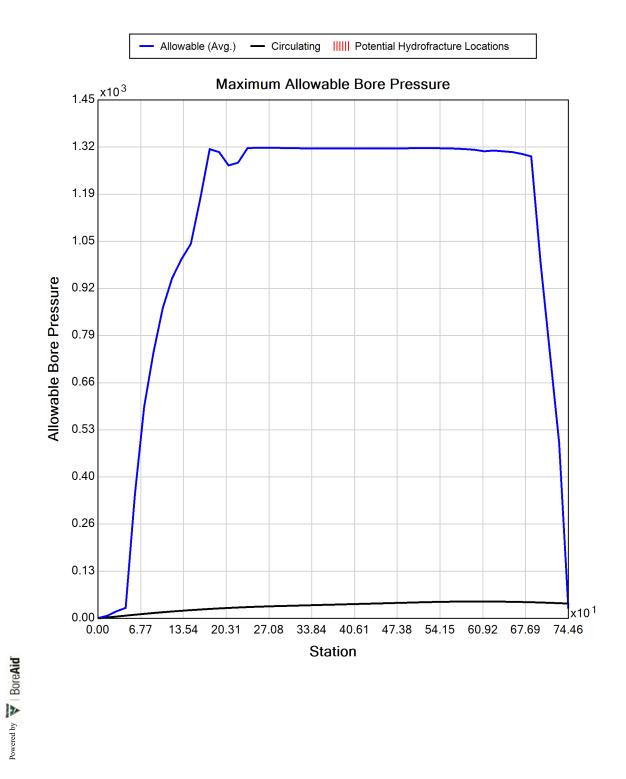
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.00 in	1317.983 psi	1318.068 psi
1	6.00 in	12.00 in	1317.166 psi	1317.259 psi
2	12.00 in	16.13 in	1316.288 psi	1316.390 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 200.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon Rheological model: Bingham-Plastic

neological model. Dingham i lasti

Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 85.5

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

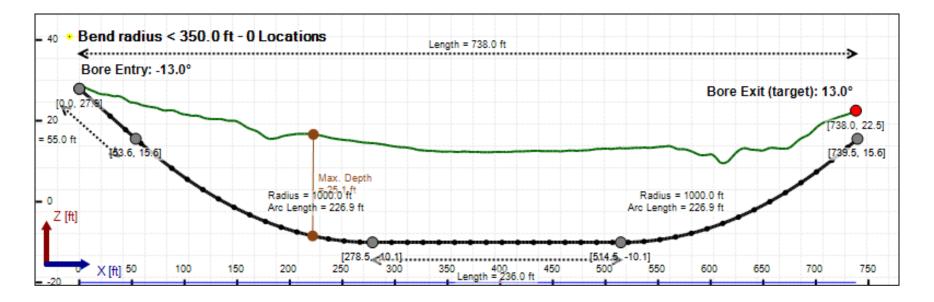
General:	Kiewit CHPE
	Ref: New York
	204-3701
	Start Date: 04-29-2022
	End Date: 04-14-2023
Designer:	Aaron Coady
	Tetra Tech Rooney
	115 Inverness Drive East, Suite 300
	Englewood, Colorado
	United States 80112
	aaron.coady@tetratech.com
Description:	Segment 12 (Package 7B) Conduit 3 HDD 124 DWG C-324.2

Input Summary

Start Coordinate	(0.00, 0.00, 27.94) ft
End Coordinate	(738.00, 0.00, 22.54) ft
Project Length	738.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	3.500 in
Pipe DR	9.0
Pipe Thickness	0.39 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

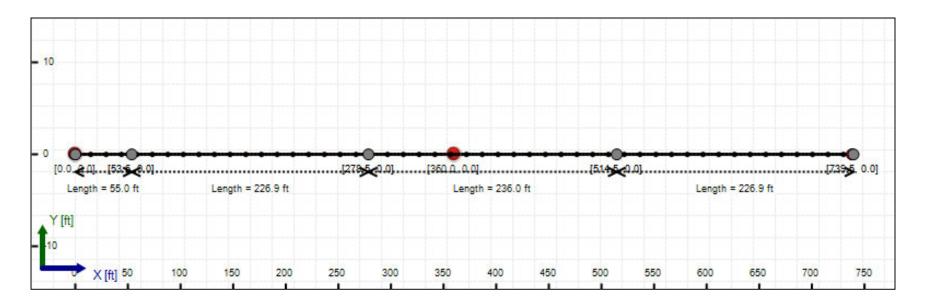
Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Gravel (G), GM Depth: 8.00 ft Unit Weight: 16.9785 (dry), 18.6879 (sat) [lb/US (liquid) gallon] Phi: 34.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), ML Depth: 4.00 ft Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon] Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks Depth: 18.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]


Soil Layer #4 Rock, Geological Classification, Sedimentary Rocks Depth: 35.00 ft Unit Weight: 14.4144 (dry), 23.7468 (sat) [lb/US (liquid) gallon] Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

HDD Rev. D 4/14/2023

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 3" (3.5") Pipe DR: 9 Pipe Length: 750.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.625 ft Silo Width: 0.625 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.7	18.8
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	2.7	18.8
Deflection		
Earth Load Deflection	0.745	5.121
Buoyant Deflection	0.043	0.043
Reissner Effect	0	0
Net Deflection	0.788	5.164
Compressive Stress [psi]		
Compressive Wall Stress	12.3	84.6

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1431.9	1431.9
Pullback Stress [psi]	376.7	376.7
Pullback Strain	6.552E-3	6.552E-3
Bending Stress [psi]	8.4	8.4
Bending Strain	1.458E-4	1.458E-4
Tensile Stress [psi]	385.1	385.1
Tensile Strain	6.844E-3	6.844E-3

Net External Pressure = 18.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 172.8 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.788	7.5	9.5	OK
Unconstrained Collapse [psi]	24.7	128.7	5.2	OK
Compressive Wall Stress [psi]	12.3	1150.0	93.4	OK

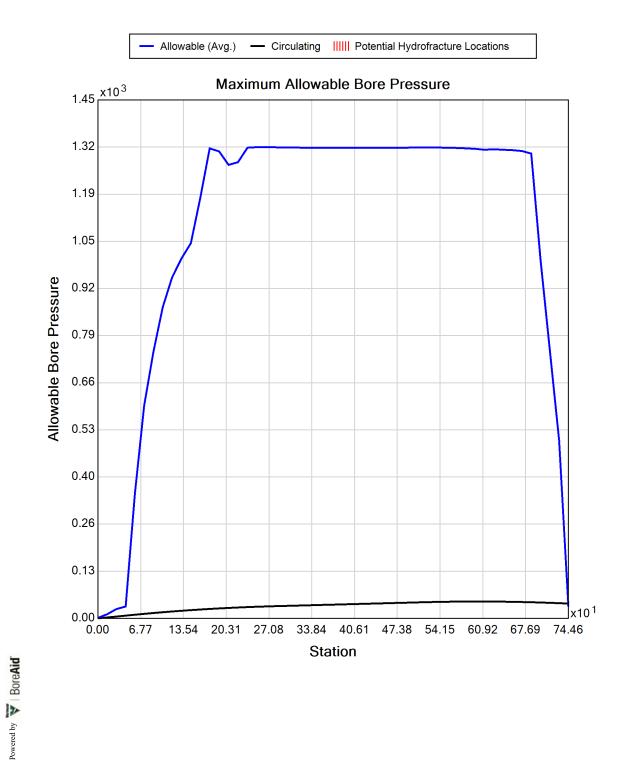
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.021	7.5	355.7	OK
Unconstrained Collapse [psi]	34.7	235.1	6.8	OK
Tensile Stress [psi]	385.1	1200.0	3.1	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.00 in	1317.983 psi	1318.068 psi
1	6.00 in	7.50 in	1317.830 psi	1317.916 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.


Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 200.00 US (liquid) gallon/min
Drill Fluid Density: 10.500 lb/US (liquid) gallon
Rheological model: Bingham-Plastic
Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 85.5

HDD Rev. D 4/14/2023

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	Kiewit CHPE
	Ref: New York
	204-3701
	Start Date: 04-29-2022
	End Date: 04-14-2023
Designer:	Aaron Coady
	Tetra Tech Rooney
	115 Inverness Drive East, Suite 300
	Englewood, Colorado
	United States 80112
	aaron.coady@tetratech.com
Description:	Segment 12 (Package 7B) Conduit 2 & 3 Equivalent Pipe Bundle HDD 124 DWG C-324.2

Input Summary

Start Coordinate	(0.00, 0.00, 27.94) ft
End Coordinate	(738.00, 0.00, 22.54) ft
Project Length	738.00 ft
Ріре Туре	HDPE
OD Classification	IPS
Pipe OD	14.000 in
Pipe DR	14.3
Pipe Thickness	0.98 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 14" (14") Pipe DR: 14.3 Pipe Length: 750.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.75 ft Silo Width: 1.75 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 7.92790 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	7.0	18.8
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	7.0	18.8
Deflection		
Earth Load Deflection	8.765	23.531
Buoyant Deflection	0.690	0.690
Reissner Effect	0	0
Net Deflection	9.455	24.221
Compressive Stress [psi]		
Compressive Wall Stress	50.1	134.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10582.8	10582.8
Pullback Stress [psi]	264.3	264.3
Pullback Strain	4.596E-3	4.596E-3
Bending Stress [psi]	33.5	33.5
Bending Strain	5.833E-4	5.833E-4
Tensile Stress [psi]	297.8	297.8
Tensile Strain	5.762E-3	5.762E-3

Net External Pressure = 15.4 [psi] Buoyant Deflection = 0.3 Hydrokinetic Force = 962.1 lb

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.338	7.5	22.2	OK
Unconstrained Collapse [psi]	18.2	50.6	2.8	OK
Tensile Stress [psi]	297.8	1200.0	4.0	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

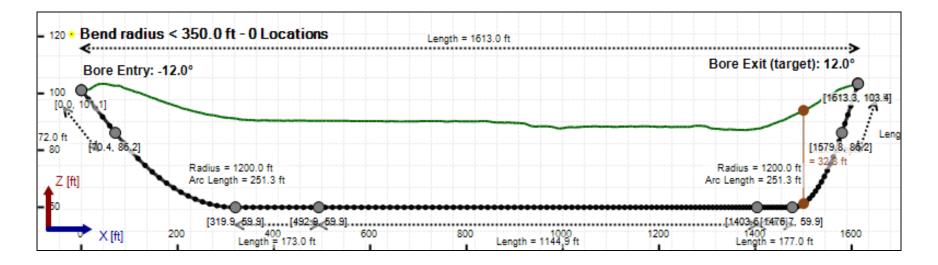
Project Summary

General:	Kiewit - CHPE
	Ref: New York
	204-3701
	Start Date: 04-29-2022
	End Date: 04-14-2023
Designer:	Aaron Coady
	Tetra Tech Rooney
	115 Inverness Drive East, Suite 300
	Englewood, Colorado
	United States 80112
	aaron.coady@tetratech.com
Description:	Segment 12 (Package 7B) Conduit 1 HDD 126 DWG C-326

Input Summary

Start Coordinate	(0.00, 0.00, 101.13) ft
End Coordinate	(1613.00, 0.00, 103.51) ft
Project Length	1613.00 ft
Pipe Type	PVC
OD Classification	IPS
Pipe OD	8.625 in
Pipe DR	18.0
Pipe Thickness	0.48 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

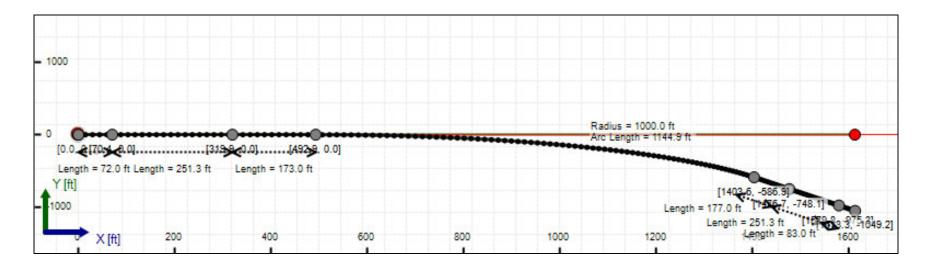

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM Depth: 7.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Sand (S), SM Depth: 16.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Sand (S), SM Depth: 22.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML Depth: 2.00 ft Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon] Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]



HDD Rev. D 4/14/2023

HDD 126

DWG C-326

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625") Pipe DR: 18 Pipe Length: 2159.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.07799990971883 ft Silo Width: 1.07799990971883 ft Surface Surcharge: 0 psi Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38 Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 7000 psi Allowable Tensile Stress (Long Term): 7000 psi Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.9	26.7
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	4.9	26.7
Deflection		
Earth Load Deflection	0.901	4.920
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	0.960	4.980
Compressive Stress [psi]		
Compressive Wall Stress	44.0	240.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	32730.5	32730.5
Pullback Stress [psi]	2669.2	2669.2
Pullback Strain	6.673E-3	6.673E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	2669.2	2780.2
Tensile Strain	6.673E-3	7.250E-3

Net External Pressure = 20.6 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.960	7.5	7.8	OK
Unconstrained Collapse [psi]	29.3	174.6	6.0	OK
Compressive Wall Stress [psi]	44.0	3200.0	72.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	39.3	170.5	4.3	OK
Tensile Stress [psi]	2780.2	7000.0	2.5	OK

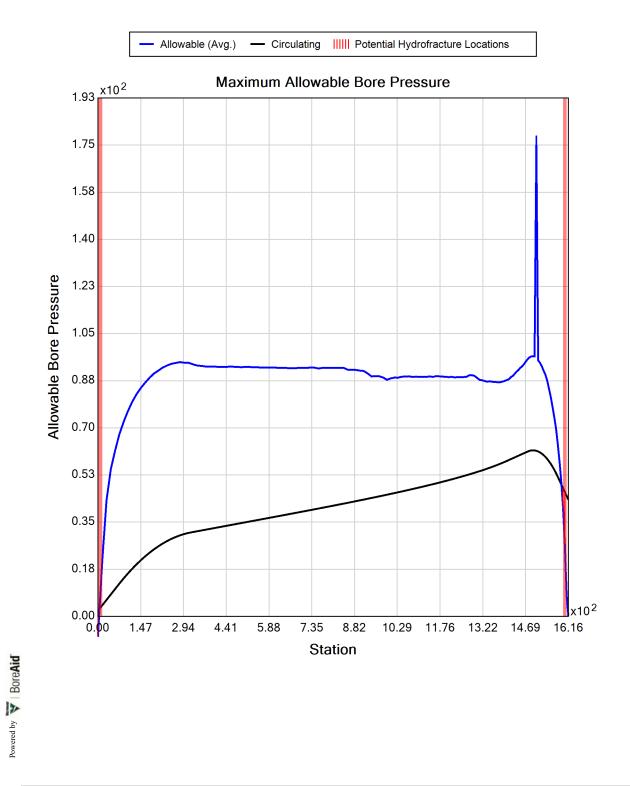
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	175.497 psi	175.497 psi
1	8.00 in	14.00 in	175.482 psi	175.482 psi
2	14.00 in	19.13 in	175.463 psi	175.463 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon Rheological model: Bingham-Plastic

Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 417.7

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

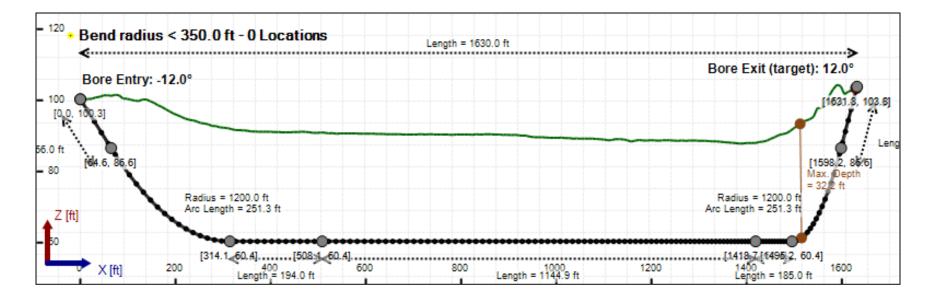
General:	Kiewit - CHPE		
	Ref: New York		
	204-3701		
	Start Date: 04-29-2022		
	End Date: 04-14-2023		
Designer:	Aaron Coady		
	Tetra Tech Rooney		
	115 Inverness Drive East, Suite 300		
	Englewood, Colorado		
	United States 80112		
	aaron.coady@tetratech.com		
Description:	Segment 12 (Package 7B) Conduit 2 HDD 126 DWG C-326.2		

Input Summary

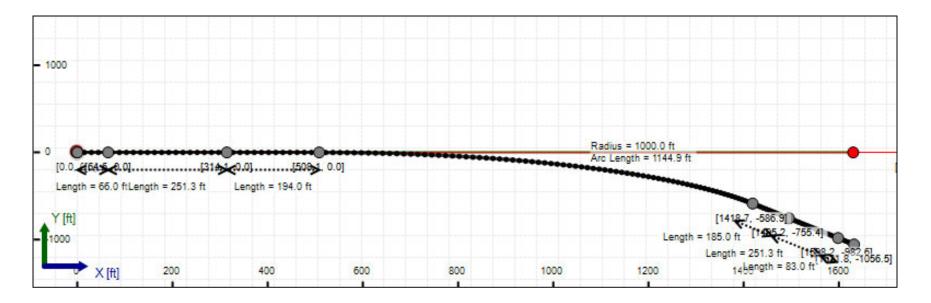
Start Coordinate	(0.00, 0.00, 100.31) ft
End Coordinate	(1630.00, 0.00, 103.46) ft
Project Length	1630.00 ft
Pipe Type	PVC
OD Classification	IPS
Pipe OD	8.625 in
Pipe DR	18.0
Pipe Thickness	0.48 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Sand (S), SM Depth: 7.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #2 USCS, Sand (S), SM Depth: 16.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]


Soil Layer #3 USCS, Sand (S), SM Depth: 22.00 ft Unit Weight: 15.6618 (dry), 17.7639 (sat) [lb/US (liquid) gallon] Phi: 30.00, S.M.: 145.00, Coh: 4.40 [psi]

Soil Layer #4 USCS, Silt (M), ML Depth: 2.00 ft Unit Weight: 14.3220 (dry), 16.8861 (sat) [lb/US (liquid) gallon] Phi: 0.00, S.M.: 145.00, Coh: 4.40 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: PVC Classification: IPS Pipe OD: 8" (8.625") Pipe DR: 18 Pipe Length: 2189.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.07799990971883 ft Silo Width: 1.07799990971883 ft Surface Surcharge: 0 psi Short Term Modulus: 400000 psi Long Term Modulus: 400000 psi Short Term Poisson Ratio: 0.38 Long Term Poisson Ratio: 0.38 Pipe Unit Weight: 11.68400 lb/US (liquid) gallon Allowable Tensile Stress (Short Term): 7000 psi Allowable Tensile Stress (Long Term): 7000 psi Allowable Compressive Stress (Short Term): 3200 psi Allowable Compressive Stress (Long Term): 3200 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 12.51801 lb/US (liquid) gallon Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 8.34534 lb/US (liquid) gallon

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.9	26.3
Water Pressure	0.0	0.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	4.9	26.3
Deflection		
Earth Load Deflection	0.900	4.845
Buoyant Deflection	0.060	0.060
Reissner Effect	0	0
Net Deflection	0.960	4.905
Compressive Stress [psi]		
Compressive Wall Stress	44.0	236.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	33302.7	33302.7
Pullback Stress [psi]	2715.9	2715.9
Pullback Strain	6.790E-3	6.790E-3
Bending Stress [psi]	0.0	143.8
Bending Strain	0	3.594E-4
Tensile Stress [psi]	2715.9	2821.8
Tensile Strain	6.790E-3	7.354E-3

Net External Pressure = 22.4 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 365.0 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.960	7.5	7.8	OK
Unconstrained Collapse [psi]	30.2	174.6	5.8	OK
Compressive Wall Stress [psi]	44.0	3200.0	72.8	OK

Installation Analysis

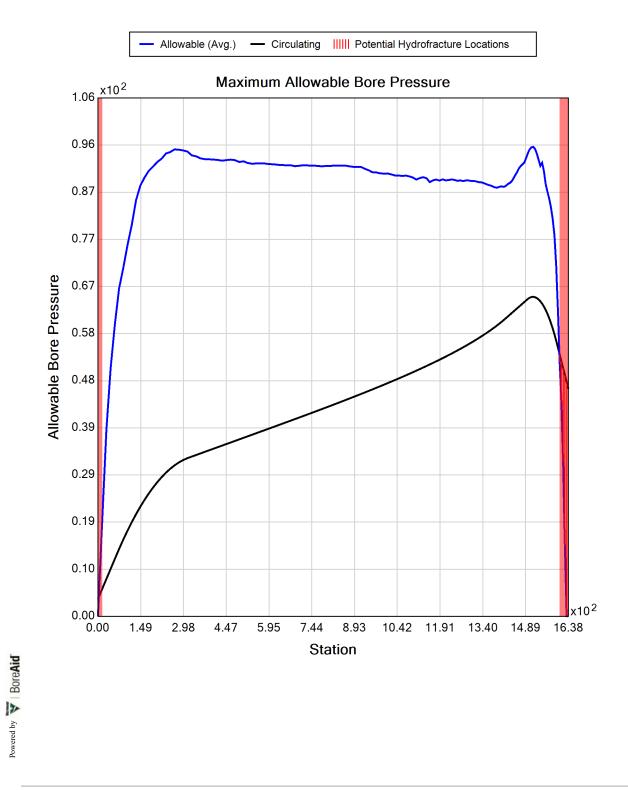
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.060	7.5	125.5	OK
Unconstrained Collapse [psi]	40.2	170.1	4.2	OK
Tensile Stress [psi]	2821.8	7000.0	2.5	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	96.344 psi	96.344 psi
1	8.00 in	14.00 in	96.198 psi	96.198 psi
2	14.00 in	19.13 in	96.012 psi	96.012 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 120.00 US (liquid) gallon/min Drill Fluid Density: 10.500 lb/US (liquid) gallon Rheological model: Bingham-Plastic

Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 417.7

HDD Rev. D 4/14/2023