APPENDIX J: HDD DESIGN SUMMARY REPORT CASE 10-T-0139

Champlain Hudson Power Express

Trenchless Design Summary Report Crossings HDD 124 to HDD 132 in Segment 12 – Package 7B

Stony Point to Haverstraw Rockland County, New York

TTR Project Number: 204-3701

Prepared for: Transmission Developers Inc. 600 Broadway Street Albany, NY 12207

Prepared by: Tetra Tech Rooney Inc. 115 Inverness Drive East, Suite 300 Englewood, CO 80112 (303)792-5911

> April 2023 Rev 4

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1						
	1.1	Purpose	1						
2.0	Proje	ECT DESCRIPTION	1						
3.0	BACKGROUND								
4.0	SITE C	CONDITIONS							
	4.1	Trenchless Design Descriptions. 4.1.1 HDD #124. 4.1.2 HDD #126. 4.1.3 Trenchless 12-294.9-2.7. 4.1.4 HDD #127. 4.1.5 HDD #129. 4.1.6 HDD #131. 4.1.7 HDD #132. Geotechnical Data 4.2.1 4.2.1 HDD #126. 4.2.2 HDD #126. 4.2.3 Trenchless 12-294.9-2.7. 4.2.4 HDD #127. 4.2.5 HDD #129. 4.2.6 HDD #129. 4.2.7 HDD #131. 4.2.7 HDD #132.	3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 7 7						
5.0	DESIC	IN SUMMARY							
	5.1 5.2 5.3 5.4	 HDD Sequence HDD Geometry and Layout HDD Subsurface Model Development	8 9 10 10 ysis						
	5.5	Auger Bore Sequence							
6.0	CONSTRUCTION CONSIDERATIONS								
	6.1 6.2 6.3 6.4	Risk Awareness and Assessment Site Analysis Erosion Control Surveillance and Monitoring							
7.0	Refei	RENCES							
Trench	less Desi	gn Summary Report S	Segment 12 - Package 7B						

LIST OF REFERENCED APPENDICES

Appendix A: Overview Map

- Appendix B: Geotechnical Reports
- Appendix C: BoreAid HDD Simulation Output
- Appendix D: Design Drawings

1.0 INTRODUCTION

1.1 PURPOSE

The Champlain Hudson Power Express (CHPE) project consists of installing a pair of HVDC electrical transmission cables with an associated telecommunications line from Canada to New York City. The portion of the work addressed herein is located in the upland portion of the route from the south end of Lake Champlain to New York City along the uplands of the Hudson River Valley. Tetra Tech Rooney, Inc. (TTR) is designing 12 Horizontal Directional Drills (HDD) and 1 Trenchless Auger Bore crossing in Segment 12 – Package 7B near Stony Point. Trenchless methods will be used to route the crossings below congested areas, railroads, under/around obstructions (e.g., existing infrastructure or utilities), and below wetlands and bodies of water to minimize impacts to the environment. This Design Summary Report (DSR) addresses the design for the Trenchless crossings in Segment 12 – Package 7B from Stony Point to Clarkstown. These crossings are designated HDD 124 through HDD 132 and Trenchless 12-294.9-2.7.

The purposes of this Design Summary Report are to provide the following:

- Review of the existing geological, hydrogeological, and geotechnical conditions for HDD 124 through HDD 132 (2 per site) and Trenchless crossing 12-294.9-2.7 for total of 13 crossings in Segment 12 – Package 7B.
- Provide a descriptive narrative of the Trenchless Crossings in support of the attached design drawings and technical specifications.
- Present stress and inadvertent release analyses that support the proposed designs.
- Evaluate construction considerations including inadvertent return mitigation.

2.0 **PROJECT DESCRIPTION**

The proposed CHPE route follows the Hudson River Valley of New York. The new transmission line will be approximately 338 miles in length, extending from the south end of Lake Champlain to Astoria, NY. Segment 12 - Package 7B is located in approximately a 7.5-mile section of the route in Rockland County, New York.

A Project Overview Map and a plan showing the locations of the HDD 124 through HDD 132 and Trenchless crossing 12-294.9-2.7 are presented in Appendix A.

The trenchless crossings addressed in this report are located as shown in Table 1 below:

Trenchless #	Start Station	End Station	Length, ft	Obstruction Crossed
124	72497+41	72503+46	647	Utility
124.2	72497+38	72504+13	738	Utility
126	72561+18	72582+63	2145	Utility
126.2	72561+12	72582+82	2170	Utility
12-294.9-2.7	72609+27	72609+54	27	Historic Wall
127	72611+05	72625+45	1440	Utility
127.2	72611+05	72625+45	1440	Utility
129	72635+68	72654+33	1865	Utility
129.2	72635+52	72654+35	1883	Utility
131	72655+24	72675+60	2036	Road
131.2	72655+22	72675+72	2050	Road
132	72679+11	72697+19	1808	Road
132.2	72679+11	72697+26	1815	Road

Table 1: Trenchless Locations, Lengths, and Description

3.0 BACKGROUND

The underground construction of two HVDC electrical transmission cables is proposed to be housed in individual 8-inch FPVC SDR 17 or 10-inch diameter DR 9 HDPE casings respectively and are spaced approximately 12 to 15 feet apart. A third, 3-inch diameter DR 9 casing will be bundled with one of the 8 or 10-inch diameter casings for a telecommunications line. The casings are to be installed in 13 to 21-inch final ream diameter drill holes. The proposal is to install the cables at least 25 feet below congested areas, roads, railroads, under/around other obstructions, 15 to 25 feet below wetland, and 35 to 45 feet below open bodies of water using HDD methods. HDD is a widely used trenchless construction method to install conduits with limited disturbance to the ground around the drill alignment, minimal ground surface impacts above the alignment, and to minimize the potential of inadvertent releases of drilling fluids while drilling. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of

impact to congested areas, existing underground obstructions, and to the adjacent wetlands to the extent possible.

4.0 SITE CONDITIONS

4.1 TRENCHLESS DESIGN DESCRIPTIONS

4.1.1 HDD #124

HDD #124 runs underneath Battlefield Rd. at the point where it intersects with Park Rd. traveling approximately 740 feet. The drill path is straight horizontally and is covered by a surface terrain that descends gradually reaching a low point near the center of the drill before ascending again to create a bowl shape. The entry point begins at El. 26 feet and exits into a 7-foot-deep pit at El. 17 feet (reference datum NAVD 1988).

4.1.2 HDD #126

HDD #126 is a long drill beginning in the Patriot Square Shopping Center parking lot and traveling under Route 9W, exiting to the south of Battalion Dr., near station 72583+00. The total length of the HDD is 2145 feet with a long 1145-foot horizontal curve in the center of the drill path. The HDD traverses underneath a relatively flat and consistent grade that begins ascending only slightly over the last 400 feet of the path. The entry point begins at El. 101 feet and the drill exits at El. 104 feet (reference datum NAVD 1988). The 3" DR 9 HDPE pipe will be required to be installed with ballast as the stress calculations for this drill yielded an unacceptable result for tensile stress with the standard 3" DR 9 HDPE pipe size and no ballast during pipe installation.

4.1.3 Trenchless 12-294.9-2.7

Trenchless crossing 12-294.9-2.7 will be installed via a cased Auger Bore. The bore launching pit will be in the grassy area adjacent to the Helen Hays Hospital entrance off Route 9W and extend a total length of 27 feet under the historic wall. The bore will exit in the receiving pit adjacent to Route 9W near station 72609+50. The bore path is straight and a 24" steel casing will be installed as the auger progresses along the bore path. The casing will be installed a minimum of 6 feet under the road.

4.1.4 HDD #127

HDD #127 begins in the grassy area adjacent to the Helen Hays Hospital entrance off Route 9W and extends for a total length of 1440 feet under Route 9W exiting near station 72625+00 in Route 9W. The drill path is straight and proceeds under a relatively flat existing grade which ascends slightly towards the end of the drill. The HDD begins at El. 116 feet and terminates at El. 110 feet (reference datum NAVD 1988).

4.1.5 HDD #129

HDD #129 is a long drill beginning in the Samsondale Plaza parking lot. The HDD travels under Route 9W and Minisceongo Creek, exiting in the parking lot to the north of Wendy's near station 72654+50. The total length of the HDD is 1865 feet with a short 145-foot horizontal curve in the center of the drill path and a short 140-foot horizontal curve towards the end. The drill path begins at El. 98 feet and proceeds through an oscillatory landscape concluding at El. 111 feet (reference datum NAVD 1988).

4.1.6 HDD #131

HDD #131 begins near station 72655+00, in the parking lot to the north of Wendy's. The HDD travels under Route 9W, passing under the Gurnee Ave. intersection, exiting in the VGMJ Tire parking lot near station 72675+50. The total length of the HDD is 2036 feet with a long 650-foot horizontal curve in the center of the drill path. The road grade gradually ascends from the entry point at El. 111 to the exit point at El. 131 feet (reference datum NAVD 1988).

4.1.7 HDD #132

HDD #132 begins near station 72697+00, adjacent to St. Peter's Cemetery. The HDD takes a curved path along Route 9W, passing under the Westside Ave. intersection where it exits near station 72679+00, adjacent to Route 9W. The total length of the HDD is 1808 feet with a long 471-foot horizontal curve in the center of the drill path. The existing grade at the entry point begins at El. 116 feet sloping downward reaching a minimum near the middle of the drill before gradually sloping upwards back to the exit point at El. 131 feet (reference datum NAVD 1988).

4.2 GEOTECHNICAL DATA

4.2.1 HDD #124

Two Geotechnical bores (BL-1, and K-294.9-0.7) are located along the proposed HDD #124 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-0.7 was selected to be used in the BoreAid analysis as it best represented the complete soil strata for the HDD alignment. Consideration was taken for the other Geotechnical boring in the design of the HDD. K-294.9-0.7 was drilled on 04/26/2022 and terminated at 30 feet deep. Down to 8 feet deep the soil consisted of silty gravel which transitioned into a silt layer that persisted for an additional 4 feet. After exiting the silt layer at a depth of 12 feet the bore entered conglomerate gravel which continued for the remaining 18 feet of the bore. It should be noted that at a depth of 9ft Geotechnical boring BL-1 experienced "strong, intensely fractured rock (0% RQD) and there was loss of water during the coring phase of the bore". Below this layer the rock exhibited Fair to Good RQD values. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #124 BoreAid analyses will be divided into three [3] layers: Gravel (GM), Silt (ML), and Conglomerate (Sedimentary Rock). The chosen test bore did not reach the full depth of the drill path however, the other test hole corroborated that the sedimentary rock layer continued for the full depth of the HDD profile thus a final layer of sedimentary rock was added to complete the soil strata used in the IR analysis. The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

4.2.2 HDD #126

Three Geotechnical bores (BL-4, K-294.9-2.0, and K-294.9-2.1) are located along the proposed HDD #126 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-2.0 was selected to be used in the BoreAid analysis as it best represented the complete soil strata for the HDD alignment and covered the full depth of the HDD profile. Consideration was taken for the other Geotechnical borings in the design of the HDD. K-294.9-2.0 was drilled on 4/13/2022 and terminated at 35 feet deep. Down to 33 feet the soil consisted of variations on silty sand before finally transitioning into a silt layer which accounted for the remaining 2 feet of drill depth. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #126 BoreAid analyses will be divided into four [4] layers: Silty Sand (SM), Silty Sand (SM), Silty Sand (SM), and Silt (ML). The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

4.2.3 Trenchless 12-294.9-2.7

At this time, no geotechnical borings are available for Trenchless crossing 12-294.9-2.7. There is one planned Geotechnical boring that will be completed once landowner access permissions have been granted.

4.2.4 HDD #127

Four Geotechnical bores (K-294.9-2.8, K-294.9-2.9A, K-294.9-2.9B, and K-294.9-3.0) are located along the proposed HDD #127 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-2.8 was selected to be used in the BoreAid analysis as it best represented the complete soil strata for the HDD alignment and covered the full depth of the HDD profile. Consideration was taken for the other Geotechnical borings in the design of the HDD. K-294.9-2.8 was drilled on 4/27/2022 and terminated at 59 feet deep. Down to 13 feet deep the soil analysis revealed a silt and sand mixture at which point the mixture gained an element of clay. The clay, silt and sand mix continued until 28 feet at which point it reverted to a silt and sand mix for 21 feet when the composition switched to glacial till for the remainder of the bore path. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #127 BoreAid analyses will be divided into five [5] layers: Silty Sand (SM), Silt (ML), Clayey Sand (SC), Silt (ML), Silty Sand (SM). The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

4.2.5 HDD #129

Six Geotechnical bores (K-294.9-3.3, K-294.9-3.3R, K-294.9-3.4A, K-294.9-3.4B, BL-7, and K-294.9-3.6) are located along the proposed HDD #129 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-3.3R was selected to be used in the BoreAid analysis as it best represented the complete soil strata for the HDD alignment and covered the full depth of the HDD profile. Consideration was taken for the other Geotechnical borings in the design of

the HDD. K-294.9-3.3R was drilled on 4/27/2022 and terminated at 70 feet deep. Down to 10 feet deep the soil composition was silty gravel, after which it became silty sand and continued as such until reaching a depth of 33 feet. The silty sand zone was followed by a 17-foot-thick layer of lean clay which transitioned into siltstone at 50 feet deep and persisted through the remainder of the bore. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #129 BoreAid analyses will be divided into four [4] layers: Silty Gravel (GM), Silty Sand (SM), Lean Clay (CL), and Silt Stone (Sedimentary Rock). The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

4.2.6 HDD #131

Four Geotechnical bores (K-294.9-3.6, K-294.9-3.7, K-294.9-3.8R, and K-294.9-3.8) are located along the proposed HDD #131 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-3.8R was selected to be used in the BoreAid analysis as it best represented the complete soil strata for the HDD alignment and covered the full depth of the HDD profile. Consideration was taken for the other Geotechnical borings in the design of the HDD. K-294.9-3.8R was drilled on 05/02/2022 and terminated at 50.2 feet deep. The first 18 inches of the bore hole consisted of asphalt which was followed by silty sand down to a depth of 30 feet where the composition switched to gravel. The gravel layer was 5 feet thick, followed by a siltstone layer beginning at 35 feet and extending the remainder of the drill path. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #131 BoreAid analyses will be divided into four [4] layers: Silty Sand (SM), Silty Sand (SM), Gravel with Silt (GP-GM), and Siltstone (Sedimentary Rock). The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

4.2.7 HDD #132

Four Geotechnical bores (K-294.9-4.1, K-294.9-4.2A, K-294.9-4.2B, and BL-8) are located along the proposed HDD #132 alignment. After reviewing and comparing these samples, geotechnical boring K-294.9-4.2B was selected to be used in the BoreAid analysis as it best

represented the complete soil strata for the HDD alignment and covered the full depth of the HDD profile. Consideration was taken for the other Geotechnical borings in the design of the HDD. K-294.9-4.2B was drilled on 4/21/2022 and terminated at 45 feet deep. After passing through the first 18 inches of asphalt, the bore entered a silt zone which persisted to a total depth of 8 feet. Following the silt layer was a layer of silty sand which transitioned into siltstone at a depth of 30 feet. The Geotechnical report for this HDD and test data is provided in Appendix B.

Based on the borings, the soil profile for the HDD #132 BoreAid analyses will be divided into three [3] layers: Silt (ML), Silty Sand (SM), and Siltstone (Sedimentary Rock). The soil profiles used in the BoreAid analyses for this HDD are presented in Appendix C.

5.0 DESIGN SUMMARY

5.1 HDD SEQUENCE

The HDD construction process in soils generally consists of three steps:

Step 1: Drill a small diameter (approximately 2 to 9 inches diameter) pilot hole along the preplanned drill path. During the pilot hole boring, the location of the drill bit is tracked to confirm that it is following the planned path. If the drilling is observed to start to deviate from the planned path, corrections are made using a "bent" lead drilling section and controlled rotation of drill pipe string. The drill bit is designed to cut through the soil in combination with pressurized drilling fluid assisting the cutting of the soil, and transport of the cuttings to the entry pit for removal. The drilling fluid is generally a combination of bentonite (a clay mineral) and water, combined with inert biodegradable additives to support sides of the drillhole and to better carry the cuttings to the entry pit at lower pressures and velocities. The drilling fluids typically used under waterbodies and wetland areas are typically required in the project specifications to be BMP's state "NSF certified". Once the pilot drill reaches the exit point, the next step of the process, hole enlargement begins.

Step 2: Enlarge the pilot hole to the diameter required for insertion of the conduits is typically referred to as reaming. This is accomplished by using successively larger reaming bits pulled or pushed through the pilot hole to gradually enlarge the drill from the smaller diameter pilot hole

to a size able to accommodate the HDPE conduits. We estimate that one and possibly a second reaming pass will be used to create the 16 to 24 inch-diameter reamed drill hole.

Step 3: Pull the conduits into the enlarged hole. While the pilot hole and reaming operations are going on, the contractor will also be fabricating the conduits to be installed. The conduits come in about 40-foot-long sections and need to be fusion butt welded, de-beaded, and arranged for the pullback into the drillhole. Ideally, the complete conduit (or bundle of conduits) will be welded (and bundled) into one long length for insertion. The goal is usually to pull the bundle into the drill in one, continuous, smooth, around the clock, operation. However, depending on work area and access constraints, sometimes the pipe is assembled in 2 or 3 lengths that are then joined (welded), "on the fly" as the conduit (bundle) is slowly pulled into the drillhole. As the conduit (bundle) is pulled into the hole it is usually ballasted with clean water, and some of the drilling fluid supporting the sides of the hole is displaced by the conduit and collected for eventual disposal.

5.2 HDD GEOMETRY AND LAYOUT

The HDD profiles are generally defined by the following parameters:

- Entry point location;
- Exit point location;
- Entry angle;
- Exit angle;
- Horizontal and vertical radius of Curvature;
- Lengths of tangent sections;
- Length of crossing;
- Depth of crossing and depth of cover;
- Site constraints and obstructions; and
- Available work and layout areas

The proposed drill paths entry angle, exit angle, and a vertical and horizontal design radius of curvature for each HDD crossing in this segment are shown in the design drawings in Appendix D. The HDD technical specifications are found in Section 330507.13 of the Technical Specifications. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The site conditions posed various challenges in developing a design that is both constructible and minimizes the potential for negative environmental impacts. The proposed design has entry and exit pits areas constrained by available easements and traffic constraints. Available work areas may limit the lengths of the conduit that can be pre-assembled, necessitating having to preassemble the bundle into several smaller segments. Those pre-assembled segments will then have to be welded together during the pullback. HDD specific work areas at the entry and exit ends of the drills are noted on the drawings in Appendix D. In addition, space and easement constraints will require that during pullback, the above ground sections of the conduit will not be straight and will require rollers to accommodate a horizontal bend. Conduit assembly is expected to be performed at the ends of the alignment shown on the drawings in Appendix D. In some cases, the limited work area at the one end of the HDD alignment, may require that the drilling and reaming prior to pullback be performed by the HDD rig located at the one end of the alignment, but the HDD rig may need to be relocated to the other end of the alignment for the pullback/conduit installation phase of the work. In addition, for some longer drills in soft/weak ground conditions, the intersection drill method may be used to better control the risk of inadvertent drilling fluid releases.

5.3 HDD SUBSURFACE MODEL DEVELOPMENT

A subsurface model was developed based on the boring logs as approximate representation of subsurface conditions along the proposed HDD alignment. BoreAid Version 5.1.08 (2017) modeling software (a product of Vermeer) was used to model the HDD. Geotechnical soil input parameters reflect the default BoreAid values for each soil type. These soil properties were found to be conservative assumptions for the selected soil types and were in the typical published ranges. Values for all soil properties are listed in in the BoreAid HDD simulation outputs in Appendix C.

5.3.1 BoreAid Analysis

For the BoreAid analyses, the below conduit configurations will be used:

1) The following section is assumed to not be ballasted with water during pullback.

 An individual 10-inch diameter DR 9 HDPE casing or 8-inch diameter SDR 18 FPVC casing

Note: The actual FPVC pipe that will be used is an 8-inch diameter SDR 17 FPVC casing. BoreAid does not provide the option to select SDR 17, so SDR 18 was used in the BoreAid analysis as it is the next closest dimension ratio available and provides a conservative analysis for the SDR 17 that will be installed.

- 2) The following bundled pull is assumed to be ballasted with water during pullback to create a near neutral buoyancy.
 - A bundle consisting of a 10-inch diameter DR 9 or 8-inch diameter SDR 18
 FPVC casing and a 3-inch diameter DR 9 HDPE casing

The stresses and deflections of the pipe are evaluated and compared to allowable values as shown on the BoreAid calculations presented in Appendix C. In addition to analyzing each individual casing being installed, for all bundled pull sections, a secondary calculation was completed to evaluate a single "equivalent" pipe that is representative of the bundle diameter and stiffness. The BoreAid analyses for the single "equivalent" pipe concluded that all bundled pull sections would need to be ballasted with water during pullback to bring the Unconstrained Collapse buckling pressure within allowable limits. As a result, a note has been added to the HDD drawings stating, "Drill Contractor shall utilize buoyancy control measures (internal water used for ballast) during pullback for all bundled casings".

Note: No BoreAid analysis was performed for Trenchless crossing 12-294.9-2.7 as there is no risk of IR with an Auger Bore.

5.3.2 HDD Inadvertent Return and Hydraulic Fracture Analysis

BoreAid modeling software was used to perform inadvertent return analyses for each HDD alignment. The drill path alignment was selected and checked so that the allowable drill pressures are greater than the static and circulating pressures throughout most of the alignment except at the ends. The allowable pressures are related to in-situ ground and water stresses around the drill hole, and the strength of the ground. The Limiting Formation Pressure Figures, indicate a generally acceptable factor of safety against the potential for inadvertent return along the proposed drill paths except at the ends.

Based on the drill path selection process, areas with the greatest potential for an inadvertent return were examined and adjusted during the design process to further limit the risks associated with an inadvertent return when possible. The entry and exit points exhibited the greatest potential for inadvertent returns and thus potential for road settlement. As a result, it is recommended that a surface/conductor casing be used for all 7B HDDs to reduce the potential for these types of events. The depth of the entry/exit pits should also be considered by the Contractor to increase the effective soil stress and provide a storage volume for returns to and near the entry and exit points. Note that while the potential for inadvertent return has been reduced through the design process, inadvertent returns are still possible through existing fissures in the soil or rock, shrinkage cracks, weak soils, or porous deposits of coarse gravel.

Fractures within and/or hydraulic fracturing (frac-out) of the surrounding soils may cause loss of drilling fluid pressures or inadvertent return of drilling fluid into the wetlands. The areas of greatest concern are reduced soil cover over the drill alignment and where there is a risk of release to the wetlands. The contractor will be required to institute pre-emptive measures in this area to mitigate the effects of a release in the event that one should occur. Such measures may include containment booms and a standby vacuum truck to collect any released drilling fluids immediately. Ground heave or settlement from hydraulic fracture and inadvertent returns also pose risks to structures such as roadways. The HDD alignment was designed with geometries to providing enough soil cover to reduce the risk of inadvertent return. The Inadvertent Return Contingency Plan details additional methods for mitigating inadvertent returns.

5.4 HDD ANALYSIS LIMITATIONS

The structural analysis and inadvertent return mitigation analysis were performed using the proposed design drill paths and typically anticipated equipment and means and methods. The HDD subcontractor must submit structural and inadvertent return mitigation calculations and analysis for each drill path, including their final drill path geometry reflecting its specific equipment and contractor's specific means, methods, drilling fluids, and proposed final contractor refined final planned alignment. It is important to note that the Kiewit Design Team's

analysis has been done without consideration for point loading due to unpredictable subsurface features such as encountering rocks, boulders, or other extremely dense material that may damage the pipe. The risk of such pipeline damage is low yet has been reported on some projects in recent years.

5.5 AUGER BORE SEQUENCE

Auger bores are a motor powered, pit launched, non-steerable (e.g. conventional auger bore, jack and bore, cradle bore, etc.) or steerable (e.g. guided auger bore) method for the installation of pipes, conduits, and cables. The bore unit assembly is guided by rails or tracks inside an entry/launch pit. The cutting tool is installed at the front of a screw auger in front of and inside a casing as a composite unit. The cutter and auger are "pushed" by the drive motor while simultaneously turning the cutter head and screw auger inside the casing. The cuttings are returned to the entry pit through the casing by the screw auger. The cutter is cooled by water injection (if necessary). The exterior casing of the auger bore is lubricated during operations by water, or a bentonite/water slurry to prevent binding or sticking to the surrounding subsurface. Conventional auger bores are subject to deflection by rock geology, rocks in the subsurface, or other unknown hard objects in the bore path. There is no risk of inadvertent return with an Auger bore as no pressurized drill fluids are used to return cuttings to the entry pit.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 RISK AWARENESS AND ASSESSMENT

The risks to be aware of during HDD include: inadvertent returns or fluid loss: any potential obstructions blocking or causing large deviations from the planned drill path and electromagnetic effects of the HDD steering equipment from nearby high voltage power lines.

6.2 SITE ANALYSIS

What does the site look like and what considerations might need to be taken for site access, construction of HDD entry and exit pits, and layout area for equipment and supplies. Careful consideration of all necessary jobsite activities should be analyzed from the perspective of the site conditions, terrain, and nearby structures.

6.3 EROSION CONTROL

The proposed drill paths cross under roads, parking lots, water, stormwater and gas and electric utility lines, as well as under streams/wetlands, bodies of water, and railroads. The soil erosion control drawing will show where primary soil erosion control measures are required. The technical specifications and Inadvertent Return Contingency Plan both detail the requirements for both primary and secondary sediment and erosion control measures to be followed in case of an inadvertent return, which ultimately could deposit the fine bentonite sediment into the stream or wetland or bodies of water if not controlled. Silt fence, hay bales, and other soil erosion control measures will be required to be installed as shown in the construction drawings. Secondary control measures are to be readily accessible at or near the work areas in accordance with the project specifications and Inadvertent Return Contingency Plan.

6.4 SURVEILLANCE AND MONITORING

During installation of the pipe by HDD, monitoring the stream, wetlands, waterbodies, and drill alignment for indications of potential inadvertent returns will be necessary. The contractor will have primary responsibility for this monitoring and associated response and reporting in realtime. This will be accomplished as detailed in the Inadvertent Return Contingency Plan. Continuous visual inspection of the entire path is the most significant method of detection. However, an experienced drill crew can often prevent a return by monitoring drilling fluid pressures. A loss of pressure may indicate an inadvertent return has occurred. Regardless of the level of preparation, inspection, monitoring, etc., inadvertent returns are not always possible to predict or prevent. However, a significant effort can minimize the possibility but not eliminate it.

7.0 **REFERENCES**

- American Association of State Highway and Transportation Officials. (2014). AASHTO LRFD bridge design specifications, Seventh edition, U.S. customary units. Washington, DC: American Association of State Highway and Transportation Officials.
- Mayne, P.W., and Kulhawy, F.H. (1990). *Manual on Estimating Soil Properties for Foundation Design*. Electric Power Research Institute (EPRI).

- Hunt, R.E. (1986). *Geotechnical Engineering Analysis and Evaluation*, McGraw-Hill Book Company, New York.
- PRCI Complex HDD Analysis Model *Installation of Pipelines by Horizontal Directional Drilling*, An Engineering Design Guide, J.D. Hair, 2015
- Pipeline Rules of Thumbs Handbook, Seventh Edition, E.W. McAllister Editor, 2009
- *Plastic Pipe Institute (PPI), 2007.* Handbook of Polyethylene Pipe, *2nd Edition. Plastic Pipe Institute (PPI).*
- ASCE, 2005. *Pipeline Design for Installation by Horizontal Directional Drilling*. American Society of Civil Engineers, ASCE Manuals and Reports on Engineering Practice No. 108.
- US Army Corp of Engineers, 1998. Technical Report CPAR-GL-98-1, Final Report, Appendix B, April 1998
- NASTT, 2017, Horizontal Direction Drilling (HDD) Good Practices Guidelines 4th Edition
- *Horizontal Directional Drilling (HDD)*: Utility and Pipeline Applications (Civil Engineering) 1st Edition, David Willoughby

Appendix A

Overview Map

Appendix B

Geotechnical Reports

MEMORANDUM

DATE:	July 14, 2022
TO:	Zachary Bauer; Tetra Tech Rooney
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 12 - Package 7B - HDD Crossing 124 Champlain Hudson Power Express Project Stony Point, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located in Stony Point, New York. The approximate station for the start of HDD crossing number 124 is STA 72500+00 (41.2413° N, 73.9824° W).

The geotechnical data at this HDD crossing is attached. The available data is taken from the previous investigation by AECOM and data from a recent investigation by Kiewit, referenced below.

- AECOM, Geotechnical Data Report, Upland Segment, Rockland County, NY, Champlain Hudson Power Express, dated September 18, 2020.
- Kiewit Engineering (NY) Corp., Segment 12 Package 7B HDD Borings Rockland, Champlain-Hudson Power Express, dated July 5, 2022.

Contact us if you have questions or require additional information.

HDD 124 Borings BL-1, K-294.9-0.7 Segment 12 - Design Package 7B

ADT DRILLER: Chris Chaillou SOILS ENGINEER: Roberto Lucidi ECATION: Battlefield Road, Stony Point, NY GROUND WATER OBSERVATIONS TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
DRILLER: PROJECT NO.: 60323056 Chris Chaillou HOLE NO.: BL-1 SOILS ENGINEER: START DATE: 7/6/2020 Roberto Lucidi BORING LOG LOCATION: Battlefield Road, Stony Point, NY OFFSET: N/A GROUND WATER OBSERVATIONS CASING SAMPLER Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ	orings
Chris Chaillou HOLE NO.: BL-1 SOILS ENGINEER: START DATE: 7/6/2020 Roberto Lucidi BORING LOG FINISH DATE: 7/6/2020 LOCATION: Battlefield Road, Stony Point, NY OFFSET: N/A GROUND WATER OBSERVATIONS CASING SAMPLER DRILL BIT CORE BARREL DRILL RIG: Geoprobe Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
SOILS ENGINEER: START DATE: 7/6/2020 Roberto Lucidi BORING LOG FINISH DATE: 7/6/2020 LOCATION: Battlefield Road, Stony Point, NY OFFSET: N/A GROUND WATER OBSERVATIONS CASING SAMPLER DRILL BIT CORE BARREL DRILL RIG: Geoprobe Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
Roberto Lucidi FINISH DATE: 7/6/2020 LOCATION: Battlefield Road, Stony Point, NY OFFSET: N/A GROUND WATER OBSERVATIONS CASING SAMPLER DRILL BIT CORE BARREL DRILL RIG: Geoprobe Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
DCATION: Battlefield Road, Stony Point, NY OFFSET: N/A GROUND WATER OBSERVATIONS CASING SAMPLER DRILL BIT CORE BARREL DRILL RIG: Geoprobe Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	-
GROUND WATER OBSERVATIONS CASING SAMPLER DRILL BIT CORE BARREL DRILL RIG: Geoprobe Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
Not Encountered TYPE Flush joint Steel SPLIT SPOON ⁽¹⁾ 2-7/8" TRICONE NQ BORING TYPE: SPT/Rock coring	
SIZE I.D. 3.0" 2.4" - 1.88" BORING O.D.: 3.5"	
SIZE O.D. 3.5" - 2.97" SURFACE ELEV.: 16.537	
HAMMER WT. SPUN 140 lb NORTHING 877579.553	
D CORING SAMPLE HAMMER FALL - 30" - EASTING 634487.801	
P MIN/FT FROM - TO AND in in BLOWS PER 6 in ON SAMPLER Corr. ⁽²⁾ CLASS, CHNG, FIELD IDENTIFICATION OF SOILS	
T (FEET) NO. (ROCK QUALITY DESIGNATION) DEPTH	
н	
10 Grass Area	
Hand Cleared SM E Light brown, f-m SAND, little f-m-c grave	el.
2.0 0.0 - 3.0 Dittle silt, dry	-
3.0 Too hard to hand clear at 3.0'	
4.0 gravel, little silt, dry	
Could not install casing at 3.3'; drilled with trid	one
5.0 rollerbit to 6.0'	
7.0 Started coring from 6.0'	
7.0 6.0 - 11.0 R-1 60.0 28.0 RQD = 0"/60"=	NE,
4.0 $47\% = 0\%$ fine grained, slightly weathered (II), strong the strength of	ng
8.0 Since a set of the	
7.0	
11.0 Casing advanced to 11.0'	
3.0	
12.0 11.0 - 16.0 R-2 60.0 47.0 RQD = $26.5''/60''$	
3.0 78% = 44% IR-2 (12.1-12.6) No recovery from 12.6' to 13.6' (drop of drill	
3.0 rods)	
14.0	ONE,
4.0 fine grained, slightly weathered (II), strong (P4) highly fractured. Scaled migrafted	ng
5.0 Sealed microfaults) throughout, Loss	of
16.0 drilling water.	
5.0	
17.0 16.0 - 21.0 R-3 60.0 59.0 RQD = 29"/60" 80 80 17.1 80 17.1 17.	
6.0	
19.0	
NOTES: The information contained on this log is not warran	ted
(1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. to show the actual subsurface condition. The contra	actor
(2) Correction factor: Ncorr=N*(2.0 ² -1.375 ²)in./(3.0 ² -2.4 ²)in. = N*0.65. agrees that he will make no claims against AECOM	1
to those indicated by this log.	
Soil description represents a field identification after D.M. Burmister unless otherwise noted.	
SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	

	BORING	CONTRACTOR:					SHEET 2 OF 3						
	ADT						PROJECT NAME: CHPE - Rockland Co. Borings						
	DRILLER	:									1		PROJECT NO.: 60323056
	Chris Cha	illou											HOLE NO.: BL-1
	SOILS EN	IGINEER:											START DATE: 7/6/2020
	Roberto L	ucidi					BORIN	IG LOG				FINISH DATE: 7/6/2020	
	LOCATIO	N: Battlefield Road	, Stony Po	oint, NY	1					1	-	1	OFFSET: N/A
D E	CORING	DEPTHS	TYPE	PEN.	REC.					N	USCS	STRAT.	
Р т	RATE MIN/ET	FROM - TO		in	in	BLOW					CLASS.	CHNG.	FIELD IDENTIFICATION OF SOILS
Ĥ	IVIIIN/I I	(1221)	NO.				QUALITI	DEGIGI	NATION)				
	9.0												
21.0	35												From 20.0' to 45.0': Light gray, LIMESTONE, fine grained slightly weathered (II) strong
22.0	0.0	21.0 - 25.0	R-4	48.0	48.0	RQD =	29.5"/48	;"					(R4), highly fractured. Sealed microfractures
	4.0				100%	=	61%						(including microfaults) throughout. Loss of
23.0	4 0												drilling water. TR-4 (21 5'-22 2')
24.0													
05.0	11.0												Heavily jointed at 24'
25.0	5.0												Brecciated from 25.0' to 26.0'
26.0		25.0 - 29.0	R-5	48.0	48.0	RQD =	28"/48"						
07.0	7.0				100%	=	58%						Heavily jointed at 26'
27.0	6.0												
28.0													
29.0	5.0												
20.0	5.0												Heavily jointed at 29'
30.0		29.0 - 30.8	R-6	22.0	22.0	RQD =	5"/22"						
31.0	12.0				100%	=	23%					ш. Ш	
01.0	4.5											ville I	TR-5 (31.7'-32.1')
32.0	4.5	30.8 - 35.0	R-7	50.0	50.0	RQD =	19"/50"					alm	
33.0	4.5				100%	=	38%					e (B	
	8.0											ston	
34.0	6.5											ime	Heavily jointed at 24'
35.0	0.0												neavily jointed at 34
	5.5												
36.0	5.5	35.0 - 40.0	R-8	60.0	60.0 100%	RQD = =	29"/60"						
37.0	0.0				10070		4070						
	5.0												
38.0	12.0												
39.0	-												
40.0	4.0												
+0.0	4.0									1			
41.0		40.0 - 45.0	R-9	60.0	60.0	RQD =	46"/60"			1			
42 0	4.0				100%	=	/7%						
72.0	4.0												
43.0													
44 0	5.0												Heavily jointed at 43'
	4.0												Change of lithology at 44.5'
45.0													
	NOTES	ð:											The information contained on this log is not warranted to show the actual subsurface condition. The contractor
1													agrees that he will make no claims against AECOM
1	Coll Jac	intian range-set	field internet	fication		D	unloss : "	onui	otod				if he finds that the actual conditions do not conform
SAM	PLE TYPE	ipuon represents a f	S= SPLI	T SPOON	POON U=SHELBY TUBE R=ROCK CORF								to those indicated by this log.
PRO	PORTION	S:	1-10% LITTLE=10-20% SOME=20-35%								AND=38	i-50%	

	BORING	CONTRACTOR:						SHEET 3 OF 3					
	ADT						PROJECT NAME: CHPE - Rockland Co. Borings						
	DRILLER							PROJECT NO.: 60323056					
	Chris Cha	aillou						HOLE NO.: BL-1					
	SOILS EN	NGINEER:						START DATE: 7/6/2020					
	Roberto L	_ucidi					FINISH DATE: 7/6/2020						
_	LOCATIO	N: Battlefield Road	, Stony Po	oint, NY		1							OFFSET: N/A
E		DEPTHS		PEN.	REC.	BLOW	SDERG	in ON SAI		N	USCS	STRAT.	
P T	MIN/FT	(FEET)	NO.			(ROCK	(ROCK QUALITY DESIGNATION)			Con.	OLAGO.	DEPTH	
Н		, , , , , , , , , , , , , , , , , , ,				,			,				
40.0	4.5	45.0 50.2	D 10	62.0	62.0		E0"/60"					Je)	From 44.5' to 49.7': yellowish white,
40.0	4.5	45.0 - 50.2	R-10	02.0	100%	- UQN =	84%					d zol	weathered (II), very strong (R5), highly to
47.0												cifie	moderately fractured. Sealed microfractures
48.0	6.0											(sili	(including microfaults) throughout.
40.0	5.5											tzite	water.
49.0												Quar	TR-6 (46.2'-46.9')
50.0	6.0											0	Change of lithology at 49.7'
00.0	6.0												Brecciated from 50.0' to 52.0'
51.0		50.2 - 55.0	R-11	58.0	58.0	RQD =	49"/58"						From 40 71 to 55 01 move LIMESTONE fine
52.0	5.0				100%	=	84%						grained. slightly weathered (II). strong to very
	4.0												strong (R4-R5), moderately fractured.
53.0	5.0											Ē	
54.0	5.0											ille F	
	5.0											almvi	
55.0	5.0											e (Ba	
56.0	5.0	55.0 - 60.0	R-12	60.0	60.0	RQD =	21"/60"					stone	From 55.0' to 60.0': gray, LIMESTONE, fine
	5.5				100%	=	35%					imes	grained, slightly weathered (II), strong to very
57.0	5.0												strong (R4-R5), nignly fractured.
58.0													
50.0	6.0												TR-7 (58.7'-59.2')
59.0	5.0												
60.0													
61.0													End of boring at 60.0' below grade Borehole grouted
0110													
62.0													
63.0													
64.0													
65.0													
66.0													
67.0													
60.0													
68.0													
69.0													
70.0													
	NOTES	S:	1	<u>I</u>	<u>I</u>	1	1	1	1	1	I		The information contained on this log is not warranted
1													to show the actual subsurface condition. The contractor
													AECOM if he finds that the actual conditions do not
	Soil desci	ription represents a t	field ident	ification a	fter D.M.	Burmister	unless ot	herwise n	oted.				conform to those indicated by this log.
SAM		E:	S= SPLI	T SPOON	1		BY TUBE		R=ROCH	CORE			5-50%
PROPORTIONS: TRACE=			- i - i U /0		LIIILE=	10-2070			.0-00 /0		-71ND-3	J-00 /0	

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: Upland Segment, Rockland County, NY, Champlain-Hudson Power Express Location: Rockland County, NY

ΑΞϹΟΜ

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: Upland Segment, Rockland County, NY, Champlain-Hudson Power Express Location: Rockland County, NY

Boring	Denth	CHPE-Rockland G. Borings 60323056-AECOM BL=1 29.0' to 48.0' 7/6/2020 Box 2 of 3	٦
No.	(ft.)	0 P-(290' to 31.8' REC = 100%, to R-7 30.8' to 35.0' REC = 50% = 100%, RaD = 19% = 38%.	
BL_1	29.0 to	$\frac{1}{10}$ Rep = 23% [6] Rep = 23% [6] Rep = 24% = 100 % Rep = 24\% = 100 % Rep = 24	
drv	48.0	$\frac{1}{100}$ $\frac{1}$	
())		\$ R-8 (cont.)	
		$\frac{1}{29} R - 9 (cont.) = \frac{1}{29} R - 10 + 5.0 + 6.0' REC = \frac{62}{62''} = 100\%, Rad = \frac{52}{60''} = 87\%$	
		The second	
		The second	
		T	
Boring	Denth	CHPE-Rockland G. Barings 60323056-AECOM BL-1 29.0' to 48.0' 7/6/2020 Box 2 = F3	
No.	(ft.)	Q R-C 290' to 318' REC= 1007, 00 R-7 308' to 35.0' REC= 50% = 100%, RQD= 19/50= 38%.	
BL-1	29.0 to	$\frac{1}{10} = \frac{1}{100} = \frac{1}{$	
(wet)	48.0	$\frac{1}{10}$	
		$\frac{1}{100}$ R-8 (cont.) 9 R-9 40.0 - 10.0 100 100 100 100 100 100 100 100 10	
		1 \$ R-9 (cont.) \$ R-10 45.0 to 48.0 KEL = \$ 1/62" = 100% RQD = 52/60" = \$ 7 % \$	
		R	
		ST T = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
Note: Bla	ack foam i	inserts represent core pieces that were removed for geotechnical and/or thermal resistivity laboratory testing	_

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: Upland Segment, Rockland County, NY, Champlain-Hudson Power Express Location: Rockland County, NY

ΑΞϹΟΜ

PROJECT NUMBER

Segment 12 Package 7B HDD Borings - Rockland Champlain Hudson Power Express New York

Kiewit Borings (2022)

O Borings by Others

BORING NO: K-294.9-0.7

Champlain Hudson Power Express

PROJECT NUMBER		UMBER	20001480	LOGGED BY Rafael Salas						COORDINATES		N 877078.91 E 634313.79				
	START DATE		04/25/2022	DRILLER/RIG Corey B. / CME 550				GROUND ELEV.		20.7 ft						
	FINISH DATE 04/26/20		04/26/2022	DRILL CONTRACTOR Parratt Wolff				HAMMER TYPE/	EFF.	F. Automatic						
Depth (ft)	Graphic Log Braphic Log Braphic Log		Sample Type Core Run No. RCD RCD RCD (tsf) (N Value)			Notes		Legend ▲ SPT N Value ● MC (%) P L& LL (%) ¥ Fines Content (%)								
- 5 -	127		Silty GRAVEL, (GM), wit Boulders (based on obse materials) 0 - 7 ft was excavated by truck	h cobbles and ervation of excavated y air knife and vacuum						Boring advanced with 3.25" ID HSA						
- 10 -	12.7		SILT (ML), cemented, ha	ard, red, dry			54%		50/6"							
- 15 -	8.7		Boring advanced withou 12 ft Conglomerate, medium small cobbles, red, mode closely spaced fractures	t sampling to refusal at to coarse gravel, with erately spaced to , very strong		1	<u>88%</u> 86									
- 20 -			Approximately 1 ft void e Calcite healed fractures	encountered at 18 ft between 20 and 21 ft		2	<u>66%</u> 65									
- 25 -						3	<u>100%</u> 85									
 - 30 -	-9.3		1.5 ft void at 27 ft Boring Terminated at 30	ft		4	<u>62%</u> 36									
													I	Page	e 1 c	of 1

K-294.9-1.2 - Runs 1 through 3

CERCHAR Abrasiveness ASTM D7625

ADVANCED TERRA TESTING

CLIENT	Fairway Testing Con	ipany	J(OB NO.	3151-001
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	Power Express	LC	DCATION	New York
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN		RC3 21.0-26.0 0.7 HN			
ROCK TYPE		6/16/22			
Surface Type: Moisture Conditio	n	Saw Cut As Received			
Reading A.1 (in): Reading A.2 (in): Reading A.3 (in): Reading A.4 (in): Reading A.5 (in): Reading B.1 (in): Reading B.2 (in): Reading B.3 (in): Reading B.4 (in): Reading B.5 (in):		0.00890 0.00900 0.00890 0.00500 0.00680 0.00800 0.00940 0.00700 0.00630 0.00860			
Average Reading Average Reading	(in): (mm):	0.00779 0.1979			
Uncorrected CAI Corrected CAI:	or CAI _s :	1.98 2.44			
NOTES		CAI _s is the CAI calc Corrected CAI for sa Suggested formula (Applied pins had a F	ulated on saw o aw cut specime CAI = 0.99*CAI Rockwell Hardn	eut specimens ns based on s + 0.48. ess of 54-56.	s. R. Plinger and H. Kasling
Data entry by:	HN			Date	: 06/17/22
File name:	3151001CHERCH	AR ASTM D7625_1	xlsm	Dale	. 00/17/22

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC3DEPTH21.0-26.0SAMPLE NO.0.7DATE SAMPLEDDATE TESTED06/16/22TECHNICIANHNROCK TYPE
	Before Pict	ure
NOTES	INCRES 1 0000 2 0000 3 0000 0000 0000 0000 000	NO. RG3 21-25 NO. 0.7 CERCHAR
Picture File: File name:	5.JPG 3151001CHERCHAR ASTM D7625_1.xlsm	

CHERCHAR Abrasiveness ASTM D7625

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC3DEPTH21.0-26.0SAMPLE NO.0.7DATE SAMPLEDDATE TESTED06/16/22TECHNICIANHNROCK TYPE
	After Pic	ture
NOTES	CLENT BARANT BERRY STATES COMPANY OF REAL REAL REAL REAL REAL REAL REAL REAL	A ENGINEERS S
Picture File: File name:	5.JPG 3151001CHERCHAR ASTM D7625_1.xlsm	

Splitting Tensile Strength ASTM D3967

CLIENT	Fairway Testing Corr	ıpany	JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	ower Express	LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE)				RC3 21-26 0.7 06/16/22 DL
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/	ж (g): ′ff³):	-			1.989 1.036 138.20 163.6
Wet Density (Jbs) Wet Density (g/cl Peak Load (lbs): Splitting Tensile S Failure Type:	n'): n³): Strength (psi): Strength (kPa):				2.620 4536 1401 9662 Single Plane
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE)				
Diameter (in): Height (in): Mass of Wet Roc	:k (g):				
Wet Density (lbs/ Wet Density (g/ci Peak Load (lbs): Splitting Tensile S Splitting Tensile S Failure Type:	ft³): n³): Strength (psi): Strength (kPa):				
NOTES					
Data entry by: Checked by: File name:	DL HN 3151001 Brazilian	ASTM D3967 0.xlsm		Date Date	e: 06/16/22 e: 06/17/22

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC3DEPTH21-26SAMPLE NO.0.7DATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE
		Before Picture
NOTES	CLENT RAINING A	A REPRESENTATION OF THE SAME AND
Picture File: File name:	5.JPG 3151001Brazilian ASTM D3967_0.	dsm

Splitting Tensile ASTM D3967

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORING NO.RC3DEPTH21-26SAMPLE NO.0.7DATE SAMPLEDDATE TESTED06/16/22TECHNICIANDLROCK TYPE
		After Picture
NOTES	CLENT CARANT CLENT CARANT DB NO. DE SART PROJECT NO. DE SART	Tower Express Sample No. Nover Express Samp
Picture File: File name [.]	5a.JPG 3151001 Brazilian ASTM D3967 0 x	sm

ADVANCED TERRA TESTING

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT	Fairway Testing Corr	pany		JOB NO.	3151-001	
PROJECT PROJECT NO.	Champlain Hudson F K-294.9	ower Express		LOCATION	New York	
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						RC3 21-26 0.7 06/17/22 DL
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/t Wet Density (g/cr	k (g): ít³): n³):					1.982 3.977 542.30 168.4 2.70
Peak Load (lbs): Compressive Stre Compressive Stre Failure Type:	ength (psi) ength (MPa)					28043 9089 63 Fracture / Bedding
BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE						
Diameter (in): Height (in): Mass of Wet Roc Wet Density (lbs/t Wet Density (g/cr	k (g): ft³): n³):					
Peak Load (lbs): Compressive Stre Compressive Stre Failure Type:	ength (psi) ength (MPa)					
NOTES						
Data entry by: Checked by: File name:	DL HN 3151001Rock UC	S-TCS ASTM D7012	Method A ar	nd C_0.xlsm	Da Da	te: 06/17/22 te: 06/17/22

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company 3151-001 Champlain Hudson Power Express K-294.9 New York	BORII DEPT SAMF DATE DATE TECH ROCK	NG NO. TH PLE NO. E SAMPLED TESTED INICIAN & TYPE	RC3 21-26 0.7 06/17/22 DL	
		Before Picture			
	CLIENT PROJECT Champion 115	A Compare A Comp	RC3 21-26 0.7 UCS		
NOTES					
Picture File: File name:	5.JPG 3151001Rock UCS-TCS ASTM D7	012 Method A and C_	0.xlsm		

Unconfined Compressive Strength ASTM D7012 Method C

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Fairway Testing Company E 3151-001 E Champlain Hudson Power Express S K-294.9 E New York E	3ORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED FECHNICIAN ROCK TYPE	RC3 21-26 0.7 06/17/22 DL
	After Picture		
	<text></text>	5-4	
NOTES			
Picture File: File name:	5a.JPG 3151001Rock UCS-TCS ASTM D7012 Method A ar	id C_0.xlsm	

MEMORANDUM

DATE:	July 14, 2022
TO:	Zachary Bauer; Tetra Tech Rooney
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 12 - Package 7B - HDD Crossing 126 Champlain Hudson Power Express Project Stony Point, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located in Stony Point, New York. The approximate station for the start of HDD crossing number 126 is STA 72563+00 (41.2256° N, 73.9859° W).

The geotechnical data at this HDD crossing is attached. The available data is taken from the previous investigation by AECOM and data from a recent investigation by Kiewit, referenced below.

- AECOM, Geotechnical Data Report, Upland Segment, Rockland County, NY, Champlain Hudson Power Express, dated September 18, 2020.
- Kiewit Engineering (NY) Corp., Segment 12 Package 7B HDD Borings Rockland, Champlain-Hudson Power Express, dated July 5, 2022.

Contact us if you have questions or require additional information.

HDD 126 Borings BL-4, K-294.9-2.0, K-294.9-2.1 Segment 12 - Design Package 7B

	BORING	CONTRACTOR:												SHEET 1 OF 1			
	ADT						A =							PROJECT NAME: CHPE - Rockland Co. Borings			
	DRILLER	:		1						///				PROJECT NO.: 60323056			
	Chris Cha	aillou					V							HOLE NO.: BL-4			
	SOILS EN	IGINEER:		1										START DATE: 7/7/2020			
	Roberto L	ucidi						BORIN	G LOG					FINISH DATE: 7/7/2020			
	LOCATIO	N: Central Drive an	d Route	9W, Stony	Point, N	Y								OFFSET: N/A			
GRO	DUND WA	TER OBSERVATIO	NS			CAS	SING	SAM	IPLER	DRIL	L BIT	CORE	BARREL	DRILL RIG: Geoprobe			
Not E	ncountere	d		TYPE		Flush jo	oint Steel	SPLIT S	SPOON ⁽¹⁾	3-7/8" T	RICONE	Ν	IQ	BORING TYPE: SPT/Rock coring			
				SIZE I.C).	4.0"		2.4"			-	1.	88"	BORING O.D.: 4.5"			
				SIZE O.	D.	4.5"		3.0"			-	2.	97"	SURFACE ELEV.: 108.145			
				HAMME	R WT.	140 lb	(AUTO)	140 lb			-		-	NORTHING 871905.948			
D		SAMPLI	E	HAMME	RFALL	30"		30"		N	-	OTDAT	-	EASTING 633323.295			
P T	MIN/FT	FROM - TO (FEET)	AND NO.	in	in	BLOW (ROCK	S PER 6 i	in ON SA Y DESIGN	MPLER NATION)	Corr. ⁽²⁾	CLASS.	CHNG. DEPTH		FIELD IDENTIFICATION OF SOILS			
н				<u> </u>									8" As	nhalt			
1.0													0 / 10	prian			
		Hand Cleared									ML	one	Red-b	prown, SILT & CLAY, trace fine gravel,			
2.0		0.0 - 4.0		 								siltst	dry	1 (2 0) 4 0)			
3.0												ed 9	1.4.	1 (2.0 -4.0)			
0.0												sod					
4.0												com	Too ha	rd to hand clear at 4.0'			
		4.0 - 4.5	S-1	6.0	6.0	60	50/0"	-	-		ML	De	S-1: F	Red, sandy SILT, some fine gravel,			
5.0		4.5 - 4.8	5-2	3.0	3.0	Direct F	usn				ML		S-2.5	, naro Same as above, moist, hard			
6.0										-			Drilled	with tricone rollerbit to 6.0'			
													Installe	ed casing at 6.5'; Started coring from 6.0'			
7.0		6.0 - 11.0	R-1	60.0	40.0	RQD =	0"/60"=			-			_				
<u>ه م</u>				<u> </u>	67%	=	0%			-			From	6.0' to 11.0': Red-brown,			
0.0				1								Ľ.	slight	ly weathered (II), medium weak (R2),			
9.0												un l	highly	to intensely fractured.			
				_						-		ul H					
10.0										-		e (B					
11.0				+						-		ston					
												Silts					
12.0		11.0 - 16.0	R-2	60.0	60.0	RQD =	9"/60"					one	From	11.0' to 16.0': Red-brown,			
12.0					100%	=	15%			-		ndst	SANL	DSTONE, fine grained, slightly pered (II) medium weak (R2) bigbly			
13.0												Sar	to inte	enselv fractured.			
14.0				-										,			
										-							
15.0										-			TR-2 (14.7'-15.1') Composite: 4.4' 4.7' 11.5' 11.9' 15.1' 15.4')			
16.0					<u> </u>								End of	f boring at 16 0' below grade			
17.0													Boreh	ole grouted			
18.0										-							
19.0				<u> </u>	-					-							
20.0																	
	NOTES (1) Thick-w (2) Correcti (3) TR = sa (4) SPT sar Soil descr	S: all ring lined drive samp on factor: Ncorr=N*(2.0 mple for thermal resistiv mpler driven by Geoprol ription represents a f	iler (Califor ² -1.375 ²)in vity testing. be direct pr field ident	nia sampler ./(3.0 ² -2.4 ²) ush device 1 tification a) used for S iin. = N*0.65 to attempt r ifter D.M. I	SPT sample 5. ecovery of Burmister	es. Rings dir high density unless ot	mensions = / soil. herwise r	= 2-1/2" O.D noted.	. by 2-7/16'	' I.D. by 6"	length.	The info to show agrees if he fin to those	ormation contained on this log is not warranted v the actual subsurface condition. The contractor that he will make no claims against AECOM nds that the actual conditions do not conform e indicated by this log.			
SAM	PLE TYPE		S= SPLI	T SPOON	1	U=SHEL	BY TUBE		R=ROCł	CORE							
PRO	PORTION	S:	TRACE=	=1-10%		LITTLE=	:10-20%		SOME=2	20-35%		AND=3	5-50%				

ROCK CORE PHOTOGRAPHIC LOG

AECOM Project No: 60323056 Project Name: Upland Segment, Rockland County, NY, Champlain-Hudson Power Express Location: Rockland County, NY

ΑΞϹΟΜ

Boring	Depth	GHPE-Rockland Co. Borings AECom G0323056
No.	(ft.)	BL-4 R-1 6.0'-11.0' REC= 40% RAD=0% 7/7/2020
BL-4	6.0 to	BL-4 R-2 11.0'-16.0' REC= "60"= 100%. RRD= 9"60"= 15%. 7/7/2020
(ury)	11.0	
Boring	Depth	GHPE-Rockland Co. Borings AECOM G0323056
No.	(ft.)	BL-4 R-1 6.0'-11.0' REC= 40% RAD=0% 7/7/2020
BL-4	6.0 to	BL-4 R-2 11.0'-16.0' REC= 60% - 100% RRD= 9% 7/7/2020
(wet)	11.0	
Note: Pl	ack foam	inserts represent core pieces that were removed for geotechnical and/or thermal resistivity laboratory testing

Aquifer CHPE - Rockland County Borings SUMMARY OF ROCK TESTING

SA	MPLE IDENTIFI	CATION	S	TATE PROPER	TIES				ENGINEERING PROPERTY TESTS					REMARKS
Boring	Run/ Sample	Depth	WATER	TOTAL	DRY	TEST	ORIENTATION	HARDNESS TESTS	POINT	LOAD TEST	UNCONFINE	ED COMPRES	SSION TESTS	
			CONTENT	UNIT	UNIT	TYPE		Mohs	(AST	M D5731)	(ASTM D7012	2)	
			(1)	WGT.	WGT.			HARDNESS	STRENGTH	ESTIMATED (4)	COMPRESSIVE	SSIVE AXIAL ESTIN		
						(2)			INDEX	COMPRESSIVE	STRENGTH	STRAIN @	ELASTIC	
									ls(50)	STRENGTH		FAILURE	MODULUS	
			(%)	(pcf)	(pcf)		(3)	(-)	(psi)	(psi)	(psi)	(%)	(psi)	
BL-1	R-3	19.2-20.2				М		4-5						
BL-1	R-3	19.3-19.7	0.15	176	176	UC					8760	0.20	4E+06	
BL-1	R-7	31.0-31.7				М		5-6						
BL-1	R-7	31.1-31.5	0.11	176	175	UC					8050	0.16	5E+06	
BL-1	R-10	48.2-48.9				Μ		4-5						
BL-1	R-10	48.3-48.7	0.08	177	176	UC					6280	0.11	6E+06	
BL-1	R-11	54-55				М		3-4						
BL-1	R-11	53.9-54.3	0.13	174	174	UC					15070	0.19	9E+06	
BL-4	R-1	11.3-11.6				М		2-3						
BL-4	R-1	11.3-11.6	1.00			PL	Diametral		190	4393				
BL-4	R-1	11.3-11.6				PL	Axial		200	4405				
BL-4	R-2	12.2-12.5				М		2-3						
BL-4	R-2	12.2-12.5	1.18			PL	Diametral		90	2081				
BL-4	R-2	12.2-12.5				PL	Axial		170	3464				
BL-10	Outcrop (A)	-				М		5-6						
BL-10	Outcrop (A)	-	1.08	181	179	UC					23820	0.41	7E+06	
BL-10	Outcrop (B)	-				М		5-6						
BL-10	Outcrop (B)	-	0.67	180	179	UC					21640	0.50	5E+06	
BL-10	Outcrop (C)	-				М		5-6						
BL-10	Outcrop (C)	-	0.71	183	182	UC					25120	0.44	7E+06	
	• • •													
BL-15	R-1 (A)	80.35-80.7	1.09	158	156	UC					6830	0.51	1E+06	
BL-15	R-1 (B)	83.2-83.55	0.68	156	155	UC			İ		7940	0.45	2E+06	
BL-15A	R-1(A)	81.5-82.1				М		3-4						
BL-15A	R-1(B)	83.0-83.6				М		3-4						

Notes: (1) Water contents determined after trimming and shearing.

(2) Test Type Abbreviations: M: Mohs Hardness, PL: Point Load, UC: Unconfined Compression test with estimated elastic moduli determination

(3) Diametral orientation across core along bedding/foliation plane, axial perpendicular to bedding/foliation plane, as applicable.

(4) Compressive Strength determined using generalized "K" factor in ASTM D5731

(5) Modulus estimated based on corrected gross deformations.

TerraSense, LLC 45H Commerce Way Totowa, NJ 07512

Load Orientation:	Diametra		ΔγίαΙ
Length to nearest free end 1 (mm)	29 0		26.7
Specimen Width, W1 (mm)	20.0		49.5
Specimen Width, W2 (mm)			49.5
11.3-11.6	50.0	l l	39.0
D' (mm)	50.0	l l	32.0
D _e (mm)	50.0	l l	44.9
Failure Load, P (lb)	729		650
Point Load (N)	3243		2891
Point Load (Mpa)	1.30		1.37
Index, Is50 (psi)	190		200
Unconfined Compressive Strength (psi)	4393		4405
Specimen /Failure Sketch			
Tare No.	M30		
Wet + Tare (gm)	217.77		
Dry + Tare (gm)	216.11		
Tare (gm)	49.46		
Water Content%	1.00		
Comments			
	Test by: RT Test Date:	8/14/2020 Reviewed	by: GET
CHPE -	Rockland County Borings		POINT LOAD STRENGTH INDEX OF ROCK ASTM D5731
Aquife	r	PO 309907	Boring: BL-4 Run: R-1
TerraSense	. LLC	7853-20003	Depth: 11.3-11.6

Load Orientation:	Diametr		Avial
Length to pearest free end L (mm)	28.8		24.8
Specimen Width W1 (mm)	20.0		49.8
Specimen Width, W2 (mm)			49.8
D (mm)	50.0		22.0
D' (mm)	50.0		22.0
D _e (mm)	50.0		37.3
Failure Load, P (lb)	363		416
Point Load (N)	1615		1850
Point Load (Mpa)	0.65		1.16
Index. Is50 (psi)	90		170
Unconfined Compressive Strength (psi)	2081		3464
Specimen /Failure Sketch		25	
Tare No.	M23		
Wet + Tare (gm)	184.27		
Dry + Tare (gm)	182.71		
Tare (gm)	50.94		
Water Content%	1.18		
Comments			
	Test by: RT Test Date:	8/14/2020 Reviewed	d by: GET
CHPE -	Rockland County Borings		POINT LOAD STRENGTH INDEX OF ROCK ASTM D5731
Aquife	r	PO 309907	Boring: BI -4 Run: R-2
TerraSense	LLC	7853-20003	Depth: 12.2-12.5

PROJECT NUMBER

Legend Key

- Kiewit Borings (2022)
- O Borings by Others

BORING NO: K-294.9-2.0

PRO		UMBER	20001480	LOGGED BY		Rafa	el Sal	as	COORDINATES		N 87 E 63	1223 3864	.01 .03			
	STAR	T DATE	04/13/2022	DRILLER/RIG	Rie	ck / Di	edrich	n D-90	GROUND ELEV.		87.9 ft					
	FINIS	H DATE	04/13/2022	DRILL CONTRACTO	R	Pari	ratt W	olff	HAMMER TYPE/	EFF.	A	utom	natic	;		
Depth (ft)	Elevation (ft)	Graphic Log	Material D	escription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes			egen N Valu (%) & LL (% es Cont	d ue 6) ent (%	%) 		
- 5 -	80.9		Silty SAND (SM) (based excavated materials) 0 - 7 ft was excavated b truck Silty SAND (SM), with s medium coarse, subrou loose to dense, dry	l on observations of y air knife and vacuum ome fine gravel, fine to nded, light brown,		33%		3-4-5-4 (9)	Boring advanced with 3.5" ID HSA							
 - 15 - 					\mathbb{N}	54%		4-4-5-6 (9)								
- 20 - - 20 - 	64.9					33%		7-14-16-10 (30)	3-inch ring sampler							
- - 25 -	-		Silty SAND (SM), with g sand, fine to coarse gra subangular, light brown	ravel, fine to coarse vel, angular to to gray, dry	Ň	92%		32-70-67-42	<u>.</u>	• •						
	-				Π	96%		30-19-15-20						+	+	
 	- - - - -				X	50%		38-37-26-50/ 2"								
- 30 -					- I							Pa	ade '	1 of	2	

BORING NO: K-294.9-2.0

Champlain Hudson Power Express

PRO		UMBER	20001480	LOGGED BY	,		Rafa	el Sala	as	COORDINATES	N E	871) 6338	223. 864.	.01 .03	
	STAR	T DATE	04/13/2022	DRILLER/RIG	; 	Ric	k / Die	edrich	D-90	GROUND ELEV.		87.	9 ft		
	FINISH	- H DATE	04/13/2022	DRILL CONTRACTO	R		Parr	att Wo		HAMMER TYPE/E	FF.	Au	tom	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material Do	escription	sample Type	ore Run No.	Recovery % RQD	Pocket Pen. (tsf)	slow Counts (N Value)	Notes	▲ ● ►	Leg SPT N MC (% PL & I Fines	genc I Valu 5) LL (% Conte	d e) ent (%))
- 35 - 35 - 40 - 40 - 45 - 45 - 50 - 55	54.9	Grap	Silty SAND (SM), with grand, fine to coarse grave subangular, light brown to SILT (ML), with gravel, fit to subangular, brown, has Boring Terminated at 35	ravel, fine to coarse /el, angular to to gray, dry ne to coarse, angular ard, dry ft	Sam	Core	100%	Poc	50/2"						
- 60	-												Pa	ge 2	2 of 2

BORING NO: K-294.9-2.1

N 870835.45

START DATE 04/11/2022 DRILLER/RIG Corey Brown / CME 550 GROUND ELEV. 88.3 ft ENISH DATE 04/12/2022 DRILLEONTRACTOR Parratt Wolff HAMMER TYPE/EFF. Automatic E	PRO.	JECT N	UMBER	20001480	LOGGED BY	(Jia	alin Li		COORDINATES	E	633	906.6	63	
FINISH DATE 04/12/2022 DRILL CONTRACTOR Parratt Wolff HAMMER TYPE/EFF. Automatic 0 <		STAR		04/11/2022	DRILLER/RIG	Core	y Brov	wn / C	ME 550	GROUND ELEV. 88.			5.3 ft		
E O		FINISI	H DATE	04/12/2022	DRILL CONTRACTO	DR	Parı	ratt W	olff	HAMMER TYPE/	EFF.	Αι	utoma	atic	
97.8 •• Asphalt Clayey SAND (SC), grayish brown, loose, dry Clayey SAND (SM), reddish brown to brown, loose to dense, dry Sity SAND (SM), reddish brown to brown, loose to dense, dry Soft 18, SAND (SM), reddish brown to brown, Soft 18, SAND (SM), reddish brown to brown,	Depth (ft)	Elevation (ft)	Graphic Log	Material I	Description	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		Le SPT I MC (° - PL & Fines	s Conter	nt (%)	
86.3 Silly SAND (SM), raddish brown to brown, loose, dry 50% 3-3-4 (r) With 3.5 rD risk P 5 5 Silly SAND (SM), raddish brown to brown, loose to dense, dry 50% 18-8-9-0 (r) pH = 6.9 10 50% 8-14-8-0 (r) 50% 8-14-8-0 (r) 4 4 10 50% 8-14-8-0 (r) 50% 8-14-8-0 (r) 4 4 15 50% 8-14-8-0 (r) 50% 8-14-8-0 (r) 4 4 15 50% 19-25-35-33 50% 19-25-35-33 3-inch ring sampler 4 4 25 50% 19-25-35-33 75% 25-25-26-46 4 4 4 10 75% 8-11-11-13 25 19-25-35-33 3-inch ring sampler 4 4 10 75% 8-11-11-13 2-5-25-26-46 4 4 4 4	-	87.8	7. 7. 7. 7. 7.	6" Asphalt						Boring advanced		40			
86.3 Billy SAND (SM), reddish brown to brown. 50% 16-8-4-6 PH = 6.9 5 5 50% 18-23-25-22 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 18-23-25-22 4 4 10 50% 19-25-35-33 5 4 4 10 50% 19-25-35-33 3-inch ring sampler 4 4 10 50% 19-25-35-33 3-inch ring sampler 4 4 10 75% 25-25-26-46 4 4 4 10 75% 25-25-26-46 4 4 4 10 75% 25-25-26-46 4 4 <		-		Clayey SAND (SC), gra	ayish brown, loose, dry	X	50%		3-3-4	with 3.5" ID HSA		3			
5 33% 3-3-5-5 (8) 10 50% 18-23-25-22 (48) 60% 5-11-26-502* (48) 10 60% 5-11-26-502* 15 50% 8-14-8-6 15 50% 3-3-8-10 16 50% 19-25-36-33 175% 8-11-11-13 20 75% 8-11-11-13 20 75% 8-11-11-13 20 75% 8-11-11-13		86.3		Silty SAND (SM), redd loose to dense, dry	ish brown to brown,		50%		(7) 16-8-9-6 (17)	2H - 6 0					
5 -		-				\square	0.000/			рп – 0.9					
10 50% 18-23-25-22 60% 5-11-26-50/2* 60% 5-11-26-50/2* 15 60% 15 50% 15 50% 16 50% 17 50% 18-23-25-22 18-23-25-22 18-23-25-22 18-23-25-22 18-25-35-33 18-25-35-33 19-25-35-33 19-25-35-33 19-25-35-33 19-25-35-33 19-25-35-33 19-25-35-33 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 19-25-35-34 10-30 10-30	- 5 -					М	33%		(8)						
10- Same with weathered sandstone fragments, medium dense 25% 8-14-8-6 98 25 50% 3-38-10 98 98 25 50% 19-25-35-33 3-inch ring sampler 30 75% 8-11-11-13 25-25-26-46		-				M	50%		18-23-25-22						
10 60% 8-11-26-50/2 15 Same with weathered sandstone fragments. 25% 8-14-8-6 15 50% 3-3-8-10 10 50% 3-3-8-10 11 50% 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 11 19-25-35-33 12 19-25-35-33 13 10 14 10 14 10 15 10 16 10 17 10 10 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>Д</td> <td>0070</td> <td></td> <td>(48)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-				Д	0070		(48)						
10 Image: Same with weathered sandstone fragments, medium dense 20		-				M	60%		6-11-26-50/2"						
15 Same with weathered sandstone fragments, medium dense 25% 8-14-8-6 •B 15 50% 3-3-8-10 • • 20 50% 3-3-8-10 • • 20 50% 19-25-35-33 - • 21 50% 19-25-36-33 - • 20 75% 25-25-26-46 • • 20 75% 8-11-11-13 • • 20 75% 8-11-11-13 • •	- 10 -	-							(37)						
15 Same with weathered sandstone fragments, medium dense 25% 8-14-8-6 (22) •8 • 15 50% 3-3-8-10 (11) •8 • •8 • 20 50% 19-25-35-33 3-inch ring sampler •8 • 25 75% 25-25-26-46 •8 • •8 • 30 Dense 14 ° Dense 14 ° Dense 14 °		-													
15 Same with weathered sandstone fragments, medium dense 25% 8-14-8-6 (2) 20 50% 3-3.8-10 (11) 20 50% 19-25-35-33 3-inch ring sampler 25 50% 19-25-35-33 3-inch ring sampler 30 75% 8-11-11-13 (2)		-										<u> </u>			
15 Same with weathered sandstone fragments, medium dense 25% 8-14-8-6 (2) 20 50% 3-3-8-10 (1) 4 4 20 50% 19-25-35-33 3-inch ring sampler 4 4 25 75% 25-25-28-46 8-11-11-13 4 4 30 75% 8-11-11-13 4 4 4		-										<u> </u>			
15 (22) 20 50% 3-3-8-10 50% 3-3-8-10 10 50% 3-3-8-10 11 12 12 13 14 14		-		medium dense	sandstone tragments,	M	25%		8-14-8-6		• •				
20 20 25 25 30 50% 3-3-8-10 (11) 3-inch ring sampler 50% 19-25-35-33 75% 25-25-26-46 75% 8-11-11-13 (2) 50% 19-11-13	- 15 -	-				\square			(22)						
20 20 20 25 25 3-3-8-10 10 50% 19-25-35-33 3-inch ring sampler 50% 19-25-35-33 75% 25-25-26-46 75% 8-11-11-13 (2) Dece 1 of 2 Dece 1 of 2		-													
20 20 25 25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		-													
20 50% 3-3-8-10 (11) 25 50% 19-25-35-33 75% 3-inch ring sampler 75% 25-25-26-46 8-11-11-13 • 30 - •		-													
20 - (11) 3-inch ring sampler 25 - 50% 19-25-35-33 75% 25-25-26-46 75% 8-11-11-13 (2) Dece 1 of 2		-				X	50%		3-3-8-10						
25 50% 19-25-35-33 3-inch ring sampler 75% 25-25-26-46 • • 30 75% 8-11-11-13 •	- 20 -	-				\square			(11)						
25 - 50% 19-25-35-33 75% 25-25-26-46 75% 8-11-11-13 (22) 30		-													
25- 50% 19-25-35-33 3-inch ring sampler 75% 25-25-26-46 • • 30 75% 8-11-11-13 •		-													
25 50% 19-25-35-33 75% 25-25-26-46 75% 8-11-11-13 30 8-11-11-13		-								3-inch ring sampler					
25- 75% 25-25-26-46 30 75% 8-11-11-13		_				N	50%		19-25-35-33			+			
30 75% 25-25-26-46	- 25 -	_				H					\vdash	+			
		_				N	75%		25-25-26-46		• •	+			
		-				U						+			
- 30		-										+	_		
		-				$\ \mathbf{X}\ $	75%		8-11-11-13			+			
	- 30 -	1				\mathbb{N}			(22)						of 2

BORING NO: K-294.9-2.1

PRO	JECT N	UMBER	20001480	LOGGE	D BY		Jia	alin Li		COORDINATES	N E	N 87 E 63	7083 390	35.4)6.6	5 3	
	STAR	T DATE	04/11/2022	DRILLER	R/RIG Cor	ey	Bro	wn / C	ME 550	GROUND ELEV.		8	8.3	ft		
	FINISI	H DATE	04/12/2022	DRILL CONTRA	CTOR		Parr	ratt W	olff	HAMMER TYPE/EFF	•	A	Auto	mat	lic	
Depth (ft)	Elevation (ft)	Braphic Log	Material D	escription	sample Type	OLE KUN NO.	Recovery % RQD	Pocket Pen. (tsf)	slow Counts (N Value)	Notes		L SP MC PL Find	. ege T N V (%) & LL es Co	end alue (%) ontent	: (%)	
	53.3		Boring Terminated at 35	ft			75%		8-7-8-10 (15)							

22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

Report Date:	6/20/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-2.0. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
SS-3 (13'- 15')	9.9%
SS-9 (33'- 35')	2.5%

Respectfully Submitted, Fairway Testing

Hopel & O'lounell

Gabriel J. O'Connell, P.E.

Report Date:	6/20/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-2.1. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content	рН
S-6 (4'- 6')	11.6%	6.9

Respectfully Submitted, Fairway Testing

Hopil J O'loundl

MEMORANDUM

DATE:	July 14, 2022
TO:	Zachary Bauer; Tetra Tech Rooney
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 12 - Package 7B - HDD Crossing 127/128 Champlain Hudson Power Express Project West Haverstraw, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located in West Haverstraw, New York. The approximate station for the start of HDD crossing number 127/128 is STA 72611+00 (41.21322° N, 73.98586° W).

The geotechnical data at this HDD crossing is attached. The available data is taken from the data from a recent investigation by Kiewit, referenced below.

• Kiewit Engineering (NY) Corp., Segment 12 Package 7B HDD Borings - Rockland, Champlain-Hudson Power Express, dated July 5, 2022.

Contact us if you have questions or require additional information.

HDD 127/128 Borings K-294.9-2.8, K-294.9-2.9A, K-294.9-2.9B, K-294.9-3.0 Segment 12 - Design Package 7B

PROJECT NUMBER

Legend Key

- Kiewit Borings (2022)
- O Borings by Others

Segment 12 Package 7B HDD Borings - Rockland Champlain Hudson Power Express

BORING NO: K-294.9-2.8

PRO	JECT N	NUMBER 20001480 LOGGED BY Rafael Salas			as	COORDINATES		N 860 E 633	5893. 3611.	46 44				
	STAR	T DATE	04/21/2022	DRILLER/RIG	Co	orey B	. / CM	E 550	GROUND ELEV.		98	3.1 ft		
	FINIS	H DATE	04/27/2022	DRILL CONTRACTO	R	Pari	ratt W	olff	HAMMER TYPE/	EFF.	A	utoma	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material D	escription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		La ▲ SPT ● MC (— PL & ■ Fine 10 4(€gend N Value (%) ≩ LL (%) s Conte	nt (%)	
- 5	91.1		Silty SAND, with gravel of excavated materials) 0 - 7 ft was excavated b truck Sandy SILT (ML), with fi coarse sand, dark brown	(based on observation y air knife and vacuum ne gravel, fine to n, soft, moist		25%		6-2-2-5 (4)	Boring advanced with 3.25" ID HSA					
	85.1		✓ Clayey and Silty SAND fine, subrounded, brown dense, moist	(SC-SM), with gravel, , medium dense to		66%		6-8-11-11 (19)						
						75%		17-16-21-21 (37) 13-16-26-38 (42) 22-45-48-50/ 3"	3-inch ring sampler					
	70.1		Sandy SILT (ML), with fi subangular to subround brown, hard, moist	ne to coarse gravel, ed, coarse sand,	X	90%		9-60/5"		•		Pa	ge 1	of 2

BORING NO: K-294.9-2.8

Champlain Hudson Power Express

PROJECT NUMBER			20001480	LOGGED BY		Rafa	el Sal	as	COORDINATES	N 86 E 63	56893. 33611.	.46 .44	
	STAR	T DATE	04/21/2022	DRILLER/RIG	C	orey B	. / CM	IE 550	GROUND ELEV.	ç	98.1 ft		
	FINIS	H DATE	04/27/2022	DRILL CONTRACTO	R	Par	ratt W	olff	HAMMER TYPE/EFF		Autom	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material D	escription	Sample Type	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	A SP MC − PL Fir	Legen(T N Value C (%) & LL (% nes Conte	1 e) ≥nt (%))
			Sandy SILT (ML), with fi subangular to subround brown, hard, moist Encountered large bould boring location approxin continued drilling and sa	ne to coarse gravel, ed, coarse sand, der at 31 ft, moved hately 3 ft south and ampling from this depth		100%		50/2"					
	60.1		Silty SAND (SM), with g to coarse sand, fine to c subrounded, brown, ver	ravel, medium coarse coarse gravel, y dense, moist		75% 100%		23-49-35-45 (84) 40-46-50/4"					
			Cobble at 43.8 ft		\boxtimes	100% 68%		40-50/2" 33-46-50/6"					
 - 50 - 	48.9		Auger Refusal at 49.2 ft for 2 runs (49.2 ft-54 ft, recovery, possible glacia	, switched to rock core 54 ft-59 ft) with no al till	X	85% 0% 0	-	4-10-50/2"				L	
	43.1		Boring Terminated at 59	ft		0%	-						
			bonny reminated at 59	i i i i i i i i i i i i i i i i i i i							+		++-

BORING NO: K-294.9-2.9A

PROJECT NUMBER 20001480		LOGGED BY		Rafa	el Sal	as	COORDINATES		N 866 E 633	562. 609.	06 17			
	STAR	T DATE	04/18/2022	DRILLER/RIG	Сс	orey B	. / CM	E 550	GROUND ELEV.		97	.9 ft		
	FINISH	H DATE	04/18/2022	DRILL CONTRACTO	R	Par	ratt W	olff	HAMMER TYPE/	EFF.	Au	Itoma	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material Do	escription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	20	Le SPT N MC (% PL & Fines	gend Value (%) LL (%) Conte	I ; nt (%)) T BO
	97.3		7" Asphalt Sandy SILT (ML) (basec excavated materials) 0 - 7 ft was excavated b truck	l on observations of by air knife and vacuum					Boring advanced with 3.5" ID HSA					
- 10 -	90.9		SAND with SILT (SP-SM coarse grained, fine, bro dense, moist	/), with gravel, fine to own, medium dense to	\mathbb{N}	42%		5-10-8-9 (18)						
- 15 -					\square	75%		10-17-16-35 (33)						
- 20 -					\mathbb{X}	75%		29-27-20-16 (47)		•				
- 25 -	74.9		Clayey and Silty SAND fine to coarse, gray to b	(SC-SM), with gravel, rown, dry	X	75% 79% 92% 100%		14-21-27-37 (48) 30-43-50/3" 29-36-50/1" 50/2"	3-inch ring sampler	•				
- 30 -	-											Pa		of 2

BORING NO: K-294.9-2.9A

Champlain Hudson Power Express

PRO	JECT N	UMBER	20001480	LOGGED BY	(Rafa	el Sal	as	COORDINATES	1	N 86 E 63	656 360	52.00)9.1	6 7	
	STAR	T DATE	04/18/2022	DRILLER/RIC	Co	orey B	. / CM	E 550	GROUND ELEV.		9	7.9	ft		
	FINISI	H DATE	04/18/2022	DRILL CONTRACTO	DR	Par	ratt W	olff	HAMMER TYPE/EF	F	A	Auto	mat	ic	
Depth (ft)	Elevation (ft)	Graphic Log	Material D	escription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	20	L SPT MC PL Find	.ege F N V (%) & LL es Co I	alue (%) ontent	(%))
	u 64.9 62.9		Clayey and Silty SAND fine to coarse, gray to b Silty GRAVEL (GM), co- very dense, moist Boring Terminated at 35	(SC-SM), with gravel, rown, dry	Sa	2 2 2 2 2 2 2 2 2 2	PC	50/5"							
- 60													Page	e 2 c	of 2

BORING NO: K-294.9-2.9B

PROJ	JECT N	UMBER	20001480	LOGGED BY Rafael Salas			as	COORDINATES		N 866 E 633	286.6 616.0	0 1		
	STAR	T DATE	04/21/2022	DRILLER/RIG	С	orey B	. / CM	E 550	GROUND ELEV.		100).6 ft		
	FINIS	H DATE	04/22/2022	DRILL CONTRACTO	R	Pari	ratt W	olff	HAMMER TYPE/	EFF.	Au	Itomat	ic	
Depth (ft)	Elevation (ft)	Graphic Log	Material De	escription	Sample Type	Recovery % RQD	Pocket Pen. (tsf)	3low Counts (N Value)	Notes		Le SPT N MC (% PL & Fines	gend Value 6) LL (%) Content	(%)	
	100.0		7" Asphalt						Boring advanced	20	40	60	80	
	93.0		Silty SAND (SM), with co observation of excavated 0 - 7.58 ft was excavated vacuum truck	obbles (based on d materials) d by air knife and		54% 66% 100% 100%		6-5-4-9 (9) 20-33-33-35 (66) 41-50/5" 25-58-57-48 48-80-73-50/ 2"	with 3.25" ID HSA 3-inch ring sampler					
	72.6		Silty SAND (SM), with fir dark gray to gray, moist	ne gravel, very dense, to dry		100%		50/4"		•		Page		

BORING NO: K-294.9-2.9B

Champlain Hudson Power Express

PRO	IECT NUMBER 20001480 LOGGED BY Rafael Salas			as	COORDINATES		N 86 E 63	3628 336 ⁻	86.0 16.0	60 01					
	STAR		04/21/2022	DRILLER/RIC	Co	orev B	. / CM	E 550	GROUND ELEV.		1	00.6	3 ft		
	FINISH		04/22/2022	DRILL CONTRACTO	DR	Par	ratt Wo	olff	HAMMER TYPE/	EFF.		Auto	oma	atic	
th (ft)	tion (ft)	nic Log	Material D	escription	le Type	very %	et Pen.	Counts alue)	Notes		L ▲ SP ● MC	_ege TN\ 2(%)	and ∕alue	 ;	
Dept	levat	iraph			ampl ore F	Reco	ocke (t	N V			Fin	es Co	onter	nt (%)
	Ξ	9	Silty SAND (SM), with fi	ne gravel, verv dense	ů ŭ		<u>а</u>	B		2	20 4	10	60	_	80
	-		dark gray to gray, moist	to dry								-	4		
	-											-	_		
	-					00/		50/4"							
	-					0%		50/4							
05	66.1		SILT (ML), with gravel, fi	ne to coarse.									_	_	
- 35 -	-		subrounded to subangul	ar, with cobbles, gray,									_		
	-		moist			===0/							+		
	-					0	-						+		
	-												+		
	-								Grab samples taken			-	+		
- 40 -	-								with rock cores				4		+
	-												\downarrow		
	-					53%									
-	-					0						-	_	-	
	-												_		
	56.1		Poring Terminated at 44	E #								Ħ	+		+
- 45 -	-		Boning Terminated at 44	.5 IL									+		
	-												+		
	-											\vdash	+	+	+
	-											-	—	_	
	-											-	_		+
- 50 -	-														
	-														
-	-												_		
	-												_		
	-														
	-												-		
- 55 -	-											-	+	+	
													_		
	-									_		\downarrow	+		+
													\perp		
60												$\left \right $	+	+	++
- 00 -		I											Paç	ge 2	of 2

BORING NO: K-294.9-3.0

N 865778.49

Champlain Hudson Power Express

PRO	JECT N	UMBER	20001480	LOGGED BY			Jia	alin Li		COORDINATES	j.	E 63	337	05.	72	
	STAR	T DATE	04/19/2022	DRILLER/RIG	;	Ric	k / Di	edrich	D-90	GROUND ELEV.		1	10.2	2 ft		
	FINIS	H DATE	04/19/2022	DRILL CONTRACTO	R		Parr	att Wo	olff	HAMMER TYPE/	EFF.		Auto	Sma	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material D	escription	Sample Type	Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		A SF ● MC ─ Pl ■ Fir	Leg T N V C (%) A Ll 1es C	end √alue _ (%) conte	J ∍) •nt (%)
	-		18" Asphalt			-				Boring advanced			+0			
	108.7		SILT (SM), with sand (ba of excavated materials) 0 - 6.83 ft was excavate vacuum truck	ased on observations d by air knife and						with 3.5" ID HSA						
	103.4		Silty SAND (SM) with fi	ne to medium gravel	_										_	
	-		and trace of clay, brown	to gray, very loose to												
	-		very dense, dry to moist		M		12%		24-17-18-8							
- 10 -					\square				(35)							
	_															
-	-															
	-															
	-				\boxtimes		0%		100/4"			\square			_	
	-														_	
- 15 -	-											<u> </u>				
	-															
	-															
	-				\square										_	
					X		2%		10-1-1-1 (2)							
- 20 -									(-)						_	
]												-	_	_	
			~									+	-	_		
	-		<u>×</u>										-	+	_	
	-				IX		50%		6-12-9-13		•	-	-	_		
- 25 -	-				\square				(21)				_		_	+
												+				
	-						4004		400/5"	3-inch ring sampler					_	
							10%		100/5"							
Ł	-														_	
	-						0%		170/3"			\square			+	
- 30 -	1													Pa	ge 1	of 3

BORING NO: K-294.9-3.0

N 865778.49

Champlain Hudson Power Express

PROJ	JECT NU	JMBER	20001480	LOGGED BY	,	Jia	alin Li		COORDINATES		E 63	3370	05.	72	
	STAR		04/19/2022	DRILLER/RIG	Rie	ck / Di	edrich	n D-90	GROUND ELEV.		1	10.2	2 ft		
	FINISH	I DATE	04/19/2022	DRILL CONTRACTO	R	Parr	att W	olff	HAMMER TYPE/	EFF.	A	Auto	oma	atic	
Depth (ft)	Elevation (ft)	Graphic Log	Material C	Description	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	2	L ● MC ● PL ■ Fin	- eg T N \ (%) & LL es C	end /alue . (%) onter	nt (%))
	80.2		Refusal at 30 ft on bou	lder at depth of 30 ft.											
			Sample recovered from of: Silty CLAY (CL-ML), medium gravel and cor gray, moist	n coring was composed , sandy with fine to nglomerate fragments,		47%				•					
- 35 -	75.2		Silty SAND (SM), with t dense to very dense, m	trace of clay, gray, noist		100%		45-70-100/3"	3-inch ring sampler						
					\square	66%		20-11-27-24 (38)							
 					[]	70%		17-24-27-30 (51)							
	62.2		SILT (ML), with sand, g moist	rayish tan, hard, slightly		88%		30-30-50/4"							
						75%		18-27-30-37 (57) 30-51/5"	3-inch ring sample						
	- - - -					100%		150/4"							
- 60 -					X	100%		33-100/3"					Pac	je 2	of 3

BORING NO: K-294.9-3.0

PRO.	JECT NI	UMBER	20001480	20001480 LOGGED BY Jialin Li				COORDINATES	1	N 86 E 63	5778 3705	3.49 5.72	1			
	STAR	T DATE	04/19/2022	DRILLER/RIG	R	ick	/ Die	edrich	D-90	GROUND ELEV.		1'	10.2	ft		
	FINISH		04/19/2022	DRILL CONTRACTOR	R		Parr	att Wo	olff	HAMMER TYPE/EF	F.	A	Autor	natio	с	
Depth (ft)	Elevation (ft)	Graphic Log	Material Do	escription	Sample Type		Kecovery % RQD	Pocket Pen. (tsf)	3low Counts (N Value)	Notes		SP MC PL Fin	Leger T N Val (%) & LL (° es Con	ue %) tent ('	%)	
			SILT (ML), with sand, gr	ayish tan, hard, slightly		/	_	_			20	4	0	30	80	
	49.2		Boring Terminated at 61	ft												
											+			+	+	+
ļ _											4			$\downarrow \downarrow$	4	_
-											+			\vdash	+	_
- 90 -								I					P	ade	30	of 3

22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

Report Date:	6/24/2022
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-2.8. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
SS-5 (18'- 20')	14.9%

Respectfully Submitted, Fairway Testing

Hopil J O'loundl

22 North Liberty Drive P.O. Box 578 Stony Point, NY 10980 Telephone 845.942.2088 Fax 845.942.0995

Report Date:	6/20/22
Project:	Champlain Hudson Power Express
Client:	Kiewit Engineering (NY) Corp.
REPORT:	Soil Analysis

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-2.9A. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
SS-5 (18'- 20')	17.4%

Respectfully Submitted, Fairway Testing

Hopil J D'Connell

Gabriel J. O'Connell, P.E.

Report Date: Project:	6/24/2022 Champlain Hudson Power Express	
Client: REPORT:	Kiewit Engineering (NY) Corp. Soil Analysis	ч.

See attached reports for testing requested by the client as per attached submittals for locations K.294.9-2.9B. Moisture content test results are listed below.

Sample ID (sample depth, ft.)	Moisture Content
MC-7 (23'-25')	15.0%

Respectfully Submitted, Fairway Testing

Hopil J O'lonnell