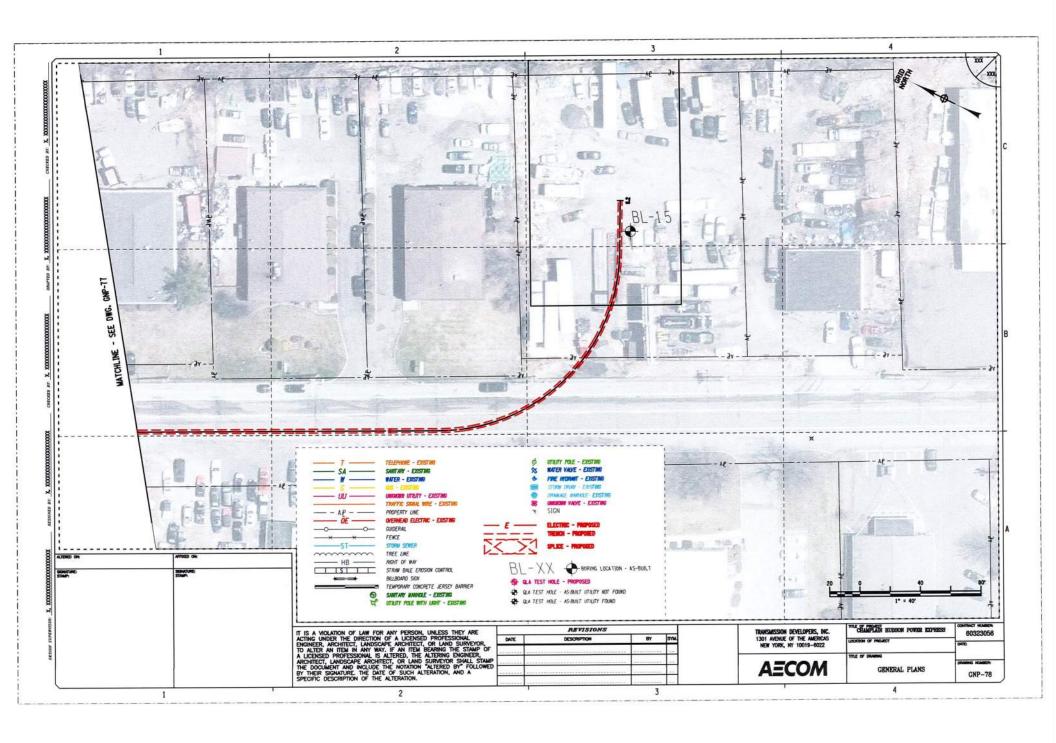

Appendix U – Previous Geotechnical Borings


CHPE - HUDSON RIVER CABLE ROUTE ADJUSTMENT

CHPE - HUDSON RIVER CABLE ROUTE ADJUSTMENT

Aquifer / AECOM #60323056 CHPE - Rockland County Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH	IDENTIFICATION TESTS									
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDRO.	SPECIFIC		
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	GRAVITY		
							(1)	NO. 200	2 μm			
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(-)		
BL-2	S-1b	7.2-8.0	22.1	28	19	9	CL	86	17			
BL-2	S-2	8-10	18.6	27	19	8	C	75	13			
BL-3	S-1	6-8	12.5				ML	96.1	20			
BL-3	S-2	8-10	16.3				ML	93	14			
BL-3	S-3	10-10.7	12.4				ML	66	14			
BL-5	S-1	5-7	10.6				SM	40	8			
BL-5	S-3	9-11	7.0				SM	23	4	2.728		
BL-5	S-4	11-13	8.6				SM	24	4		L	
BL-5	S-6	15-17	8.2	ľ			SM	22	3			
BL-6	S-1	4-6	4.1				GW-GM	7	2			
BL-7	S-1	5-7	5.1				SP-SM	8	2			
BL-7	S-3	9-11	5.3				GW-GM	10	2			
BL-7	S-4	11-13	7.5	1			SM	25	4			
BL-7	S-6	15-17	6.0				SM	14	2			
BL-8	S-1	6-8	17.9	35	20	15	CL	51	11			
BL-8	S-3	10-12	10.2				SM	32	6			
BL-9	S-1	6-8	10.0				SP-SM	9	2			
BL-9	S-3	10-12	7.0				SM	14	3			
BL-9	S-5	14-16	4.9				SW-SM	11	3			
BL-11	S-4	11-13	10.1				SM	24	5		[
BL-12	S-1	6-8	8.9				SM	24	6			
BL-13	S-1	4.5-6.5	9.3				SM	15	4	2.722		
BL-13	S-3	8.5-10.5	6.6				SM	13	3			
BL-13	S-4	10.5-12.5	9.9	T			SM	19	5			
BL-14	S-1	6-8	10.0				SM	27	6			
BL-14	S-2	8-10	8.1				SM	24	5			
BL-15	S-3	9-11	9.5				SM	32	8			
BL-15	S-9	21-23	7.9	1			SM	26	4			
BL-15	S-14	31-33	6.1	1			SM	33	4			
BL-15	S-17	45-47	11.9				SM	20	3			
BL-15	S-21	65-67	8.2		1		SP-SM	10	1			

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: GT Date: 8/20/2020 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-20003 File: Indx3.xlsx Page 1 of 1

- proposed procedure does not necessarily produce laboratory samples that match field densities, GeothermUSA believes it will provide reasonable results.
- 3. Because GeothermUSA personnel were not in the field to select representative samples for laboratory testing, AECOM collected and shipped extra samples for potential laboratory TR testing and provided GeothermUSA field test boring logs with geologic sample descriptions. In this way, GeothermUSA was able to review the samples and select ones most appropriate for TR testing, discarding the excess.
- 4. Because field TR testing was not performed, no information is available regarding the ambient temperature in the ground at sample locations. Nevertheless, GeothermUSA indicated that the TR values obtained from the enhanced field sampling and laboratory TR testing program would provide reasonable and useful results, suitable for determining recommended TR design values for use by NKT to evaluate heat dissipation in cable system design.

An overview of the TR lab testing performed by GeothermUSA is presented in Table 2. Detailed results of laboratory TR testing are summarized on Table 5, including GeothermUSA's suggested design TR values for each sample tested.

GeothermUSA's summary report is attached as Appendix E. The GeothermUSA report includes suggested design TR values for each boring location, corresponding to the anticipated cable depth. These are reproduced below:

Boring ID	Milepost	Boring Depth (ft)	Cable Depth (ft)	Suggested TR (°C-cm/W)
BL-1	N/A	60.0	3.5	45
BL-2	1.08	12.0	9.80	90
BL-3	1.67	10.7	8.95	110
BL-4	1.81	16.0	9.74	45
BL-5	2.58	17.0	9.41	90
BL-6	3.18	11.0	8.66	90
BL-7	3.51	17.0	9.29	90
BL-8	4.38	12.0	7.92	90
BL-9	4.77	16.0	7.89	110
BL-10 & BL-10A	5.69	4.0	8.04	45
BL-11	6.02	13.0	6.36	90
BL-12	6.63	12.0	6.15	90
BL-13	7.24	12.5	6.57	90
BL-14	7.96	12.0	5.88	90
BL-15 & BL-15A	N/A	87.6	varies	100 or 45 depending if its in silty sand or rock

2.6 Geotechnical Laboratory Testing

Geotechnical laboratory testing was performed by TerraSense LLC. This included index testing to characterize soil, and strength and hardness tests to characterize rock. A summary of the testing is presented in Table 3.

Table 1. Summary of Test Borings

Boring ID	Completion Date	Total Depth of Boring (ft)	Depth to Top of Bedrock (ft)	Northing (1)	Easting (1)	Top of Boring Elevation (2)
BL-1	7/6/2020	60	3.3	877579.553	634487.801	16.537
BL-2	7/7/2020	12	>12	875415.701	633752.651	88.970
BL-3	7/7/2020	10.7	10.7	872536.075	632999.287	113.426
BL-4	7/7/2020	16	4.8	871905.948	633323.295	108.145
BL-5	7/8/2020	17	>17	868175.528	633428.855	128.013
BL-6	7/8/2020	11	>11	865097.101	633816.627	102.228
BL-7	7/8/2020	17	>17	863383.514	634098.781	106.175
BL-8	7/9/2020	12	>12	861016.248	637485.511	113.886
BL-9	7/9/2020	16	>16	859720.742	639084.310	116.995
BL-10 & BL- 10A	7/13/2020	4	>4	855972.062	642193.725	173.236
BL-11	7/10/2020	13	>13	855114.602	643665.967	192.660
BL-12	7/13/2020	12	>12	852960.555	644583.631	233.585
BL-13	7/10/2020	12.5	>12.5	851046.588	646695.547	264.744
BL-14	7/14/2020	12	>12	848431.817	649278.128	278.475
BL-15 & BL- 15A	7/23/2020	87.6	77.1	847189.449	649740.851	213.397

Notes:

⁽¹⁾ Coordinates in New York State Plane, NAD83

⁽²⁾ Elevations in NAVD88

Table 4. Summary of Rock Parameters from Field and Laboratory Testing

Rock Type	Age	RQD	Dry Unit Weight	Mohs Hardness	Compressive Strength		Resistivity n/W)
		(%)	(pcf)		(psi)	Wet	Dry
Limestone	Middle Ordovician	0 - 84	174 - 176	3 - 6	8050 - 15070	33	51
Quartzite	Middle Ordovician	84	176	4 - 5	6280	**	3**3
Sandstone/ Siltstone	Upper Triassic	0 - 66	155 - 162	2 - 4	2081 ⁽¹⁾ - 7940	37 - 44	56 - 64
Diabase	Upper Triassic	N/A	179 - 182	5 - 6	21640 - 25120	42	58

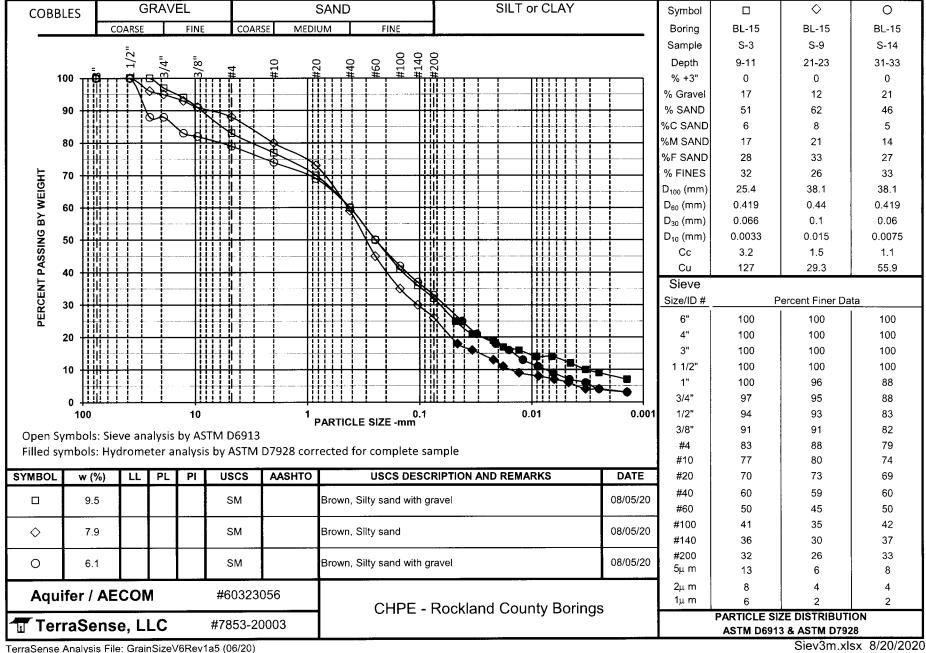
Notes:

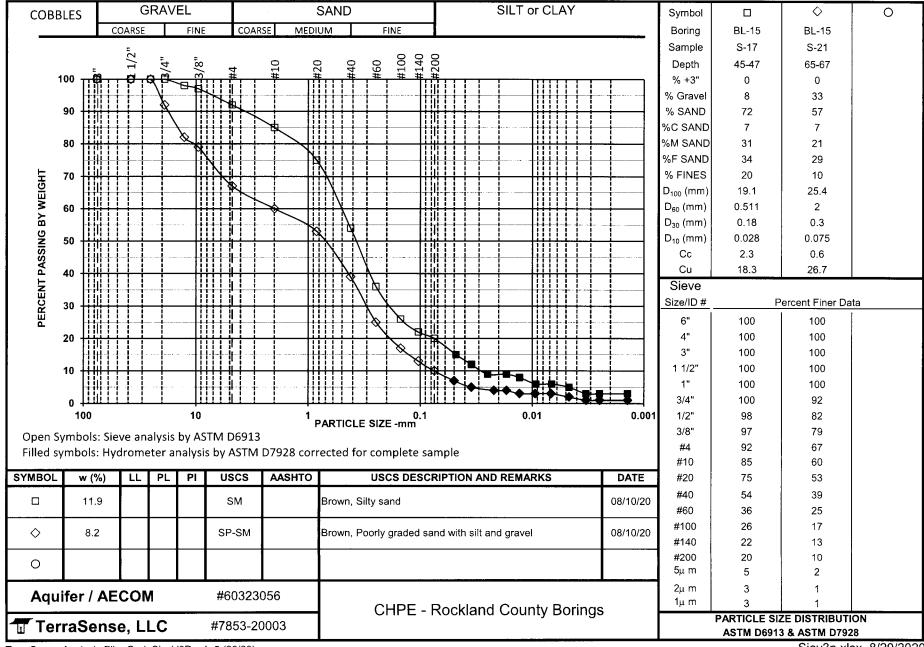
(1) Estimated value from point load test

Table 7. Summary of Geotechnical Laboratory Test Results of Rock Samples

		Denth		Water	Dry Unit		Unconfined C	ompress Test	ive Strength		Point Load To	est
Boring ID	Sample Type	Depth (ft)	Rock Type	Content (%)	Weight (pcf)	Mohs Hardness	Compressive Strength (psi)	Axial Strain (%)	Estimated Elastic Modulus (psi)	Sample Orientation	Strength Index (Is50) (psi)	Estimated Compressive Strength (psi)
	Core	19.2 – 20.2	Limestone	0.15	176	4-5	8760	0.20	4E+06	522	(lieuv	1227
DI 1	Core	31.0 - 31.7	Limestone	0.11	175	5-6	8050	0.16	5E+06	(41)		£23
BL-1	Core	48.2 – 48.9	Quartzite	0.08	176	4-5	6280	0.11	6E+06			***
	Core	54.0 – 55.0	Limestone	0.13	174	3-4	15070	0.19	9E+06	346	**	**
		11.3 -	Sandstone/	4.00		2.2				Diametral	190.0	4393
	Core	11.6	Siltstone	1.00	**	2-3		-	**	Axial	200	4405
BL-4		12.2 -		717178		2.2				Diametral	90	2081
	Core	12.5	Sandstone	1.18	55	2-3			773	Axial	170	3464
3-1	Core	Outcrop ⁽¹⁾	Diabase	1.08	179	5-6	23820	0.41	7E+06		85	2.5
BL-10	Core	Outcrop ⁽¹⁾	Diabase	0.67	179	5-6	21640	0.50	5E+06	188	22	**
	Core	Outcrop ⁽¹⁾	Diabase	0.71	182	5-6	25120	0.44	7E+06	155	770	
DI 15:	Core	80.4 – 80.7	Sandstone	1.09	156		6830	0.51	1E+06	**	**	**
BL-15A	Core	81.5 – 82.1	Sandstone		22	3-4						

	Sample Type	Depth (ft)		Water	Dry Unit		Unconfined C	ompress Test	ive Strength		Point Load Te	est
Boring ID			Rock Type	Content (%)	Weight (pcf)	Mohs Hardness	Compressive Strength (psi)	Axial Strain (%)	Estimated Elastic Modulus (psi)	Sample Orientation	Strength Index (Is50) (psi)	Estimated Compressive Strength (psi)
	Core	83.0 – 83.6	Sandstone	0.68	155	3-4	7940	0.45	2E+06		12	

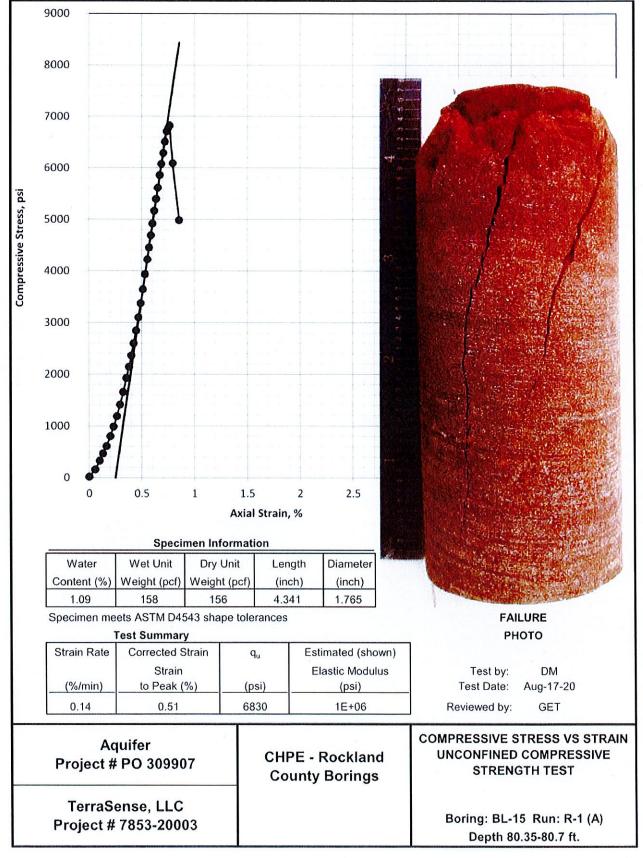

Notes:

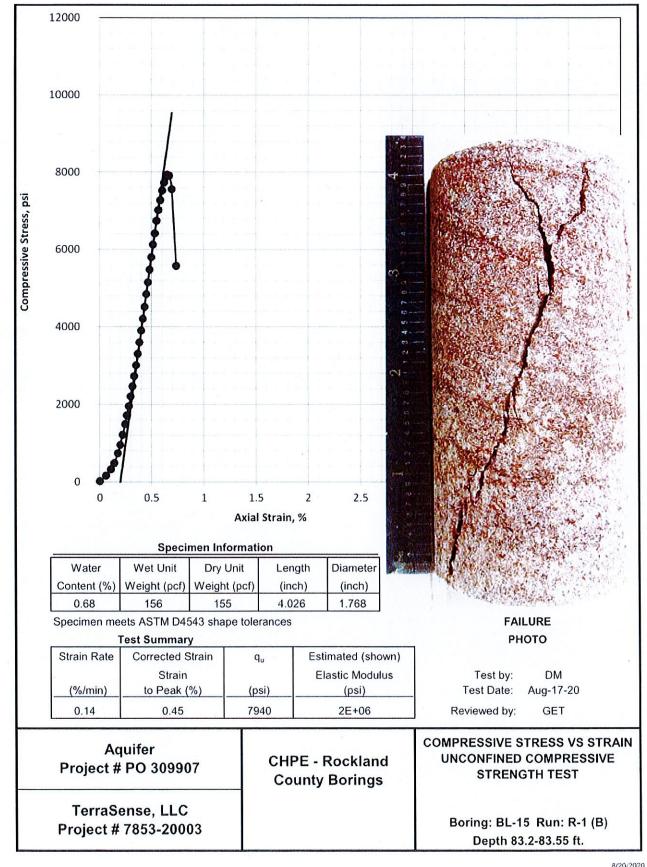

⁽¹⁾ Outcrop block samples cored by the geotechnical laboratory prior to testing

	BORING (CONTRACTOR:												SHEET 1 OF 3							
	DRILLER: AECOM													PROJECT NAME: CHPE - Rockland Co. Borings							
	DRILLER:						$\Delta =$			M				PROJECT NO.: 60323056							
	Tim Van N	less												HOLE NO.: BL-15							
	SOILS EN	IGINEER:	-	1										START DATE: 7/14/2020							
	Roberto L	ucidi						BORING	3 LOG		•			FINISH DATE: 7/17/2020							
		N: 152 Route 9W, 0	Congers,	NY		****								OFFSET: N/A							
		TER OBSERVATION			"	CAS	SING	SAMF	PLER	DRIL	L BIT	CORE E	ARREL	DRILL RIG: Geoprobe							
3.5' be	elow grade	on 7/14/20 at 2 pm		TYPE		Flush jo	int Steel	SPLIT S	POON ⁽¹⁾	3-7/8" T	RICONE			BORING TYPE: SPT							
Artesi	an water a	t approx. 45' below (grade	SIZE I.D		4.0"		2.4"			-			BORING O.D.: 4.5"							
(head	>13.0' abo	ove grade) on 7/16/2	2020	SIZE O.I	D .	4.5"		3.0"			-			SURFACE ELEV.: 213.397							
at 1:3				HAMME	R WT.	SPUN		140 lb			-			NORTHING 847189.449							
	CORING	SAMPLE		HAMMER FALL								I	EASTING 649740.851								
E	RATE MIN/FT	DEPTHS FROM - TO	TYPE AND	in	in	BLOW	S PER 6 i	n ON SAN	/PLER	Corr. (2)	CLASS.			FIELD IDENTIFICATION OF SOILS							
T		(FEET)	NO.		""	ĺ		DESIGN				DEPTH									
Н											-		0								
1.0													Grave	el pavement							
1.0		Hand Cleared									SM		Brow	n, f-m SAND, some f-m-c gravel, some							
2.0		0.0 - 5.0	.,										silt, w	ith cobbles and boulders, moist							
3.0												TR ⁽³⁾ -1 (3.0'-5.0')									
4.0				-									l	Water at 3.5'							
														Brown, f-m SAND, some f-m-c gravel, some							
5.0													silt, w	ith cobbles and boulders, wel							
6.0		5.0 - 7.0	S-1	24.0	8.0	15	16	12	11	18	SM	_	 S-1: E	Brown, f-m SAND, some silt, little f-m							
0.0		0.0 7.0	-	21.0	0.0	-10		:		, ,		y Fill		l, wet, medium dense							
7.0												Sandy									
		70.00	0.0	24.0	_		4	6	7	7	SM	"	S 2. E	i-2: Brown, f-m SAND, some silt, little f-m							
8.0		7.0 - 9.0	S-2	24.0	5	6	4	6	/	· /	SIVI			el, wet, loose							
9.0										İ			١~	g installed at 9.0'							
İ]											
10.0		9.0 - 11.0	S-3	24.0	12.0	43	17	12	14	19	SM		l	Same as above, wet, medium dense (10.5'-11.0')							
11.0													111-2	10.3-11.0)							
]											
12.0		11.0 - 13.0	S-4	24.0	16.0	15	23	24	27	31	SM		S-4: S	Same as above, wet, dense							
13.0																					
13.0													1								
14.0		13.0 - 15.0	S-5	15.0	8.0	20	40	65/3"	-] -	SM		1	Brown, f-m SAND, some silt, trace f-m							
										-			١-	el, moist, very dense er from 14.3' to 15.0'							
15.0	-			 			 		-	-			1	g advanced to 15.0'							
16.0		15.0 - 17.0	S-6	24.0	16.0	45	63	92	93	101	SM			Brown, f-m SAND, some silt, little f-m-c							
				ļ]		<u>ië</u>	1 -	el, moist, very dense							
17.0							-	<u> </u>		1		Glacial	TR-3	(16.0'-16.5')							
18.0		17.0 - 19.0	S-7	24.0	14.0	36	56	66	58	79	SM		S-7: I	Brown, f-m SAND, some silt, trace fine							
10.0		17.0 10.0	<u> </u>	21.0	11.0	- 00				1			1	el, moist, very dense							
19.0												1									
20.0	20.0 19.0 - 21.0 S-8 18.0 15.0 78 104 102 50/0" 134 SM S-8: Same as above, moist, very dense																				
20.0	NOTES: The information contained on this log is not warranted																				
	(1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. to show the actual subsurface condition. The contractor																				
	. ,	ion factor: Ncorr=N*(2.0			in. = N*0.6	5.							agrees that he will make no claims against AECOM								
1	(3) TR = sa	imple for thermal resisting	vity testing										1	nds that the actual conditions do not conform e indicated by this log.							
	Soil desc	ription represents a	field iden	tification a	fter D.M.	Burmister	unless of	therwise n	oted.					, ,							
SAM	PLE TYPE	:	S= SPLI	T SPOON		U=SHEL	BY TUBE		R=ROCI												
PRC	PORTION	S:	TRACE:	=1-10%		LITTLE=	10-20%		SOME=	20-35%		AND=3	5-50%								

	DODING	CONTRACTOR:											SHEET 2 OF 3
		CONTRACTOR.							_	_	_		PROJECT NAME: CHPE - Rockland Co. Borings
<u> </u>	ADT					1	4			A	4		PROJECT NO.: 60323056
	DRILLER						<u> </u>	-	J	// /			
<u> </u>	Tim Van N					_					_		HOLE NO.: BL-15
	SOILS EN	NGINEER:			_		-						START DATE: 7/14/2020
<u></u>	Roberto L							BORIN	G LOG				FINISH DATE: 7/17/2020
		N: 152 Route 9W,								NI.	uscs	STRAT.	OFFSET: N/A
D E P T H	CORING RATE MIN/FT	DEPTHS FROM - TO (FEET)	TYPE AND NO.	PEN. in	REC.		S PER 6 ii QUALITY			N Corr.	CLASS.	CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS
21.0						_						:	
21.0													
22.0		21.0 - 23.0	S-9	24.0	20.0	3	48	67	66	75	SM		S-9: Brown, f-m SAND, some silt, little fine gravel, moist, very dense
23.0													
24.0		23.0 - 25.0	S-10	24.0	20.0	30	81	73	104	100	SM		S-10: Same as above, moist, very dense
25.0							ļ						
26.0		25.0 - 27.0	S-11	10.0	10.0	56	100/4"	-	-	-	SM		S-11: Same as above, moist, very dense
27.0													
28.0		27.0 - 29.0	S-12	24.0	9.0	40	91	60	69	98	SM		S-12: Brown, f-m SAND, little f-m-c gravel, little silt, moist, very dense
29.0			-										TR-4 (28.5'-29.0') Casing advanced to 29.0'
30.0		29.0 - 31.0	S-13	24.0	12.0	90	71	60	104	85	SM		S-13: Same as above, moist, very dense
31.0												į	
32.0		31.0 - 33.0	S-14	21.0	12.0	67	91	108	100/3"	129	SM	Glacial .	S-14: Brown, f-m SAND, some silt, some f-m-c gravel, moist, very dense
33.0													
34.0													
35.0					-								
36.0		35.0 - 37.0	S-15	19.0	15.0	60	78	99	50/1"	115	SM		S-15: Brown, f-m SAND, some f-m-c gravel, some silt, moist, very dense
37.0													graver, some sitt, molet, very democ
38.0										1			
39.0							ļ		-	1			
40.0										1			
41.0		40.0 - 42.0	S-16	24.0	10.0	27	79	85	46	107	SM		S-16: Brown, f-m SAND, little f-m gravel, little silt, moist, very dense
42.0						<u> </u>				1			TR-5 (41.5'-42.0')
43.0							_			1			
44.0	-									1		ash	-
45.0	,—	ļ		 					 	1		Outwash	
10.0	NOTE	S:	field iden	tification	offer D.M.	Rusmisto	r unless o	thanvica	noted			h G	The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.
	APLE TYP	E:		IT SPOO		U=SHE	LBY TUBE =10-20%		R=ROC SOME=	AND=3			

	BORING (CONTRACTOR:											SHEET 3 OF 3			
	ADT A SEC												PROJECT NAME: CHPE - Rockland Co. Borings			
	DRILLER:						4 – 4			1//	1		PROJECT NO.: 60323056			
	Tim Van N	less _					7						HOLE NO.: BL-15			
	SOILS EN	IGINEER:											START DATE: 7/14/2020			
	Roberto L	ucidi						BORING	3 LOG			_	FINISH DATE: 7/17/2020			
		N: 152 Route 9W,									LICOS T	CTDAT	OFFSET: N/A			
D E P T	CORING RATE MIN/FT	DEPTHS FROM - TO (FEET)	TYPE AND NO.	PEN. in	REC. in		S PER 6 ir QUALITY			N Corr.	CLASS.	STRAT. CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS			
Н	iVIIIIV/F ((1 == 1)				,561										
46.0		45.0 - 47.0	S-17	24.0	18.0	19	43	54	48	63	SM		S-17: Brown, f-m SAND, some silt, trace fine gravel, wet, very dense			
47.0												ęs				
48.0				-								Outwash				
+0.0												0				
49.0				<u> </u>				-	<u> </u>							
50.0										1			Casing advanced to 50.0'			
51.0		50.0 - 52.0	S-18	9.0	5.0	49	80/3"	-	-	-	SM	ı -	Artesian water flowing out from top of casing S-18: Brown, f-m SAND, some silt, little f-m gravel, moist, very dense			
52.0										1			Casing advanced to 52.0'			
										1			Drilling mud used to advance borehole from 52.0'			
53.0			 						-	1		_	Hard drilling from 50.0' to 55.0'			
54.0				†						1		Glacial Till				
55.0				 					 	1		Jaci				
55.0										1		۳	S 40. Same as above and in the state of			
56.0		55.0 - 57.0	S-19	4.0	4.0	150/4"	-	-	-	-	SM		S-19: Same as above, moist, extremely dense			
57.0										1		ļ	uense			
58.0			 			-	 	ļ	 	1						
JO.U			<u> </u>							1			Hard drilling and rig chattering from 55.0' to			
59.0			-	-			-			1		ᄕ	60.0'			
60.0										1		Outwash	0 200 (60 0) 00 4N; Day on 5 : 04N;			
64.5		60.0 - 62.0	S-20	8.0	5.0	52	100/2"	-	<u> </u>	-	SP	Ő	S-20a (60.0'-60.4'): Brown, f-m SAND, trace fine gravel, trace silt, wet, v. dense			
61.0		00.0 - 02.0	J-20	3.0	5.0	J2	.0012			1		=	S-20b (60.4'-60.8'): Brown, f-m SAND,			
62.0					ļ		 	<u> </u>	<u> </u>	4		Glacial Till	some f-m-c gravel, some silt, moist, extremely dense			
63.0				-			<u> </u>		 	†		Glaci	Hard drilling from 60.0' to 65.0'			
64.0						<u> </u>				1			1			
65.0							<u> </u>			1						
66.0		65.0 - 67.0	S-21	24.0	16.0	41	79	88	110	109	SP-SM		S-21: Brown, f-m SAND, some fine gravel,			
67.0										_		Outwash	little silt, wet, very dense TR-6 (66.0'-66.5')			
68.0										-		ರ	TR-7 (Composite: 35.0'-37.0', 40.0'-42.0', 50.0'-52.0', 60.0'-62.0')			
					 	<u> </u>				4			Artesian water flowing out from interface between casing and borehole			
69.0				-			 		-	1			Boring abandoned at 70.0' below grade Borehole grouted			
70.0	NOTE				<u> </u>		<u> </u>			<u> — —</u>		<u></u>	The information contained on this log is not warranted			
					,	D		Ale a marida y					to show the actual subsurface condition. The contractor agrees that he will make no claims against DMJM Harris AECOM if he finds that the actual conditions do not conform to those indicated by this log.			
SAA	Soil des	cription represents a		ntification a			r unless of LBY TUBE			K CORE			pomonn to mose indicated by this log.			
	OPORTIO			=1-10%			=10-20%			20-35%		AND=3	35-50%			


Aquifer CHPE - Rockland County Borings SUMMARY OF ROCK TESTING


SAI	MPLE IDENTIFIC	CATION	S	TATE PROPER	TIES				ENGINEERING	PROPERTY TES	TS			REMARKS
Boring	Run/ Sample	Depth	WATER	TOTAL	DRY	TEST	ORIENTATION	HARDNESS TESTS		LOAD TEST			SSION TESTS	1
			CONTENT	UNIT	UNIT	TYPE		Mohs	(AST	M D5731)		ASTM D7012		
			(1)	WGT.	WGT.			HARDNESS		ESTIMATED (4)			ESTIMATED (5)	
						(2)			INDEX	COMPRESSIVE	STRENGTH	-	ELASTIC	
									Is(50)	STRENGTH		FAILURE	MODULUS	
		10.0.00.0	(%)	(pcf)	(pcf)	 	(3)	(-)	(psi)	(psi)	(psi)	(%)	(psi)	
BL-1	R-3	19.2-20.2	0.15	470	170	M		4-5			0700	0.00	45.00	
BL-1	R-3	19.3-19.7	0.15	176	176	UC					8760	0.20	4E+06	
BL-1	R-7	31.0-31.7	- 11	470		M		5-6			0050	0.40	55.00	
BL-1	R-7	31.1-31.5	0.11	176	175	UC					8050	0.16	5E+06	
BL-1	R-10	48.2-48.9				M		4-5			0000	0.44	05.00	
BL-1	R-10	48.3-48.7	0.08	177	176	UC					6280	0.11	6E+06	
BL-1	R-11	54-55				M		3-4			4-0-0	2.12		
BL-1	R-11	53.9-54.3	0.13	174	174	UC					15070	0.19	9E+06	
												ļ		
BL-4	R-1	11.3-11.6				M		2-3						
BL-4	R-1	11.3-11.6	1.00			PL	Diametral		190	4393				
BL-4	R-1	11.3-11.6				PL	Axial		200	4405		ļ	<u> </u>	
BL-4	R-2	12.2-12.5				M		2-3						
BL-4	R-2	12.2-12.5	1.18			PL	Diametral		90	2081				
BL-4	R-2	12.2-12.5				PL	Axial		170	3464				
												1		
BL-10	Outcrop (A)	-				M		5-6						
BL-10	Outcrop (A)	_	1.08	181	179	UC					23820	0.41	7E+06	
BL-10	Outcrop (B)	-				M		5-6				ļ		
BL-10	Outcrop (B)	_	0.67	180	179	UC					21640	0.50	5E+06	
BL-10	Outcrop (C)	-				M		5-6					. ,	
BL-10	Outcrop (C)	-	0.71	183	182	UC					25120	0.44	7E+06	
BL-15	R-1 (A)	80.35-80.7	1.09	158	156	UC					6830	0.51	1E+06	
BL-15	R-1 (B)	83.2-83.55	0.68	156	155	UC					7940	0.45	2E+06	
BL-15A	R-1(A)	81.5-82.1				М		3-4						
BL-15A	R-1(B)	83.0-83.6				М		3-4						

Notes: (1) Water contents determined after trimming and shearing.

- (2) Test Type Abbreviations: M: Mohs Hardness, PL: Point Load, UC: Unconfined Compression test with estimated elastic moduli determination
- (3) Diametral orientation across core along bedding/foliation plane, axial perpendicular to bedding/foliation plane, as applicable.
- (4) Compressive Strength determined using generalized "K" factor in ASTM D5731
- (5) Modulus estimated based on corrected gross deformations.

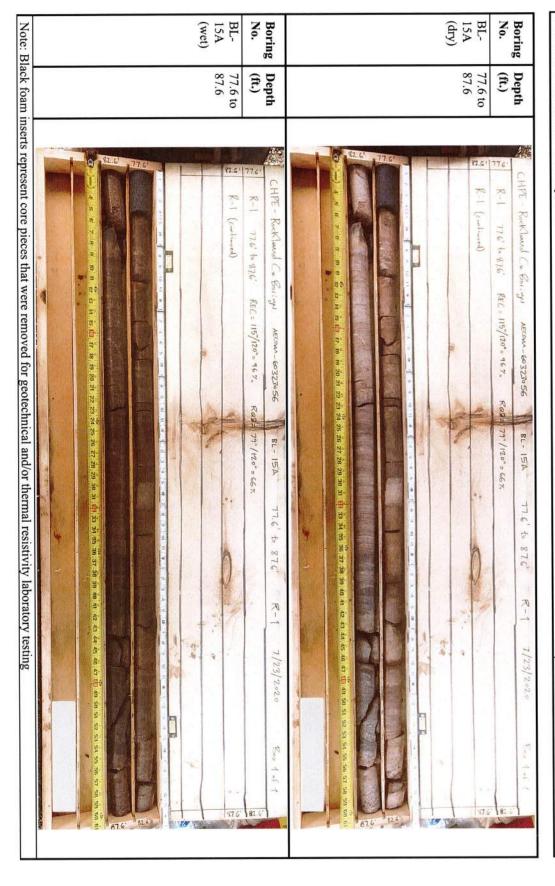
Prepared by: DM Reviewed by: GET Date: 8/20/2020 TerraSense, LLC 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-20003 File: RockSummary3.xlsx Page 1 of 1

BI -15A not shown on AECOM LOC MAPS. Coodinates shown on BL-15 A Match BL-1 Coordinates - Street address Snown on BL-15 A match BL-15 street address. It is unclear where BL-15A was performed.

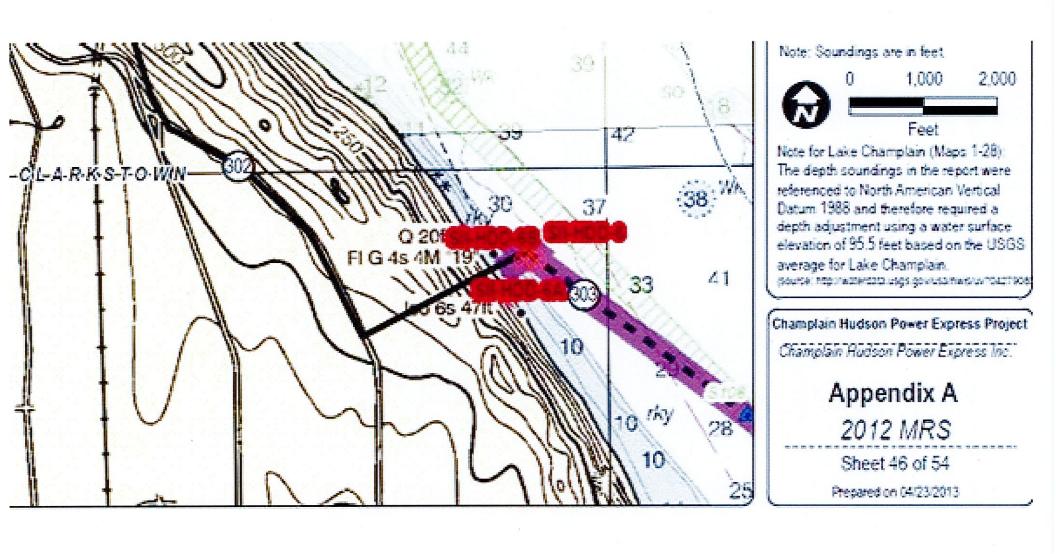
	BORING (CONTRACTOR:												SHEET 1 OF 4				
	ADT	_ 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				4								PROJECT NAME: CHPE - Rockland Co. Borings				
	ORILLER:						ĄΞ							PROJECT NO.: 60323056				
							7							HOLE NO.: BL-15A				
	Tim Van N													START DATE: 7/20/2020				
		IGINEER:						BODIN4	2100			-		FINISH DATE: 7/23/2020				
	Roberto L			<u> </u>				BORING	G LUG					OFFSET: N/A				
		N: 152 Route 9W, (NY 		C45	:INC	CALL	PLER	DRIL	I RIT	CORE	ARREI	DRILL RIG: Geoprobe				
		TER OBSERVATION		TYPE			SING oint Steel		PLER POON ⁽¹⁾	3-7/8" TI		NO		BORING TYPE: SPT				
		e on 7/20/2020 at 9 a at approx. 45' below		SIZE I.D			, 4.0", 3.0"	2.4"	, JOIN	3-110	JOINE	1.7		BORING O.D.: 4.5"				
		ove grade) on 7/22/2		SIZE I.D			4.5", 3.5"	3.0"		<u> </u>	-	2.9		SURFACE ELEV.: 16.537				
(nead at 2:30		ove grade) on 112212	.020	HAMME		140 lb,		140 lb		<u> </u>	-		-	NORTHING 877579.553				
T	CORING	SAMPLE		HAMME		30"	<u>-r</u>	30"			-			EASTING 634487.801				
E	RATE	DEPTHS	TYPE	PEN. REC.						N	USCS	STRAT.						
Р	MIN/FT	FROM - TO	AND	" " BESTION ELICONO ELICONO							FIELD IDENTIFICATION OF SOILS							
T		(FEET)	NO.			(ROCK	(QUALIT)	/ DESIGN	(NOITA			DEPTH						
Н	-		-							\vdash	-		Grave	el pavement				
1.0	_	-					1]		-		·				
		Hand Cleared									SM			n, f-m SAND, some f-c gravel, some				
2.0		0.0 - 5.0		ļ		<u> </u>	-	<u> </u>		-				rith cobbles and boulders, with asphalt				
	_			 	<u> </u>				<u> </u>	-			magm	nents, moist				
3.0		-		 	 	 	+	 	-	†								
4.0						<u> </u>	T			1								
													l					
5.0				1		<u> </u>	<u></u>			4				at 4.5'				
		<u> </u>	ļ	 	 		-	 	 	-		_		d continuously from 5.0' to 20.0' (no sampling) g mud used to advance borehole from 5.0'				
6.0					-	 	+	 	 	1		Sandy Fill		g to agrance perendic norm of				
7.0				1	<u> </u>	<u>† </u>	t^{-}	<u> </u>		1		and)						
]	1	Ŋ						
8.0								<u> </u>		4								
			<u> </u>	 	 	+			+	4								
9.0		 	 	+	 	+-	+	 	+	†								
10.0		 		1	 	t		L^{-}	1	j								
]	1							
11.0				<u> </u>				$\perp \overline{}$		4			-					
l			-	1		 	-		1	4								
12.0		 	 	 	+	+	+	+-	 	-								
13.0		 	 		+-	+	+	+	 	7								
"			t	T]			Hard	drilling from approximately 13.0'				
14.0										4			011.0	also is shall and an A.A.O.				
			<u> </u>	-	-	<u> </u>	_		+	4			6" Ca	sing installed at 14.0'				
15.0			 	-	-	+	+	+	+	-								
16.0		<u> </u>			+	+	†	† · · · ·	+	1		=						
		 						<u> </u>]		Glacial Till						
17.0						<u> </u>			_	4		jaci						
1					_	+	+	+	+	4		ا						
18.0			 	+	 	 	+	+	+	-								
19.0	<u> </u>		 	+	+ -	+	+	+	+	7								
1 9.0	-		<u> </u>	+	t	1	1 —	<u> </u>		_			5" Ca	asing installed at 19.0'				
20.0												<u> </u>	4					
	(2) Correc	wall ring lined drive sam stion factor: Ncorr=N*(2.	0 ² -1.375 ²)i	in./(3.0 ² -2.4	²)in. = N*0.6	65.				D. by 2-7/10	6" I.D. by 6	" length.	to sho agree if he f	offormation contained on this log is not warranted by the actual subsurface condition. The contractor is that he will make no claims against AECOM finds that the actual conditions do not conform se indicated by this log.				
-		cription represents a							ed. R=ROCK CORE									
	IPLE TYP			_IT SPOO ==1-10%	N		LBY TUB =10-20%	·C		=20-35%		AND=	35-50%					
				-1-10/0						00,0								

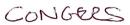
	BORING (CONTRACTOR:							-				SHEET 2 OF 4
	ADT		_				. -						PROJECT NAME: CHPE - Rockland Co. Borings
	DRILLER:	:					ΔĒ	EC		N	1		PROJECT NO.: 60323056
	Tim Van N						7	-					HOLE NO.: BL-15A
	SOILS EN			L		_			·				START DATE: 7/20/2020
	Roberto L							BORING	LOG				FINISH DATE: 7/23/2020
		N: 152 Route 9W, 0	Congers, I	NY									OFFSET: N/A
	CORING		TYPE	PEN.	REC.				45	N	USCS	STRAT.	FIELD IDENTIFICATION OF SOUR
E P	RATE	FROM - TO	AND	in	in	ļ		n ON SAN ′ DESIGN		Corr.	CLASS.	CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS
H	MIN/FT	(FEET)	NO.			INOCK	. WUALIT	DESIGN.	, (NOIN)	 			
													Drilled continuously from 20.0' to 45.0' (no
21.0			\vdash				 	 					sampling)
22.0													Rig chattering from 20.0' to 45.0'
22.5						ļ		$\vdash \vdash \downarrow$					
23.0													
24.0								-					
25.0				 	 		 						
26.0			 	 			 			ļ			
27.0										1			
28.0	ļ		-	 	 	ļ				ļ			
						<u> </u>				1			
29.0	ļ		ļ	-	 	ļ	 		ļ. —	1			
30.0							-			1			
31.0	<u> </u>		 	 		 	 	 	-	1			
				1			1			1			
32.0	<u> </u>		 	-			-			†		Glacial Till	
33.0]		Slacik	
34.0				+	-	 	<u> </u>	<u></u>	<u></u>	1			
								ļ]			
35.0	<u> </u>		 	 	 	<u> </u>		<u> </u>	 	1			
36.0								<u> </u>]			
37.0	<u> </u>		-	+		+	+	<u> </u>	1	4			
ļ				1	<u> </u>		1			1			
38.0	<u> </u>		-	 	-	-	 	_	+	-		1	
39.0										1			
				1		<u> </u>		 	 	-			
40.0			 	_	<u> </u>					1			
41.0			1	1		<u> </u>				-			
42.0			+-		<u> </u>	\perp		\perp		1			
ĺ						<u> </u>	<u> </u>			-			
43.0			1	1	<u> </u>	 	<u> </u>	$\pm -$		1			
44.0			1	\prod						4			
45.0	<u></u>		<u> </u>										
	NOTE	S:											The information contained on this log is not warranted to show the actual subsurface condition. The contractor
1													agrees that he will make no claims against AECOM
													if he finds that the actual conditions do not conform
64.	Soil deso	cription represents a	tification a			r unless o			K CORF	to those indicated by this log.			
	OPORTION			=1-10%			=10-20%		R=ROCK CORE SOME=20-35% AND=35-50%				5-50%

	BORING	CONTRACTOR:											SHEET 3 OF 4			
	ADT										_		PROJECT NAME: CHPE - Rockland Co. Borings			
	DRILLER	 :					ΔĒ				1		PROJECT NO.: 60323056			
	Tim Van N			AECOM									HOLE NO.: BL-15A			
		IGINEER:											START DATE: 7/20/2020			
	Roberto L				-			BORING	GLOG				FINISH DATE: 7/23/2020			
_		N: 152 Route 9W,	Congers,	NY									OFFSET: N/A			
D	CORING		TYPE	PEN.	REC.					N	uscs	STRAT.				
E P	RATE	FROM - TO	AND	in	in			n ON SAN		Corr.	CLASS.	FIELD IDENTIFICATION OF SOILS				
T H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	/ DESIGN	ATION)			DEPTH	·			
													Drilled continuously from 45.0' to 70.0' (no			
46.0													sampling)			
47.0	_												Rig chattering from 45.0' to 70.0'			
48.0			ļ													
49.0																
50.0		_	<u> </u>					-		}						
]			Hard drilling from approximately 50.0'			
51.0																
52.0																
53.0										1						
54.0										-						
										1						
55.0				-			 			1						
56.0										1						
57.0						<u> </u>		<u> </u>		1		I≡				
					-					-		Glacial Till				
58.0			<u> </u>							1		Ga				
59.0									 	-						
60.0			<u> </u>							1						
61.0				-			-			-						
61.0	 		<u> </u>	<u> </u>		<u> </u>				1						
62.0						ļ .				1	[
63.0			-	+	-	<u> </u>	 	 		1						
00.0					<u> </u>				<u> </u>	1						
64.0					<u> </u>	 	 	+	-	1						
65.0			<u> </u>							1						
								-	-	-						
66.0						<u> </u>				1						
67.0			-			<u> </u>			<u> </u>	4						
68.0						<u> </u>		<u> </u>		_						
69.0				1	 	 	<u> </u>		-	-						
			<u> </u>	<u> </u>						1						
70.0	NOTE	S:	<u> </u>						<u> </u>	1	1		The information contained on this log is not warranted			
	MOTE												to show the actual subsurface condition. The contractor			
												agrees that he will make no claims against DMJM Harris AECOM if he finds that the actual conditions do not				
		cription represents a											conform to those indicated by this log.			
	MPLE TYP OPORTIO			IT SPOOI =1-10%	N 		LBY TUB =10-20%	E		K CORE: 20-35%		AND=0	35-50%			


	BORING (CONTRACTOR:											SHEET 4 OF 4
	ADT								PROJECT NAME: CHPE - Rockland Co. Borings				
	DRILLER:	:					ĄΞ		PROJECT NO.: 60323056				
	Tim Van N	less								7 V I	ļ		HOLE NO.: BL-15A
	SOILS EN	IGINEER:											START DATE: 7/20/2020
	Roberto L							BORING	3 LOG				FINISH DATE: 7/23/2020
		N: 152 Route 9W,	Congers,	NY									OFFSET: N/A
D	CORING	DEPTHS	TYPE	PEN.	REC.					N	uscs	STRAT.	
E P	RATE	FROM - TO	AND	in	in	l	S PER 6 in			Corr.	CLASS.	CHNG.	FIELD IDENTIFICATION OF SOILS
T H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	DESIGN	ATION)			DEPTH	

71.0		70.0 - 72.0	S-1	5.0	5.0	100/5"	-		-	-	SM		S-1: Brown, f-m SAND, some silt, trace fine
70.0												_	gravel, moist, extremely dense
72.0												<u> </u>	
73.0												Glacial Till	
												U U	
74.0				-									
75.0													
_ '												Sed	Very hard drilling from 75.0' Drilled to 77.0' to confirm that it is not a boulder
76.0			<u> </u>		 							Decomposed Sandstone	Installed 4" casing to 77.0' and 5" casing to 77.5'
77.0												econ	S-2: Red-brown, fine SAND, and silt, moist,
		77.0' - 77.1'	S-2	1.0	1.0	100/1"	-	-		-	SM	ثُّ ا	very dense
78.0	6.0	77.6 - 87.6	R-1	120.0	115.0	RQD =	79"/120	"					Started coring from 77.6' From 77.6' to 81.1': Red-brown,
79.0	6.0	77.0 - 07.0	1 1/-1	120.0	96%	=	66%	(1			SANDSTONE, fine grained, slightly
l.													weathered (II), medium strong (R3), highly
80.0	2.5			ļ									fractured, thinly bedded. Drill spin over sub-horizontal fractures.
81.0	2.5		-							1		Fm.)	Tonzontal madales.
												Sandstone (Brunswick Fm.)	From 81.1' to 87.6': Red-brown,
82.0	3.0									-		wsur	SANDSTONE, medium-coarse grained, slightly weathered (II), strong (R4),
83.0	3.0					 				1		(Bru	moderately fractured, laminated (dip<10°).
00.0										1		one	Discontinuities: <10° slightly rough bedding
84.0	2.5											ndst	60° & sub-vertical, rough, undulating joints.
85.0	2.5		-	<u> </u>	-			<u> </u>		_		Sal	TR ⁽¹⁾ -1 (79.4'-79.8')
05.0	2.0									j			TR-2 (82.6'-83.0')
86.0	2.5								_	-			TR-3 (84.5'-85.0')
87.0	2.5		<u> </u>	<u> </u>				 	-	1			
67.0	2.5		<u> </u>	<u> </u>	 								
88.0			Ţ							-			End of boring at 87.6' below grade
89.0			+	+ -					_	1			Borehole grouted
09.0			 	+		 				1			
90.0						1]			
04.0			 		-	-	1			1			
91.0	ļ	-	1	 		+		-	-	1			
92.0]			
00.0					ļ —	<u> </u>	-	 		1	1		
93.0	-		1	 	 	+	 	 	 	1			
94.0						ļ							
05.0					ļ			ļ		4			
95.0	NOTE	S:			<u> </u>	.1	<u> </u>	<u> </u>	J	1	L		The information contained on this log is not warranted
1		o. ample for thermal resist	tivity testing).									to show the actual subsurface condition. The contractor
													agrees that he will make no claims against DMJM Harris AECOM if he finds that the actual conditions do not
	Soil desc	cription represents a	field ider	ntification a	after D.M.	Burmiste	r unless o	therwise i	noted.				conform to those indicated by this log.
SAN	APLE TYP		S= SPL	IT SPOOM		U=SHE	BY TUBE		R=ROC	K CORE			
PRO	OPORTION	NS:	TRACE	=1-10%	1-10% LITTLE=10-20% SOME=2							AND=3	5-50%

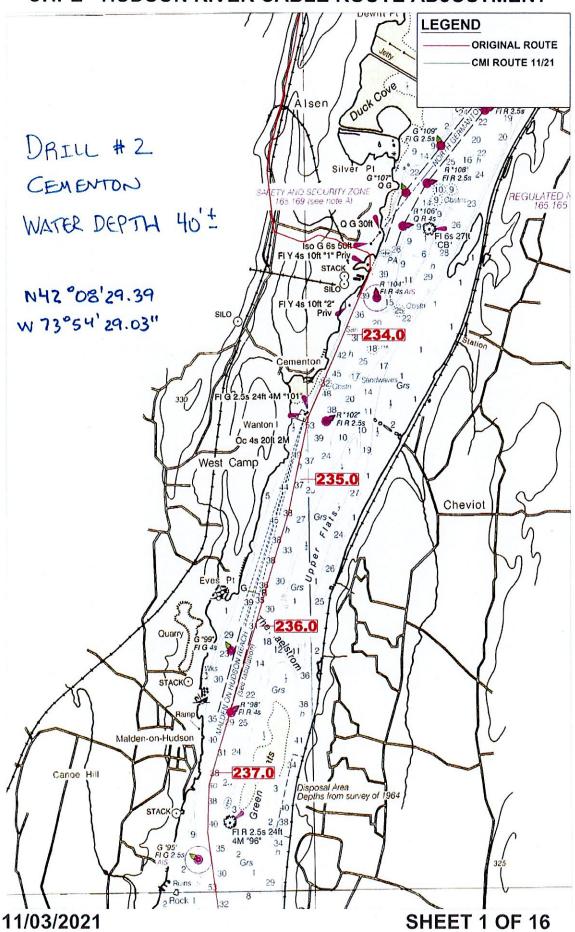

ROCK CORE PHOTOGRAPHIC LOG


AECOM Project No: 60323056

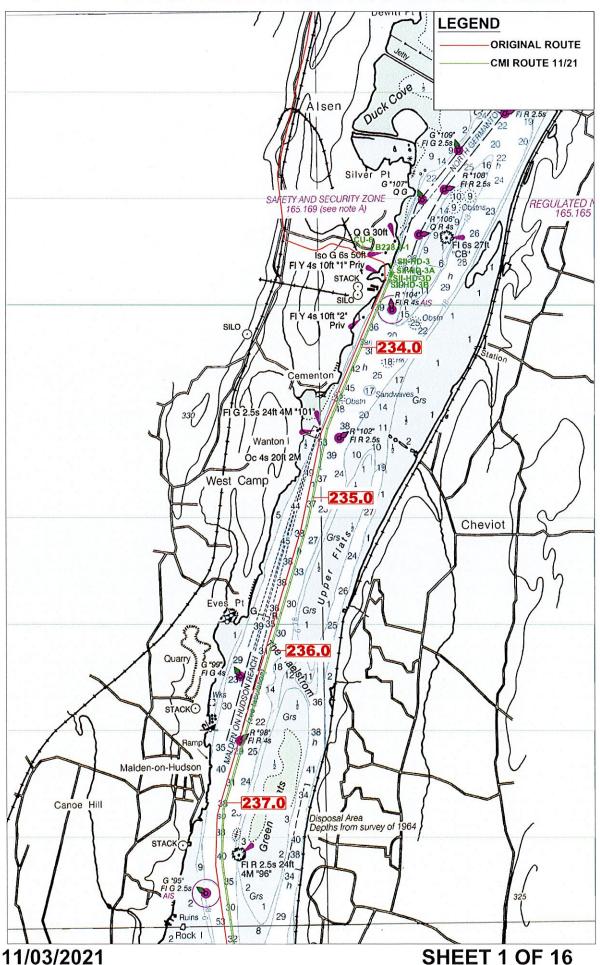
Project Name: Upland Segment, Rockland County, NY, Champlain-Hudson Power Express Location: Rockland County, NY

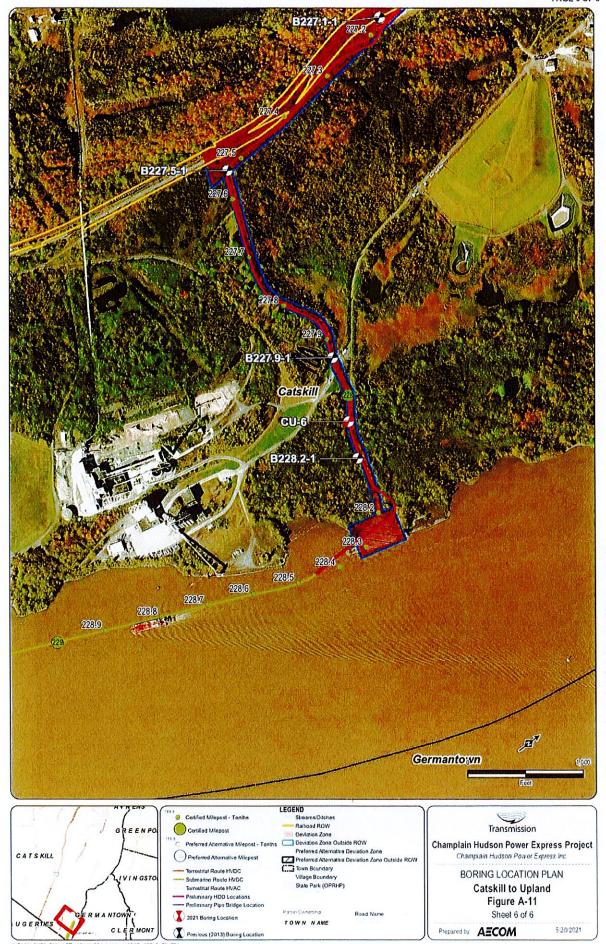
Hole No. SII-HDD-6D

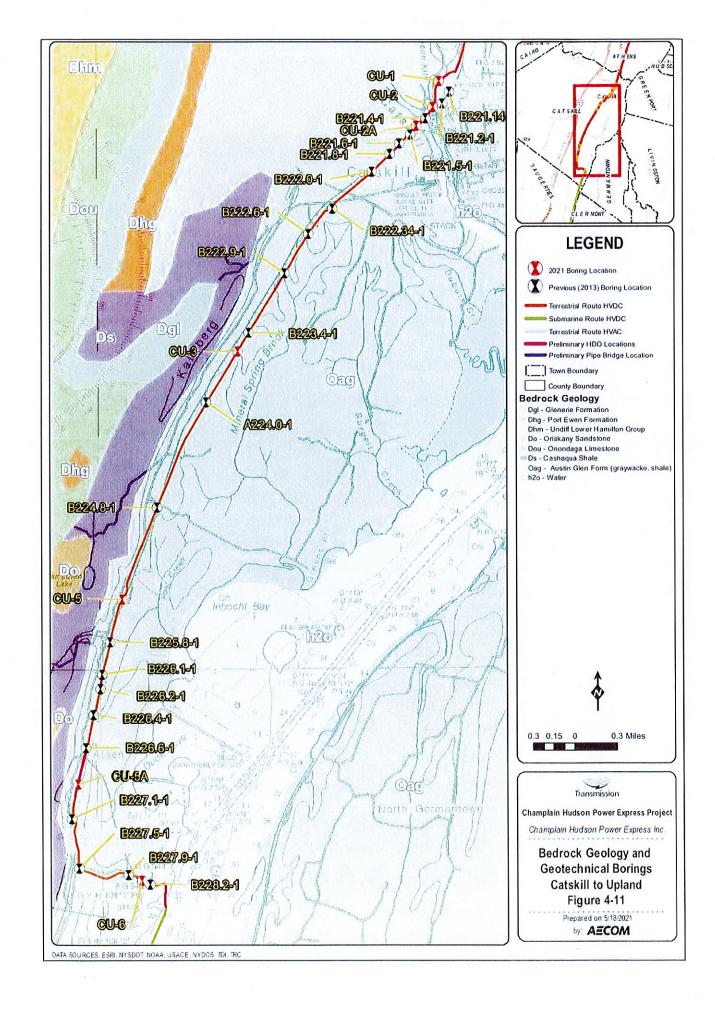
DRILLI	NG LOG	DIVISIO		INSTALLA					SHEET	. '	\neg
1. PROJECT		HDF	R CHPE	MRS Phase 2 Cable Route Survey OF 1 SHEETS							
CHPE				10. SIZE AND TYPE OF BIT Split Spoon 11. DATUM FOR ELEVATION SHOWN (TBM or MSL)							
2. LOCATION (Coordinates or Sta			NAVD88							
3. DRILLING AC		2,282.5	5 E 1,937,486.2		FACTURER'					2	
ADT 4. HOLE NO. (A	As shown on drawin	ng title and	d :		L NO. OF OV LES TAKEN	ERBURDEN		BED 11	UNDISTU	JRBED 0	
file number)			SII-HDD-6D	14. TOTAL	L NUMBER C	ORE BOXE	S	0			٦
5. NAME OF DE J. Philbin	-			15. WATE	R DEPTH	· CT/	ARTED		OMPLETE		7
6. DIRECTION (NED _	DEG. FROM VERT.	16. DATE	HOLE		11/18/20)12		/2012	
7. Penetration, f	ft		52.0		ATION TOP C			-29.4			4
8. Recovery, ft			52.0	18. TOTAL 19. GEOL	CORE REC	OVERY FOI	R BORING			100 °	%
9. Total Recove	ry, %		100.0	. 19. GEOL	OGIOT		S. Miller				
ELEVATION	DEPTH LEGE	END	CLASSIFICATION OF MATERIALS (Description)	3	% CORE RECOV- ERY	BOX OR SAMPLE NO.		REMA illing time, wa eathering, etc	ater loss, d		٦
a	b c		d		е	f		g			4
-29.4 -31.4	0.0_ <u>=</u> 2.0 <u>=</u>		rk brown silt with trace shell fragme ce wood fragments	ents and	100	SedBox6 0.0	WOR				
			Data			2.0					
-34.4	5.0						-				
-36.4	7.0	Da	rk brown, high-plasticity clay with a own coarse-grained sand at 6.8'	layer of	100	SedBox6 5.0	WOR				
-30.4	1.0		Data			7.0					
20.4	10.0						7 8				
-39.4		Da	rk brown elastic silt		100	SedBox6	WOR				
-41.4	12.0	No	Data			10.0 12.0					
		INO	Dala			12.0					
-44.4	15.0	Do	rk brown, high-plasticity clay with a	lavor of	100	SedBox6	WOR				
-46.4	17.0	org	ganic silt and wood fragments @16	.9'	100	15.0	WOR				
	_	No	Data			17.0	/				
-49.4	20.0										
-51.4	22.0	/// and	rk brown clayey-sand with wood fra d shell layer near 21', and with	igments	100	SedBox6 20.0	WOR				
			arse-grained sands below Data			22.0					
-54.4	25.0										
		Da she	rk brown, high-plasticity clay with tr ell fragments, sand lenses, and with	race n a	100	SedBox6 25.0	WOR				
		dis	tinct layer of pebbles and cobbles	at		27.0	- 1				
		арр	proximately 50'								
					100	SedBox6	WOR				
						30.0 32.0					I
					100	SedBox6	WOR				
						35.0					
						37.0					
					100	SedBox6 40.0	WOR				
						42.0					
					100	SedBox6	WOR				
						45.0 47.0					
					100	SedBox6	WOR				
-81.4	52.0					50.0					
						52.0					
				TO BY A THE STREET AND A STREET AND A STREET			NAME AND ADDRESS OF THE PERSON	nticolaris e constituiro de la manación de		nakana kanana na pamana na pam	


Hole No. SII-HDD-6

			-		sale dan evere artic	-				TIOIC I	PARTY NAMED IN COLUMN	AND HAVE THE PARTY OF THE PARTY	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
DRILLI	NG LOG		SION	LIDE		INSTALLA		Cabla D	auta Cumiau		SHEET		1	
1. PROJECT			IDR C	nre					oute Survey		OF	ı SH	EETS	l
CHPE							AND TYPE O		3.5 in DWN (TBM or MS	S/)				
2. LOCATION (NAVE		ATION SITE	JVVIV (TBIVI OF IVIC	,L)				l
		14,952	2,245.	.6 E 1,937,589.7	12. MANL	FACTURER'	S DESIGNA	TION OF DRILL						
3. DRILLING AC	SENCY				Vibra		(EDE::===			IN 15 : 5 =				
4. HOLE NO. (A	As shown on dra	wina title	and	•		13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED SAMPLES TAKEN 1 0								l
file number)				SII-HDD-6			L NUMBER C	ORF BOXE		N/A				l
5. NAME OF DE							R DEPTH	JOINE BOXE		-29.9				
M.Telesco								: ST.	ARTED		/PLETE			
VERTICA		CLINED		DEG. FROM	M VERT	16. DATE	HOLE	:	10/9/2012			2012		
		JEINED			VI VLIXI.	17. ELEV	ATION TOP C	OF HOLE	-	29.9				
7. Penetration, f	T			9.3		18. TOTA	L CORE REC	OVERY FO	R BORING			74	.0 %	l
8. Recovery, ft				6.9		19. GEOL	OGIST		MIConnecto					
9. Total Recove	ry, %			74.0	TEDIAL		% CORE	BOX OR	M.Kwasek	REMARI	(S			l
ELEVATION a	DEPTH LE	GEND c		CLASSIFICATION OF MA (Description) d	TERIALS	5	RECOV- ERY e	SAMPLE NO.	(Drilling weath	g time, wate ering, etc., i	r loss, d	lepth ant)		
-29.9	0.0	ŤП	Grey 6	elastic silt with black orga	anic bar	nds	100	BS1	Bagged Sam	ple (0-6.9	')			
			betwe	en 0.3' to 1.7'.				0.0 6.9	@0.0' Tor=.0	03 T/sq.ft	Pen=.0	05 T/s	q.ft	Ē
			Bivalv	e shell fragments found	through	out.		0.9						\vdash
	\dashv			, -	Ü				@1 0' Tar-	12 T/22 #	Don-	13 T/c	a ft	
									@1.0' Tor=.0	J∠ 1/SQ.IT	геп=.(JJ 1/S	y.it	
	_													\vdash
	-													\vdash
	-11								00017	20 T/ #	D /	00 T/		\vdash
		Ш							@2.0' Tor=.0	J2 1/sq.π	Pen=.	J3 1/S	q.π	
	-11													-
		Ш												\vdash
	-11													\vdash
							V 11	11	@3.0' Tor=.0	02 T/sq.ft	Pen=.(03 T/s	q.ft	
	_						11 =							_
		Ш												\vdash
	-11	Ш												\vdash
									@4.0' Tor=.0	02 T/sq.ft	Pen=.0	01 T/s	q.ft	
		Ш						T						
	-11	Ш						20						\vdash
	- 1	Ш												\vdash
								TI .	@5.0' Tor=.0	03 T/sq.ft	Pen=.0	02 T/s	q.ft	
								7. 2						
														\vdash
	-													
									@6.0' Tor=.0	02 T/sq.ft	Pen=	.03 T/s	sq.ft	
														_
	-													\vdash
-36.8	6.9	Ш] @7.0' Tor=.	02 T/sa ft	Pen-	: 01 T/	sa ft	
									(20,00 101-	02 1/34.IL	. 611-	.01 1/	3 4 .11	
	_	-							81 8					-
														\vdash
	_													
														-
							×							-
														_
														_
														-
														_
ENG FORM	1836 PF	REVIOUS	S EDITIO	ONS ARE OBSOLETE.		AND THE PERSON AND ADDRESS OF THE PERSON AND THE	PROJECT CHPE			URBERTELESCOMMUNICATION STATES	HOL	E NO.	אר פ	-
MAR 71							CHPE					II-HL	0-0	


Hole No. SII-HDD-6A INSTALLATION DIVISION SHEET **DRILLING LOG** HDR CHPE MRS Phase 2 Cable Route Survey OF 1 SHEETS 1. PROJECT 10. SIZE AND TYPE OF BIT 3.5 in **CHPE** 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) NAVD88 HUDSON RIVER N 14,952,177.8 E 1,937,480.9 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Vibracore **AOSS** UNDISTURBED 13. TOTAL NO. OF OVERBURDEN : DISTURBED SAMPLES TAKEN 4. HOLE NO. (As shown on drawing title and 0 file number) SII-HDD-6A 14. TOTAL NUMBER CORE BOXES N/A 5. NAME OF DRILLER 15. WATER DEPTH -28.2 M.Telesco STARTED COMPLETED 6. DIRECTION OF HOLE 16. DATE HOLE 10/9/2012 10/9/2012 ☐ INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE -28.2 8.6 7. Penetration, ft 18. TOTAL CORE RECOVERY FOR BORING 77.7 % 8. Recovery, ft 6.7 19. GEOLOGIST 77.7 9. Total Recovery, % D.Whitesell BOX OR SAMPLE % CORE REMARKS CLASSIFICATION OF MATERIALS DEPTH LEGEND **ELEVATION** RECOV-(Drilling time, water loss, depth (Description) **ERY** NO. weathering, etc., if significant) d -28.2 0.0 Grey elastic silt 100 BS₁ Bagged Sample (0-6.7') 0.0 6.7 Small bivalve shells throughout -34.9


Hole No. SII-HDD-6B DIVISION INSTALLATION SHEET **DRILLING LOG** HDR CHPE MRS Phase 2 Cable Route Survey 1 SHEETS 1. PROJECT 10. SIZE AND TYPE OF BIT 3.5 in **CHPE** 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) NAVD88 HUDSON RIVER N 14,952,174.2 E 1,937,661.9 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Vibracore **AOSS** 13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED 4. HOLE NO. (As shown on drawing title and SAMPLES TAKEN 0 file number) SII-HDD-6B 14. TOTAL NUMBER CORE BOXES N/A 5. NAME OF DRILLER 15. WATER DEPTH -30.6M. Telesco STARTED COMPLETED 6. DIRECTION OF HOLE 16. DATE HOLE 10/9/2012 10/9/2012 INCLINED DEG. FROM VERT 17. ELEVATION TOP OF HOLE -30.6 9.7 7. Penetration, ft 82.9 % 18. TOTAL CORE RECOVERY FOR BORING 8. Recovery, ft 8.1 19. GEOLOGIST 9. Total Recovery, % 82.9 D.Whitesell % CORE BOX OR REMARKS CLASSIFICATION OF MATERIALS **ELEVATION** DEPTH LEGEND RECOV-SAMPLE (Drilling time, water loss, depth (Description) **ERY** NO. weathering, etc., if significant) -30.6 0.0 Dark grey, high-plasticity organic clay with 100 BS₁ Bagged Sample (0-8.0') common bands of black organic silt/clay @0.0' Tor=.01 T/sq.ft Pen=.01 T/sq.ft 0.0 8.0 @1.0' Tor=.01 T/sq.ft Pen=.02 T/sq.ft @2.0' Tor=.03 T/sq.ft Pen=.02 T/sq.ft @3.0' Tor=.03 T/sq.ft Pen=.03 T/sq.ft @4.0' Tor=.03 T/sq.ft Pen=.02 T/sq.ft @5.0' Tor=.03 T/sq.ft Pen=.02 T/sq.ft @6.0' Tor=.03 T/sq.ft Pen=.02 T/sq.ft @7.0' Tor=.04 T/sq.ft Pen=.03 T/sq.ft -38.6 8.0 @8.0' Tor=.04 T/sq.ft Pen=.03 T/sq.ft


CHPE - HUDSON RIVER CABLE ROUTE ADJUSTMENT

CHPE - HUDSON RIVER CABLE ROUTE ADJUSTMENT

Table 1-11: Summary of Test Borings Catskill - Upland Segment (CU)

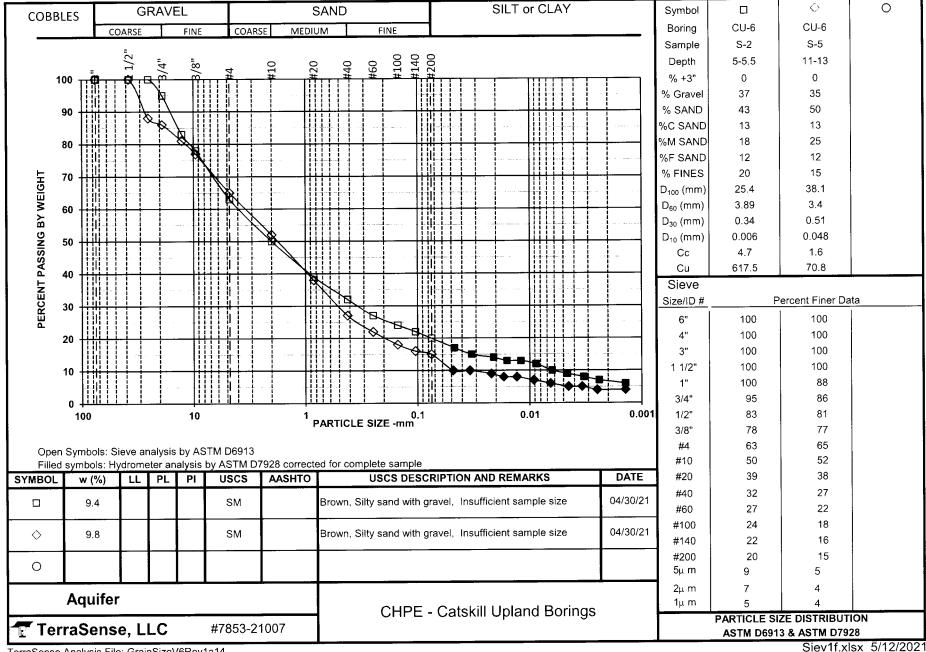
Boring No.	Location	Approx. Mile Post	Total Depth of Boring (ft.)	Predominant Soil Type (0'- 16')	Depth to Top of Bedrock (ft)	Type of Rock	Remarks	Depth to Water (ft.)	Northing (2)	Easting (2)	Top of Boring Elevation (1)
B226.6-1		226.65	25	SILTY CLAY	-	1.5	-	18.7	1211894.746	649689.666	:=0
CU-5A	CSXT ROW - East shoulder of rail siding	226.91	40	SILT & CLAY	6 1		(-)	25	1210523.689	649411.754	118.4
B227.1-1		227.16	30	CLAY, SILT & SAND		-		No water observed	1209233.087	649170.737	-
B227.5-1		227.53	30	CLAY, SILT & SAND	121	rg.	-	No water observed	1207372.399	649439.476	-
B227.9-1		227.93	25	SILTY SAND OVER SILTY CLAY	(4)	2	-	No water observed	1207125.886	651285.97	-
CU-6	South shoulder dirt private road	228.05	16	SAND, SILT, GRAVEL (WITH COBBLES?)	12.7	SILTSTONE	-	No water observed	1206902.296	651809.144	25.6
B228.2-1		228.1	60	SANDY GRAVEL (FILL)	9	-	-	No water observed	1206774.242	652109.492	-

Notes:

- (1) Elevations refer to NAVD88
- (2) Northing and Easting in NYS Plane East (ft.)
- (3) Drilled by AECOM in 2021
- (4) Drilled by TRC in 2013

	BORING CO	NTRACTOR:												SHEET 1 OF 1	
	ADT						_ =							PROJECT NAME: CHPE -	
	DRILLER:					_ A	△=	-(PROJECT NO.: 60323056	
	Francisco M.													HOLE NO.: CU-6	
	SOILS ENGI	NEER/GEOLOGIST	;											START DATE: 2/16/21	
	Alexandra G	olden						BORIN	G LOG	i				FINISH DATE: 2/16/21	
		MP - 228.05 Catski	II, NY											OFFSET: N/A	
GRO		R OBSERVATIONS				CAS	SING	SAM	PLER	DRIL	L BIT	CORE	BARREL	DRILL RIG: Geoprobe 7822DT	
	No water obs	served		TYPE		Flush J	oint Steel		ornia lified		cone er Bit	N	Q	BORING TYPE: SPT/Core	
				SIZE 1.0).	ļ ·	4"	2	.5"	ļ		1.7	7/8"	BORING O.D.: 4.5"/3"	
				SIZE O.	D.	4	.5"	,	3"	3	7/8"	3	3"	SURFACE ELEV.:	
_		T		HAMME		1) lbs) lbs					LONGITUDE:	
D E	CORING RATE	S A M P L I DEPTHS	TYPE	PEN.	REC.	3	10"	3	0"	N	uscs	STRAT.	· · · · ·	LATITUDE:	
Р	MIN/FT	FROM - TO	AND	in	in	BLOW	S PER 6	in ON SA	MPLER	Corr.(2)	CLASS.			FIELD IDENTIFICATION OF SOILS	
Т		(FEET)	NO.				QUALITY					DEPTH			
Н													00100		
1.0		0'-5'				ļ	Hand (Cleared		_	SP		organic	l'; Brown medium-coarse SAND, little gravel, trace s; loose, dry	
2.0	-					<u> </u>		; Dark brown fine-medium SAND, some silt, little medium stiff, dry							
3.0 3'-5' S-1											TR-1; 3	.0'-5.0'			
4.0										1					
5.0										1					
		5'-7'	S-2	24"	24"	12	17	18	27	23	sw			ine-medium SAND, some silt, some gravel, little ular cobbles (3"); medium stiff, dry	
6.0			-							1				5.5'-6.17')	
7.0												Silty SAND	CAA	-:	
8.0		7'-9'	S-3	24"	24"	21	20	30	39	20	SW	Silty	SAA; m	oist	
]					
9.0		9'-11'	S-4	24"	24"	45	40	48	50	57	sw		SAA		
10.0										-			TR-3; (9	9.0'-9.5')	
11.0															
12.0		11'-'13'	S-5	19"	19"	9	25	33	50/3"	38	SW		SAA, m Rock er	oist accountered at 12.8', drill to 13'	
13.0	3 min	13'-16'	R-1	36"	36"	1	RQD: 1	8" = 50%	<u> </u>	-			Gray SI	LTSTONE, trace calcite veins, moderately	
14.0										1		ONE	ı	red, 50 pieces	
15.0	2 min									1		SILTSTONE	TR-4, (14'-14.5')	
16.0	4 min									-		IS			
						<u> </u>							CU-6 te	rminated at 16', backilled and grouted to surface	
17.0					<u> </u>	 	-	-		-					
18.0															
19.0															
20.0	<u></u>			-		-		-		-					
(1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. to show (2) Correction factor: Ncorr=N*(2.0²-1.375² in./(3.0²-2.4²)in. = N*0.65. if he fin												ormation contained on this log is not warranted the actual subsurface condition. The contractor that he will make no claims against AECOM disthat the actual conditions do not conform a indicated by this log.			
					1				R=ROCK CORE						
PRO	AMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE ROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35-50°											5-50%			

Aquifer CHPE - Catskill Upland Borings LABORATORY SOIL TESTING DATA SUMMARY


BORING	SAMPLE	DEPTH			IDEN	TIFICAT	ION TEST	S		REMARKS
NO.	NO.		WATER CONTENT	LIQUID LIMIT	PLASTIC LIMIT	PLAS. INDEX	USCS SYMB.	SIEVE MINUS	HYDROMETER % MINUS	
							(1)	NO. 200	2 μm	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	
CU-1	S-3	7-9	7.5				SM	33	9	
CU-1	S-6	13-15	9.0				SM	16	4	
CU-2	S-2	5-7	22.1				SM	14	3	
CU-2	S-6	13-15	20.6	34	20	14	SC	45	14	
CU-2	S-11	35-37	7.0				SM	23	5	
CU-2A	S-6	15-17	59.4	53	23	30	CH	99	87	
CU-2A	S-9	30-32	35.4	37	20	17	CL	99.6	46	
CU-2A	S-14	55-57	25.1	28	17	11	CL	85	28	
CU-4	S-2	5-7	28.9	60	26	34	CH	95.7	77	
CU-4	S-4	9-11	33.0				GC	31	22	
CU-5A	S-4	9-11	33.7	64	25	39	CH	99	90	
CU-5A	S-8	20-22	29.8	59	25	34	CH	99.4	58	
CU-5A	S-11	35-37	37.8	48	23	25	CL	100	68	
CU-6	S-2	5-5.5	9.4				SM	20	7	
CU-6	S-5	11-13	9.8				SM	15	4	

Note:

(1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 5/12/2021 TerraSense, LLC 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21007 File: Indx1.xlsx

Page 1 of 1

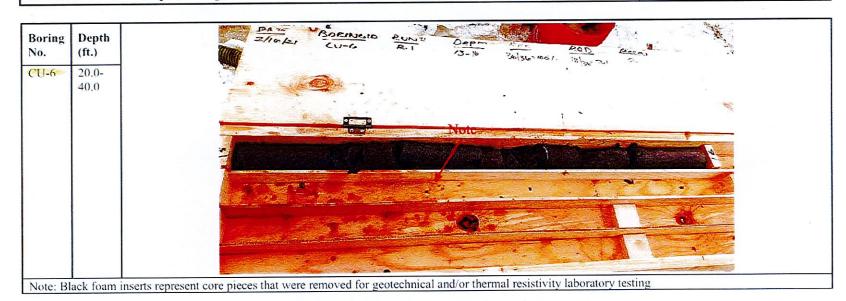
Aquifer CHPE - Catskill Upland Borings SUMMARY OF ROCK TESTING

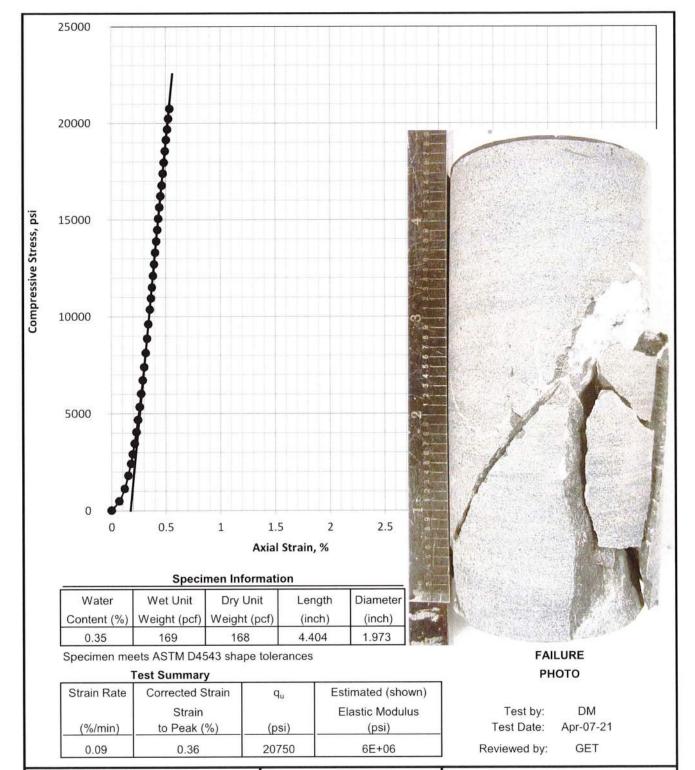
Run			HOLFIN	TIES			REMARKS			
,,,,,,	Depth	WATER CONTENT	TOTAL UNIT	DRY UNIT	TEST	Mohs HARDNESS		D COMPRES	SSION TESTS 2)	
		(1)	WGT.	WGT.	(2)		COMPRESSIVE STRENGTH	AXIAL STRAIN @ FAILURE	ESTIMATED (5) ELASTIC MODULUS	
D 4	20 5 20 0	(70)	(pci)	(pci)	Λ.4		(psi)	(70)	(psi)	
K-1	20.5-20.9					4				
R-1	20.95-21.35	0.4	169	168	UC		21660	0.41	6E+06	
R-3	32.4-32.6				М	3				
R-3	32.7-33.1	0.6	169	168	UC		11100	0.30	4E+06	
R-1	53				М	7				
R-1	53.7-54.1	0.5	169	168	UC		8100	0.28	4E+06	
R-1	13.6-13.9	0.5			М	5				
R-1	13.1-13.5	0.3	169	168	UC		20750	0.36	6E+06	
The state of the s	R-3 R-3 R-1 R-1	R-1 20.95-21.35 R-3 32.4-32.6 R-3 32.7-33.1 R-1 53 R-1 53.7-54.1 R-1 13.6-13.9	(%) R-1 20.5-20.9 R-1 20.95-21.35 0.4 R-3 32.4-32.6 R-3 32.7-33.1 0.6 R-1 53 R-1 53.7-54.1 0.5 R-1 13.6-13.9	(%) (pcf) R-1 20.5-20.9 R-1 20.95-21.35 0.4 169 R-3 32.4-32.6 R-3 32.7-33.1 0.6 169 R-1 53 R-1 53.7-54.1 0.5 169 R-1 13.6-13.9	(%) (pcf) (pcf) R-1 20.5-20.9 R-1 20.95-21.35 0.4 169 168 R-3 32.4-32.6 R-3 32.7-33.1 0.6 169 168 R-1 53 R-1 53.7-54.1 0.5 169 168 R-1 13.6-13.9	(%) (pcf) (pcf) R-1 20.5-20.9	(%) (pcf) (pcf) (-) R-1 20.5-20.9	(%) (pcf) (pcf) (-) (psi) R-1 20.5-20.9	(%) (pcf) (pcf) (pcf) (-) (psi) (psi) (%) R-1 20.5-20.9 M 4 R-1 20.95-21.35 0.4 169 168 UC 21660 0.41 R-3 32.4-32.6 M 3 R-3 32.7-33.1 0.6 169 168 UC 11100 0.30 R-1 53 R-1 53 R-1 53.7-54.1 0.5 169 168 UC 8100 0.28 R-1 13.6-13.9 M 5	(%) (pcf) (pcf) (pcf) (pcf) (pcf) (psi) (p

- (2) Test Type Abbreviations: M: Mohs Hardness, UC: UC Compression test with estimated elastic moduli
- (3) Diametral orientation across core along bedding/foliation plane, axial perpendicular to bedding/foliation plane, as applicable.
- (4) Compressive Strength determined using generalized "K" factor in ASTM D5731
- (5) Modulus estimated based on corrected gross deformations.

Prepared by: RT Reviewed by: GET Date: 5/14/2021 TerraSense, LLC 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21007 File: RockSummary7.xlsx

Page 1 of 1

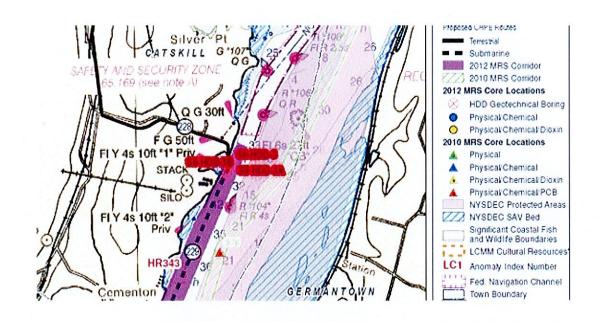

ROCK CORE PHOTOGRAPHIC LOG


AECOM Project No: 60323056

Project Name: CHPE - Upstate New York Upland Geotechnical Investigation

Location: Catskill - Upland Segment

Aquifer


CHPE - Catskill Upland Borings COMPRESSIVE STRESS VS STRAIN UNCONFINED COMPRESSIVE STRENGTH TEST

TerraSense, LLC Project # 7853-21007

Boring: CU-6 Run: R-1 Depth 13.1-13.5 ft.

-	Table 6-11 Bedrock Conditions at HDD Locations													
	Catskill - Upland Segment (CU)													
Approxima	proximate HDD MP Approximate Approximate Length (feet) Approximate Boring No. Depth Bedrock (feet)													
Certified Route MP	Alternative Route MP	Length (feet)	Boring No.	Depth (feet)	Bedrock (feet)	Type of Rock								
221.2	0.1	430	CU-1	40	19.7	LIMESTONE								
-	0.3	600	CU-2	60	50.1	SHALE & SANDSTONE								
			B221.4-1	24.7	13.6	GRAYWACKE								
-	0.45	388	CU-2A	60	>60	j								
222.0	-	500	B222.0-1	25	>25	÷								
222.3		250	B222.34-1	25	>25	-								
222.6	-	190	B222.6-1	30.5	>30.5	-								
223.0	-	450	B222.9-1	30	>30	-								
225.8	-	300	B225.8-1	30	>30	-								
226.1		640	B226.1-1	30	>30	•								
220.1		040	B226.2-1	25	>25	-								
226.7	_	1845	B226.6-1	30	>30	_								
220.1	-	1845	CU-5A	40	>40	<u>-</u>								
228.3	-	-	B228.2-1	60	>60	-								

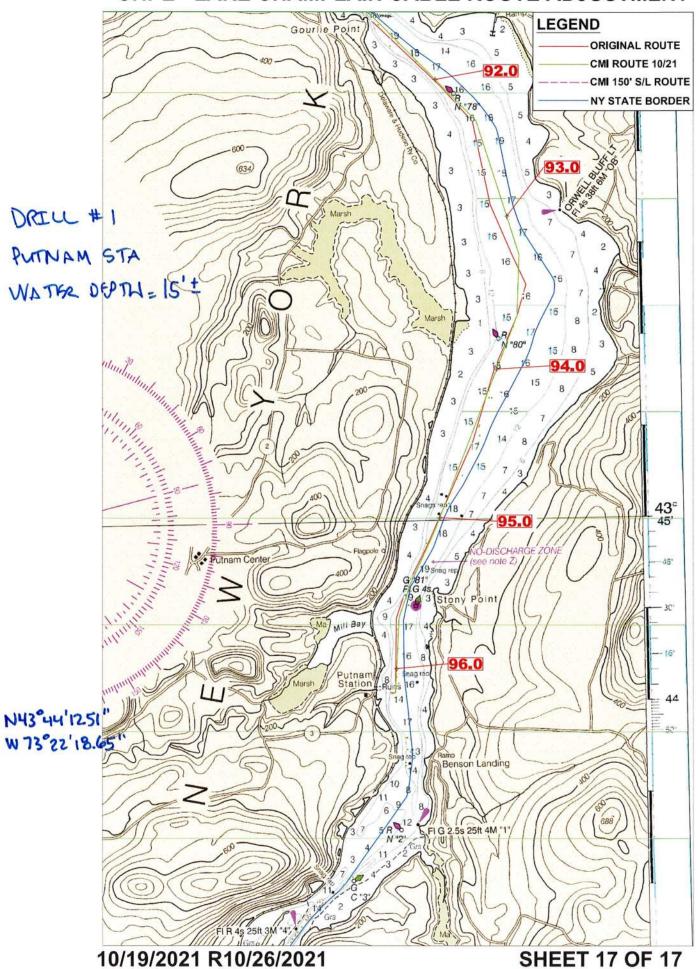
Note: This table represents AECOM's understanding of the HDD locations and lengths in this project Segment as of the start of the field investigation on December 10, 2020. HDD's that may have been added, or HDD locations or lengths that may have been modified since that date, as reflected in the Boring Location Plan (Appendix A) are not included.

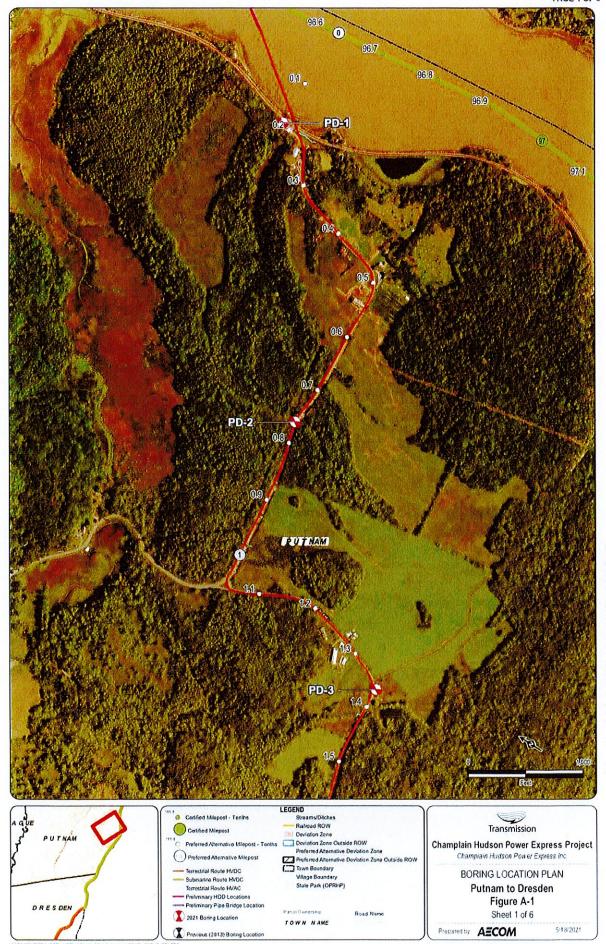
CEMENTON

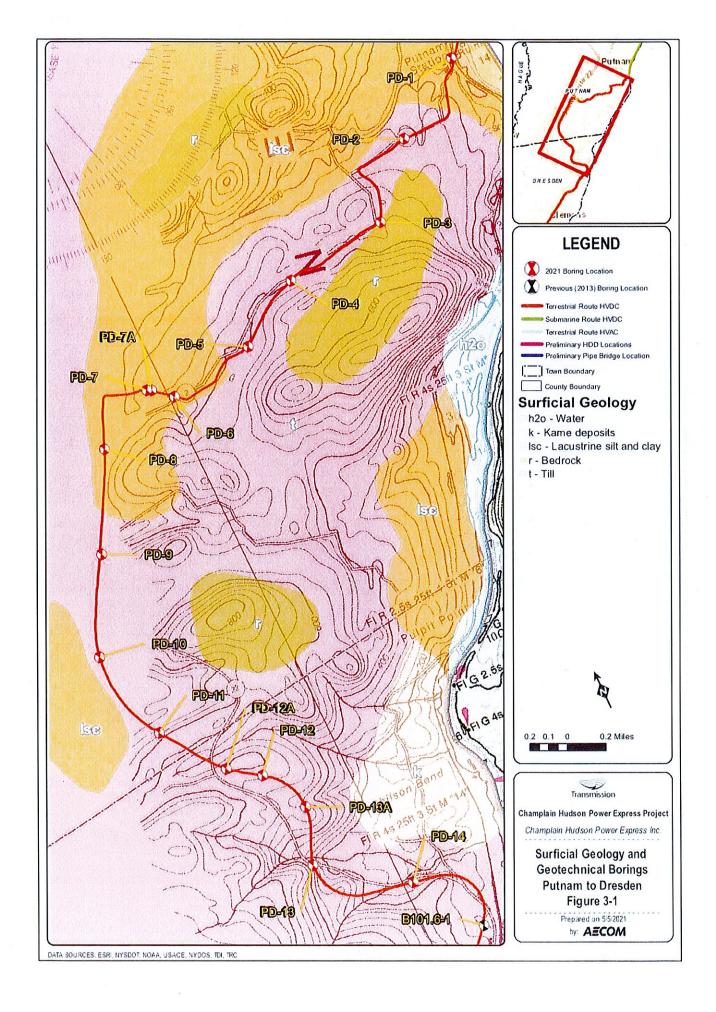
Hole No. SII-HDD-3D

DRILLI	NG LOC	D	IVISION	INSTALLA		0 11 5	· · · · · · · · · · · · · · · · · · ·	SHEET 1			
1. PROJECT			HDR CHPE					OF 1 SHEETS			
CHPE					AND TYPE O		Split Spoon/Rotary Di	rill			
2. LOCATION (C				NAVI		ATION SHO	OVVIN (TBIVI OF IVISL)				
		5,308,	914.0 E 1,936,568.3	12. MANU	JFACTURER'	S DESIGNA	TION OF DRILL				
3. DRILLING AG ADT	SENCY			13 TOTA	I NO OF O	/EDDI IDDEN	1 : DISTURBED : UN	IDISTURBED			
4. HOLE NO. (A	s shown on	drawing t			LES TAKEN		11 :	0			
file number) 5. NAME OF DR	DILLED		SII-HDD-3D	14. TOTA	L NUMBER (ORE BOXE	s 2				
J. Philbin	VILLEIX			15. WATE	R DEPTH						
6. DIRECTION (16. DATE	HOLE	STA		1/15/2012			
	AL	INCLINE	D DEG. FROM VERT.	17. ELEV	ATION TOP (DF HOLE	-44.1	1/13/2012			
7. Penetration, fl	t		43.0	18. TOTAL CORE RECOVERY FOR BORING 100							
8. Recovery, ft			43.0	19. GEOL	OGIST						
9. Total Recover	у, %		100.0		L 0/ CODE	L BOY OB	S. Miller				
ELEVATION a	DEPTH b	LEGEND c	CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water l weathering, etc., if s g	loss, depth			
-44.1	0.0		Dark brown to black, fine to medium-	grained,	30		Blows 2-2-1-3				
			poorly-sorted sand with gravel			0.0					
-49.1	5.0										
-49.1	5.0		Dark brown, medium-grained sand wi	ith shell /	100		Blows 1-1-3-6				
			hash; red rock/brick at 5.2'		P	5.0 7.0					
			Dark brown, low-plasticity clay			7.0					
-54.1	10.0		Dark brown, fine to medium-grained s	sand with	30	SedBox3	Blows 5-6-10-10				
-55.1	11.0		shell and brick fragments	sanu witii	30	10.0	Diows 3-0-10-10				
	一目		Dark brown silt with trace sand			12.0					
-59.1	15.0										
-59.9	15.8		Dark brown, medium to coarse-graine silty-sand with pebbles and shell frag		70	SedBox3 15.0	Blows 12-13-43-60				
-61.1	17.0		trace 1" rock		100	17.0	Drill Time 00:27:33 RQD	=67%			
.7	畫		Dark brown silty-sand		58	RockBox1 17.0	Drill Time 00:29:22 RQD				
1 100			Gray to black low-grade metamorphic Diagonal fracturing	slate		18.0					
·						RockBox1					
	_					18.0 23.0					
	-				75	RockBox1	 Drill Time 00:34:25 RQD	-60%			
	-				/5	23.0	Dilli Time 00.34.23 RQD	-09%			
						26.0					
					80	RockBox1	Drill Time 00:30:40 RQD	=52%			
1 17 v						26.0 28.0	B. III T	100/			
-73.1	29.0		Low-grade metamorphosed sediment	tan/	84	RockBox1	Drill Time 00:46:39 RQD	=46%			
			rocks (possibly slate or dense limesto			28.0 33.0					
			Diagonal and horizontal fracturing			30.0					
	_				98	RockBox1 33.0	Drill Time 00:24:35 RQD	=93%			
						38.0					
					94	RockBox2	Drill Time 00:28:19 RQD	=86%			
-84.1	40.0					38.0 43.0					
	40.0					+5.0					
						-					

								t	Hole No. S		<u>.3</u>
DRILLI	NG LOG		SION IDR C	CHPE	INSTALLA		Cable Ro	oute Survey	SHEE	T 1 1 SHEET:	S
1. PROJECT						AND TYPE OF		3.5 in			7
CHPE	Coordinates	r Ctotion)			11. DATU	M FOR ELEV		WN (TBM or MSL,)		1
2. LOCATION (0 HUDSON	Coordinates o	1 5 (ation) 1 15,30	8,900	.2 E 1,936,575.0	12. MANU		S DESIGNA	TION OF DRILL			\dashv
3. DRILLING AC	GENCY	1			Vibra	core					_
4. HOLE NO. (A	As shown on c	drawing title	e and		13. TOTA SAMP	L NO. OF OV LES TAKEN	FKRNKDEV	DISTURBED 1	: UNDIS	TURBED 0	
file number) 5. NAME OF DF	DILLED			SII-HDD-3	14. TOTA	_ NUMBER C	ORE BOXE	S	N/A		
P.Morton					15. WATE	R DEPTH			-47.5		_
6. DIRECTION					16. DATE	HOLE	STA	ARTED 9/29/2012	COMPLET 9/29	ы 9/2012	
		NCLINED		DEG. FROM VERT	17. ELEV	ATION TOP C	OF HOLE		7.5		1
7. Penetration, f	ft 			7.0		CORE REC	OVERY FO	R BORING		34.5 9	%
Recovery, ft Total Recove	r) 0/-			34.5	19. GEOL	OGIST		P.Morton			
				CLASSIFICATION OF MATERIAL	S	% CORE	BOX OR		REMARKS		\dashv
ELEVATION	DEPTH b	LEGEND c		(Description)	1	RECOV- ERY e	SAMPLE NO. f	(Drilling t weather	ime, water loss, ing, etc., if signif	depth ïcant)	
-47.5	0.0		Dark o	grey silty-sand with pieces of g	ravel	100	BS1	Bagged Sampl	le (0-2.4')		+
-77.5			(2" roi	grey sirty-sand with pieces or g und) near the bottom of the uni	t	100	0.0 2.4	Bagged Sampl	(U Z. T)		
											\vdash
											F
	-										\vdash
											F
-49.9	2.4										\vdash
-43.3	2.4										
											\vdash
						0.0					F
	_										+
											F
1	_										\perp
											E
		111									-
											\vdash
											\vdash
											\vdash
											F
											-
											\vdash
											-
											\vdash


Hole No. SII-HDD-3A


DRILLI	NG LOG		ISION	INSTALLA		Cabla Da	TIOIE NO	SHEET	1	
1. PROJECT			IDR CHPE		AND TYPE OF		oute Survey 3.5 in	OF 1	SHEET	S
CHPE							OWN (TBM or MSL)			\dashv
2. LOCATION (0 HUDSON			8,983.5 E 1,936,602.6	NAVE	880		TION OF DRILL			\perp
3. DRILLING AG	SENCY			Vibra	core					
AOSS 4. HOLE NO. (A	s shown on di	rawing title			L NO. OF OV LES TAKEN	ERBURDEN	DISTURBED :	UNDISTL	IRBED 0	
file number) 5. NAME OF DR	שווירס		SII-HDD-3A	14. TOTA	NUMBER C	ORE BOXE	s N/A			
P.Morton	KILLER			15. WATE	R DEPTH		-45.3			
6. DIRECTION (OF HOLE			16. DATE	HOLE	STA	ARTED COI 10/30/2012	MPLETED 10/30		
∨ERTICA	AL IN	CLINED	DEG. FROM VERT.	17 ELE\//	ATION TOP C	: : :	-45.3	10/30/	2012	\dashv
7. Penetration, f	t		7.6		CORE REC				88.5 %	-/0
8. Recovery, ft			6.7	19. GEOL					00.5	Ť
9. Total Recover	ry, %		88.5				P.Morton			
ELEVATION a -45.3	DEPTH L	.EGEND	CLASSIFICATION OF MATERIALS (Description) d	3	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMAR (Drilling time, wate weathering, etc., g	er loss, de	epth ant)	
-48.5	3.2		Shell Layer (@ 3.2') Dark grey, low-plasticity clay		100	BS2 3.2 6.7	Bagged Sample (3.2-6	;.7')		
-52.0	6.7									E
-5∠.0	0.7									F
										-
	_									
							⋄.			\vdash
					19					
	_									\vdash
	_									-
			THE STATE OF THE S					management and a		


Hole No. SIL-HDD-3B

							HOIE NO. SII-HUU-3B	_		
DRILLI	NG LOG		VISION HDR CHPE	INSTALLATION SHEET 1 MRS Phase 2 Cable Route Survey OF 1 SHEETS						
1. PROJECT		<u> </u>			AND TYPE OF		3.5 in	1		
CHPE							DWN (TBM or MSL)	1		
2. LOCATION (0 HUDSON	Coordinates or St.	ation) 5,30	08,713.9 E 1,936,524.7	NAVE	880		TION OF DRILL	-		
3. DRILLING AC		,		Vibra	core					
	As shown on draw	ving titl		13. TOTAL SAMP	_ NO. OF OV LES TAKEN	EKBUKDEN	2 0			
5. NAME OF DE	DILLED		SII-HDD-3B	14. TOTAI	NUMBER C	ORE BOXE	s N/A			
P.Morton	VILLEIX			15. WATE	R DEPTH		-53.9			
6. DIRECTION	OF HOLE			16. DATE	HOLE	: ST/	ARTED : COMPLETED			
∨ERTICA	AL INCL	INED	DEG. FROM VERT.		ATION TOP C	E HOLE	9/29/2012 9/29/2012 -53.9	1		
7. Penetration, f	t		6.4		CORE REC			1		
8. Recovery, ft			3.4	19. GEOL				1		
9. Total Recove	ry, %		53.0		- A - O - O - O - O - O - O - O - O - O		S.Ebersole	1		
ELEVATION a		SEND c	CLASSIFICATION OF MATERIALS (Description) d	3	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)			
-53.9	0.0		Brown fine-grained to medium-grained	d .	100	BS1	Bagged Sample (0-1.0')			
			silty-sands (tree fragments common)			0.0 1.0	@0.0' Tor=N/A Pen=N/A	F		
						d , v		H		
-54.9	1.0						@1.0' Tor=.50 T/sq.ft Pen=.08 T/sq.ft			
	-		Dark grey to black silty-sand (fine-grai medium-grain) with common organics		100	BS2 1.0	Bagged Sample (1.0-3.4')	F		
			high silt component (tree fragments co	ommon)		3.4		F		
							@2.0' Tor=.40 T/sq.ft Pen=1.25 T/sq.ft	-		
								H		
_ 10										
							@3.0' Tor=.30 T/sq.ft Pen=1.00 T/sq.ft	\vdash		
-57.3	3.4							L		
	-							F		
П					9,					
								F		
7	_				× =			H		
1						1.0				
								F		
			* .							
								\vdash		
					-					
					== "			-		
								-		
					2					
								L		
								F		
	-							-		
								F		
								-		
								L		

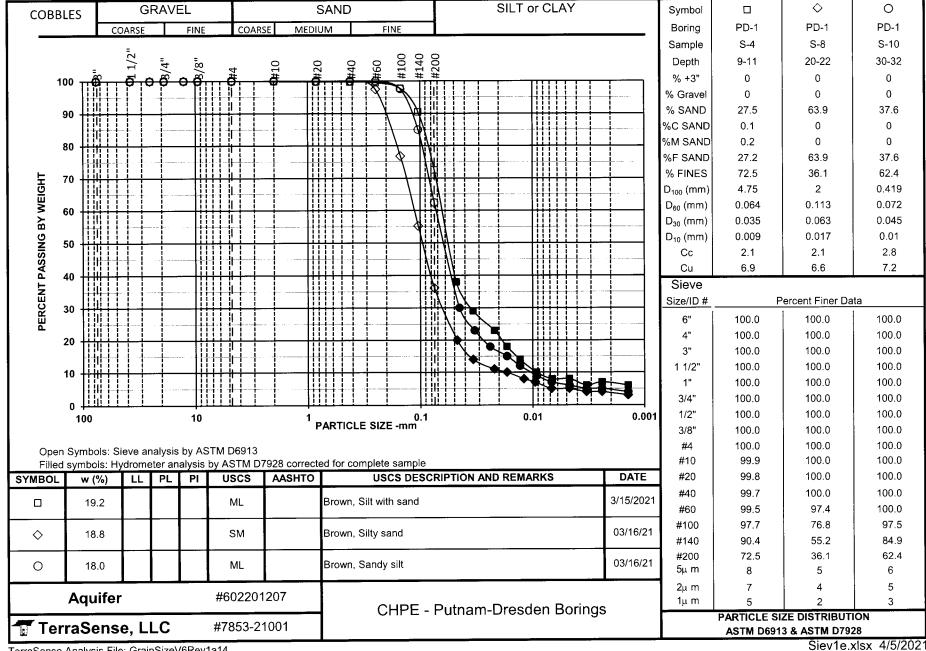
CHPE - LAKE CHAMPLAIN CABLE ROUTE ADJUSTMENT

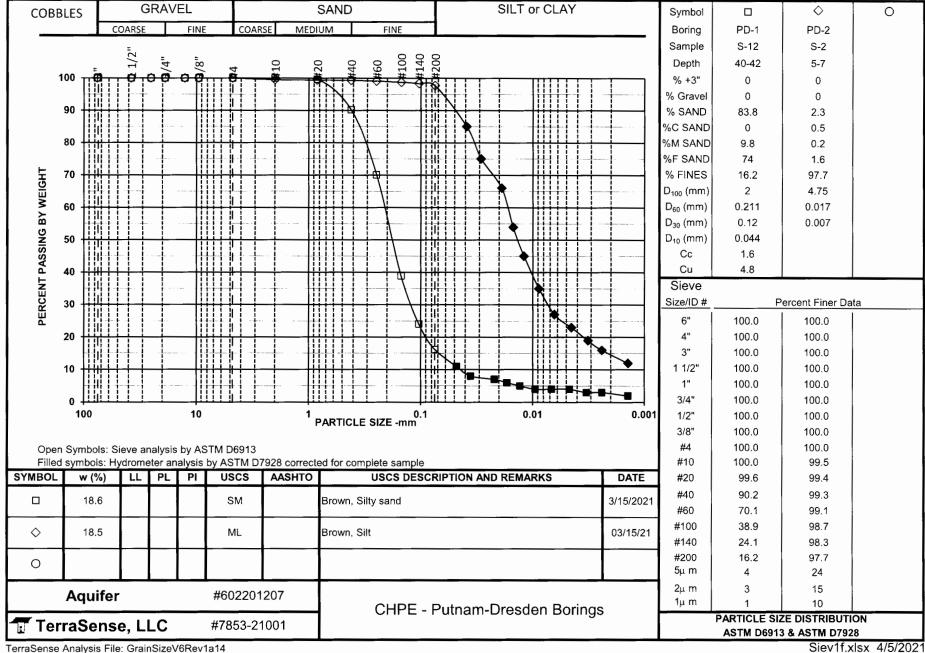
Table 1-1: Summary of Test Borings Putnam to Dresden Segment (PD)

Boring No.	Approx. Mile Post	Total Depth of Boring (ft.)	Predominant Soil Type (0'- 16')	Depth to Top of Bedrock (ft)	Type of Rock	Remarks	Depth to Water (ft.)	Northing (2)	Easting (2)	Top of Boring Elevation (1)
PD-1	0.19	60	FINE SAND	-	-	HDD to Lake Champlain	5	1787808.9	789619.3	105.7
PD-2	0.76	16.3	FINE SAND	6.3	SANDSTONE	-	2.5	1786326.7	787486.3	243.4
PD-3	1.37	17	CLAYEY SILT	(4)	7=7	-	No water observed	1784498.2	785906.2	335.1
PD-4	1.95	14.6	CLAY	14.6	SANDSTONE		No water observed	1784080.3	782956.5	365.7
PD-5	2.36	16	CLAYEY SILT	11	SANDSTONE	-	No water observed	1782925.2	781099.0	387.5
PD-6	2.87	17	SILTY CLAY		-	-	No water observed	1782539.0	778649.3	299.7
PD-7A	2.99	50	SILT & CLAY	-	-	HDD under Mill Creek	15	1782960.9	778149.9	269.5
PD-7	3.03	50	CLAYEY SILT	848	190	IVIIII Creek	20	1783019.4	778020.6	266.4
PD-8	3.50	17	SILT & CLAY	-	_	1.0	No water observed	1782042.5	776254.4	286.1
PD-9	4.06	17	CLAY	-	*	-	No water observed	1779444.6	774945.9	301.5
PD-10	4.60	15.25	SAND & GRAVEL, WITH BOULDERS		7-	-	No water observed	1776880.3	773692.7	428.9

PRICE PRIC		BORING CO	NTRACTOR:											SHEET 1 OF 3					
Solid Short Share		ADT					4				A 4	1			PROJECT NAME: CHPE -				
Solid Short Share		DRILLER:			1		L	1=	!C		М				PROJECT NO.: 60323056				
Continue Marie M		Chris Chaillo	u								, , , ,				HOLE NO.: PD-1				
Column C		SOILS ENGI	NEER/GEOLOGIST:	:											START DATE: 12/23/2020				
State Stat		Chris French							BORIN	G LOG		_			FINISH DATE: 12/23/2020				
Valeral of Springers Valeral of Springers		LOCATION:	MP 0.19 (Washingt	on Count	y Rt. 3)						,				OFFSET: N/A				
Marine M	GROU	IND WATER	OBSERVATIONS		ļ		CAS	ING					CORE E	BARREL	DRILL RIG: Geoprobe 7822 DT				
State		Water at 5' (in	nferred)		TYPE		Flush Jo	int Steel	1		1				BORING TYPE: SPT				
Stands					SIZE I.C).	4	"	2	1.5"					BORING O.D.: 4.5"				
Decoming Company Com					1				†		3.7	7/8 "							
RATE		000000			T		1		 										
Minuffice From 1					+		30)"] 3	30"	N	uscs	STRAT	Ι	JLATTIODE:				
1	P T		FROM - TO	AND	1	l					1	1	CHNG.		FIELD IDENTIFICATION OF SOILS				
					<u> </u>							SP							
State	1.0																		
State 10 15 15 15 15 15 15 15	2.0										1								
TR-1, (3.0-5.07) TR-1, (3.0-]	SP		1.5'-5'; L	t Br fine SAND, some silt, trace sub rounded gravel				
Sample S	3.0		3'-5'	S-1	-	-	 		ļ		-								
Mathematical Registration Mathematical Registration	4.0						<u> </u>		 					118-1, (3	.0 -5.0)				
Mathematical Registration Mathematical Registration]								
6.0	5.0		E! 7!		24"	C#	WOLUST	1	(1.5"	1	-	CM		Light Br	own fine SAND, some silt, yen, loose, saturated				
Sample S	6.0		5-7 5-2 24 6 WON/3 1/15 2 - SWI										Ligin Di	371 Hills 27 H.D., 331110 dill, 737, 13333, 331413433					
Sample S							ļ												
8.0	7.0		71.01		0.411	4011	<u> </u>					044		Gray fin	o SAND, come cilt yeny loose caturated, mild				
March Marc	8.0		7'-9'	5-3	24"	18	4		2	<u>.</u>	1 3	SM							
Mathematical Properties Section																			
10	9.0													Gray Br	own fine SAND little cilt leace maiet				
11 13 13 14 14 14 14 14	10.0		9-11	3-4		10	2	3	l °	10	°	SPISIVI		Oray Br	own line OAND, little six, 10035, 11031				
11 1 1 1 1 1 1 1 1													SAN						
12.0	11.0		14! 12!	0.5	24"	24"	10	10	17	17	10			Brown f	ine SAND trace silt slight netroleum odor medium				
14.0 13'-15'	12.0		11-13	3-3	24	24	10	10	17	17	- 10	J SP			3 .				
14.0 13'-15'																			
14.0	13.0		13/ 15/		24"	24"	 	12	10	22	20	, n		SAA TR	1-3: /14 0'-14 5'\				
15-17' S-7 24" 20" 19 32 22 18 35 SP	14.0		13-15	3-0	24		°	13	10	23	- 20	35		0,74,111	(14.0 - 14.0)				
15-17' S-7 24" 20" 19 32 22 18 35 SP																			
16.0	15.0		451 471	0.7	24"	00"	10	20	20	40	200	00		Brown f	ing SAND trace silt your slight netroleum oder				
17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 20.0 19.0 19.0 20.0 20.0	16.0		15-1/	3-1	24	20	19	32	22	18	35	35							
18.0 19.0 20.0 NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples Rings dimensions = 2-1/2* O D. by 2-7/16* 1D. by 6* length. (2) Correction factor: Noorr=N*(2.0²-1.375²)n.:(3.0²-2.4²)in.: = N*06.5: Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S = SPLIT SPOON U=SHELBY TUBE R=ROCK CORE									.	1]								
19.0 20.0 NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2* O D. by 2-7/16* 1D. by 6* length. (2) Correction factor: Noorr=N*(2.0²-1 375²)in.i(3.0²-2.4²)in. = N*0 65: Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S = SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	17.0					-	ļ		 	 	-								
NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples Rings dimensions = 2-1/2* O D. by 2-7/16* 1D. by 6" length. (2) Correction factor: Ncorr=N*(2.0²-1.375²)in./(3.0²-2.4²)in. = N*0 65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S = SPLIT SPOON U=SHELBY TUBE R=ROCK CORE The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.	18.0						1			 	1								
NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples Rings dimensions = 2-1/2* O D. by 2-7/16* 1D. by 6" length. (2) Correction factor: Ncorr=N*(2.0²-1.375²)in./(3.0²-2.4²)in. = N*0 65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S = SPLIT SPOON U=SHELBY TUBE R=ROCK CORE The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.												1							
NOTES: (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" 1.D. by 6" length. (2) Correction factor: Ncorr=N*(2.0²-1.375²)in./(3.0²-2.4²)in. = N*0.65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.	19.0				<u> </u>		ļ			ļ	-								
(1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2* O.D. by 2-7/16* 1.D. by 6" length. (2) Correction factor: Ncorr=N*(2.0²-1.375²)in.i(3.0²-2.4²)in. = N*0.65. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE	20.0													İ					
(2) Correction factor: NcorreN*(2.0²-1 375²)in.i.(3.0²-2.4²)in. = N*0 65 agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log. Soil description represents a field identification after D.M. Burmister unless otherwise noted. SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE														rmation contained on this log is not warranted					
	(2) Correction factor: Ncorr=N*(2.0²-1.375²)in./(3.0²-2.4²)in. = N*0.65 agrees if he fit to those Soil description represents a field identification after D.M. Burmister unless otherwise noted.												agrees	that he will make no claims against AECOM ds that the actual conditions do not conform					
PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35-50%	SAMP										K CORE								
	PROP	ORTIONS:		TRACE	=1-10%		LITTLE=1	0-20%		SOME=	20-35%		AND=3	5-50%					

	BORING CO	NTRACTOR:												SHEET 2 OF 3	
	ADT					1	_							PROJECT NAME: CHPE -	
	DRILLER:					L	△\=	•{	O	M				PROJECT NO.: 60323056	
	Chris Chaillo	u								# V I				HOLE NO.: PD-1	
	SOILS ENG	NEER/Geologist:												START DATE: 12/23/2020	
	Chris French							BORIN	G LOG					FINISH DATE: 12/23/2020	
Ĺ.,	LOCATION:	MP 0.19 (Washingt	on Count	y Rt. 3)										OFFSET: N/A	
D E	CORING	DEPTHS	TYPE	PEN.	REC.					N	USCS	1			
Р	RATE	FROM - TO	AND	in	in	l		n ON SAN		Corr.	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS	
T H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	DESIGN.	ATION)			DEPIN			
		20'-22'	S-8	24"	18"	16	27	25	16	34	SP		SAA TE	R-4; (21.0'-21.5')	
21.0										}					
22.0										ł					
22.0															
23.0									ļ]					
24.0										-					
24.0									<u> </u>	1					
25.0															
200		25'-27'	S-9	24"	14"	12	15	12	18	18	SP/SM		Br t-m S dense,	SAND, little silt, occasional silty clay lenses, medium moist	
26.0										-	İ				
27.0]					
28.0															
20.0										-					
29.0															
30.0							-			-					
30.0		30'-32'	S-10	24"	18"	7	18	19	19	24	SP/SM		Br fine	SAND, little silt, medium dense, moist	
31.0															
32.0															
02.0]		SAND			
33.0								ļ]		S S			
34.0								<u> </u>				ļ			
]					
35.0		051071							10		00/014		SAA		
36.0		35'-37'	S-11	24"	20"	20	21	20	19	27	SP/SM		574		
37.0							ļ		ļ						
38.0															
									ļ <u>.</u>]					
39.0				ļ			-			1					
40.0										1					
1		40'-42'	S-12	24"	14"	14	17	20	21	24	SP/SM		Br f-m \$ (41.0'-4	SAND, little silt, medium dense, moist-wet, TR-5;	
41.0			 		<u> </u>		-	<u> </u>		1			1,71.0-4	,	
42.0			<u> </u>							1	1				
				[
43.0			-				-			1					
44.0								<u> </u>		1					
	•]		ŀ			
45.0	NOTES:					l						<u> </u>	The inf	ormation contained on this los is not warranted	
	NOTES:												1	ormation contained on this log is not warranted with actual subsurface condition. The contractor	
														that he will make no claims against AECOM	
	Soil descripti	on represents a field	identifica	tion after	D.M. Rue	nister unle	ss otherw	ise noted						nds that the actual conditions do not conform e indicated by this log.	
SAMPI	LE TYPE:	oprocento a neto		IT SPOON U=SHELBY TUBE R=ROCK CORE						to those indicated by this log.					
	ORTIONS:			RACE=1-10% LITTLE=10-20% SOME=20-35%								AND=35-50%			


	BORING CO	NTRACTOR:												SHEET 3 OF 3
	ADT					4	_							PROJECT NAME: CHPE -
	DRILLER:]			— <i>L</i>		O	M				PROJECT NO.: 60323056
	Chris Chaillo	и												HOLE NO.: PD-1
	SOILS ENGI	NEER:		1										START DATE: 12/23/2020
	Chris French							BORIN	G LOG					FINISH DATE: 12/23/2020
	LOCATION:	MP 0.19 (Washingt	on Count	y Rt. 3)										OFFSET: N/A
D E	CORING	DEPTHS	TYPE	PEN.	REC.					N	uscs	STRAT.		
Р	RATE	FROM - TO	AND	in	in			n ON SAM		Corr.	CLASS.	l .		FIELD IDENTIFICATION OF SOILS
H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	DESIGN	ATION)			DEPTH		
H		45'-47'	S-13	24"	16"	12	19	19	19	25	SP/SM		Br f-m S	SAND, little silt, medium dense, moist
46.0														
47.0														
48.0			<u> </u>	<u> </u>	<u> </u>			ļ						
49.0														
50.0								ļ						
55.5		50'-52'	S-14	24"	15"	14	21	20	23	27	SP/SM		Br fine	SAND, little silt, medium dense, moist
51.0														
500			ļ <u></u>											
52.0			<u> </u>	-								9		
53.0												SAND		
l														
54.0														
55.0														
		55'-57'	S-15	24"	16"	14	20	25	25	29	SP/SM		Br f-m S	SAND, little silt, medium dense, moist
56.0			-					ļ						
57.0														
58.0													D. ((CANID little sill dense maint TD 6, (50.0) 50.5%
59.0		58'-60'	S-16	24"	18"	20	36	34	38	46	SP/SM		Dr I-II) 3	SAND, little silt, dense, moist, TR-6; (59.0'-59.5')
33.0														
60.0														
61.0			ļ	ļ									Boring I	terminated at 60' then grouted to surface.
01.0														
62.0														
63.0			-											
64.0														
05.0			ļ					ļ						
65.0						<u></u> .		 					}	
66.0				<u> </u>				 	 				}	
			ļ										l	
67.0			-		ļ		ļ	ļ	ļ					
68.0								 -						
69.0														
70.0									-					
F 3.3	NOTES:	ı	I	I	·	l	L	1	I	·	1	<u> </u>	The info	ormation contained on this log is not warranted
													to show	the actual subsurface condition. The contractor
1													1	that he will make no claims against DMJM Harris
	Soil description	on represents a field	identifica	tion after	D.M. Burn	nister unles	s otherw	ise noted					1	A if he finds that the actual conditions do not n to those indicated by this log.
-	E TYPE:	ropi ocenia a nela		T SPOON		U=SHELB			R=ROC	CORE			1001110111	a stock managed by this log.
	ORTIONS:		TRACE=			LITTLE=1			SOME=2			AND=35	5-50%	


Aquifer #602201207 CHPE - Putnam-Dresden Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH		IDENTIFICATION TESTS				REMARKS		
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	
							(1)	NO. 200	2 μm	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	
PD-1	S-4	9-11	19.2				MĹ	72.5	7	
PD-1	S-8	20-22	18.8				SM	36.1	4	
PD-1	S-10	30-32	18.0				ML	62.4	5	
PD-1	S-12	40-42	18.6				SM	16.2	3	
PD-2	S-2	5-7	18.5				ML	97.7	15	
PD-4	S-2	5-7	42.2	81	30	51	CH	88	74	
PD-4	S-3	7-9	37.8	72	24	48	CH	94.3	75	
PD-4	S-5	11-13	33.1	60	21	39	T	87	47	
PD-5	S-3	7-9	7.2	12	12	NP	SM	40	8	
PD-7	S-4	9-11	34.4	59	20	39	H	99.7	55	
PD-7	S-8	20-22	68.4	50	19	31	ОН	100	70	
PD-7	S-10	30-32	37.3	63	20	43	ОН	100	70	
PD-7	S-12	40-42	61.7	70	22	48	ОН	100	72	
PD-9	S-1	5-7	30.7	70	23	47	CH	99.9	80	
PD-9	S-3	9-11	44.0	66	23	43	СН	100	79	
PD-9	S-5	13-15	43.8	75	24	51	СН	100	92	
PD-10	S-1	6-8	8.5				GW	4	1	
PD-10	S-2	8-10	8.7				SM	38	5	
PD-13	S-1	5-7	4.2				SM	37	9	
PD-13	S-2	7-8	4.6				SM	36	9	
PD-14	S-1	5-7	24.1				ML	92.8	7	
PD-14	S-3	9-11	24.2				ML	77	5	
PD-14	S-5	13-15	22.7				ML	84.7	4	
									hera limits ren	L

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: GET Date: 4/5/2021 TerraSense, LLC 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21001 File: Indx1.xlsx Page 1 of 1

Appendix V – Time of Year Narrative for HDD

HDD: In-water work to establish steel conductor casing riser pipe

Condition 11 of the New York State Public Service Commission (NYSPSC) 401 Water Quality Certification (attached) states "The following in-water activities may be undertaken at any time: physical, biological, geotechnical and cultural resource sampling, surveying and testing, marine surveys, mobilization and demobilization of vessels and equipment used for cable installation and cofferdam construction; cofferdam and steel casing rise pipe construction; dredging of cofferdams provided that the walls of the cofferdam extend above mean high water during dredging; HDD associated with either of the two foregoing items; post-installation surveys and sampling; locating and marking utility crossings and work to effect utility crossings; and, with prior notice to the DPS, the New York State Department of Environmental Conservation ("NYSDEC"), and the New York State Department of Health ("NYSDOH") emergency maintenance work."

US Army Corps of Engineers Permit NAN-2009-01089 Special Condition R states "All regulated work shall be performed in accordance with dated permit drawings, the attached New York State-issued Section 401 of the Clean Water Act Water Quality Certificate dated 18 January 2013; and Special Conditions (A) through (OO) below which are all hereby made part of this permit."

Based on the above, steel casing rise pipe construction and the HDD associated with same can be undertaken at any time. This is consistent with Article VII BMP Section 26.2 which includes the statement "All in-water work will be conducted within the construction windows specified in the Certificate Conditions and the Water Quality Certificate."

Segment	Water Body	Mile Post (referenced to 2012 route)	HDD Site	Art VII CC93 Work in Water Window	Army Corps of Engineers Permit Work in Water Window	Planned Start of Construction	Planned Completion
Segment 7	Lower Lake Champlain	MP 73-101	Putnam Station	9/1 to 12/31	Null	4/29/2023	7/8/2023
Segment 9	Upper Hudson	MP 230-269	Cementon	8/1 to 10/15	7/1 to 1/14	6/11/2023*	9/5/2023
Segment 10	Mid-Upper Hudson	MP 269-296	Stony Point	9/15 to 11/30	7/1 to 1/14	7/8/2023	10/28/2023
Segment 11	Lower Hudson	MP 305-324	Congers	7/1 to 10/31	7/1 to 1/14	9/5/2023	12/23/2023

^{*} Land work to commence. HDD not to cross water line until 7/1.

NEW YORK STATE PUBLIC SERVICE COMMISSION 401 WATER QUALITY CERTIFICATION

Pursuant to: Section 401 of the Federal Water Pollution Control Act, 33

U.S.C. § 1341, and Article VII of the New York Public

Service Law

Certification Issued to: Champlain Hudson Power Express, Inc.

CHPE Properties, Inc. Pieter Schuyler Bldg.

600 Broadway

Albany, New York 12207

Location of Facility

Champlain Hudson Power Express, Inc. and CHPE Properties, Inc. (collectively, "CHPE") proposes to construct, operate, and maintain a new 1,000 megawatt ("MW") high-voltage direct current ("HVDC") underwater/underground electric transmission facility ("HVDC Transmission System"). The HVDC Transmission System will interconnect with the transmission system of Hydro Quebec and will run from the Canadian border east of the Town of Champlain, New York to Astoria, Queens, New The approximately three hundred thirty two (332) mile HVDC York ("Astoria"). Transmission System will connect with an HVDC converter station at Astoria to be owned by CHPE. From the converter station will be connected by an underground 345 kV HVAC circuit to a gas insulated switchgear substation owned or to be owned by the New York Power Authority on property owned by the Consolidated Edison Company of New York, Inc. at Astoria. A 345 kV HVAC circuit will extend from the GIS Substation to Con Edison's 345 kV Rainey Substation located on the corner of 36th Avenue and Vernon Boulevard in Queens, New York (the "Astoria-Rainey Cable"). The HVDC Transmission System and the Astoria-Rainey Cable are referred to collectively herein as the "Facility." The details and justification for the Facility are contained in the administrative record in Case 10-T-0139.

Facility Description

The record in the proceeding on CHPE's application, as supplemented, for a Certificate of Environmental Compatibility and Public Need under Article VII of the New York Public Service Law ("PSL") has fulfilled the requirements necessary to determine whether the Facility will qualify for issuance of a Water Quality Certification ("Certification") pursuant to § 401 of the Clean Water Act (33 U.S.C. §§ 1251-1387). The Facility cables will be located primarily underwater within the lake- and riverbeds of New York waterways, including Lake Champlain and the Hudson, Harlem and East Rivers, with some segments of the Facility route being sited overland. Overland Facility segments will consist primarily of cable installations buried along: (a) existing railroad rights-of-way; and (b) existing roadway rights-of-way. In addition, to cross the Hudson

River at Fort Edward, the Mohawk River at Schenectady and Catskill Creek, the cables will be located in conduits to be attached to existing railroad bridge structures.

For the overland segments of the Facility, the cables will be buried via excavated trenches or Horizontal Directional Drilling ("HDD") methods. For underwater cable installation, the primary methods for installation will be jet plowing and/or shear plowing. Underwater cable installation techniques will vary based on a number of factors, including, but not limited to, sediment type, bathymetry, and existing infrastructure crossings.

Where the overland segments of the Facility route encounter streams and/or wetlands, the following methods may be used to minimize impacts: (a) flume crossing; (b) dam and pump; (c) HDD or Jack and Bore ("J&B"); and (d) open cut. The waterbody crossing methods are further described in the Facility's Best Management Practices documentation, which is used in the preparation of the Environmental Management and Construction Plan ("EM&CP"). Adherence to the EM&CP, required to be filed for approval by the New York State Public Service Commission ("Commission") as a condition of the Public Service Law Article VII Certificate of Environmental Compatibility and Public Need ("Article VII Certificate") in Case 10-T-0139, will serve to protect these resources.

Construction of the Facility will be in accordance with the Article VII Certificate and approved EM&CP.

Certification

The Commission hereby certifies, pursuant to § 401 of the Clean Water Act (33 U.S.C. § 1341(a)(1)) and Article VII of the PSL, that the Facility, as conditioned herein, complies with applicable requirements of §§ 301, 302, 303, 306 and 307 of the Clean Water Act as amended, and applicable New York State water quality standards, limitations, criteria, and other requirements set forth in 6 NYCRR § 608.9(a) and Parts 701 through 704, provided that all of the conditions listed herein are met. This Certification is issued in conjunction with the Article VII Certificate sought by CHPE in, and based on the record of, Case 10-T-0139.

Conditions

- 1. No in-water work shall commence until all pre-construction conditions related to such work contained in the Article VII Certificate and any Order approving the EM&CP for each affected Segment EM&CP have been met to the satisfaction of the New York State Department of Public Service ("DPS").
- Construction and operation of the Facility shall at all times be in conformance with: (a) the Application (as amended and supplemented) and Joint Proposal of Settlement filed in Case 10-T-0139 to the degree not superseded by the Article VII Certificate, (b) all conditions of approval contained in the Article VII

Certificate, (c) the EM&CP, and (d) all conditions incorporated in any Order approving the EM&CP in Case 10-T-0139, to the extent such documents referenced in (c) and (d) above pertain to CHPE's compliance with New York State Water Quality Standards necessary and appropriate for issuance of, and compliance with, this Certification.

- 3. CHPE shall provide a copy of this Certification to the United States Army Corps of Engineers ("USACE"), as well as a copy of the Application, Joint Proposal, Article VII Certificate (when issued) EM&CP and Order(s) approving the EM&CP (when issued) in Case 10-T-0139, so that the USACE will have a complete record of the conditions that apply hereto.
- 4. CHPE shall provide all construction contractors performing work on the Facility complete copies of this Certification, the Article VII Certificate, the approved EM&CP, and Orders(s) approving the EM&CP for each Facility segment.

Classified Streams and Wetland Crossings Installation

- 5. For overland installation, no site preparation work shall be undertaken until all required erosion control measures have been installed.
- 6. During overland cable installation in all waters of the State, including classified streams and wetlands, there shall be no visible increase in turbidity that causes a visible contrast to background conditions forty (40) feet downstream of the installed cable centerline.
- 7. CHPE shall employ measures sufficient to prevent contamination of the waters of the State by silt, sediment, fuels, drilling fluids, concrete, leachate or any other pollutant associated with the installation of the Facility.
- 8. All in-stream work, as well as any work that may result in the suspension of sediments, is prohibited in all streams designated as "C(T)" and "C(TS)" streams during the trout spawning and incubation period commencing October 1 and ending May 31st.
- 9. Any debris or excess materials caused by the construction of the Facility shall be immediately and completely removed from the bed and banks of all water areas and transported to an appropriate upland area for disposal.

Lake and River Installation

10. Underwater construction in Lake Champlain and the Hudson, Harlem and East Rivers (including jet-plow and shear-plow trials) and pre-installation route clearing activities (including pre-lay grapnel run and associated obstruction and debris removal) shall occur within the construction windows set forth in Table 1 in the Article VII Certificate.

- 11. The following in-water activities may be undertaken at any time: physical, biological, geotechnical and cultural resource sampling, surveying and testing; marine surveys, mobilization and demobilization of vessels and equipment used for cable installation and cofferdam construction; cofferdam and steel casing rise pipe construction; dredging of cofferdams provided that the walls of the cofferdam extend above mean high water during dredging; HDD associated with either of the two foregoing items; post-installation surveys and sampling; locating and marking utility crossings and work to effect utility crossings; and, with prior notice to the DPS, the New York State Department of Environmental Conservation ("NYSDEC"), and the New York State Department of Health ("NYSDOH") emergency maintenance work.
- 12. During the jet plow and shear plow trials and underwater cable installation, CHPE shall implement the Suspended Sediment/Water Quality Monitoring Plan (hereinafter the "Water Quality Monitoring Plan"), to be developed pursuant to the approved Suspended Sediment / Water Quality Monitoring Plan Scope of Study included as Attachment 1 to the Article VII Certificate. CHPE shall operate the jet plow and shear plow in accordance with the operating conditions determined through the jet plow and shear plow trials described in the Water Quality Monitoring Plan to minimize suspension of *in situ* sediment, subject to the limitation of Condition 14(c), below.
- If the jet plow trials demonstrate that the preferred operating conditions result in real-time, total suspended solids ("TSS") concentrations, measured five hundred (500) feet down-current of the jet plow, exceeding the TSS concentrations at an up-current background station by more than two hundred (200) milligrams per liter ("mg/L"), CHPE shall report such conditions to the Aquatic Inspector and work with DPS and NYSDEC to evaluate and implement modifications to the plow operating conditions to further reduce in-situ sediment suspension associated with the single pass installation procedure. If the shear plow trials demonstrate that the preferred operating conditions result in real-time TSS concentrations, measured five hundred (500) feet down-current of the shearplow in the southern portion of Lake Champlain (south of Crown Point). exceeding the TSS concentrations at an up-current background station by more than one hundred (100) mg/L, CHPE shall report such conditions to the Aquatic Inspector and work with DPS and NYSDEC to evaluate and implement modifications to the plow operating conditions to further reduce in-situ sediment suspension associated with the single pass installation procedure. CHPE shall not utilize the jet plow or shear plow until they have demonstrated to the satisfaction of DPS staff their ability to achieve the TSS standards established herein through test trials.

14. Water Quality

a. During jet plow and shear plow cable installation, CHPE shall sample and

measure turbidity (in units of Nephelometric Turbidity Units ("NTU")), TSS, hardness, and the concentrations of the chemical constituents identified in the table provided in Condition 14(d) below, within the water column of Lake Champlain and the Hudson, Harlem and East Rivers outside the effects of the installation event (the up-current background station) and down-current of the operating jet plow and shear plow described in the Water Quality Monitoring Plan. Up-current samples shall be collected at a location five hundred (500) feet up-current of the cable installation outside the effect of the jet plowing and shear plowing. Down-current samples shall be collected five hundred (500) feet down-current of the jet plow and shear plow. Samples shall be collected at near-surface, mid-depth, and near-bottom at each sampling location. Measured levels of metals shall be reported both as totals and as dissolved fractions, except mercury, which shall be reported as total mercury.

- b. Suspended sediment plume monitoring and water quality monitoring shall be conducted at the locations and frequency set forth in the Water Quality Monitoring Plan.
- c. If, during underwater cable installation, TSS concentrations monitored or measured at five hundred (500) feet down-current of the installation exceed TSS concentrations at an up-current background station by more than two hundred (200) mg/L or more than one hundred (100) mg/L in the southern portion of Lake Champlain (south of Crown Point), the Aquatic Inspector shall be immediately notified. CHPE also must attempt to notify the NYSDEC and DPS within twenty four (24) hours of any such TSS exceedance. CHPE shall immediately employ one or more of the following environmental protection measures: changing the rate of advancement of the jet plow or shear plow, modifying hydraulic pressures, or implementing other reasonable operational controls that may reduce suspension of in-situ sediments. If CHPE proposes to employ mitigation measures not otherwise provided for in this paragraph, they must first consult with the DPS, NYSDEC, and the Aquatic Inspector. In the event that DPS determines that the mitigation techniques are unable to reduce TSS concentrations below the maximum allowable threshold, underwater cable installation shall be suspended and CHPE shall consult with DPS and NYSDEC regarding alternative cable installation techniques. Nothing in this subsection is intended to require that cable installation methods be modified to prevent burial of the cables in a single trench to the depths specified in the Article VII Certificate through a single installation pass.
- d. During underwater cable installation, the concentrations of the chemical constituents listed below (Table 1), as measured in the samples collected five hundred (500) feet down-current of the cable installation activities, shall not exceed the greater of: (A) the levels set forth below or (B) 1.3 times the highest ambient background level measured during the prior twenty four

(24) -hour sampling period up-current of the installation at the same depth as the down-current sample.

Table 1. Underwater Cable Installation Water Quality Standards

Route Mile	Water Body Class	Contaminant	Standard	Unit	Metho d	Reporting Limit	
0-73.5	AA	Dissolved Arsenic	340	ug/l	EPA 200.7	10	
		Dissolved Copper	calculate using measured hardness and (0.96) exp(0.9422 [ln (ppm hardness)] - 1.7)	ug/l	EPA 200.7	2	
		Dissolved Zinc	calculate using measured hardness and 0.978 exp(0.8473 [ln(ppm hardness)] + 0.884)	ug/l	EPA 200.7	2	
		Dissolved Arsenic	340	ug/l	EPA 200.7	10	
73.5- 101.7	В	Dissolved Copper	calculate using measured hardness and (0.96) exp(0.9422 [ln (ppm hardness)] - 1.7)	ug/l	EPA 200.7	0.1*	
			Dissolved Zinc	calculate using measured hardness and 0.978 exp(0.8473 [ln(ppm hardness)] + 0.884)	ug/l	EPA 200.7	2
	A	Phenanthrene*	45	ug/l	EPA 8270C	0.02	
			Dissolved Cadmium	5	ug/l	EPA 200.7	0.02*
228.5-		Dissolved Copper	200	ug/l	EPA 200.7	0.1*	
272.3		A	Dissolved Lead	50	ug/l	EPA 200.7	0.02*
		Total Mercury	0.7	ug/l	EPA 1669	0.001	
		Total PCBs	0.09	ug/l	EPA 8082	0.005*	
272.3- 290.3	В	Dissolved Arsenic	. 340	ug/l	EPA 0.7	10	
		Dissolved Cadmium	calculate using measured hardness and (0.85) exp(1.128 [ln (ppm hardness)] - 3.6867)	ug/l	EPA 200.7	0.02*	
		Dissolved Copper	calculate based on measured hardness using (0.96) exp(0.9422 [ln (ppm hardness)] - 1.7)	ug/l	EPA 200.7	0.1*	

		Dissolved Lead	calculate using measured hardness and {1.46203 - [ln (hardness) (0.145712)]} exp (1.273 [ln (hardness)] - 1.052)	ug/l		0.02*
		Phenanthrene*	45	ug/l	EPA 8270C	0.02
		Dissolved Mercury	1.4	ug/l	EPA 1669	0.001
		Total PCBs	0.2 per aroclor	ug/l	EPA 8082	0.005*
		Dissolved Arsenic	63	ug/l	EPA 200.7	10
	SB	Dissolved Cadmium	7.7	ug/l	EPA 200.7	0.02*
290.3- 324.0		Dissolved Copper	7.9	ug/l	EPA 200.7	0.1*
		Dissolved Lead	204	ug/l	EPA 200.7	0.02*
		Phenanthrene*	14	ug/l	EPA 8270C	0.02
		Total Mercury	0.05***	ug/l	EPA 1669	0.001
		Total PCBs	0.2 per aroclor	ug/l	EPA 8082	0.005*
		Dissolved Arsenic	36	ug/l	EPA 200.7	10
324.1- 332.5	I	Dissolved Cadmium	7.7	ug/l	EPA 200.7	0.02*
		Dissolved Copper	7.9	ug/l	EPA 200.7	0.1*
		Dissolved Lead	204	ug/l	EPA 200.7	0.02*
		Phenanthrene*	14	ug/l	EPA 8270C	0.02
		Total Mercury	0.05***	ug/l	EPA 1669	0.001
		Total PCBs	0.2 per aroclor	ug/l	EPA 8082	0.005*

^{*} Assumes low level analysis, compared to standard level

- e. All water quality laboratory analyses required in this Certification must be conducted by a laboratory certified by the NYSDOH.
- f. If the compliance criteria described in clause 14(d) above are exceeded at any time during the installation, additional water quality sampling shall take place at the location of the exceedance as described in the Water Quality Monitoring Plan.

^{**} Phenanthrene will be used as an indicator for the total concentration of Polycyclic Aromatic Hydrocarbons (PAHs).

^{***} Standard based on General Level Currently Achievable described in TOGS 1.3.10.

- g. Hardness shall be measured in each water quality sample collected. The analytical results for hardness shall be applied to calculate the standards for dissolved copper, dissolved zinc, dissolved cadmium, and dissolved lead where necessary, as described in clause 14(d) above.
- 15. Changes in the Conditions of the Water Quality Certification, if proposed by the date on which the proposed Environmental Management and Construction Plan (EM&CP) is filed, shall be reviewed together with the proposed EM&CP. Changes in the Conditions of the Water Quality Certification shall be governed by Condition 158 of the Article VII Certificate governing changes to the approved EM&CP.
- 16. Nothing in this Certification shall limit either (i) the authority of the DEC to monitor the environmental and health impacts resulting from the construction and operation of the Facility and to enforce applicable provisions of the Environmental Conservation Law (including those which provide for summary abatement authority) and applicable implementing regulations governing the environmental and health impacts resulting from such construction and operation, or (ii) any defenses to such enforcement that CHPE may be able to assert under applicable law.

Certified by:

late

Floyd E. Barwig, Directo

Office of Energy Efficiency and the Environment New York State Department of Public Service

Three Empire State Plaza Albany, New York 12223 NYSDEC, the EPC Contractor, and others as deemed appropriate to discuss and review these measures including the location of the flagging of lupine and nectar patches of potential and occupied butterfly habitat. The flagging shall be maintained until construction has been completed and all disturbed areas have been restored to their final grade.

91. Within six (6) months after the commencement of commercial operations of the Facility, the Certificate Holders shall provide a ROW maintenance plan for the Facility ROW from Route Mile 145, south of Scout Road in the Town of Wilton, New York to Route Mile 180, north of County Line Road in the Town of Rotterdam, New York. This plan shall include but not be limited to methods of maintenance, access routes to the ROW, seasonal construction windows, and the education of all company employees and contractors regarding all measures to avoid occupied habitat associated with Karner blue butterfly and frosted elfin butterfly. The plan shall also provide requirements for notification of the DPS Staff and NYSDEC of any planned maintenance or repair work within, or in the vicinity of occupied habitat that requires excavation or ground disturbance.

N. Underwater Cable Installation

- 92. All of the terms and conditions of the WQC are incorporated by reference into this Certificate as though fully set out herein. Any changes to the WQC shall be governed by the provisions of Condition 158 of this Certificate.
- 93. Construction within navigable waters and pre-installation route clearing activities (prelay grapnel run and associated obstruction and debris removal) shall occur within the construction time frames set forth in Table 1 below. After consultation with DPS Staff, the New York State Department of State ("NYSDOS"), and NYSDEC, the Certificate

Holders may seek an appropriate modification of the time frames, either in the proposed EM&CP or subject to the provisions of Condition 158 of this Certificate.

<u>Table 1: Underwater Construction Windows in Lake Champlain,</u>
<u>The Hudson, Harlem, and East Rivers</u>

River Mile	Route Mile	Location	Construction Windows					
	Lake Champlain							
	0 to 73 US/Canada Border to Crown Poin		May 1 to August 31					
	73 to 101	Crown Point to Dresden	September 1 to December					
	73 10 101	Clowii Foliii to Diesdell	31					
	Hudson River, Harlem River, East River							
107-68	229 to 269	Cementon – New Hamburg	Aug 1 - Oct 15					
68-41	269 to 296	New Hamburg – Stony Point	Sep 15 - Nov 30					
41-33	296 to 303	Stony Point - Rockland Lake						
	290 10 303	State Park	OVERLAND					
33-14	303 to 324	Rockland Lake State Park –						
	303 10 324	Harlem River	Jul 1 - Oct 31					
all	324 to 330	Harlem River – East River	May 15 - Nov 30					

- 94. Commencement of in-river work within one (1) mile south of the designated Significant Coastal Fish and Wildlife Habitats ("SCFWHs") at Haverstraw Bay shall occur during the high, or flood, tide condition in order to avoid and/or minimize impacts from resuspended sediments to the SCFWH habitat of Haverstraw Bay.
- 95. The Certificate Holders shall use installation techniques for underwater cable installation activities that are appropriate for the prevailing substrate conditions.
 - a. Cable installation in the Hudson, Harlem, and East Rivers shall be designed and installed to meet the following criteria:
 - (i) Where the cables shall be located within the limits of the maintained