APPENDIX J: INADVERTENT RELEASE PLAN AND HDD DESIGN SUMMARY REPORT CASE 10-T-0139

March 23, 2023 File No. 322004-000

Kiewit Engineering (NY) Corporation 470 Chestnut Ridge Rd, 2nd Floor Woodcliff Lake, NJ 07677

Attention: Jason Neff, PE, PMP - Design Engineering Manager

Subject: HDD Design Summary Report

Champlain Hudson Power Express – Segment 5a

Rotterdam to Fuera Bush, NY

Dear Mr. Neff:

Brierley Associates Underground Engineers, PLLC (Brierley) is pleased to provide this HDD Design Summary Report for Segment 5a of the Champlain Hudson Power Express Project. This work was conducted in general accordance with our contract with Kiewit Engineering (NY) Corporation (Kiewit).

We thank you for this opportunity to be of service to you and your team on this project. Should you have any questions or require additional information, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

Brierley Associates Underground Engineers, PLLC

Nick Strater, P.G.

Much Other

Trenchless Design Manager

TABLE OF CONTENTS

1.0	Introduction	2
2.0	Project Description	3
3.0	Background	5
4.0	Surface Conditions	6
5.0	Below-grade Structures	15
5.1	Utilities	15
5.2	Foundations	15
6.0	Subsurface Conditions	16
7.0	HDD Process	21
8.0	Design Components	21
8.1	HDD Geometry	21
8.2	Annular Pressure Analysis	22
8.3	Conduit Material Selection	26
9.0	Construction Considerations	26
9.1	Subsurface Conditions	26
9.1	Steering Tools	27
9.1	Drill Fluid Pressure Monitoring	27
9.1	Conduit Laydown and Pullback	28
10.0	References	29

APPENDIX A: Geotechnical Data

APPENDIX B: HDD Calculations Per Crossing

1.0 Introduction

The Champlain Hudson Power Express (CHPE) project will install a pair of HVDC electrical transmission cables with an associated telecommunications line from Canada to New York City, NY. This work includes approximately 126 crossings under roads, railroads, wetlands, water bodies, and obstructions to be installed using horizontal directional drilling (HDD) methods to minimize interference with use or impacts to the surface environment. This Design Summary Report addresses the design for the HDD crossings in Package 5a which extends from Rotterdam to Fuera Bush. Package 5a includes a total of 23 crossings, which are summarized in Table 1, below.

Table 1: HDD Locations, Lengths, and Description

HDD #	Approx. Approx. Start End Station* Station*		Approx. HDD Length, ft	Obstruction Crossed	
71	50005+00	50024+14	1,905	Railroads (2), culvert	
72	50042+78	50048+32	554	Mariaville Road/Route 7 (elevated)	
73	50065+00	50070+26	522	Route 159/Duansburg Rd.	
73A,74	50100+15	50120+10	1,991	NYS Throughway (I-90)	
75	50145+80	50153+85	798	Route 158/Guildalard Rd	
75A.A	50168+45	50175+45	700	Stream, wetland	
75A	50210+60	50233+02	2,241	Stream, wetland	
75B	50290+65	50297+92	729	Stream, wetland	
76,76A	50306+80	50327+60	2,075	Railroad, Route 20, Pond	
77	50332+50	50346+30	1,380	Railroad	
78	50382+60	50402+20	1,958	Route 146	
79A	50409+75	50422+20	1,238	Railroad, Black Creek	

80	50442+95	50461+75	1,877	Railroad, Black Creek		
80A	50551+25	50571+85	2,060	Wetland		
81	50578+50	50588+85	1,029	Norfolk Southern Railroad		
82,83	5060-+05	50615+75	1,574	Vly Creek, Maple Ave.		
83A	50673+90	50681+02	702	Stream, Culvert		
84	50687+00	50697+95	1,086	New Scotland Rd/Route 85, Streams		
84A	50728+75	50739+05	1,028	Route 308/New Scotland Road, Stream		
84B	50777+55	50787+93	1,032	Game Farm Road, Stream		
85	50808+00	50823+55	1,555	Route 443, Stream		
87	50830+60	50842+60	1,215	Railroad		
87A.A	50890+60	50897+02	650	Culvert		

^{*}Project stationing shown and is approximate. Each HDD has its own independent stationing.

The purposes of this Design Summary Report are to provide the following:

- Review of the existing geological and geotechnical conditions for each HDD crossing.
- Provide a descriptive narrative of the HDD crossings in support of the design drawings and technical specifications.
- Present pipe stress and annular pressure analyses that support the proposed designs.
- Present construction considerations.

Available geotechnical data used to develop the HDD designs are contained in Appendix A. A calculation package for each HDD crossing is included in Appendix B.

2.0 Project Description

The proposed CHPE route follows the Hudson River Valley of New York. The new transmission line will be approximately 146 miles in length, extending from the south end of Lake Champlain to Astoria, NY. Package 5a is approximately 17 miles in plan length. Project location maps showing the locations of the HDD crossings associated with Package 5a are presented in Figures 1 and 2.

Figure 1 – Crossing Location Plan, HDD #71 through HDD #80. Photo from <u>www.googleearth.com</u>. Not to scale.

Figure 2 – Crossing Location Plan, HDD #80A through HDD #87A. Photo from <u>www.googleearth.com</u>. Not to scale.

3.0 Background

The underground construction of two HVDC electrical transmission cables is proposed to be housed in individual 10-inch-diameter plastic conduit spaced approximately 15 feet apart. A third, minimum 2-inch-diameter plastic conduit will be bundled with one of the 10-inch diameter conduits for a telecommunications line.

The proposal is to install the cable duct at least 25 feet below congested areas, roads, railroads, under/around other obstructions, 15 to 25 feet below wetlands, and 35 to 45 feet below open bodies of water using horizontal directional drilling (HDD) methods.

HDD is a widely used trenchless construction method to install pipe and conduits with limited disturbance to the ground around the bore alignment. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of impact to congested areas, existing above and underground obstructions, and to the adjacent water bodies and wetlands to the extent possible.

4.0 Surface Conditions

A brief description of the surface conditions at each HDD crossing follows. As noted, two parallel to subparallel HDD installations are involved in each case.

HDD #71

The HDD #71 alignments pass below Phillips Rd, two active rails operated by CSX, which are oriented approximately northwest-southeast, and a third, depressed rail operated by the Delaware & Hudson Railway Company (DHRC), which is oriented northeast-southwest. The DHRC rail passes below the CSX rails by means of box tunnel. In addition, HDD #71 passes below the Poentic Kill (stream), which is contained within a 15-ft box culvert, and Burdeck Street. The surrounding area is characterized by farmland and mixed industrial/commercial use.

The HDD entry (north) is located in Princetown Road; the HDD exit (south) is located in a wooded area to the southwest of the CSX rails. Surface grades in the crossing vicinity are variable and generally range from about El. 327 to El. 349. The CSX rails are located on an elevated embankment to the north, and are at-grade to the south. The surface grade of the DHRC rails is at about El. 320.

HDD #72

The HDD #72 alignments pass below Mariaville Road which is oriented approximately east-west, 50-ft wide, and located on an elevated embankment. Mariaville Road passes over two (2) active CSX rails to the immediate east by means of a concrete deck bridge. The western bridge abutment and roadway retaining walls are located to the immediate east and above the HDD alignments.

The HDD entry (northwest) is located in a landscaped area adjacent to and existing residential structure. The HDD exit (southeast) is located in a paved parking area behind the Schenectady County Dept. of Engineering and Public Works (single-story building). The CSX rails are located approximately at-grade to the east-northeast, and are oriented northwest-southeast. Portions of the HDD #72 alignments are located within the CSX right-of-way.

The surface grades in the site vicinity are relatively flat and range from about El. 346 to El. 348. The surface of Mariaville Road is at about El. 374.

HDD #73:

The HDD #73 alignments pass below Route 159/Duanesburg Road which is oriented approximately northeast-southwest, 50-ft wide, and located on an elevated, sloped embankment. Utility poles are located within the southeast side of the embankment. Route 159/Duanesburg Road passes over two (2) active CSX rails to the immediate east by means of a concrete deck bridge. The western bridge abutment is located to the immediate east of the HDD alignments.

The HDD entry (northwest) is located in a paved parking area behind a single-story commercial building. The HDD exit (southeast) is located in a paved parking area behind the Golub Corporation Facility (single-story commercial building). The CSX rails are located approximately at-grade to the east-northeast, and are oriented northwest-southeast. Portions of the HDD #73 alignments are located within the CSX right-of-way.

The surface grades in the site vicinity are relatively flat fat and range from about El. 333 to El. 336. The surface of Route 159/Duanesburg Road is at about El. 370.

HDD #73A,74

HDD #73A,74 pass below an overhead electric cable easement (Niagara Mohawk) which is oriented approximately northwest-south, and about 100-ft wide. Power poles are located to the west of the HDD alignments.

The HDD #73A,74 alignments also pass below Interstate I-90 which is oriented approximately southeast-northwest, 115-ft wide, and located on an elevated embankment. Interstate I-90 passes over two (2) active CSX rails to the immediate east by means of a concrete deck bridge. The western bridge abutment is located to the immediate east of the HDD alignments. The areas to the north of I-90 and adjacent to Niagara Mohawk easements are heavily wooded.

The HDD #73A,74 entry (southeast) is located in a paved cul-de-sac at the northeast end of S Westcott Rd. The HDD #73A,74 exit (northwest) is located in a wooded area to the northwest of the Niagara Mohawk easement. The CSX rails are located approximately at-grade to the east-northeast, and are oriented northwest-southeast. The CSX rails rest on an elevated embankment which is approximately 4 to 5 feet higher than adjacent grades. Portions of the HDD #73A,74 alignments are located within the CSX right-of-way.

The surface grades in the site vicinity generally slope downward to the south, from about El. 326 to El. 314. The surface of I-90 is at about El. 350.

HDD #75:

The HDD #75 alignments pass below Route 158/Guilderland Ave which is oriented approximately northeast-southwest, 35-ft wide, and located on an elevated, sloped embankment. Utility poles are located within the southeast side of the embankment. Route 158/Guilderland Road passes over two (2) active CSX rails to the immediate east by means of a concrete deck bridge. The western bridge abutment is located to the immediate east of the HDD alignments.

The HDD #75 entry (northwest) and exit (southeast) are located in wooded areas adjacent to Route 158/Guilderland Road. The CSX rails are located approximately at-grade to the east-northeast, and are oriented northwest-southeast. The HDD #75 alignments are located within the CSX right-of-way.

The surface grades in the site vicinity generally slope downward to the south, from about El. 317 to El. 313. The surface of Route 158/Guilderland Ave is at about El. 343.

HDD #75A.A

HDD #75A.A passes below a small stream and adjacent wetland located to the southwest of two (2) active CSX rails. The CSX rails are oriented northwest-southeast and rest on an elevated embankment, about 10 to 12 feet higher than adjacent grades. The surrounding area is covered by small trees and brush. The stream is oriented approximately northeast-southwest, and flows beneath the CSX rails by means of a 30-in RCP culvert. The HDD #75A.A alignments are located within the CSX right-of-way.

The HDD #75A.A entry is located to the southeast; the exit to the northwest. The surface grades along the HDD alignment slope downward gently to the southeast, from about El. 304 to El. 299.

HDD #75A

The HDD #75A alignments pass below two small streams to the southwest of two (2) active CSX rails, which are oriented northwest-southeast. The surrounding area is wooded. The streams are oriented approximately east-west, and flow beneath the CSX rails by means of a 42-in steel culvert (northwest) and twin 12-in RCP culverts (southeast). The HDD #75A alignments are located within the CSX right-of-way.

The HDD #75A entry is located to the northwest; the exit to the southwest. The surface grades along the HDD alignments are variable, ranging from about El. 301 to El. 316.

HDD #75B

The HDD #75B alignments pass below a small stream and adjacent wetlands to the southwest of two (2) active CSX rails, which are oriented northwest-southeast. The surrounding area is wooded, and farmland and a solar farm are located to the northwest. The stream is oriented approximately northeast-southwest, and flows beneath the CSX rails by means of a 24-in steel culvert. The HDD #75B alignments are located within the CSX right-of-way.

The HDD #75B entry is located to the southwest; the exit to the northwest. The surface grades along the HDD alignments are variable, ranging from about El. 276 to El. 294.

HDD #76,76A

The HDD #76,76A alignments begin behind an 84 Lumber facility (HDD entry, El. 290), to the southwest of a railroad operated by CSX (single rail), and passes below Route 20, which is depressed (sunken road, El. 275) at this location. An interlocking concrete block retaining wall is located on the northeast side of Route 20. The aforementioned CSX rail is oriented northwest-southeast and passes over Route 20 to the northeast of the crossing. A second CSX rail is oriented northeast-southwest and passes over the first rail by means of a separate girder bridge. The HDD #76,76A alignments curve around both bridge structures, then passes below the second CSX rail (below an elevated embankment, El. 317), below a small pond and exits in a wooded area to the south (between the first and second rails). Portions of HDD #76,76A are located within the CSX right-of-way.

HDD #77

HDD #77 is located to the immediate south of HDD #76,#76A, with an HDD exit (El. 287) located between two separate CSX rails (east and west), which are oriented approximately north-south. The HDD alignment passes below and then parallels the western CSX rail, which rests on an elevated embankment at about El. 312. Both the HDD entry (El 280) and exit (El. 290) are heavily wooded. The HDD #77 alignments are located within the CSX right-of-way.

HDD #78

The HDD #78 alignments are located to the west and parallel to twin CSX rails, which are oriented northwest-southeast and at-grade with the surrounding area. In this vicinity, HDD#77 crossed below a abutment for a concrete deck bridge carrying Route 146 over the CSX rails. At this location Route 146 also passes over a single paved offramp, which is oriented north-south.

To the north of Route 146, the HDD #78 also passes below a pond, which is surrounded by small trees. Facilities operated by the Guilderland Highway Department are located to the east of this area.

We understand that an existing natural gas line owned by Northeast Utilities has been installed by HDD across (perpendicular) the proposed HDD #78 alignments, to the south of the Route 146 deck bridge. The location and depth of this installation was not available at the time of this report. Overhead utility poles are also present in this area.

Existing surface grades in this area are relatively flat, and range from about El. 318 to El. 321. The surface of Route 146 at the overpass is at about El. 347. The HDD entry is located to the south; the exit to the north. The HDD #78 alignments are located within the CSX right-of-way.

HDD #79B

The HDD #79B alignments pass below a CSX siding, and Black Creek. The HDD entry is located to the north, in a paved parking area, to the west of the primary CSX rail alignment, which is oriented northwest-southeast and at grade with the surrounding area. A siding connects to the primary CSX alignment, and is oriented approximately northeast-southwest. At this location Black Creek parallels the primary CSX alignment and flows beneath the siding within a concrete culvert. A series of industrial park buildings are located to south-southwest of the siding, on the west side of Black Creek. The HDD #79A alignments terminate between these buildings.

Site grades adjacent to Black Creek are relatively flat, and range from about El. 319 to El. 321. The banks of the creek are relatively steep and covered by small trees and brush, and the channel is approximately 35-ft wide. The bottom elevation of the creek has not been established, but estimated to be at about El. 310 to El. 312. The HDD #79B entry area is located in a small depression, with a surface grade of about El. 317. A paved parking area is located to the west, and a small building to the south. Portions of the HDD#79B alignments are located within the CSX right-of-way.

HDD #80

HDD #80 is located to the immediate south of HDD #79B, and passes back below Black Creek. At this location Black Creek is oriented northwest-southeast, approximately 35-ft wide, and parallels the primary CSX alignment to the east-northeast (two rails and a siding). A paved parking area and industrial buildings are located to the west, accessed by Northeastern Industrial Park Road.

The HDD #80 exit is located in the paved parking area to the west of Black Creek. Site grades in this area are relatively flat, and range from about El. 319 to El. 320. The banks of the creek are steep and

covered by small trees and brush, and the channel is approximately 35-ft wide. The bottom elevation of the creek has not been established, but estimated to be at about El. 312 to El. 313.

In the vicinity of the HDD #80 crossing the CSX rails are elevated relative to the adjacent area, at about El. 327 to El. 330. The HDD #80 entry located in a wooded area to the southeast, between the primary CSX rails and an adjacent siding. Surface grades in this area range from about El. 323 to El. 326. Portions of the HDD #80 alignments are located within the CSX right-of-way.

HDD #80A

The HDD #80A alignments are located immediately adjacent and parallel to the primary CSX rail alignment (2 rails) and passes below a large wetland, and a series of small ponds. The HDD exit area is located in an open field to the northwest; the entry in a wooded area between Foundry Street and the CSX rails.

Surface grades in this are slope downward to the wetland/ponds which have a surface elevation of about El. 315 to El. 325. The HDD entry area has a surface grade of about El. 326, whereas the exit has a surface grade of about El. 336. The adjacent CSX rails slope gently to the northwest adjacent to the HDD #80A alignment from about El. 329 to El. 334. The rails pass through the wetland by means of an elevated embankment. Water flows below the rails by means of a 10'x8' box culvert.

HDD #81

The HDD #81 alignments pass below the CSX rails (2 rails) at the intersection of Foundry, Main and Grove Street. The rails are oriented northwest-southeast. Foundry and Grove are oriented roughly northwest-southwest: Main northeast-southwest.

The HDD #81 entry is located in a wooded area between the CSX rails (northeast) and Foundry Street (southwest). Small residential structures are located to the west. The surface grades in this area range from about El. 310 to El. 312 and are lower than the adjacent CSX rails, which are located in an elevated embankment, with a surface grade of about El. 330. The HDD #81 exit is located to the southeast in a grassy area between Grove Street and the CSX rails.

In the vicinity of the intersection, the railroad surface is generally at-grade with the surrounding area, ranging from about El. 331 to El. 332. The intersection is also occupied by a series of railroad signal devices and overhead utility poles. We understand that a portion of the railroad easement in the vicinity of the intersection is located within Norfolk Southern Railroad (NSRR) jurisdiction.

HDD #82,83

HDD #82,83 is located to the northeast of and parallels the CSX rails (2 rails, oriented northeast-southwest), and passes below Vly Creek. The rails pass over the creek by means of a small deck bridge. At this location the creek is approximately 30 to 40 feet wide, with banks covered by small trees.

The HDD #82,83 entry is located in a wooded area to the north, where surface grades are at about El. 320. The adjacent CSX rails are located on an elevated embankment, with a surface grade of about El. 334.

Surface grades rise steeply to the south of Vly Creek, where the surround area is predominantly residential. The HDD #82,83 alignment passes below Maple road, and to the immediate southwest of two existing single-story commercial buildings located in the Vorheesville Shopping Center and exits in a paved area to the southeast, where surface grades are at about El. 341 to El. 343. In this area the adjacent CSX rails are lower (depressed) with surface grades at about El. 335 to El. 336.

HDD #83A

HDD #83A is located to the northeast of and parallels the CSX rails (2 rails, oriented northeast-southwest), and passes beneath a 60" culvert, small stream (5 to 8 feet wide) and adjacent wetland. The HDD entry is located to the southwest; the exit to the northeast. The CSX rails in this vicinity are located on an elevated embankment, with surface grades ranging from about El. 301 to El. 305. The site grades along the HDD alignments increase from southeast to northwest from about El. 286 to El. 295.

The area around the stream is covered by brush and trees. The areas to the northwest and southeast are characterized by residential landscaped lawns. Portions of the HDD #83A alignments are located within the CSX right-of-way.

HDD #84

HDD #84 is located to the northeast of and parallels the CSX rails (2 rails, oriented northeast-southwest), and passes beneath two (2) separate, small streams, and Route 85/New Scotland Road, which is depressed at this location, and oriented east-west. The CSX rails pass over Route 85/New Scotland Road by means of a steel bridge with concrete wingwalls.

The HDD entry area is located on the northwest end of the alignment, in an open field with surface grades of about El. 287. The CSX rails in this vicinity are located on an elevated embankment, with surface grades ranging from about El. 299 to El. 301. Residential structures and trees are present along the HDD alignments to the northwest of Route 85/New Scotland Road.

To the southeast of Route 85/New Scotland Road the HDD #84 alignment passes between the CSX rails and timber framed storage structures associated with a lumber yard. The plan distance between the lumber yard structures and the closest CSX rail is about 40-ft.

The HDD exit is located within an unpaved portion of the lumber yard, to the southeast. Site grades in this area range from about El. 285 to El. 290. The adjacent CSX rails are located on an elevated embankment, with a surface grade of about El. 294 to El. 295. The HDD #84 alignments are located within the CSX right-of-way.

HDD #84A

HDD #84A is located to the northeast of and parallels the CSX rails (2 rails, oriented northeast-southwest), and passes beneath Route 308/New Scotland Road, which is at-grade with the railroad at this location and a small stream to the south-southeast. The stream passes below the CSX rails by means of a 12'x3.5' box culvert.

The HDD entry is located in a wooded area to the northeast. The surface grades in this vicinity slope upward toward the southeast from about El. 270 to El 280. The surface grade of the adjacent CSX rails are at about El. 283. The area to the east-northeast consists of open fields.

The surface grade at the intersection of the CSX rails and Route 308/New Scotland Road is at about El. 280 to El. 282. The intersection is also occupied by a series of railroad signal devices and overhead utility poles.

Unpaved driveways, residential structures and an agricultural facility are located to the southeast of the intersection. The agricultural facility includes numerous timber-framed structures and unpaved clearings, with fill and timber stockpiles. The HDD exit is located in a partially cleared area with surface grades ranging from about El. 277 to El. 280. The adjacent CSX rails are slightly elevated, with a surface grade of about El. 281 to El. 282. Portions of the HDD #84A alignments are located within the CSX right-of-way.

HDD #84B

The HDD #84B alignments are located to the northeast of and parallels the CSX rails (2 rails, oriented northeast-southwest), and passes beneath Game Farm Road, which is at-grade and intersects with the railroad at this location and is oriented approximately east-west. HDD #84B also passes below a small stream to the southeast, which flows below the CSX rails by means of a 72" RCP culvert.

The HDD entry is located in a wooded area to the northeast. The surface grades in this vicinity are relatively flat and range from about El. 254 to El 255. The adjacent CSX rails rest on an elevated earthen embankment with a surface grade of about El. 260 to El. 262. The area to the east-northeast consists of farmland and fields.

The surface grade at the intersection of the CSX rails and Game Farm Road is at about El. 258 to El. 261. The intersection is also occupied by a series of railroad signal devices and overhead utility poles.

The area to the southeast of the Game Farm Road is wooded, and slopes downward at moderate grades (to the southeast and east-northeast) toward the stream, where the surface grade is at about El. 225.

The HDD exit area is currently located within a National Grid utility easement to the southeast, which is occupied by numerous utility poles and overhead power lines, and is oriented northwest-southeast. The utility easement is approximately 415-ft wide (as cleared) and characterized by small brush. Surface grades in this area slope downward gently toward the east, from about El. 251 to El. 249. The adjacent CSX rails rest on an elevated earthen embankment, with a surface grade of about El. 256. The HDD #84B alignments are located within the CSX right-of-way.

HDD #85

The HDD #85 alignments are located to the northeast of and generally parallels the CSX rails (2 rails, oriented northeast-southwest, with a parallel siding to the southeast), and passes beneath Route 443, which is depressed at this location. The CSX rails pass over Route 443 by means of a steel bridge with concrete wingwalls. Overhead utility poles are located on both sides of Route 443. The area to the north and south of Route 443 is wooded. The HDD #85 alignments are located within the CSX right-of-way.

HDD #85 also passes below two small streams to the southeast of Route 443, which flow below the CSX rails through an 18" CMP culvert (north, invert elevation of El. 216.5) and a 72" RCP culvert (south, invert elevation of El. 211.4). Moderate to steep wooded slopes border both streams.

The HDD entry is located in a wooded area on the southeast end of the alignment. Surface grades in this area range from about El. 245 to El. 250. The adjacent CSX rails are topographically lower, at about El. 238.

The HDD exit is located in an open field to the north of Route 443, to the east of the CSX rails. The surface grades in the vicinity of the HDD entry range from about El. 238 to El. 240. The adjacent rails rest on an elevated earthen embankment, with a surface elevation of about El. 246 to El. 247.

HDD #87

HDD #87 is oriented approximately northwest-southeast, and passes below active CSX rails (2 rails, also oriented northeast-southwest, and a parallel siding to the southeast). The railroad is slightly elevated at this location, at about El 235 to El. 237. The HDD alignment also passes below a culvert, having an invert of about El. 214.5, which allows a stream to flow below the rails.

The HDD #87 entry area is located to the northeast of the rails. This area is heavily wooded, and slopes upward to the north, from about El. 235 to El. 250. Waldermater Road is located to the east-northeast.

The HDD #87 exit area is located to the southwest of the rails. This area is heavily wooded. Site survey was not available for this area at the time of this report.

HDD #87A

HDD #87A is oriented approximately northwest-southeast, and passes below an existing 3'x4' culvert, which allows water to flow beneath the adjacent, parallel CSX rails to the east. The culvert invert is at about El. 203.4. The railroad is approximately at-grade with the surrounding area, with a surface elevation of about El. 209 to El. 211. Small commercial facilities and laydown are located to the west.

The HDD #87A entry area is located to the southeast at about El. 207, and the HDD exit to the northwest at about El. 212.

5.0 Below-grade Structures

5.1 Utilities

The location of existing known below-grade utilities are shown on the design drawings. Additional soft dig information will be evaluated during final design and prior to issued-for-construction drawing submittal. Minimum offsets between the known utilities and the HDD borepaths are included on the profiles. It should be noted that some below (and above) grade utilities may result in electronic inference that could adversely impact HDD steering tool accuracy.

5.2 Foundations

The location of existing foundations (bridges, retaining walls) will be added to the issued-for-construction drawings based on as-built information provided by others, where available.

6.0 Subsurface Conditions

The subsurface conditions in the vicinity of the HDD crossings were investigated by subsurface investigations and laboratory testing completed by others. Subsurface investigations included sampled test borings and cone penetrometer testing. A brief summary of the geologic units anticipated at each crossing location is provided below.

HDD #71:

Fill soils overlying Deltaic Deposits (glacial lake deposits) consisting of interbedded sand and silt with gravel (loose to medium dense). The deltaic deposits overlie Glacial Till consisting of a heterogenous mixture of very dense silty sand with gravel, sandy silt, sand and gravel and clayey silt. Although not encountered on the test borings, cobbles and boulders are expected within the Glacial Till.

HDD #72:

In the vicinity of HDD #72, Fill soils are expected to overlie glacial lake deposits consisting of poorly graded sand with lesser amounts of silt (very loose to medium dense).

HDD #73:

In the vicinity of HDD #73, Fill soils are expected to overlie deltaic deposits (glacial lake deposits) consisting of poorly graded sand and silty sand (very loose to medium dense).

HDD #73A,74:

In the vicinity of HDD #73A,74, Fill soils are expected to overlie deltaic deposits (glacial lake deposits) consisting of interbedded silt with trace to some clay, poorly graded sand and silty sand (very loose to dense) and clay (medium stiff to stiff).

HDD #75:

CHPE PACKAGE 5A HDD Design Summary Report March 23, 2023

In the vicinity of HDD #75, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (medium stiff to stiff).

HDD #75A.A:

In the vicinity of HDD #75A.A, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft), with lesser amounts of loose silty sand and sand.

HDD #75A:

In the vicinity of HDD #75A, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft), with lesser amounts of loose silty sand and sand.

HDD #75B:

In the vicinity of HDD #75B, Fill soils are expected to overlie glacial lake deposits consisting of very soft varved silt and clay (very soft to medium stiff), with lesser amounts of loose silty sand and sand. The density/consistency of the silt and clay appears to decrease with depth.

HDD #76,76A:

In the vicinity of HDD #76,76A, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (loose to medium dense and very soft to soft), with lesser amounts of loose silty sand and sand. The density/consistency of the silt and clay appears to decrease with depth.

HDD #77:

In the vicinity of HDD #77, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (loose to medium dense and very soft to soft), with lesser amounts of loose silty sand and sand. The density/consistency of the silt and clay appears to decrease with depth.

HDD #78:

CHPE PACKAGE 5A HDD Design Summary Report March 23, 2023

In the vicinity of HDD #78, fill soils are expected to overlie Glacial Till consisting of dense to very dense silty sand, sandy stilt and sandy clay with cobbles and boulders. The glacial till overlies bedrock (shale of the Schenectady Formation) at a depth of about 30-ft below grade on the north end of the HDD alignment. Although not encountered by the test borings, the Schenectady Formation may also contain sandstone and siltstone.

HDD #79A:

In the vicinity of HDD #79A, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft to medium stiff), with lesser amounts of fine sand. The lake deposits overlie Glacial Till consisting of very dense silty sand with gravel, with occasional cobbles and boulders

HDD #80:

In the vicinity of HDD #80, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft to medium stiff), with lesser amounts of fine sand. The glacial lake deposits overlie Glacial Till consisting of medium dense to very dense silty sand with gravel, with occasional cobbles and boulders.

HDD #80A:

On the north side of the HDD alignment, Fill soils are expected to overlie medium dense to very dense sand and gravel with some silt and clay (possible glacial till).

On the south end of the HDD alignment, Fill soils overlie a layer of medium dense sand (outwash), which overlies a layer of medium stiff to stiff silt with clay (possible lacustrine deposits), which appear to overlie Glacial Till consisting of very denes silt with gravel, with occasional cobbles and boulders.

HDD #81:

CHPE PACKAGE 5A HDD Design Summary Report March 23, 2023

In the vicinity of HDD #81, Fill soils are expected to overlie loose to medium dense sand and gravel with varying amounts of silt and cobbles (probable glacial outwash).

HDD #82,83:

In the vicinity of HDD #82,83, Fill soils are expected to overlie loose to dense sand and gravel with varying amounts of silt and cobbles (probable glacial outwash). Layers of loose to medium dense fine sandy silt are also present (possible lacustrine deposits).

HDD #83A:

In the vicinity of HDD #83A, Fill soils are expected to overlie loose to medium dense sand and gravel (probable glacial outwash), which overlies Glacial Till consisting of very dense silty sand with occasional cobbles and boulders. Bedrock (shale of the Schenectady Formation) was encountered at depths of about 50 feet by the test borings taken along the HDD alignment. Although not encountered by the test borings, the Schenectady Formation may also contain sandstone and siltstone.

HDD #84:

In the vicinity of HDD #84, Fill soils are expected to overlie loose to medium dense to dense sand with varying amounts of silt (probable glacial outwash). The lower portion of these materials (very dense) may represent glacial till. Bedrock (shale of the Schenectady Formation) was encountered at depths of about 20 to 23 feet by the test borings taken along the HDD alignment. Although not encountered by the test borings, the Schenectady Formation may also contain sandstone and siltstone.

HDD #84A:

In the vicinity of HDD #84A, Fill soils are expected to overlie dense to very dense silty sand with gravel with occasional cobbles and boulders (glacial till). Bedrock (shale of the Schenectady Formation) was encountered at depths of about 20 to 23 feet by the test borings taken along the HDD alignment. Although not encountered by the test borings, the Schenectady Formation may also contain sandstone and siltstone.

HDD #84B:

In the vicinity of HDD #84B, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (soft to hard), with lesser amounts of fine sand. The lake deposits overlie probable Glacial Till of very dense silty sand, which may contain occasional cobbles and boulders. Bedrock (shale of the Schenectady Formation) was encountered at depths of about 20 to 23 feet by the test borings taken along the HDD alignment. Although not encountered by the test borings, the Schenectady Formation may also contain sandstone and siltstone.

HDD #85:

In the vicinity of HDD #85, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft to stiff), with lesser amounts of fine sand. The lake deposits decrease in consistency, becoming very soft with depth, and overlie Glacial Till consisting of medium dense to very dense silty sand with gravel, with occasional cobbles and boulders.

HDD #87

In the vicinity of HDD #87, Fill soils are expected to overlie glacial lake deposits consisting of silt and clay (very soft to medium stiff), with lesser amounts of fine sand. The lake deposits decrease in consistency with depth, becoming very soft. On the northern end of the HDD alignment the glacial lake deposits overlie Bedrock (shale of the Schenectady Formation). On the southern end of the alignment the glacial lake deposits overlie Glacial Till consisting of very dense silty sand with gravel, with occasional cobbles and boulders, which in turn overlies bedrock. Bedrock was encountered at depths of about 51 to 54 feet by the test borings taken along the HDD alignment.

HDD #87A

In the vicinity of HDD #87A, Fill soils are expected to overlie glacial lake deposits consisting of clay (very soft to medium stiff), with lesser amounts of fine sand. The lake deposits decrease in consistency with depth, becoming very soft. On the northern end of the HDD alignment the glacial lake deposits overlie Bedrock (shale of the Schenectady Formation) at a depth of 36 feet, which was sampled with split spoons.

7.0 HDD Process

HDD involves drilling a small diameter (6 to 9in) "pilot hole" along a pre-established, design alignment from and entry pit to an exit pit. The pilot is then enlarged as necessary by a series of reaming passes, and the product pipe or duct bundle is pulled into place. HDD generally does not require pits (or shafts), or dewatering. The depth and trajectory of the HDD needs to be carefully designed to account for subsurface conditions and the bending tolerances of the drill rods, steering limits of the drill tools, anticipated reaction of the subsurface conditions, and bending tolerances and the product pipe/conduit. All stages of the HDD process involve pumping a bentonite-based, environmentally safe drilling fluid into the borehole through the drill rods. The drilling fluid travels back to the surface within the annular space between the drill rods and surrounding soil. The drilling fluid maintains borehole stability, removes cuttings, and cools the drilling tools. A common risk associated with HDD is release of drilling fluid to the ground surface, which is referred to as an inadvertent return (IR) or "frac-out". This may occur when the downhole drill fluid pressure exceeds the confining capability of the surrounding soil, or if zones of weakness or previous disturbance are present (e.g., existing utilities, utility poles, deep foundations). Drilling fluid and drilling fluid additives are chemically inert, biodegradable, and non-toxic. However, the occurrence of a frac-out typically requires cleanup, may result in surface heave or settlement, and may result in borehole instability (e.g., collapse, squeezing).

8.0 Design Components

8.1 HDD Geometry

The proposed bore path alignments, entry and exit locations, entry angle, exit angle, and a vertical and horizontal design radii of curvature for each HDD crossing in this segment are shown in the design drawings. The HDD technical specifications are found in Section 330507.13 of the Technical Specifications. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The HDD design alignments for Package 5A have been developed in general accordance with the Project Design Criteria Manual (document entitled "Project Design Criteria", Champlain Hudson Power Express, 400kV HVDC Underground Transmission Line, KIEWIT PROJECT NO. 104809, Dated June 2022, herein referred to as the "Design Manual").

8.2 Annular Pressure Analysis

Drill fluid loss from the borehole typically occurs as a result of one or a combination of the following:

- Hydraulic Jacking: Hydraulic jacking occurs when there are existing cracks in the formation such as fractures within bedrock or stiff cohesive soils, or relatively high permeability zones contained within a relatively low permeability materials (e.g. a sand lense in clay). When the drill fluid pressure exceeds the weight or force restraining the materials on the sides of the fracture or higher permeability zone, the confining material will be hydraulically jacked open resulting in an enlarged opening with more fluid volume capacity and eventually, the possibility of a new flow path for the fluid. The Total Stress calculations provides a conservative method for assessment of this type of drill fluid loss.
- Hydraulic Fracturing. Hydraulic fracturing occurs when the drill fluid pressure exceeds the static stress state in the formation *plus* the strength of the formation material. The result is a fracturing of the formation providing access for the drill fluid to a path that will continue to grow until the drill fluid pressure is reduced or the formation strength increases. The stress plus strength and the Kirsch methods may be used to assess this type of drill fluid loss in rock. In soil formations the Delft may be used to model for drill fluid loss when hydraulic fracturing occurs.
- Leakage: Flow of the drill fluid into existing open space, such as open bedrock fractures and soil porosity.

It's common to loose upwards of 30% (or more) of the drill fluid to the adjacent formation (soil and bedrock) during HDD construction. If the drill fluid reaches to ground surface or water (river) mudline, it's referred to as a "fracout" or inadvertent drill fluid return ("IR"). This may require conditioning of the borehole to stop the drill fluid loss, and cleanup of the drill fluid, if accessible.

A preliminary annular pressure analysis was completed for the pilot hole for each of the currently proposed HDD borepath geometries, based on the available geotechnical data. This process compares the anticipated range of downhole annular drill fluid pressures required to complete the pilot bore to the estimated confining capabilities of the surrounding geologic materials. This exercise can be useful in the evaluation of risk of inadvertent returns (IR's, or "fracout") during drilling. The potential for an IR may be considered greatest at locations where the anticipated range of downhole drill fluid pressures are close

to or exceed the estimated confining capabilities of the surrounding materials. Note that the pilot hole (vs the reamed hole) is generally the most constrained, and presents the greatest risk of IR during the HDD construction process.

The following should be noted:

- HDD requires drill fluid pressures sufficient to stabilize the borehole and remove cuttings. In
 general, it may be possible to reduce the risk of drill fluid loss through careful drilling and drill
 fluid management, but IR risk cannot be completely eliminated.
- The annular pressure analysis is considered to be a tool to identify areas of potential risk. *It is not considered an exact predictor of the location or degree of an IR.*
- The annular pressure analysis does not account for existing pathways or zones of weakness in the subsurface, which may be related to existing utilities, foundations, utility poles and below-grade space. Where present, these features will *increase* the risk of drill fluid loss.
- The annular pressure analysis is not an accurate predictor of borehole leakage, where drill fluid leaks to the adjacent materials through existing porosity or fractures.
- Drill fluid loss from the borehole may not migrate to the surface. In some cases, the drill fluid may escape to the surrounding formation.

The anticipated range of downhole drill fluid pressures (combined static and dynamic) for each HDD crossing in Package 5a are shown in Appendix B along with a generalized subsurface profile for each bore. The static drill fluid pressure is a function of the density of the drill fluid at a specific location and depth below the drill entry elevation. The dynamic pressure is the pressure required to move the drill fluid (and cuttings) up the borehole annulus, and is a function of pump rates, hole geometry, fluid density, fluid velocity, and fluid rheology. The estimated annular pressures included in Appendix B are based on the API-13D method using a Power Law to model the dynamic pressure of a visco-plastic fluid.

Geotechnical parameters used in the analysis were derived through evaluation of laboratory testing and engineering judgement. The confining capability of the native materials was approximated using a variety of methods, which include the following:

- **Total Stress Model**: The Total Stress Model is based on the dead weight of the formation material above the drill path and excludes the potential strength of the formation. This method is considered *conservative* but is considered a reasonable approximation for the formation pressure capacity of bedrock and very dense soil.
- Cavity Expansion Model (Delft Equation): This method considers the strength of the formation along with the total stress (above) and is based on Ko = 1 conditions. The initial equation was derived from the Mohr-Coulomb failure model adjusted by Delft University for low angle cylindrical cavity expansion in a host material when subjected to internal pressure. This method has been found more realistic in sand, silt, and stiffer cohesive formations than the Total Stress Model. However the method require assumptions of a horizontal surface with homogeneous isotropic soil. Additionally, the equations require significant property assumptions such as the Shear Modulus, G. *This model is not generally appropriate for most bedrock, particularly hard sedimentary bedrock, and metamorphic and igneous lithologies.*
- Stress plus Strength Model: This method was initially implemented by the US Corps of Engineers to assess the damage potential to levees from the HDD fluids during drilling. This model adds the strength of the formation material to the total stress though results are generally considered to be conservative. The basis of the model, like the cavity expansion model is the Mohr-Coulomb failure approach. This model is generally appropriate for soil or bedrock.
- Kirsch Model: This method was developed by the Shell Oil Company for oil field drilling and is
 based in rock mechanics and Hooks Law. This method is generally considered appropriate for
 bedrock, including fractured bedrock.

Additional input assumptions included:

- Jetting tools will be used for fill, lacustrine and glaciofluvial deposits.
- A mud motor will be used to complete the pilot hole for bores encountering glacial till and bedrock.
- A drill fluid pump rate of 200 gpm for pilots using jetting and a drill fluid pump rate 400 gpm for mud motors.
- An average drill fluid density of 78 pcf, and maximum drill fluid density of 94 pcf.
- An estimated drill bit diameter of 8.16 inches and a drill rod diameter of 3.5 inches.

The results of the annular pressure analyses included in Appendix B suggest the following:

- The 5a package alignment can be broken into 4 main groupings to describe the performance of the soil in profile, as the geology changes moving north to south:
 - o Sand and silt with some gravel and good strength characteristics (HDDs #71-73)
 - Fine grained lacustrine soils, primarily silt and clays (HDDs #73-77), with weaker strength characteristics
 - O Glacial till and bedrock (HDD #78-84)
 - Fine grained lacustrine soils, primarily silt and clays very weak, soft clays and silt, including Weight of Hammer (W.O.H.) material (HDD #85-87)
- For HDDs #72 #73, #75, there is an apparent risk of IR is near the HDD entry and exit. This is common, and related to limited confining capabilities of the surround geologic formations due to limited depth. At these locations it may be prudent to control the drill fluid through use of temporary steel conductor casings.
- HDDs #73A-74, #75A and #75A.A have critical areas with Factors of Safety below 2.0.
- For HDD #77 there is an apparent risk of IR is near the HDD entry and exit due to high groundwater and loose fill materials. This is common, and related to limited confining capabilities of the surround geologic formations due to limited depth. At these locations it may be prudent to control the drill fluid through use of temporary steel conductor casings.
- For HDD #84 there is an apparent risk of IR is near the HDD exit as the pilot passes out of the groundwater and into soft silt, sand and fill. This is common, and related to limited confining capabilities of the surround geologic formations. At these locations it may be prudent to control the drill fluid through use of temporary steel conductor casings.
- For HDD #85 there is an apparent risk of IR for the entire length of the crossing. This is due to the poor strength characteristics (W.O.H. material) of the formation and equates to limited confining capabilities of the surround geologic formations. At this location careful consideration during drilling operations needs to be given to maintain borehole stability.

The HDD contractor(s) should be prepared to monitor the downhole drill fluid pressures in each bore, and respond to elevated pressures and drill fluid loss. The Inadvertent Return Contingency Plan details additional methods for mitigating inadvertent returns.

8.3 Conduit Material Selection

The conduit installed by HDD for the CHPE project must be plastic to satisfy cable ampacity requirements. The conduit must also be designed to withstand the short-term installation (pullback) loads, and the long-term external loads.

The conduit selected for the Package 5a HDD installations is DR9 High Density Polyethylene (HDPE), consistent with the requirements of the Design Manual. Note that we have assumed that the telecommunications conduit will be minimum 3-in diameter (versus 2-in) to improve pullback survivability.

Pullback calculations for each HDD crossing are included in Appendix B, along with the conduit details. These will be updated during final design. These calculations have been developed in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. The safe pull force has been calculated in accordance with recommendations of the Plastic Pipe Institute. Both water ballasted and unballasted conduit have been considered. Water ballasting is recommended to reduce the pull force in each case.

It should be noted that HDPE is assembled through butt-fusion, which creates an internal "bead" which must be removed during fusion ("debeading") to reduce risk of cable damage during cable pulling.

9.0 Construction Considerations

The following construction considerations are presented for discussion purposes.

9.1 Subsurface Conditions

The following soils unit encountered along the package 5a alignment present specific construction considerations:

Fill: Fill soils were encountered at each of the HDD crossing locations. These materials are
expected to be uncontrolled, and could contain obstructions to HDD construction, including
debris, abandoned utilities, cobbles and boulders, and trash. In addition, fill soils located within
and adjacent to railway easements may contain contamination which could impact the
performance of HDD drill fluid, requiring more frequent replacement. Drill fluid containing

contamination may require specialized disposal.

- Glacial Lake Deposits: Glacial Lake Deposits (fine sand, silt, clay) were encountered at
 numerous HDD crossing locations. Where soft to very soft, fine grained soils are present,
 squeezing behavior may result in choking of the hole and increased risk of downhole pressure
 spikes and inadvertent drill fluid returns. Drill fluid additives and frequent hole conditioning may
 be required to control this behavior. In addition, very soft soils may present difficulties in
 maintaining the drill tool alignment.
- Glaciofluvial Deposits: Coarse outwash deposits (sand and gravel) may present hole stability
 issues, particularly where poorly graded clean gravel is present. Drill fluid additives may be
 require to improve gel strength, filter cake development, minimize groundwater inflow, and to
 maintain carrying capacity.
- Glacial Till Deposits: Dense to very dense Glacial Till deposits were encountered at numerous
 HDD crossing locations. Where present, these materials will likely require a mud motor for pilot
 hole advance, involving increased pump rates and annular pressures. In addition, the Glacial Till
 should be expected to contain cobbles and boulders which could become obstructions and
 adversely impact HDD steering and alignment control.
- Bedrock: Sedimentary bedrock may be encountered at some of the HDD locations. This will
 require a mud motor and rock reaming tools. While the majority of the bedrock encountered by
 the test borings consisted of shale, sandstone may also be present, which may result in decreased
 penetration rates and tool wear through abrasion.

9.2 Steering Tools

A downhole steering tool will be required for each HDD to maintain the desired alignment, and offsets from adjacent sensitive structures. Walkover steering tools are not considered appropriate to potential magnetic interference associated adjacent utilities and railroad structures, and (depending on the crossing) the depth of the installation.

9.3 Drill Fluid Pressure Monitoring

The HDD contractor should employ a downhole pressure tool during pilot hole drilling to monitor and the annular drill fluid pressures. This will help maintain pressure levels below an established threshold, reduce risk of IR's, and may provide details on locations where drilling fluid is lost.

9.4 Conduit Laydown and Pullback

As-noted, butt-fused plastic conduit (HDPE) used for cable raceway must be completely assembled and de-beaded prior to pullback. This will require significant work space in each case. The conduit is typically assembled during drilling, and will need to be protected prior to installation.

In each case, pullback of the conduit should be completed without interruption to reduce the risk of the conduit becoming stuck and damaged. We recommend that the conduit be fully water-ballasted to reduce the pullback forces.

10.0 References

American Petroleum Institute (API) API Specification 13A, Specification for Drilling-Fluid Materials - Sixteenth Edition, ANSI/API 13A/ISO 13500, July 2004.

ASTM 1962-20: Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacles, Including River Crossings, ASTM 2005.

Mayne, P.W., and Kulhawy, F.H. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute (EPRI).

Mechanics of Hydraulic Fracturing, 1957, M.K. Hubert and D.W. Willis, Shell Development Co., AIME Petroleum Transactions.

Plastic Pipe Institute, Handbook of PE Pipe - Second Edition, https://plasticpipe.org/publications/pe-handbook.html.

US Army Corps of Engineers EM 1110-2-2902a December 31, 2020, Conduits, Pipes, and Culverts Associated with Dams and Levee Systems.

APPENDIX AGEOTECHNICAL DATA

APPENDIX BHDD Calculations Per Crossing

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 71 Circuit #1

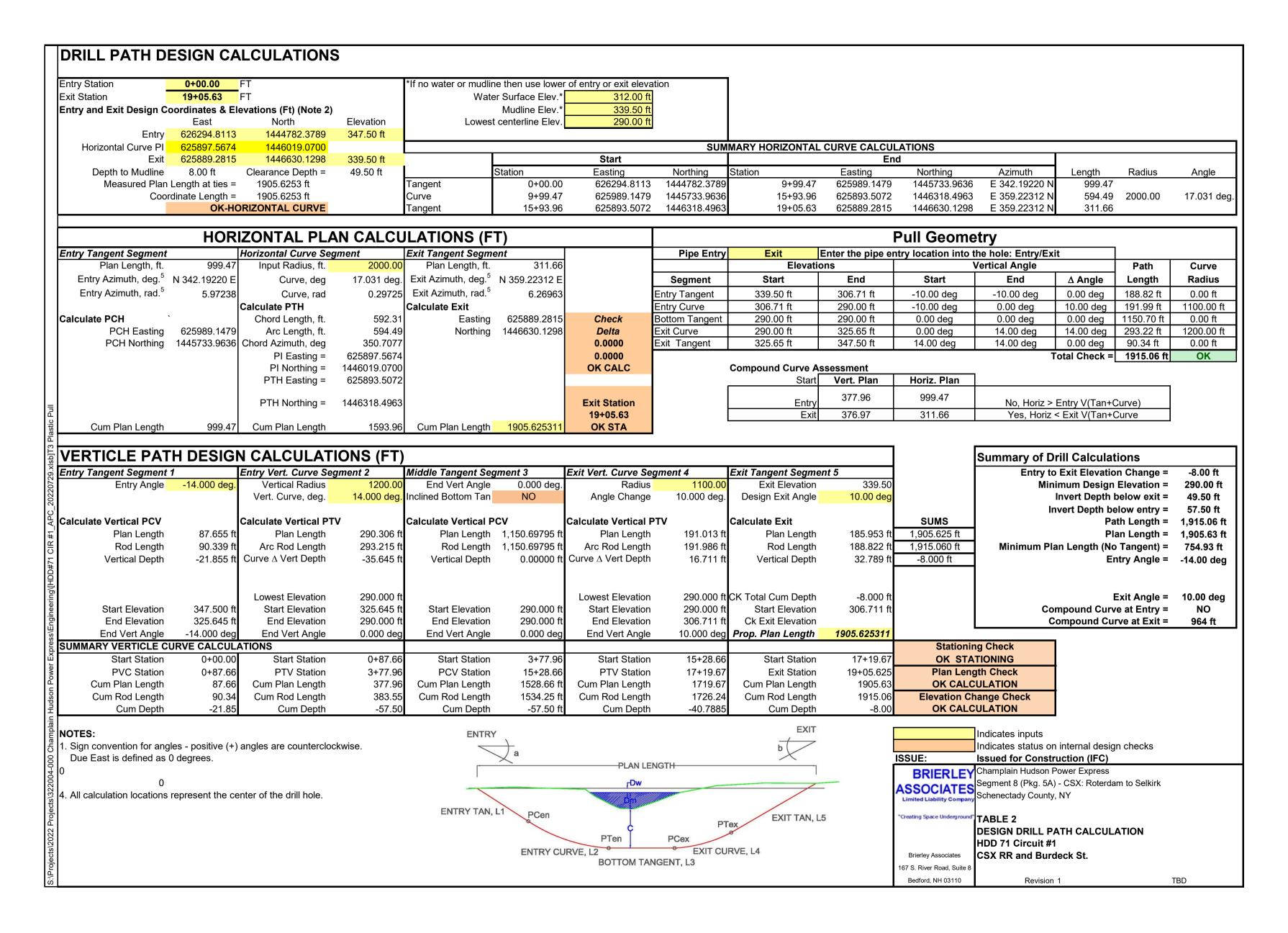
CSX RR and Burdeck St.

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Revision	REV	DESCRIPTION	BY
10/23/2023	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

11.1 G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Material	HDPE		IPS					
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F				
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE						
Material Density, γ	59.28 pcf							
Outside Diameter, D _{OD}	14.25	Pipe or Bun	dle					
Pipe Dry Weight, W_P =	17.36 lb/ft	Pipe or Bun	dle					
Min. Wall Thickness, t_{m}	1.194 in	For design installation pull stress						
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches				
Avg. Inside Diameter, D_{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042				
12 Hr Pullback Modulus, E_T =	65,000 psi	@T =	73 deg F					
Poisson Ratio, μ =	0.45		_					
Ovality Factor, f_o =	0.84	2%						
Buckling Safety, N =	2.5							
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2						
Pressure Rating, PR _(80F) =	252 psi	PR = 2HDS	$SF_TA_F/(D$	R-1) [F _⊤ =1]				
INPUT: Assumed Fluid Densities/Elevations								

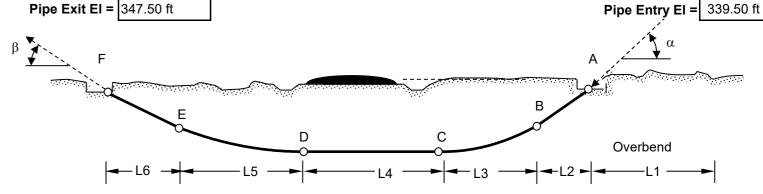
Ballast Density 62.4 pcf **Drill Fluid Density** 78 pcf Drill fluid elevation, $H_{\rm F} =$ 339.50 ft Ballast Water El., H_W = 339.50 ft Lowest Invert El., El_m = 290.00 ft

Estimated for pull

Calculated Pipe and Fluid Properties

Pressure Pipe:	YES
OD Perimeter Length, P	44.77 in
Wall Section Area, A_W	41.68747289
Volume Outside, V_{DO}	0.697 cf/LF
Volume Inside, V_{DI}	0.408 cf/LF
~ -	2 CO Ib/ft

2.69 lb/ft Drill Fluid (unit drag) 0.46 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, ΔT


Calculated Buovant Forces

	Pipe	Air Filled	Ballasted
	und, $w_a/w_{af} =$		42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force								ASSESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS	
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast	
Α	3,560 lb	167 psi	OK	3,560 lb	167 psi	OK	OK	OK	
В	5,177 lb	131 psi	OK	5,525 lb	139 psi	OK	OK	OK	
С	6,806 lb	207 psi	OK	6,344 lb	195 psi	OK	OK	OK	
D	12,010 lb	303 psi	OK	11,548 lb	291 psi	OK	OK	OK	
Е	18,447 lb	497 psi	OK	15,023 lb	411 psi	OK	OK	OK	
F	19,834 lb	500 psi	OK	15,704 lb	396 psi	OK	OK	OK	
ASSESS F	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 93.58$ psi Ballas							OK	

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

45,606 lb $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.874792164 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ 0.217513577 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 500 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 5.36 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 26.81 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

ASSOCIATES **Limited Liability Company**

BRIERLEY Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

CSX RR and Burdeck St.

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 71 Circuit #1

Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 71 Circuit #1

CSX RR and Burdeck St.

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Design Working Pressure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point			
Quantity of Pipes in Hole, Q =	1				
Pipe Material	PE4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours			
Standard Dimension	10				
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9				
Outside Diameter, D _o =	10.750 in	Standard Manufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Manufacturer's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Manufacturer's Data Sheets			
Wall Section Area, A _W =	35.85681985	$A_{W} = \pi^{*}((D_{o}/2)^{2} - ((D_{o}-2t)/2)^{2})$			
Unit OD Surface Area, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$			
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$			
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837			
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5			
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF			
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only			
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710			
Weight Dry, W =	15.70	Lb/LF			
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638			
Load Duration		Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	73 deg F Assumed			
Design Ovality, %	2%	See Sheets 4 of 5 for design ovality			
Factor of Safety, FS =	2.5	2.5 Industry Practice			
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours			
Ovality factor f _o =	0.84	0.6 Reference 1: Based on Selected Design Ovality			
Temperature factor, f_t =	1.00	1.00 Source: WL Plastics WL118			

Project Fluids

1.00			1.00	Oddicc. WET lastics WETTO		
uids	·					
	Pipe Internal	Expected	Heavy	В	es	
	Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, W_P =	15.70 lb/ft	From MFG. Data Sheet
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoyant Unballasted Fluid 1, B _{B1} =		d Fluid 1, B _{B1} =	-33.46 lb/ft	W _P -W _{D1}		
Buoyant Unballasted Fluid 2, B _{B2} =			-34.72 lb/ft	W_P - W_{D2}		
	Ballasted or	n ground, $B_G =$	38.69 lb/ft	W _P +W _B		
Buoyant Ballasted in Fluid 1, BB _{B1} =			-10.47 lb/ft	BG-W _{D1}		
Buoyant Ballasted in Fluid 2, B _{BB2} =			-11.73 lb/ft	BG-W _{D2}		

Pg 2 of 3

HDPE PROPERTIES

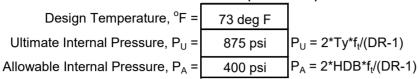
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 71 Circuit #1

CSX RR and Burdeck St.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

32.9 psi

	Long renn	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		•

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o*[2*E/(1-v^2)]*[(1/(DR-1))^3]$ **Short Term** Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 82.3 psi

107.0 psi CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Ballast depth to invert, H_B 57.50 ft Max. Depth to Invert 49.50 ft

Pipe Invert Internal P	ressure, P _I		
[0.00	D ::: E1 : 1 4 D	4/11

Drill Fluid depth to invert, H_{DF} 49.50 ft

Pipe Invert External Pressure, PE

Air Ballast, P_A Full Ballast, $P_B = \gamma_{INT} * (H_B + D_0/24)/144$ 21.64 psi

 $P_a = P_{CR}/FS$

27.06 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 27.75 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 21.64 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A + P_a) - P_W$

	Short Term	Long Term	
	79.92 psi	5.86 psi	Pull Back Co
	79.23 psi	5.17 psi	Pull Back Co
	101.56 psi	27.50 psi	Pull Back Co
ŀ	100.87 psi	26.81 psi	Pull Back Co
·	106.97 psi	32.92 psi	Long Term O
·	85.33 psi	11.27 psi	Operational [

ondition - Option 1 ondition - Option 2 ondition - Option 3 ondition - Option 4 **Operating Conditions** Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 71 Circuit #1

CSX RR and Burdeck St.

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Jitimate Pull Strength, UPS = ########
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_{i} =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.87479	
$r = \sigma_i/2*(SSAS) =$	0.21751	Example from Table T5, $\sigma_i = 500 \text{ psi}$
P _{CRR} =	234.0 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	117.0 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	111.57 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = (F	P_B+P_{ACRR})- P_{DF2}	110.87 psi Pull Back Condition - C OK as >0

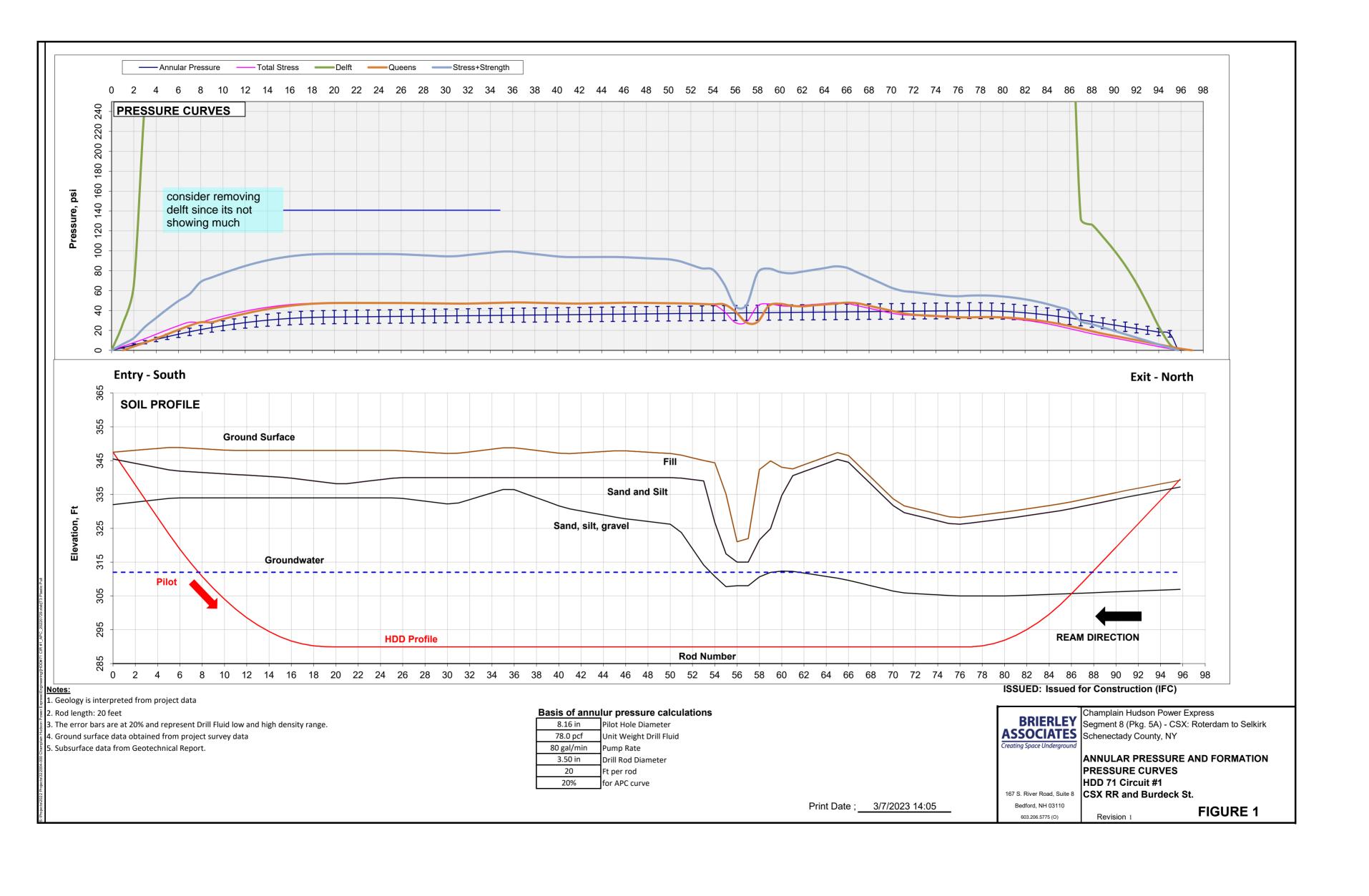
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

Design racion (le) to apply


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Projects\2022 Projects\322004-000 Champlain Hudson

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

HDD 71 Circuit #2

CROSSING: CSX RR and Burdeck St.

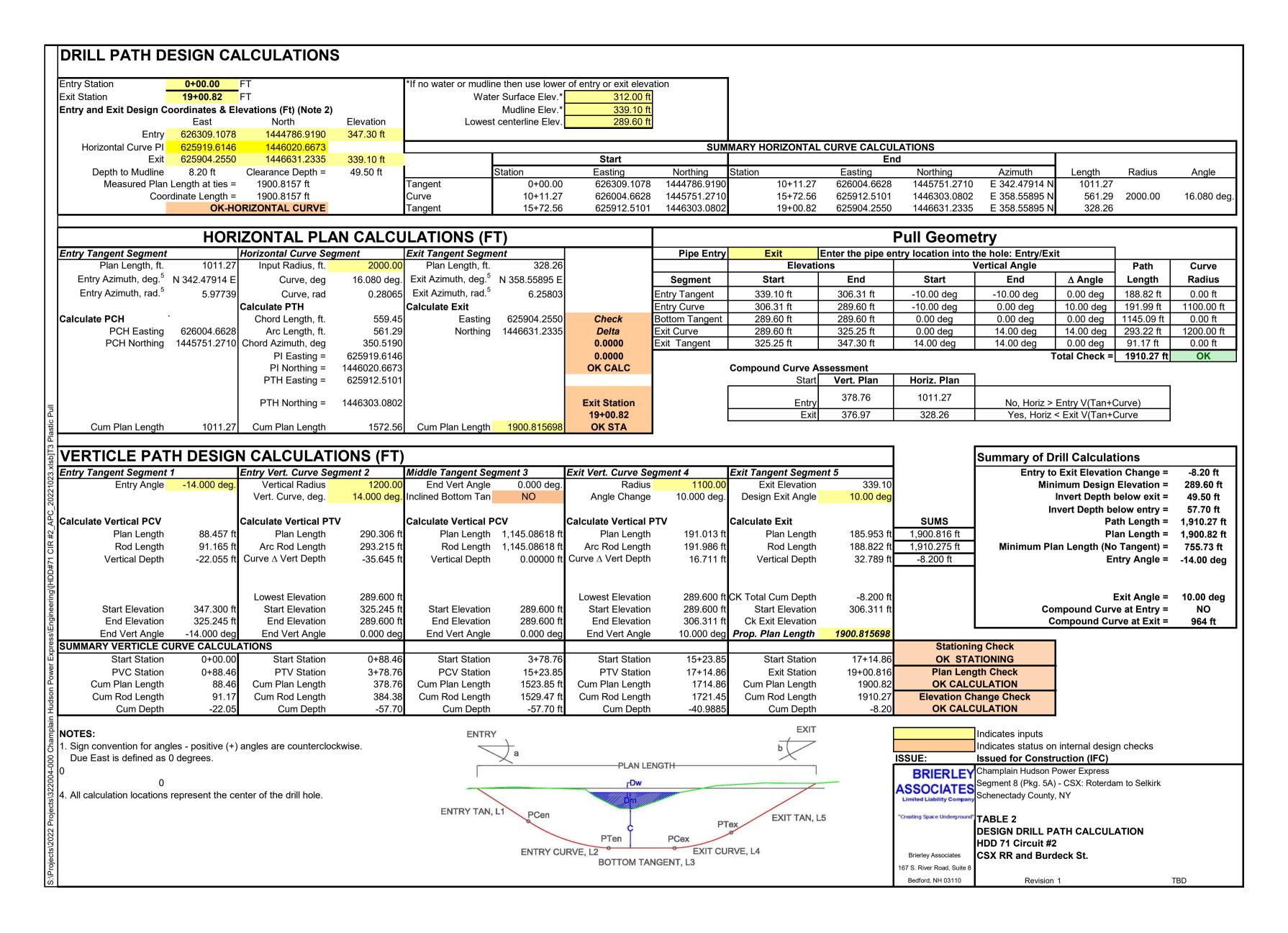
Issued for Construction (IFC)

ISSUE:

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2023	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

Pull Geometry

Lengths (Path) Angles			Radius, R			
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft	
L2 =	188.8 ft	α =	-10.0 °	-0.1745		
L3 =	192.0 ft				1,100.0 ft	
L4 =	1145.1 ft	χ =	0.0 °	0.0000		
L5 =	293.2 ft				1,200.0 ft	
L6 =	91.2 ft	β =	14.0 °	0.2443		
LT =	2010.3 ft					

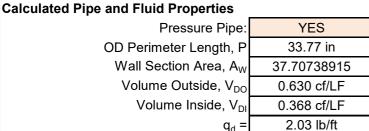
INPUT: Assumed Friction Factors

μ_G =	• • • •	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

IPS


Estimated for pull

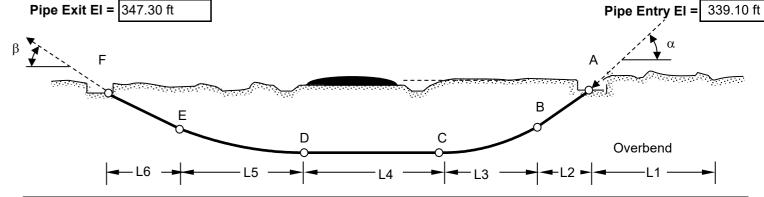
INPUT: Pipe Properties Material HDPE

	Material			11 0	
Safe Pull Max.	Safe Pull Max. Stress, σ_{PM}		PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam.	14.25	PIPE	PIPE/BUND	LE	
Materia	al Density, γ	59.28 pcf			
Outside Dia	ameter, D _{OD}	10.75	Pipe or Bund	dle	
Pipe Dry W	eight, W _P =	15.70 lb/ft	Pipe or Bund	dle	
Min. Wall Ti	hickness, t_{m}	1.194 in	For design in	nstallatio	on pull stress
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches
Avg. Inside D	iameter, D _{IA}	8.22 in	Bundle Multi	iplier F _D	1.0000
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F	
Poisso	n Ratio, μ =	0.45			
Ovality Factor, f _o =		0.84	2%		
Buckling	Safety, N =	2.5			
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2		
Pressure Ratir	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]
INPUT: Assumed Fluid Densities/Elevations					

pcf

Ballast Density	62.4
Drill Fluid Density	
Drill fluid elevation, H_F =	339.10 ft
Ballast Water El., H _W =	339.10 ft
Lowest Invert El., El _m =	289.60 ft

Drill Fluid (unit drag) 0.34 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, $\Delta T =$


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, $w_a/w_{af} =$ In Hole with Drill Fluid, $w_b/w_{bf} =$			38.69 Lb/LF
		-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	3,212 lb	148 psi	OK	3,212 lb	148 psi	OK	OK	OK
В	4,750 lb	133 psi	OK	5,065 lb	141 psi	OK	OK	OK
С	6,146 lb	198 psi	OK	5,728 lb	186 psi	OK	OK	OK
D	10,824 lb	302 psi	OK	10,407 lb	290 psi	OK	OK	OK
E	16,517 lb	485 psi	OK	13,422 lb	399 psi	OK	OK	OK
F	17,749 lb	495 psi	OK	14,016 lb	391 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 93.74$ psi Ballasted							OK

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

S S		
Safe Pull Strength, SPS =	•	SSPS = $\sigma_{PM}\pi D_{OD}^{2}((1/DR)-(1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.876272119	$F_R = (5.57 - (r+1.09)^2)^{1/2} - 1.09$
r =	0.215286924	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	495 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	5.36	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	26.81	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

ASSOCIATES **Limited Liability Company**

BRIERLEY Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Undergroun

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 71 Circuit #2

Bedford, NH 03110

Brierley Associates 167 S. River Road, Suite 8

Revision 1

CSX RR and Burdeck St.

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 71 Circuit #2

CSX RR and Burdeck St.

ASSOCIATES Limited Liability Company

BRIERLEY

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Design Working Pressure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point		
Quantity of Pipes in Hole, Q =	1			
Pipe Material	PE4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710		
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours		
Standard Dimension	10			
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"		
DR = OD/Minimum Wall	9			
Outside Diameter, D _o =	10.750 in	Standard Manufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	8.219 in	Standard Manufacturer's Data Sheets		
Minimum Wall, t _{min} =	1.194 in	Standard Manufacturer's Data Sheets		
Wall Section Area, A _W =	35.85681985	$A_{W} = \pi^{*}((D_{o}/2)^{2} - ((D_{o}-2t)/2)^{2})$		
Unit OD Surface Area, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12^*\pi^*D_{OD}$		
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$		
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$		
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837		
Design Factor for HDB, DF =	0.63	0.63 Based on PPI PE Handbook 2nd ED Chapter 5		
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF		
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only		
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710		
Weight Dry, W =	15.70	Lb/LF		
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638		
Load Duration		Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F Assumed		
Design Ovality, %	2%	See Sheets 4 of 5 for design ovality		
Factor of Safety, FS =	2.5	2.5 Industry Practice		
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314		
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours		
Ovality factor f _o =	0.84	0.6 Reference 1: Based on Selected Design Ovality		
Temperature factor, f_t =	1.00	1.00 Source: WL Plastics WL118		

Project Fluids

uias				1		
	Pipe Internal	Expected	Heavy	B	Suoyant forc	es
	Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, W_P =	15.70 lb/ft	From MFG. Data Sheet
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W_{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoyant Unballasted Fluid 1, B _{B1} =		-33.46 lb/ft	W _P -W _{D1}			
Buoyant Unballasted Fluid 2, B _{B2} =		-34.72 lb/ft	W_P-W_{D2}			
Ballasted on ground, B _G =			38.69 lb/ft	W_P+W_B		
Buoyant Ballasted in Fluid 1, BB _{B1} = -10.47 lb/f			-10.47 lb/ft	BG-W _{D1}		
Buoyant Ballasted in Fluid 2, B _{BB2} = -11.73 lb/ft			BG-W _{D2}			

Pg 2 of 3

HDPE PROPERTIES

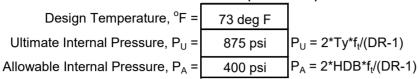
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 71 Circuit #2

CSX RR and Burdeck St.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long renn	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		•

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$ **Short Term** Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} =

267.4 psi 82.3 psi $P_a = P_{CR}/FS$ 107.0 psi 32.9 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Ballast depth to invert, H_B Max. Depth to Invert 49.50 ft 57.70 ft

> Pipe Invert Internal Pressure, Pi Air Ballast, PA 0.00 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$

Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$

27.06 psi

49.50 ft

Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 21.64 psi Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

21.64 psi

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = (P _B +P _a)-P _W
Internal Air and External Water = $(P_A + P_a) - P_W$

Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$

3	Short Term	Long Term
1	79.92 psi	5.86 psi
2	79.23 psi	5.17 psi
1	101.56 psi	27.50 psi
2	100.87 psi	26.81 psi
٧	106.97 psi	32.92 psi
٧	85.33 psi	11.27 psi

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions

Drill Fluid depth to invert, H_{DF}

27.75 psi

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 71 Circuit #2

CSX RR and Burdeck St.

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = ########
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

12 Hr	Pcr = 267.4 psi
1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
1,150 psi	Design Assumption as Maximum
0.87627	
0.21529	Example from Table T5, σ _i = 495 psi
234.3 psi	
2.0	
117.2 psi	Allowable Reduced Short Term Buckling pressure during pull
P _B +P _{ACRR})-P _{DF1}	111.76 psi Pull Back Condition - C OK as >0
$P_B + P_{ACRR}$)- P_{DF2}	111.07 psi Pull Back Condition - C OK as >0
	1,400 psi 1,150 psi 0.87627 0.21529 234.3 psi 2.0 117.2 psi P _B +P _{ACRR})-P _{DF1}

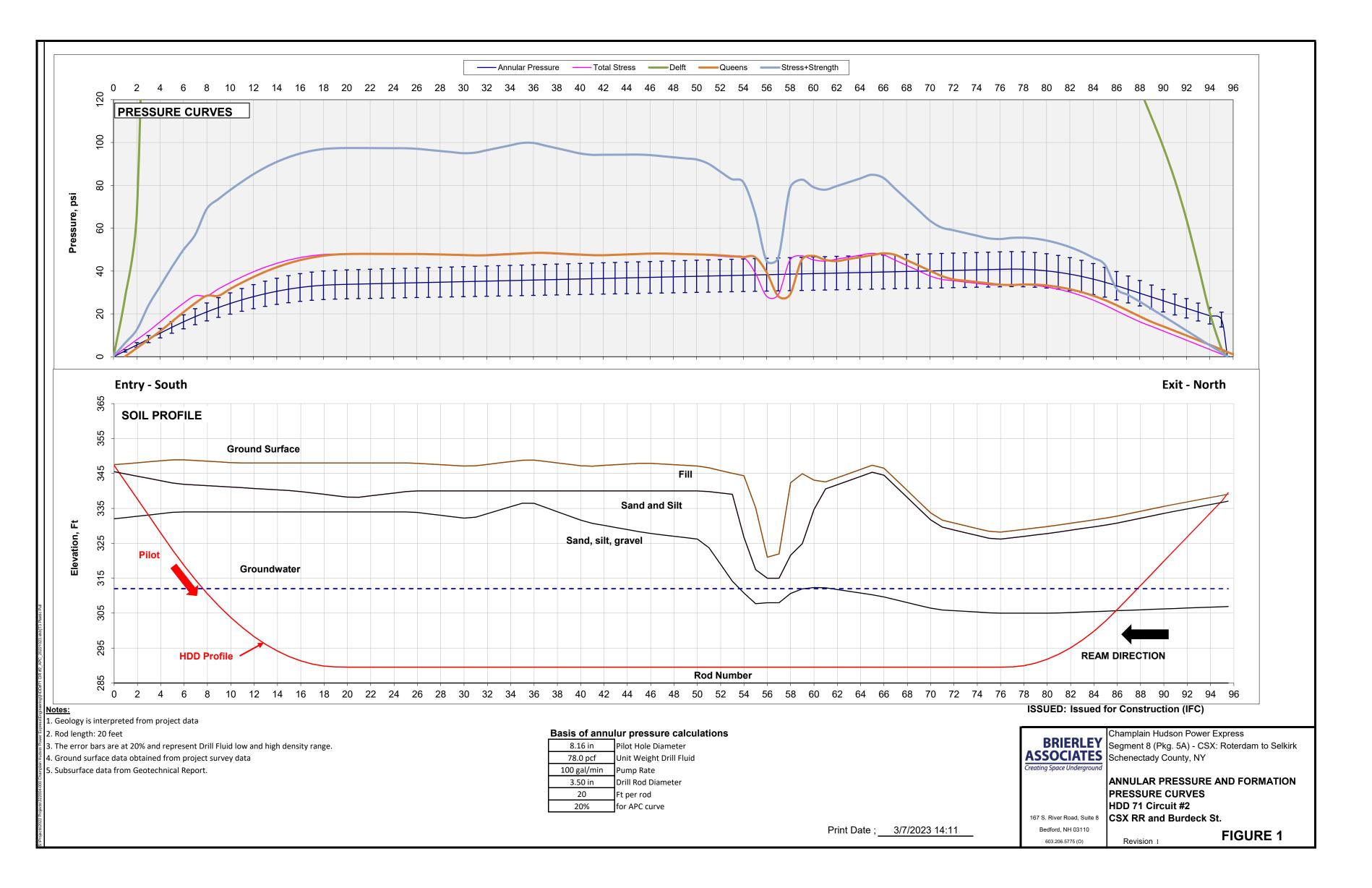
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _⊤	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Un to 24 hours	24

S.\Projects\2022 Projects\322004-000 CF

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

HDD 72 Circuit #1

CROSSING: Mariaville Rd

Issued for Construction (IFC)

ISSUE:

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

DRILL PATH DESIGN CALCULATIONS **Entry Station** 0+00.00 If no water or mudline then use lower of entry or exit elevation **Exit Station** FT 330.70 ft 5+54.62 Water Surface Elev.* Mudline Elev. 346.30 ft Entry and Exit Design Coordinates & Elevations (Ft) (Note 2) Elevation Lowest centerline Elev. 318.50 ft North East 1443056.6337 626981.8714 346.40 ft Entry SUMMARY HORIZONTAL CURVE CALCULATIONS Horizontal Curve PI 627089.1977 1442806.3041 627200.4187 1442546.8903 Start Exit 346.30 ft 27.80 ft Station Easting Northing Northing Azimuth Radius Depth to Mudline 0.10 ft Clearance Depth = Station Easting Length Angle Measured Plan Length at ties = 554.6181 ft Tangent 0+00.00 626981.8714 1443056.633 2+72.37 627089.1977 1442806.3041 E 156.79325 I 272.37 554.6181 ft 2+72.37 627089.1977 1442806.304 2+72.37 1442806.3041 E 156.79326 N 0.00 0.000 deg. Coordinate Length = Curve 627089.1977 0.00 **OK-HORIZONTAL CURVE** 2+72.37 627089.1977 1442806.304 627200.4187 1442546.8903 Tangent 5+54.62 E 156.79326 N 282.25 HORIZONTAL PLAN CALCULATIONS (FT) **Pull Geometry** Entry Tangent Segment Horizontal Curve Segment Exit Tangent Segment Exit Enter the pipe entry location into the hole: Entry/Exit Pipe Entry 272.37 Input Radius, ft. Plan Length, ft. 282.25 **Elevations** Vertical Angle Plan Length, ft. Path Curve Entry Azimuth, deg.⁵ N 156.79325 E Exit Azimuth, deg.⁵ N 156.79326 E Start End Start End Radius Segment Curve, deg 0.000 deg. **∆** Angle Length Entry Azimuth, rad.5 Exit Azimuth, rad.5 -10.00 deg 0.00000 346.30 ft 336.73 ft -10.00 deg 2.73656 Curve, rad 2.73656 Entry Tangent 0.00 deg 55.11 ft 0.00 ft Calculate PTH Calculate Exit Entry Curve 336.73 ft 318.50 ft -10.00 deg 0.00 deg 10.00 deg 209.44 ft 1200.00 ft Calculate PCH 627200.4187 Check Bottom Tangent 318.50 ft 318.50 ft 0.00 deg 0.00 deg Chord Length, ft. 0.00 Easting 0.00 deg 55.61 ft 0.00 ft 627089.1977 12.00 deg PCH Easting Arc Length, ft. 0.00 Northing 1442546.8903 Delta Exit Curve 318.50 ft 340.35 ft 0.00 deg 12.00 deg 209.44 ft 1000.00 ft 0.00 deg 1442806.3041 Chord Azimuth, deg 156.7933 0.0000 Exit Tangent 340.35 ft 346.40 ft 12.00 deg 12.00 deg PCH Northing 29.09 ft 0.00 ft PI Easting = 627089.1977 0.0000 Total Check = 558.68 ft OK PI Northing = 1442806.3041 **OK CALC Compound Curve Assessment**

Exit Station

5+54.62

OK STA

Start

Exit

Entry

Vert. Plan

Horiz. Plan

asti												
VERTICLE PATH DESIGN CALCULATIONS (FT)										Summ		
(sb	Entry Tangent Segment 1	1	Entry Vert. Curve Segm	ent 2	Middle Tangent Segme	ent 3	Exit Vert. Curve Segme	ent 4	Exit Tangent Segment	t 5		
29.	Entry Angle	-12.000 deg.	Vertical Radius	1000.00	End Vert Angle	0.000 deg.	Radius	1200.00	Exit Elevation	346.30		
207			Vert. Curve, deg.	12.000 deg.	Inclined Bottom Tan	NO	Angle Change	10.000 deg.	Design Exit Angle	10.00 deg		
202												
ပ္ပါ	Calculate Vertical PCV		Calculate Vertical PTV		Calculate Vertical PCV		Calculate Vertical PTV		Calculate Exit		SUMS	
₹	Plan Length	28.452 ft	Plan Length	207.912 ft	Plan Length	55.60667 ft	Plan Length	208.378 ft	Plan Length	54.270 ft	554.618 ft	
۲ #2	Rod Length	29.087 ft	Arc Rod Length	209.440 ft	Rod Length	55.60667 ft	Arc Rod Length	209.440 ft	Rod Length	55.107 ft	558.680 ft	Mi
5	Vertical Depth	-6.048 ft	Curve ∆ Vert Depth	-21.852 ft	: Vertical Depth	0.00000 ft	Curve ∆ Vert Depth	18.231 ft	Vertical Depth	9.569 ft	-0.100 ft	1
#12												1
둳												
ģ			Lowest Elevation	318.500 ft			Lowest Elevation	318.500 ft	CK Total Cum Depth	-0.100 ft		
šeri	Start Elevation	346.400 ft	Start Elevation	340.352 ft	Start Elevation	318.500 ft	Start Elevation	318.500 ft	Start Elevation	336.731 ft		
gine	End Elevation	340.352 ft	End Elevation	318.500 ft	End Elevation	318.500 ft	End Elevation	336.731 ft	Ck Exit Elevation			
Ψ̈́	End Vert Angle	-12.000 deg	End Vert Angle	0.000 deg	End Vert Angle	0.000 deg	End Vert Angle	10.000 deg	Prop. Plan Length	554.6181174		-
ress	SUMMARY VERTICLE CU	RVE CALCULA	ATIONS			•					Station	ing Check
Exp	Start Station	0+00.00	Start Station	0+28.45	Start Station	2+36.36	Start Station	2+91.97	Start Station	5+00.35	OK ST	ATIONING

554.6181174

mary of Drill Calculations **Entry to Exit Elevation Change =** -0.10 ft Minimum Design Elevation = 318.50 ft Invert Depth below exit = 27.80 ft Invert Depth below entry = 27.90 ft Path Length = 558.68 ft Plan Length = 554.62 ft Minimum Plan Length (No Tangent) = 499.01 ft Entry Angle = -12.00 deg Exit Angle = 10.00 deg **Compound Curve at Entry =** NO Compound Curve at Exit = NO

No, Horiz > Entry V(Tan+Curve)

No, Horiz > Entry V(Tan+Curve)

	554.6181174	Prop. Plan Length	10.000 deg	End Vert Angle	0.000 deg	End Vert Angle	0.000 deg	End Vert Angle	-12.000 deg	End Vert Angle	
Stationing Check								SUMMARY VERTICLE CURVE CALCULATIONS			
OK STATIONING	5+00.35	Start Station	2+91.97	Start Station	2+36.36	Start Station	0+28.45	Start Station	0+00.00	Start Station	
Plan Length Check	5+54.618	Exit Station	5+00.35	PTV Station	2+91.97	PCV Station	2+36.36	PTV Station	0+28.45	PVC Station	
OK CALCULATION	554.62	Cum Plan Length	500.35	Cum Plan Length	291.97 ft	Cum Plan Length	236.36	Cum Plan Length	28.45	Cum Plan Length	
Elevation Change Check	558.68	Cum Rod Length	503.57	Cum Rod Length	294.13 ft	Cum Rod Length	238.53	Cum Rod Length	29.09	Cum Rod Length	
OK CALCULATION	-0.10	Cum Depth	-9.6693	Cum Depth	-27.90 ft	Cum Depth	-27.90	Cum Depth	-6.05	Cum Depth	
		7970 2000 - 17									

 Sign convention for angles - positive (+) angles are counterclockwise. Due East is defined as 0 degrees.

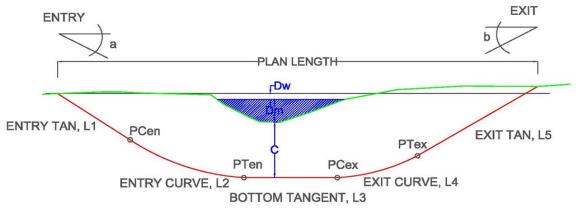
272.37

PTH Easting =

PTH Northing =

Cum Plan Length

627089.1977


272.37

Cum Plan Length

1442806.3041

Cum Plan Length

4. All calculation locations represent the center of the drill hole.

Indicates inputs Indicates status on internal design checks

ISSUE: Issued for Construction (IFC)

BRIERLEY Champlain Hudson Power Express ASSOCIATES

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk Schenectady County, NY

TABLE 2

DESIGN DRILL PATH CALCULATION HDD 72 Circuit #1

Mariaville Rd Brierley Associates

167 S. River Road, Suite Bedford, NH 03110 Revision 1

TBD

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend radian 500.0 ft deg L2 = 55.1 ft -10.0 ° -0.1745 L3 = 209.4 ft 1.200.0 ft 0.0000 L4 = 55.6 ft0.0 χ = L5 = 209.4 ft 1,000.0 ft $\beta =$ L6 = 29.1 ft 12.0 0.2094 LT = 658.7 ft

INPUT: Assumed Friction Factors

 $\mu_G =$ dry + rollers 0.10 drill fluid in hole $\mu_b =$ 0.25 0.30 in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

	Material	HDPE		IPS		
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F	
Pile/Bundle Diam.	14.25	BUNDLE	PIPE/BUND	LE		
Materi	al Density, γ	59.28 pcf				
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bun	dle		
Pipe Dry W	/eight, W _P =	17.36 lb/ft	Pipe or Bundle			
Min. Wall T	hickness, t_m	1.194 in	For design installation pull stress			
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside D	iameter, D _{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042	
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F		
Poisso	n Ratio, μ =	0.45		-		
Ovality	Factor, f _o =	0.84	2%			
Buckling	Safety, N =	2.5				

1,008 psi HDB/2

252 psi **INPUT: Assumed Fluid Densities/Elevations**

Ballast Density 62.4 pcf 78 **Drill Fluid Density** pcf Drill fluid elevation, $H_F =$ 346.30 ft Ballast Water El., H_w = 346.30 ft Lowest Invert El., El_m = 318.50 ft

Estimated for pull

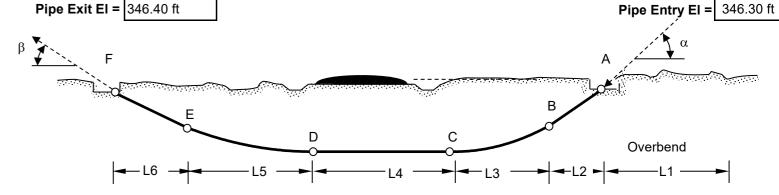
 $PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$

Calculated Pipe and Fluid Properties

Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F) =

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.05611015	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.412 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ∆T =	1.58 lb/ft	Comparison Only @ 8psi


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		43.07 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.31 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force								ASSESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS	
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast	
Α	1,164 lb	107 psi	OK	1,164 lb	107 psi	OK	OK	OK	
В	1,631 lb	41 psi	OK	1,734 lb	44 psi	OK	OK	OK	
С	3,229 lb	114 psi	OK	2,426 lb	93 psi	OK	OK	OK	
D	2,919 lb	74 psi	OK	2,116 lb	53 psi	OK	OK	OK	
Е	6,961 lb	214 psi	OK	4,111 lb	142 psi	OK	OK	OK	
F	7,574 lb	191 psi	OK	4,391 lb	111 psi	OK	OK	OK	
ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 101.85$ psi Ballasted									

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

45,606 lb SSPS = $\sigma_{PM}\pi D_{OD}^2((1/DR)-(1/DR^2))$ Safe Pull Strength, SPS = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ Allowable Short Term Unconstrained Buckling, P_A = 106.97 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.952111779 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ 0.093122768 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 214 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.01 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 15.06 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY **ASSOCIATES** Limited Liability Company

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 72 Circuit #1

Mariaville Rd

Brierley Associates 167 S River Road Suite 8

Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 72 Circuit #1

Mariaville Rd

BRIERLEY

"Creating Space Underground"

point

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced							
Design Working Pressure, P_{WORK}	250 psi	Test Pressure, P _{TEST}	0 psig	At high p			
Quantity of Pipes in Hole, Q =	1			_			

PE4710 Pipe Material INPUT RESIN MATERIAL: PE3408, PE3608, PE4710

ASTM D3350 Cell Classification 445574C Design resin with minimum PENT test of 10,000 hours 3 Standard Dimension

IPS IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard

DR = OD/Minimum Wall 9 Outside Diameter, Do = 3.500 in Standard Manufacturer's Data Sheets

Avg. Inside Diameter, D_i = 2.826 in Standard Manufacturer's Data Sheets Minimum Wall, t_{min} = Standard Manufacturer's Data Sheets 0.389 in

 $A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$ Wall Section Area, A_W = 3.80093926

Unit OD Surface Area, in²/LF, A_{OD} = $A_{OD} = 12*\pi*D_{OD}$ 131.95 in^2/LF

> $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.067 cf/LF

0.044 cf/LF $V_{Di} = \pi^* (D_i/2)^2 / 144$ Unit Inside Volume, V_{Di} =

> HDB = 1,600 psi Based on PPI Publication TR-4/2015 and ASTM 2837

Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5

Hydrostatic Design Stress, HDS = 1008 psi HDS = HDB*DF

Environmental Factor, Af_e = Reference 2: Use for pressure rating only

> Density = 59.28 pcf 1.410 g/cc Average from WL Plastics WL122 for PE4710

1.66 Weight Dry, W = Lb/LF

Tensile Yield, Ty psi = 3,500 psi <u>@73</u>°F Minimum from ASTM D3350 determined by ASTM D638

Load Duration Short Term Long Term 10 hours **Duration Time** 50 yrs

73 deg F 73 deg F Assumed Design Temperature, °F Design Ovality, % 2% 2% See Sheets 4 of 5 for design ovality

2.5 Factor of Safety, FS = 2.5 **Industry Practice**

Modulus for given load duration, E = 65,000 psi 28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314 Poisson Ratio, υ = 0.45 0.45

WL118: Use 0.35 if load duration is less than 12 hours 0.6 Ovality factor f_o = 0.84 Reference 1: Based on Selected Design Ovality

Temperature factor, f_t = 1.00 1.00 Source: WL Plastics WL118

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid					
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2					
	γιντ	$\gamma_{\sf EXT1}$	γ_{EXT2}					
Density, γ =	62.4	78	80					
Buoya	-3.55 lb/ft							

Buoyant Unballasted Fluid 2, B_{B2} = -3.69 lb/ft Ballasted on ground, B_G = 4.38 lb/ft

Buoyant Ballasted in Fluid 1, BB_{B1} = -0.83 lb/ft Buoyant Ballasted in Fluid 2, B_{BB2} = -0.97 lb/ft

Buoyant forces

Dry Weight Pipe on ground, W_P = 1.66 lb/ft From MFG. Data Sheet Internal Ballast Weight, W_B = 2.72 lb/ft $W_B = V_{Di}^* \gamma_{INT}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21$ lb/ft $W_{D1} = V_{D0}^* \gamma_{EXT1}$ Heavy Displaced Fluid Weight, W_{D2} = 5.35 lb/ft $W_{D2} = V_{Do}^* \gamma_{EXT2}$

 W_P-W_{D1} $W_P - W_{D2}$ W_P+W_B BG-W_{D1}

BG-W_{D2}

Page 4 of 7

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 72 Circuit #1
Mariaville Rd

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = \boxed{73 \text{ deg F}}$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{HDB} \text{ f}_{t}/(DR-1)$

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

 $P_{RS} = 1.5*PR$

Design Temperature, ${}^{\circ}F = 73 \text{ deg F}$ Pressure Rating, PR = 252 psiMaximum Ocassional Surge, $P_{OS} = 504 \text{ psi}$ PR = $2*HDS*f_t*Af_e/(DR-1)$

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

378 psi

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o*[2*E/(1-v^2)]*[(1/(DR-1))^3]$

Design Temperature, F = $\begin{array}{c|c} \hline \textbf{Short Term} & \textbf{Long Term} \\ \hline \textbf{73 deg F} & 73 deg F \\ \hline \textbf{P}_{CR} = & 267.4 \text{ psi} & 82.3 \text{ psi} \\ \hline \textbf{P}_{a} = \textbf{P}_{CR}/\text{FS} & 107.0 \text{ psi} & 32.9 \text{ psi} \\ \hline \end{array}$

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 27.90 ft Ballast depth to invert, H_B 27.80 ft Drill Fluid depth to invert, H_{DE} 27.80 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

Air Ballast, P_A 0.00 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^*(H_{MDF} + D_o/24)/144$ 15.14 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^*(H_{MDF} + D_o/24)/144$ 15.53 psi Water, $P_W = \gamma_{INT}^*(H_{DF} + D_o/24)/144$ 12.11 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	91.84 psi	17.78 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	91.45 psi	17.39 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.95 psi	29.89 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.56 psi	29.50 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	32.92 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	94.87 psi	20.81 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

000 Designated 9000004 OOO Characteris Hudsan Design Francisco Annies Allin D470 OID 44

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 72 Circuit #1

Mariaville Rd

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Qua	uantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pul	ıll Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7		
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,3	321 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,	,303 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty^*f_{temp}^*DF Suggested S$	SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb	<u> </u>	ļ

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR}^* f_r$

(ASTM F-1962 EQ. 22)

12 Hr		Pcr = 267.4 psi		
1,400 psi	Design D	Depth in DF, H _{MDF} = 0.0 ft		
1,150 psi	Design Assumption as Maximum			
0.95211				
0.09312	Example from Table T5, $\sigma_i = 214 \text{ ps}$			
254.6 psi				
2.0				
127.3 psi	Allowable Reduc	ed Short Term Buckling pressure during pull		
P _B +P _{ACRR})-P _{DF1}	112.18 psi	Pull Back Condition - Option 3 OK as >0		
P _B +P _{ACRR})-P _{DF2}	123.90 psi	Pull Back Condition - Option 4 OK as >0		
	1,400 psi 1,150 psi 0.95211 0.09312 254.6 psi 2.0 127.3 psi P _B +P _{ACRR})-P _{DF1}	1,400 psi 1,150 psi 0.95211 0.09312 254.6 psi 2.0 127.3 psi Allowable Reduction P _B +P _{ACRR})-P _{DF1} 112.18 psi		

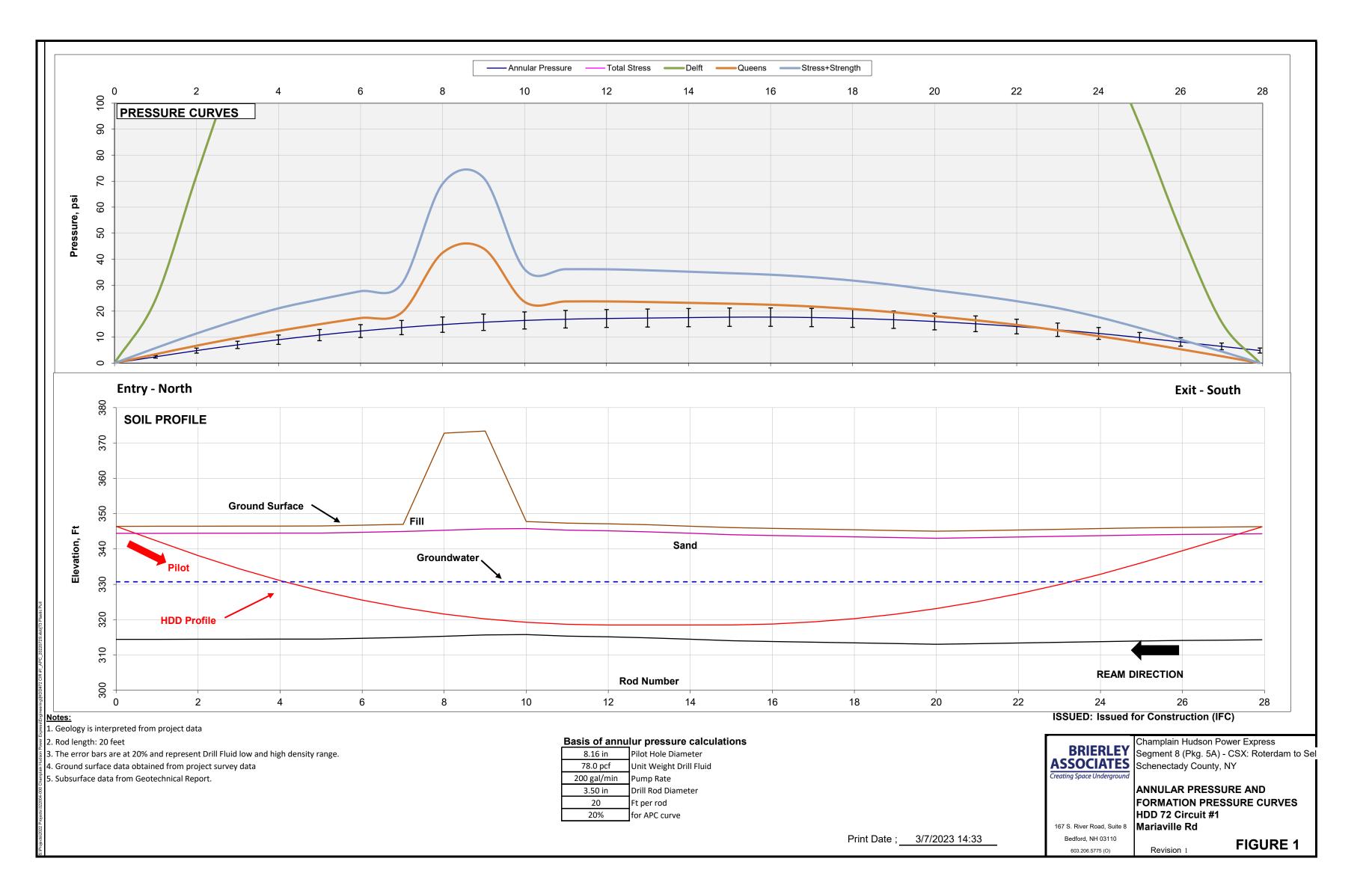
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f_T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Proiects\2022 Proiects\322004-000 Champlain Hudson Power Express\Engineerind\F

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 72 Circuit #2

Mariaville Rd

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

DRILL PATH DESIGN CALCULATIONS **Entry Station** 0+00.00 If no water or mudline then use lower of entry or exit elevation 330.70 ft **Exit Station** 5+54.62 FT Water Surface Elev.* 346.20 ft Entry and Exit Design Coordinates & Elevations (Ft) (Note 2) Mudline Elev. Elevation Lowest centerline Elev. 318.50 ft East North 626995.5067 1443062.5587 346.20 ft Entry SUMMARY HORIZONTAL CURVE CALCULATIONS Horizontal Curve PI 627104.7988 1442807.6951 627214.0724 1442552.8234 Start Exit 348.30 ft 27.70 ft Station Easting Northing Azimuth Depth to Mudline 0.00 ft Clearance Depth = Station Easting Northing Length Radius Angle Measured Plan Length at ties = 554.6179 ft Tangent 0+00.00 626995.5067 1443062.558 2+77.31 627104.7988 1442807.6951 E 156.78910 I 277.31 2+77.31 554.6179 ft 627104.7988 1442807.695 2+77.31 627104.7988 1442807.6951 E 156.79327 N 0.004 deg. Coordinate Length = Curve 0.00 0.00 **OK-HORIZONTAL CURVE** 2+77.31 627104.7988 1442807.695 1442552.8234 Tangent 5+54.62 627214.0724 E 156.79327 N 277.31 **HORIZONTAL PLAN CALCULATIONS (FT) Pull Geometry** Entry Tangent Segment Horizontal Curve Segment Exit Tangent Segment Exit Enter the pipe entry location into the hole: Entry/Exit Pipe Entry 277.31 Input Radius, ft. 277.31 **Elevations** Vertical Angle Plan Length, ft. Plan Length, ft. Path Curve Entry Azimuth, deg.⁵ N 156.78910 E Exit Azimuth, deg.⁵ N 156.79327 E Start End Start End Radius 0.004 deg. Segment Length Curve, deg **∆** Angle Entry Azimuth, rad.5 Exit Azimuth, rad.⁵ -10.00 deg 0.00007 348.30 ft 336.73 ft -10.00 deg 2.73649 Curve, rad 2.73656 Entry Tangent 0.00 deg 66.62 ft 0.00 ft Calculate PTH Calculate Exit Entry Curve 336.73 ft 318.50 ft -10.00 deg 0.00 deg 10.00 deg 209.44 ft 1200.00 ft **Calculate PCH** 627214.0724 Check Bottom Tangent 318.50 ft 318.50 ft 0.00 deg 0.00 deg Chord Length, ft. 0.00 Easting 0.00 deg 45.20 ft 0.00 ft 0.00 deg 12.00 deg 627104.7988 Arc Length, ft. 0.00 Northing 1442552.8234 Delta Exit Curve 318.50 ft 340.35 ft 12.00 deg 209.44 ft 1000.00 ft PCH Easting 0.00 deg 1442807.6951 Chord Azimuth, deg 156.7912 0.0000 Exit Tangent 340.35 ft 346.20 ft 12.00 deg 12.00 deg PCH Northing 28.13 ft 0.00 ft

0.0000

OK CALC

Exit Station

5+54.62

Compound Curve Assessment

Start Station

Exit Station

Cum Depth

Cum Plan Length

Cum Rod Length

Start

Exit

Entry

Vert. Plan

4+89.01

5+54.618

554.62

558.83

2.10

Horiz. Plan

_												
2 7	Cum Plan Length	277.31	Cum Plan Length	277.31	Cum Plan Length	554.6179241	OK STA					
lası												
ll 3 F	VERTICLE PATH DESIGN CALCULATIONS (FT)										Summary	
(ISD	Entry Tangent Segment 1		Entry Vert. Curve Segm	ent 2	Middle Tangent Segm	ent 3	Exit Vert. Curve Segme	ent 4	Exit Tangent Segment	5		
23.)	Entry Angle	-12.000 deg.	Vertical Radius	1000.00	End Vert Angle	0.000 deg.	Radius	1200.00	Exit Elevation	348.30		
210			Vert. Curve, deg.	12.000 deg.	Inclined Bottom Tan	NO	Angle Change	10.000 deg.	Design Exit Angle	10.00 deg		
202												
اٰر	Calculate Vertical PCV		Calculate Vertical PTV		Calculate Vertical PC\	/	Calculate Vertical PTV		Calculate Exit		SUMS	
₹,	Plan Length	27.511 ft	Plan Length	207.912 ft	Plan Length	45.20484 ft	Plan Length	208.378 ft	Plan Length	65.613 ft	554.618 ft	
7# >	Rod Length	28.125 ft	Arc Rod Length	209.440 ft	Rod Length	45.20484 ft	Arc Rod Length	209.440 ft	Rod Length	66.625 ft	558.834 ft	Minin
5	Vertical Depth	-5.848 ft	Curve ∆ Vert Depth	-21.852 ft	Vertical Depth	0.00000 ft	Curve ∆ Vert Depth	18.231 ft	Vertical Depth	11.569 ft	2.100 ft	1
7/#												1
טט												
gv[r			Lowest Elevation	318.500 ft			Lowest Elevation	318.500 ft	CK Total Cum Depth	2.100 ft		
e	Start Elevation	346.200 ft	Start Elevation	340.352 ft	Start Elevation	318.500 ft	Start Elevation	318.500 ft	Start Elevation	336.731 ft		
Jue	End Elevation	340.352 ft	End Elevation	318.500 ft	End Elevation	318.500 ft	End Elevation	336.731 ft	Ck Exit Elevation			
ΞÌ	End Vert Angle	-12.000 deg	End Vert Angle	0.000 deg	End Vert Angle	0.000 deg	End Vert Angle	10.000 deg	Prop. Plan Length	554.6179241		
ess	SUMMARY VERTICLE CUR	VE CALCULA	ATIONS			•					Stationi	ng Check

2+35.4

2+80.63

280.63 f

282.77 f

-27.70 f

Start Station

PCV Station

Cum Depth

Cum Plan Length

Cum Rod Length

Summary of Drill Calculations Entry to Exit Elevation Change = 2.10 ft Minimum Design Elevation = 318.50 ft Invert Depth below exit = 29.80 ft Invert Depth below entry = 27.70 ft Path Length = 558.83 ft Plan Length = 554.62 ft Minimum Plan Length (No Tangent) = 509.41 ft Entry Angle = -12.00 deg Exit Angle = 10.00 deg **Compound Curve at Entry =** NO Compound Curve at Exit = NO

Total Check =

No, Horiz > Entry V(Tan+Curve)

No, Horiz > Entry V(Tan+Curve)

558.83 ft

OK

. Sign convention for angles - positive (+) angles are counterclockwise. Due East is defined as 0 degrees.

0+00.00

0+27.5

27.5

28.13

-5.85

PI Easting =

PI Northing =

PTH Easting =

PTH Northing =

Start Station

PTV Station

Cum Depth

Cum Plan Length

Cum Rod Length

627104.7988

627104.7988

0+27.5

2+35.42

235.42

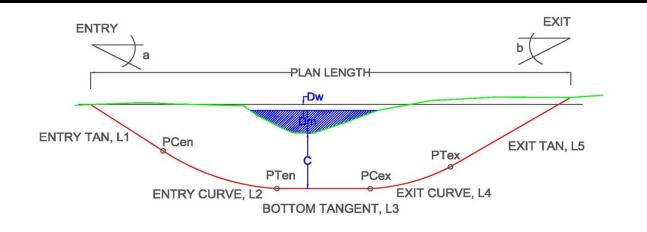
237.56

-27.70

1442807.6951

1442807.6951

Start Station


PVC Station

Cum Depth

Cum Plan Length

Cum Rod Length

4. All calculation locations represent the center of the drill hole.

Start Station

PTV Station

Cum Depth

Cum Plan Length

Cum Rod Length

2+80.6

4+89.01

489.01

492.2

-9.4693

Indicates inputs Indicates status on internal design checks

ISSUE: Issued for Construction (IFC)

BRIERLEY Champlain Hudson Power Express

OK STATIONING

Plan Length Check **OK CALCULATION**

Elevation Change Check

OK CALCULATION

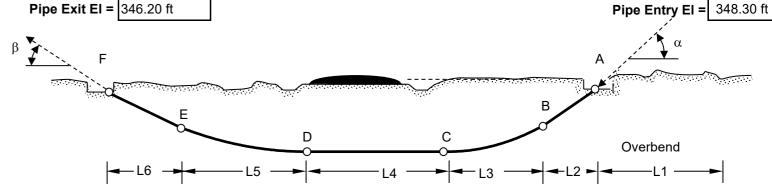
Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk Schenectady County, NY

TABLE 2 DESIGN DRILL PATH CALCULATION

HDD 72 Circuit #2 Mariaville Rd Brierlev Associates

167 S. River Road, Suite

Bedford, NH 03110


Revision 1 TBD

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend radian 500.0 ft deg L2 = 66.6 ft -10.0 -0.1745 L3 = 209.4 ft 1.200.0 ft L4 = 45.2 ft0.0 0.0000 χ = L5 = 209.4 ft 1,000.0 ft L6 = 28.1 ft β = 12.0 0.2094 LT = 658.8 ft**INPUT: Assumed Friction Factors** μ_G = dry + rollers 0.10 drill fluid in hole μ_b = 0.25 0.30 in hole no fluid INPUT: Assumed Hydrokinetic Drag 0.005 psi Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE IPS Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F PIPE/BUNDLE Pile/Bundle Diam. PIPE 14.25 Material Density, 59.28 pcf Pipe or Bundle Outside Diameter, Don 10.75 Pipe Dry Weight, W_P = 15.70 lb/ft Pipe or Bundle Min. Wall Thickness, t_r 1.194 in For design installation pull stress $DR = D_O/t_{min}$ 9 D_{OD} Stress | 10.75 | inches Bundle Multiplier Fn 1.0000 Avg. Inside Diameter, DIA 8.22 in 12 Hr Pullback Modulus, E_T = 65,000 psi $@T = 73 \deg F$ Poisson Ratio, μ = 0.45 Ovality Factor, fo = 0.84 2% 2.5 Buckling Safety, N = Hydrostatic Design Stress, HDS = 1,008 psi HDB/2 Pressure Rating, PR_(80F) = 252 psi $PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$ **INPUT: Assumed Fluid Densities/Elevations Ballast Density** 62.4 pcf 78 Drill Fluid Density Estimated for pull

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force							ASSESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,053 lb	88 psi	OK	1,053 lb	88 psi	OK	OK	OK
В	1,563 lb	44 psi	OK	1,654 lb	46 psi	OK	OK	OK
С	2,924 lb	106 psi	OK	2,205 lb	86 psi	OK	OK	OK
D	2,595 lb	72 psi	OK	1,876 lb	52 psi	OK	OK	OK
E	6,158 lb	201 psi	OK	3,609 lb	130 psi	OK	OK	OK
F	6,691 lb	187 psi	OK	3,848 lb	107 psi	OK	OK	OK
ASSESS	Pull Restricted I	Buckling Capa	acity, P _{PA} > ΔP invert	$P_{PA} = P_A F_R =$	102.21 psi	Balla	sted	OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Ball

Unball

Safe Pull Strength, SPS =	41,235 lb	$SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.955441236	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.087357274	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	201 psi	From Pull Force Calculations
llasted Max. Differential Pressure on Pipe, ΔP_B invert =	3.00	psi (-) indicates pipe is pressurized
llasted Max. Differential Pressure on Pipe, ΔP_U invert =	15.00	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations D_H = 18

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

ASTM EQ 18: Hydrokinetic, $\Delta T =$

Drill fluid elevation, $H_F =$

Ballast Water El., H_w =

Lowest Invert El., El_m =

Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V_{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)

346.20 ft

346.20 ft

318.50 ft

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Gro	und, $w_a/w_{af} =$	15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

1.17 lb/ft

Comparison Only @ 8psi

ISSUE: Issued for Construction (IFC)

BRIERLEY
ASSOCIATES
Limited Liability Company

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 72 Circuit #2

Mariaville Rd

Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 72 Circuit #2
Mariaville Rd

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced Test Pressure, P_{TEST} Design Working Pressure, Pwork 0 psig At high point 250 psi Quantity of Pipes in Hole, Q = PE4710 Pipe Material INPUT RESIN MATERIAL: PE3408, PE3608, PE4710 445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours Standard Dimension 10 **IPS** IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard DR = OD/Minimum Wall 9 10.750 in Outside Diameter, Do = Standard Manufacturer's Data Sheets Avg. Inside Diameter, D_i = 8.220 in Standard Manufacturer's Data Sheets Minimum Wall, $t_{min} =$ 1.194 in Standard Manufacturer's Data Sheets $A_W = \pi^* ((D_o/2)^2 - ((D_o-2t)/2)^2)$ Wall Section Area, A_W = 35.84514492 Unit OD Surface Area, in LF, AOD = $A_{OD} = 12*\pi*D_{OD}$ 405.27 in^2/LF $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.630 cf/LF Unit Inside Volume, V_{Di} = 0.369 cf/LF $V_{Di} = \pi^* (D_i/2)^2 / 144$ 1,600 psi Based on PPI Publication TR-4/2015 and ASTM 2837 HDB = Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5 Hydrostatic Design Stress, HDS = 1008 psi HDS = HDB*DF Environmental Factor, Afe = Reference 2: Use for pressure rating only Average from WL Plastics WL122 for PE4710 Density = 59.28 pcf 1.410 g/cc Weight Dry, W = 15.7 Lb/LF Tensile Yield, Ty psi = 3,500 psi Minimum from ASTM D3350 determined by ASTM D638 @73°F Load Duration **Short Term Long Term Duration Time** 10 hours 50 yrs 73 deg F 73 deg F Design Temperature, °F Assumed Design Ovality, % See Sheets 4 of 5 for design ovality Factor of Safety, FS = Industry Practice Modulus for given load duration, E = 65,000 psi 28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314 0.45 0.45 Poisson Ratio, υ = WL118: Use 0.35 if load duration is less than 12 hours Ovality factor fo = 0.84 0.6 Reference 1: Based on Selected Design Ovality

1.00

Source: WL Plastics WL118

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γιντ	γ _{EXT1}	γ _{EXT2}
Density, γ =	62.4	78	80
Buoya	-33.46 lb/ft		
Buoya	ant Unballasted	I Fluid 2, B _{B2} =	-34.72 lb/ft
	n ground, $B_G =$	38.70 lb/ft	
Buoyan	-10.47 lb/ft		
Buoyar	nt Ballasted in	Fluid 2, $B_{BB2} =$	-11.73 lb/ft

1.00

Temperature factor, f_t =

	Buoyant force	es
Dry Weight Pipe on ground, W _P =	15.70 lb/ft	From MFG. Data Sheet
Internal Ballast Weight, W _B =	23.00 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
xpected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
W _P -W _{D1}		
W_P - W_{D2}		
W_P+W_B		
BG-W _{D1}		
BG-W _{D2}		

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

HDD 72 Circuit #2
Mariaville Rd

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P_U =	875 psi	$P_{U} = 2*Ty*f_{t}/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE

OK

OK

OK

OK

OK

OK

OK

OK

OK

Long Term Design for operating conditions

	Long reim	Design for operating con
Design Temperature, °F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2^* E/(1-\upsilon^2)]^* [(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	82.3 psi
$P_a = P_{CR}/FS$	107.0 psi	32.9 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 29.80 ft Ballast depth to invert, H_B 27.70 ft Drill Fluid depth to invert, H_{DF} 27.70 ft

Pipe Invert Internal Pressure, P.

Pipe Invert External Pressure, PE

Air Ballast, P_A 0.00 psi

Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 12.20 psi

Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ 15.25 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$ 15.64 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 12.20 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A + P_a) - P_W$

Short Term	Long Term	
91.73 psi	17.67 psi	Pull Back Condition - Option 1
91.34 psi	17.28 psi	Pull Back Condition - Option 2
103.93 psi	29.87 psi	Pull Back Condition - Option 3
103.53 psi	29.48 psi	Pull Back Condition - Option 4
106.97 psi	32.92 psi	Long Term Operating Conditions
94.78 psi	20.72 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Projects\2022 Projects\322004-000 Champlain Hildson Power Express\Engineering\[HDD#72]

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 72 Circuit #2

Mariaville Rd

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

		_	_	
Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3	.7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	50,200 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	125,499 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF$ Sugges	ted SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267	.4 psi
SAS =	1,400 psi	Design Depth in DF, $H_{MDF} = 0$.	.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum	
$fr = ((5.57-(r+1.09)^2)^5-1.09 =$	0.95544		
$r = \sigma_i/2*(SSAS) =$	0.08736	Example from Table T	$\sigma_{i} = 201 \text{ psi}$
P _{CRR} =	255.5 psi		
FS =	2.0		
$P_{ACRR} = P_{CRR}/FS =$	127.8 psi	Allowable Reduced Short Term Buckling	pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	112.51 psi Pull Back Condition - Op	otion 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	124.32 psi Pull Back Condition - Op	otion 4 OK as >0

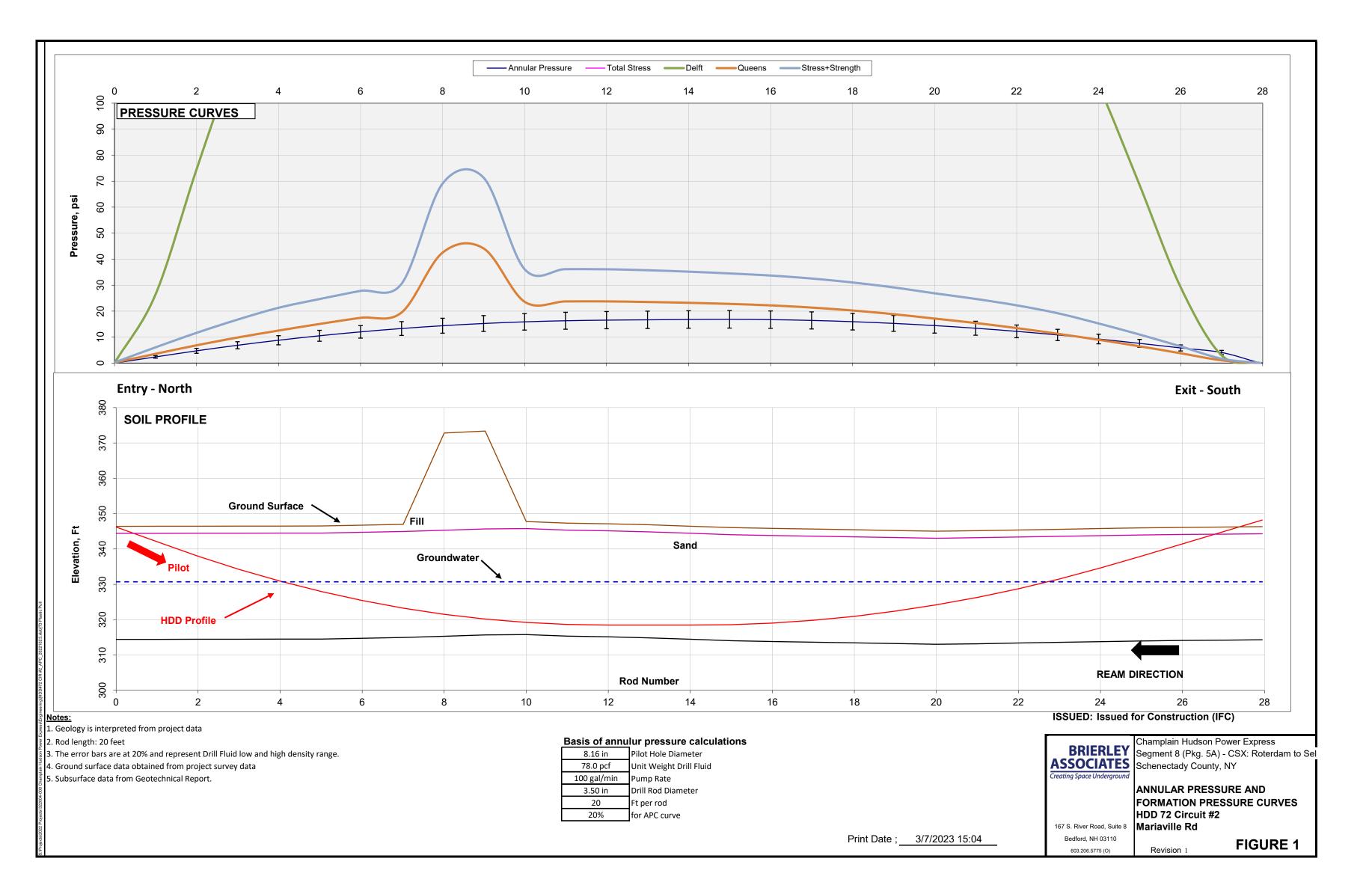
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

cts/2022 Projects/322004-000 Champlain Hudson Power Express\Engineering\[HDD#72 CIR #2_APC_

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 73 Circuit #1

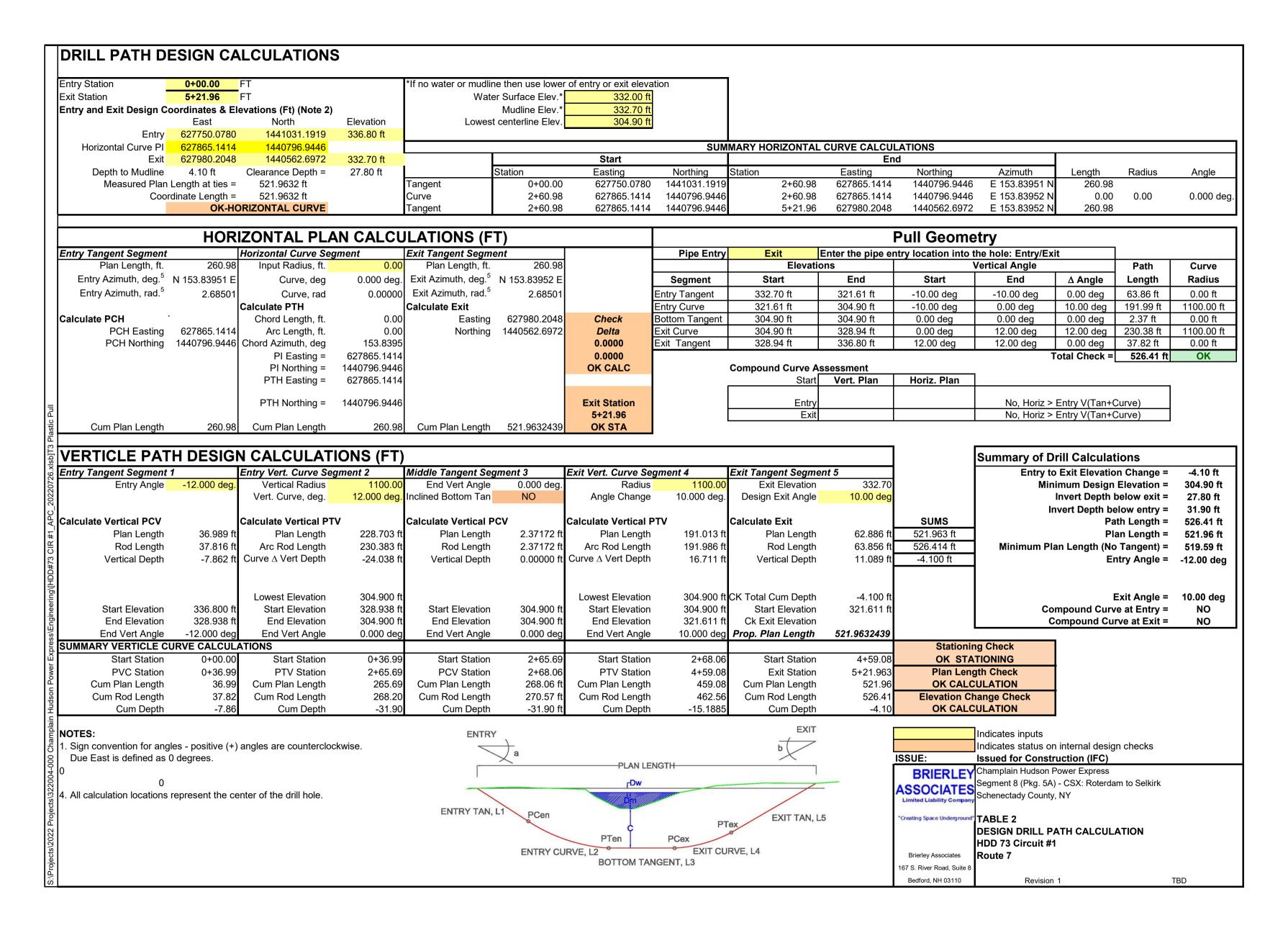
Route 7

ISSUE: Design Submittal

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 17-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/17/2023	1	Issued for Construction	KRF

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend radian 300.0 ft deg L2 = 63.9 ft -10.0 ° -0.1745 L3 = 192.0 ft 1,100.0 ft L4 = 2.4 ft0.0 0.0000 $\chi =$ L5 = 230.4 ft 1,100.0 ft $\beta =$ L6 = 37.8 ft0.2094 12.0 LT = 626.4 ft**INPUT: Assumed Friction Factors** $\mu_G =$ dry + rollers 0.10 drill fluid in hole μ_b : 0.25 0.30 in hole no fluid **INPUT: Assumed Hydrokinetic Drag** $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F Pile/Bundle Diam. PIPE/BUNDLE BUNDLE 14.25 Material Density, γ 59.28 pcf Outside Diameter, DOD 14.25 Pipe or Bundle Pipe Dry Weight, W_P = 17.36 lb/ft | Pipe or Bundle Min. Wall Thickness, t_m 1.194 in For design installation pull stress $DR = D_O/t_{min} =$ D_{OD} Stress | 10.75 | inches Avg. Inside Diameter, DIA Bundle Multiplier F_D 0.9042 BUNDLE $@T = 73 \deg F$ 12 Hr Pullback Modulus, E_T = 65,000 psi 0.45 Poisson Ratio, μ = Ovality Factor, fo = 0.84 2% 2.5 Buckling Safety, N = 1,008 psi HDB/2 Hydrostatic Design Stress, HDS =

INPUT: Assumed Fluid Densities/Elevations Ballast Density 62.4 pcf

252 psi

Ballast Density 62.4

Drill Fluid Density 78

Drill fluid elevation, $H_F = 332.70 \text{ ft}$ Ballast Water El., $H_W = 332.70 \text{ ft}$ Lowest Invert El., $El_m = 304.90 \text{ ft}$

Pressure Rating, PR_(80F) =

Estimated for pull

 $PR = 2HDSF_TA_F/(DR-1)[F_T=1]$

Calculated Pipe and Fluid Properties

Pressure Pipe: YES

OD Perimeter Length, P

Wall Section Area, A_W Volume Outside, V_{DO} Volume Inside, V_{DI} q_d = 2.69 lb/ft

ASTM EQ 18: Hydrokinetic, ΔT = 1.68 lb/ft

YES

44.77 in

41.68747289

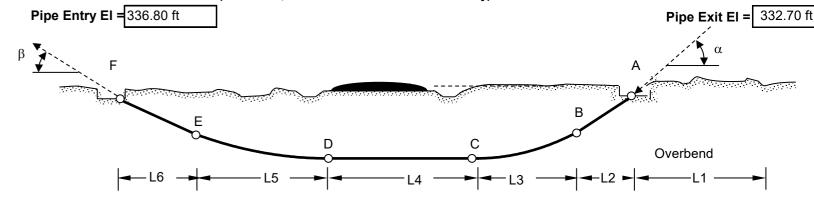
0.697 cf/LF

0.408 cf/LF

2.69 lb/ft

Drill Fluid (unit drag)

Comparison Only @ 8psi


pcf

Calculated Buoyant Forces

_	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		42.80 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,107 lb	157 psi	OK	1,107 lb	157 psi	OK	OK	OK
В	1,657 lb	42 psi	OK	1,775 lb	45 psi	OK	OK	OK
С	3,129 lb	114 psi	OK	2,426 lb	96 psi	OK	OK	OK
D	2,485 lb	63 psi	OK	1,783 lb	45 psi	OK	OK	OK
E	6,892 lb	209 psi	OK	3,971 lb	135 psi	OK	OK	OK
F	7,347 lb	185 psi	OK	4,217 lb	106 psi	OK	OK	OK
ASSE	SS Pull Restricte	d Buckling Capa	acity. $P_{BA} > \Delta P$ invert	$P_{PA} = P_A F_P =$	101 99 psi	Ballast	ed	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

PPI Ch 12 Eq 16

No Ballast

OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ 45,606 lb Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi $F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$ Maximum 12 hour Pull Stress Reduction, F_R = 0.953430858 0.090843058 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 209 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_R invert = 3.01 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔPu invert = 15.06 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_H = 22

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY ASSOCIATES Limited Liability Company

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL HDD 73 Circuit #1

Brierley Associates Route 7

167 S. River Road, Suite 8

167 S. River Road, Suit Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #1

"Creating Space Underground"

BRIERLEY

Route 7

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced Design Working Pressure, Pwork At high point 250 psi Test Pressure, P_{TEST} 0 psig Quantity of Pipes in Hole, Q = Pipe Material PE4710 INPUT RESIN MATERIAL: PE3408, PE3608, PE4710 445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours Standard Dimension 3 **IPS** IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard DR = OD/Minimum Wall 9 Outside Diameter, Do = 3.500 in Standard Manufacturer's Data Sheets Avg. Inside Diameter, D_i = 2.680 in Standard Manufacturer's Data Sheets Standard Manufacturer's Data Sheets Minimum Wall, $t_{min} =$ 0.389 in Wall Section Area, A_W = 3.80093926 $A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$ Unit OD Surface Area, in²/LF, A_{OD} = $A_{OD} = 12*\pi*D_{OD}$ 131.95 in^2/LF $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.067 cf/LF Unit Inside Volume, V_{Di} = 0.039 cf/LF $V_{Di} = \pi^* (D_i/2)^2 / 144$ Based on PPI Publication TR-4/2015 and ASTM 2837 HDB = 1,600 psi Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5 1008 psi Hydrostatic Design Stress, HDS = HDS = HDB*DF Environmental Factor, Af_e = Reference 2: Use for pressure rating only 59.28 pcf 1.410 g/cc Average from WL Plastics WL122 for PE4710 Density = Weight Dry, W = Lb/LF 1.66 Tensile Yield, Ty psi = 3,500 psi Minimum from ASTM D3350 determined by ASTM D638 @73°F **Load Duration Short Term** Long Term 10 hours **Duration Time** 50 yrs 73 deg F 73 deg F Assumed Design Temperature, °F Design Ovality, % 2% 2% See Sheets 4 of 5 for design ovality Factor of Safety, FS = 2.5 2.5 **Industry Practice** Modulus for given load duration, E = 28,000 psi 65,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314 0.45 Poisson Ratio, v =0.45 WL118: Use 0.35 if load duration is less than 12 hours Ovality factor fo = 0.84 Reference 1: Based on Selected Design Ovality 0.84 Temperature factor, f_t = 1.00 1.00 Source: WL Plastics WL118

Project Fluids

	Pipe Internal	Expected	Heavy External			
	Ballast	External Fluid	Fluid			
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2			
	γ_{INT}	$\gamma_{\sf EXT1}$	$\gamma_{\sf EXT2}$			
Density, γ =	62.4	78	80			
Buoya	ant Unballasted	I Fluid 1, B _{B1} =	-3.55 lb/ft			
Buoya	ant Unballasted	I Fluid 2, B _{B2} =	-3.69 lb/ft			
	n ground, $B_G =$	4.10 lb/ft				
Buoyar	-1.11 lb/ft					
Buoya	nt Ballasted in	Fluid 2, $B_{BB2} =$	-1.24 lb/ft			

Buoyant forces 1.66 lb/ft Dry Weight Pipe on ground, W_P = From MFG. Data Sheet Internal Ballast Weight, W_B = 2.44 lb/ft $W_B = V_{Di} * \gamma_{INT}$ Expected Displaced Fluid Weight, W_{D1} = 5.21 lb/ft $W_{D1} = V_{Do} * \gamma_{EXT1}$ Heavy Displaced Fluid Weight, W_{D2} = 5.35 lb/ft $W_{D2} = V_{Do} * \gamma_{EXT2}$ W_P-W_{D1} $W_P - W_{D2}$ Wp+WR BG-W_{D1} BG-W_{D2}

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #1

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

27.80 ft

Route 7

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{+HDB*f}_{t/}(DR-1)$

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

Design Temperature, ${}^{\circ}F = \boxed{73 \text{ deg F}}$ Pressure Rating, PR = $\boxed{252 \text{ psi}}$ PR = 2*HDS*f_t*Af_e/(DR-1)

Maximum Ocassional Surge, Pos = $\boxed{504 \text{ psi}}$ Pos = 2*PR

Maximum Reoccuring Surge, PRS = $\boxed{378 \text{ psi}}$ Pressure Rating, PR = $\boxed{504 \text{ psi}}$ Pressure Rating, Pressure Rating,

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 31.90 ft Ballast depth to invert, H_B 27.80 ft Drill Fluid depth to invert, H_{DF}

Pipe Invert Internal Pressure, P

Pipe Invert External Pressure, P_E

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 12.11 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^*(H_{MDF} + D_o/24)/144$ 15.14 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^*(H_{MDF} + D_o/24)/144$ 15.53 psi Water, $P_W = \gamma_{INT}^*(H_{DF} + D_o/24)/144$ 12.11 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	91.84 psi	30.94 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	91.45 psi	30.56 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.95 psi	43.05 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.56 psi	42.67 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	94.87 psi	33.97 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

beite att 1909 Designated 2000 Of commission Designation Designation Designation of Commission (Commission Designation Designa

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #1

ASSOCIATES
Limited Liability Company

BRIERLEY

"Creating Space Underground"

Route 7

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = PcR*fr

(ASTM F-1962 EQ. 22)

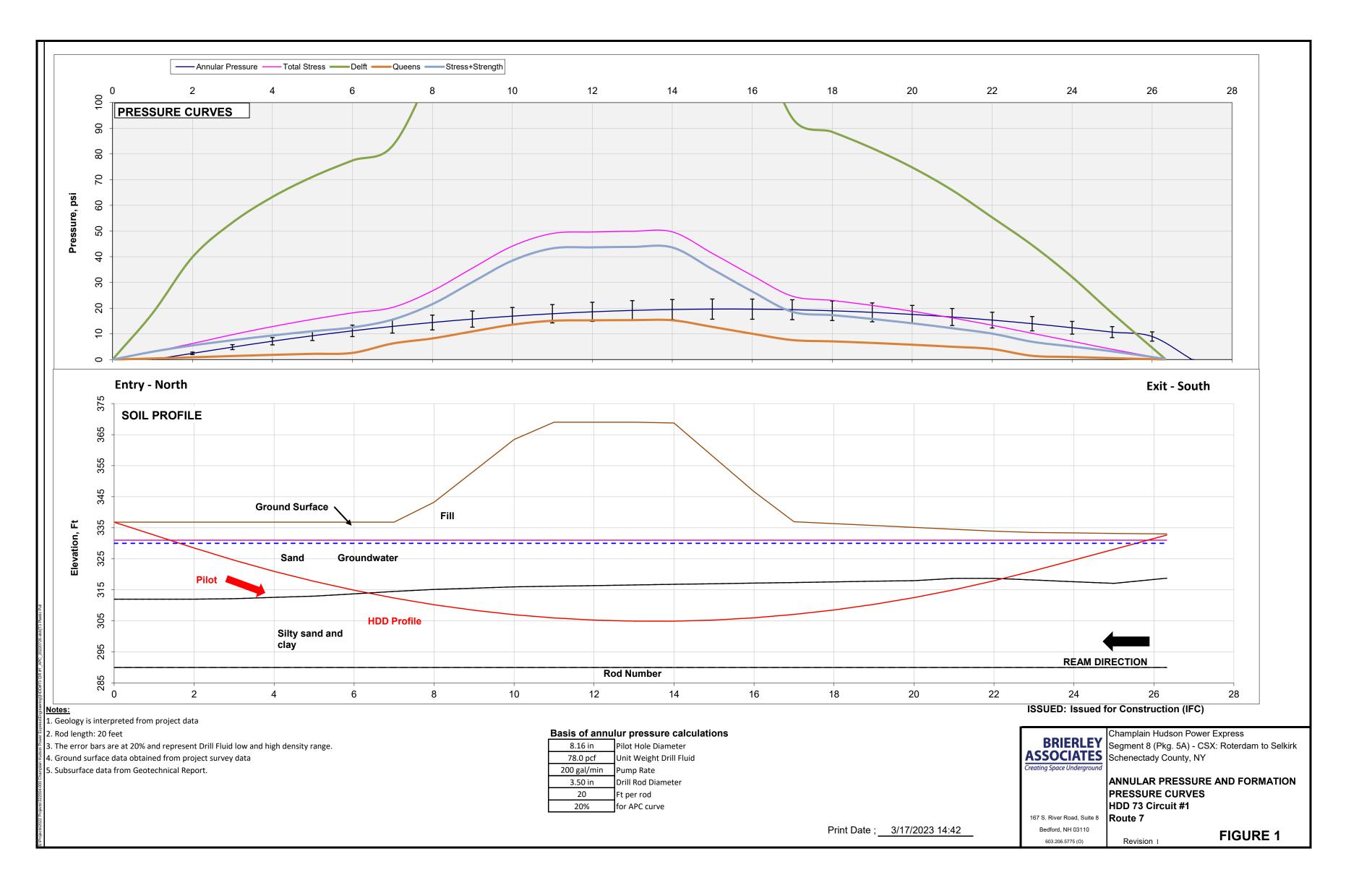
	<u> </u>
12 Hr	Pcr = 267.4 psi
1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
1,150 psi	Design Assumption as Maximum
0.95343	
0.09084	Example from Table T5, σ _i = 209 psi
255.0 psi	
2.0	
127.5 psi	Allowable Reduced Short Term Buckling pressure during pull
P _B +P _{ACRR})-P _{DF1}	124.46 psi Pull Back Condition - Option 3 OK as >0
$P_B + P_{ACRR}$)- P_{DF2}	124.08 psi Pull Back Condition - Option 4 OK as >0
	1,400 psi 1,150 psi 0.95343 0.09084 255.0 psi 2.0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

ineering	f _T	Time factor for pull	
Express\Engi	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
son Power	0.91	Up to 24 hours	24

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 73 Circuit #2

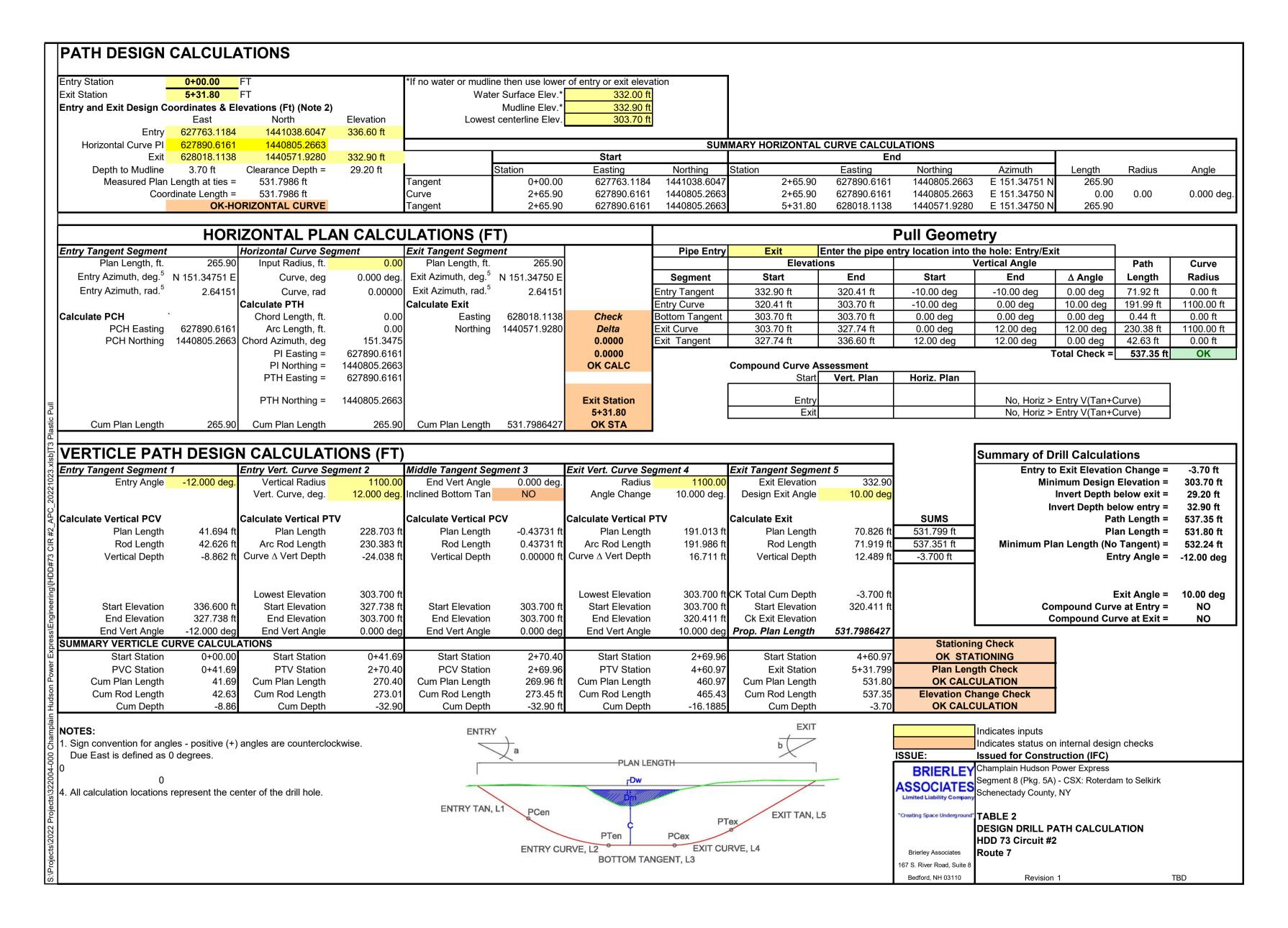
Route 7

ISSUE: Design Submittal

Contents:

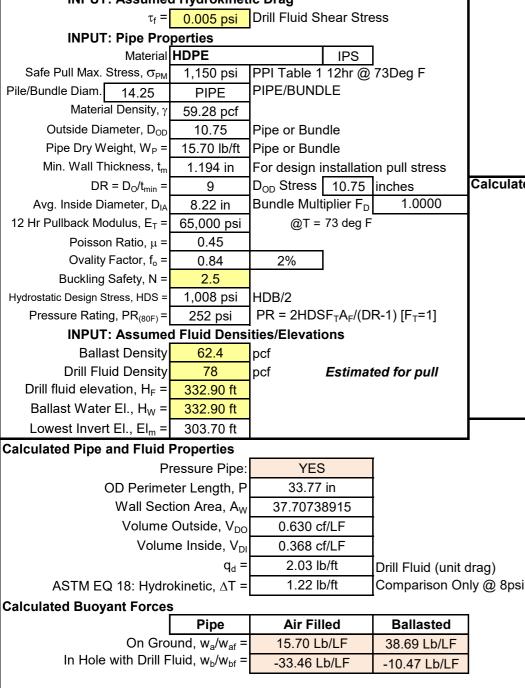
Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)


Project No: 322004-000 Print Date: 17-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/17/2023	1	Issued for Construction	KRF

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend radian 300.0 ft deg L2 = 71.9 ft -10.0 ° -0.1745 L3 = 192.0 ft 1,100.0 ft L4 = 0.4 ft0.0 0.0000 $\chi =$ L5 = 230.4 ft 1,100.0 ft $\beta =$ L6 = 42.6 ft 0.2094 12.0 LT = 637.4 ft**INPUT: Assumed Friction Factors** $\mu_G =$ dry + rollers 0.10 drill fluid in hole μ_b : 0.25 0.30 in hole no fluid **INPUT: Assumed Hydrokinetic Drag** $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F Pile/Bundle Diam. PIPE/BUNDLE PIPE 14.25 Material Density, γ 59.28 pcf Outside Diameter, DOD 10.75 Pipe or Bundle 15.70 lb/ft Pipe or Bundle Pipe Dry Weight, W_P = Min. Wall Thickness, t_m 1.194 in For design installation pull stress $DR = D_O/t_{min} =$ D_{OD} Stress | 10.75 | inches Bundle Multiplier Fn 1.0000 Avg. Inside Diameter, DIA 8.22 in $@T = 73 \deg F$ 12 Hr Pullback Modulus, E_T = 65,000 psi 0.45 Poisson Ratio, μ = Ovality Factor, fo = 0.84 2% 2.5 Buckling Safety, N = 1,008 psi HDB/2 Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F) = 252 psi $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$ **INPUT: Assumed Fluid Densities/Elevations Ballast Density** pcf 62.4 **Drill Fluid Density** pcf Estimated for pull Drill fluid elevation, $H_{E} =$ 332.90 ft Ballast Water El., H_w = 332.90 ft Lowest Invert El., El_m = 303.70 ft Calculated Pipe and Fluid Properties YES Pressure Pipe: 33.77 in OD Perimeter Length, P

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only) **Pipe Entry EI = 336.60 ft** Pipe Exit EI = 332.90 ft Overbend

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,018 lb	125 psi	OK	1,018 lb	125 psi	OK	OK	OK
В	1,611 lb	45 psi	OK	1,731 lb	48 psi	OK	OK	OK
С	2,867 lb	106 psi	OK	2,246 lb	89 psi	OK	OK	OK
D	2,268 lb	63 psi	OK	1,646 lb	46 psi	OK	OK	OK
Е	6,156 lb	198 psi	OK	3,530 lb	125 psi	OK	OK	OK
F	6,681 lb	186 psi	OK	3,797 lb	106 psi	OK	OK	OK
ASSE	SS Pull Restricte	d Buckling Capa	acity, $P_{PA} > \Delta P$ invert	$P_{PA} = P_A F_R =$	102.28 psi	Ballast	ed	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

PPI Ch 12 Eq 16

No Ballast

OK

Calculated Material Design Limits For Designed Drill Path

41,235 lb $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi $F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$ Maximum 12 hour Pull Stress Reduction, F_R = 0.956123685 0.086170849 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 198 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_R invert = 3.16 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔPu invert = 15.82 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY **ASSOCIATES Limited Liability Company**

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL HDD 73 Circuit #2

Brierley Associates 167 S. River Road, Suite 8 Route 7

Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #2

Route 7

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Design Working Pressure, Pwork At high point 250 psi Test Pressure, P_{TEST} 0 psig Quantity of Pipes in Hole, Q =

Pipe Material PE4710 INPUT RESIN MATERIAL: PE3408, PE3608, PE4710 445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours

Standard Dimension 10 **IPS** IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard

DR = OD/Minimum Wall 9

Outside Diameter, D_o = 10.750 in Standard Manufacturer's Data Sheets Avg. Inside Diameter, D_i = 8.219 in Standard Manufacturer's Data Sheets

Standard Manufacturer's Data Sheets Minimum Wall, t_{min} = 1.194 in

Wall Section Area, A_W = 35.85681985 $A_W = \pi^*((D_0/2)^2 - ((D_0-2t)/2)^2)$

Unit OD Surface Area, in LF, A_{OD} = $A_{OD} = 12*\pi*D_{OD}$ 405.27 in^2/LF $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.630 cf/LF

Unit Inside Volume, V_{Di} = 0.368 cf/LF $V_{Di} = \pi^* (D_i/2)^2 / 144$

Based on PPI Publication TR-4/2015 and ASTM 2837 HDB = 1,600 psi

Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5

1008 psi Hydrostatic Design Stress, HDS = HDS = HDB*DF Environmental Factor, Af_e =

Reference 2: Use for pressure rating only 59.28 pcf 1.410 g/cc Average from WL Plastics WL122 for PE4710 Density =

Weight Dry, W = 15.68

Minimum from ASTM D3350 determined by ASTM D638

Tensile Yield, Ty psi = 3,500 psi

@73°F

Load Duration Short Term Long Term 10 hours **Duration Time** 50 yrs 73 deg F 73 deg F Assumed Design Temperature, °F

Design Ovality, % 2% 2% See Sheets 4 of 5 for design ovality Factor of Safety, FS = 2.5 2.5 **Industry Practice**

Modulus for given load duration, E = 65,000 psi 65,000 psi

Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314 0.45 0.45 Poisson Ratio, v =WL118: Use 0.35 if load duration is less than 12 hours

Ovality factor fo = 0.84 Reference 1: Based on Selected Design Ovality 0.84 Temperature factor, f_t = 1.00 Source: WL Plastics WL118

1.00

Project Fluids

	Pipe Internal	Expected	Heavy External		
	Ballast	External Fluid	Fluid		
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2		
	γ_{INT}	$\gamma_{\sf EXT1}$	γ _{EXT2}	Ξx	
Density, γ =	62.4	78	80		
Buoya	-33.48 lb/ft				
Buoya	ant Unballasted	d Fluid 2, B _{B2} =	-34.74 lb/ft		
	38.67 lb/ft				
Buoyar	-10.49 lb/ft				
Buoya	-11.75 lb/ft				

!	Buoyant forces							
Dry Weight Pipe on ground, W _P =	15.68 lb/ft	From MFG. Data Sheet						
Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$						
xpected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$						
Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$						
W _P -W _{D1}		•						
W_P - W_{D2}								

BRIERLEY

"Creating Space Underground"

BG-W_{D1} BG-W_{D2}

W_P+W_R

Pg 2 of 3

HDPE PROPERTIES

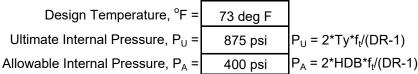
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #2

BRIERLEY


"Creating Space Underground"

Route 7

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

ASSESSMENT PRESSURE RATING OK if PR \geq to P_{WORK} OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	267.4 psi
$P_a = P_{CR}/FS$	107.0 psi	107.0 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_B 29.20 ft Drill Fluid depth to invert, H_{DF} 29.20 ft 32.90 ft

Pipe Invert Internal Pressure, P

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 12.85 psi

Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 16.47 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 12.85 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_I + P_a) - P_E \le 0$

Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$ 90.50 psi 90.50 psi Pull	Differential Pressures	Short Term	Long Term	
	Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	90.92 psi	90.92 psi	Pull I
Internal Dellected and Estemal Elicid (D. D.) D. 100 Eg. 1 100 Eg. 1	Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	90.50 psi	90.50 psi	Pull
Internal Ballasted and External Fluid 1 = $(P_B + P_a) - P_{DF1} = 103.76$ psi = 103.76 psi = Pull	Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.76 psi	103.76 psi	Pull I
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$ 103.35 psi 103.35 psi Pull	Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.35 psi	103.35 psi	Pull I
Internal Ballasted and External Water = (P _B +P _a)-P _W 106.97 psi 106.97 psi Lon	Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	106.97 psi	Long
Internal Air and External Water = $(P_A + P_a) - P_W$ 94.13 psi 94.13 psi Ope	Internal Air and External Water = $(P_A+P_a)-P_W$	94.13 psi	94.13 psi	Ope

Back Condition - Option 1 Back Condition - Option 2 Back Condition - Option 3 Back Condition - Option 4 g Term Operating Conditions

erational Dewatering NO SOIL LOADS

16.06 psi

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 73 Circuit #2

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

Route 7

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

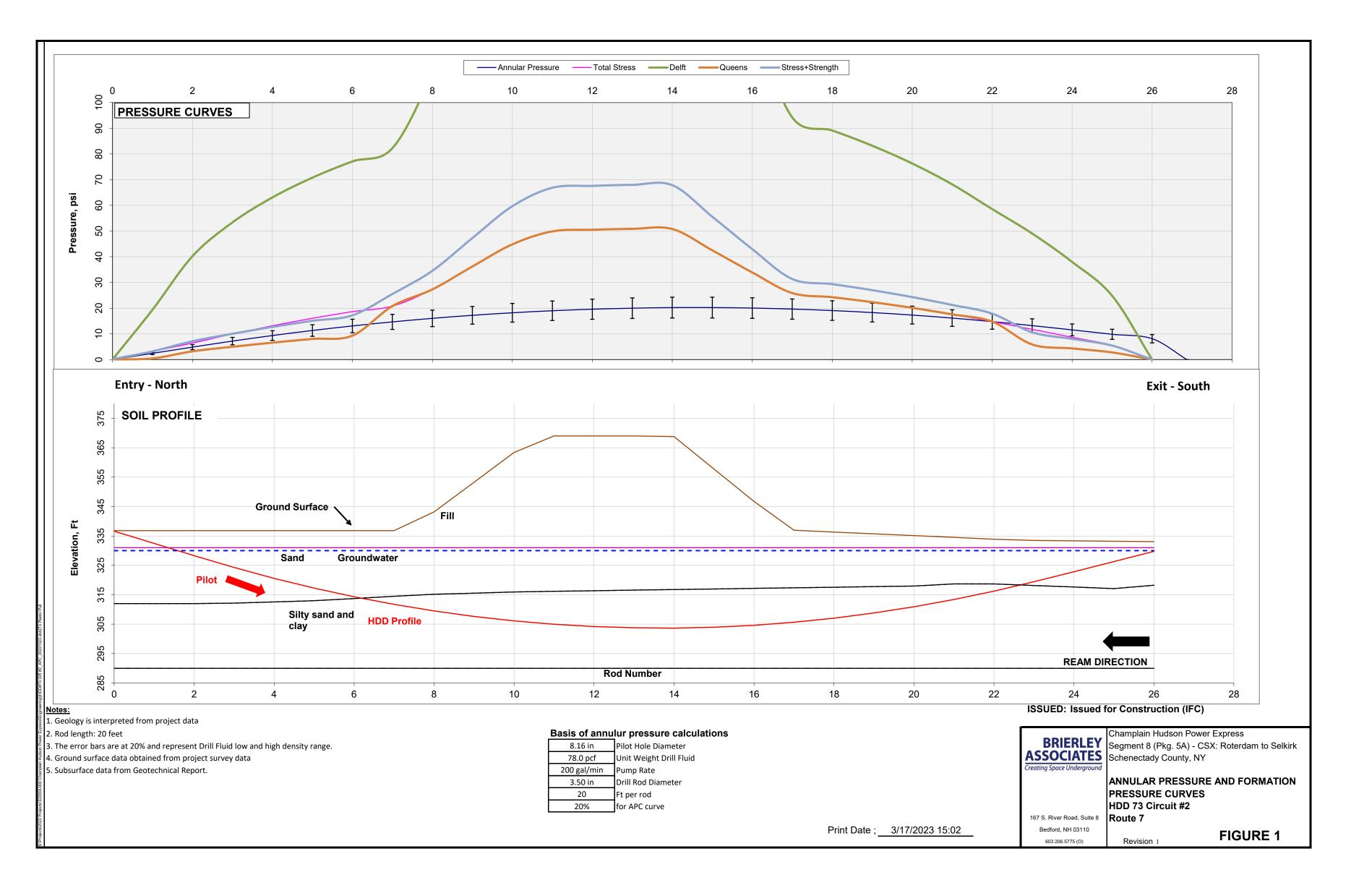
12 Hr	Pcr = 267.4 psi
1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
1,150 psi	Design Assumption as Maximum
0.95612	
0.08617	Example from Table T5, σ _i = 198 psi
255.7 psi	
2.0	
127.9 psi	Allowable Reduced Short Term Buckling pressure during pull
P _{ACRR})-P _{DF1}	124.64 psi Pull Back Condition - Option 3 OK as >0
P_{ACRR})- P_{DF2}	124.23 psi Pull Back Condition - Option 4 OK as >0
	1,400 psi 1,150 psi 0.95612 0.08617 255.7 psi 2.0 127.9 psi P _{ACRR})-P _{DF1}

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

ineering	f _T	Time factor for pull	
ss\Engi	1.00	Up to 1 hour pull	1
Expre	0.95	Up tp 12 hours pull	12
son Power	0.91	Up to 24 hours	24

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75 Conduit #1

Guilderland Ave.

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 1-Mar-2023

Date	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/24/2023	1	Issued for Construction	ABL

Pull Geometry

Leng	ths (Path)		Angles		Radius, R
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	29.5 ft	α =	-12.0 °	-0.2094	
L3 =	188.5 ft				900.0 ft
L4 =	306.9 ft	χ =	0.0 °	0.0000	
L5 =	174.5 ft				1,000.0 ft
L6 =	103.1 ft	β =	10.0 °	0.1745	
LT =	902.5 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

	Material	HDPE		IPS	
Safe Pull Max. Stress, σ_{PM}		1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam.	Pile/Bundle Diam. 14.25		PIPE/BUND	LE	
Materia	al Density, γ	59.28 pcf			
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P =		17.36 lb/ft	Pipe or Bun	dle	
Min. Wall Thickness, t_m		1.194 in	For design i	For design installation pull stress	
$DR = D_O/t_{min} =$		9	D _{OD} Stress	10.75	inches
Avg. Inside Diameter, D _{IA}		BUNDLE	Bundle Mult	iplier F _D	0.9042
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F	
Poisso	n Ratio, μ =	0.45			
Ovality	Factor, f _o =	0.84	2%		
Buckling	Safety, N =	2.5			
Hydrostatic Design S	tress, HDS =	1,000 psi	HDB/2		
Pressure Rating, PR _(80F) =		250 psi	PR = 2HDS	$F_TA_F/(D$	R-1) [F _⊤ =1]

INPUT: Assumed Fluid Densities/Elevations

in o i . Assume	a i lala Bello	
Ballast Density	62.4	pcf
Drill Fluid Density	78	pcf
fluid elevation, H _F =	312.80 ft	
last Water FI H =	312 80 ft	

Estimated for pull

Comparison Only @ 8psi

Calculated Pipe and Fluid Properties

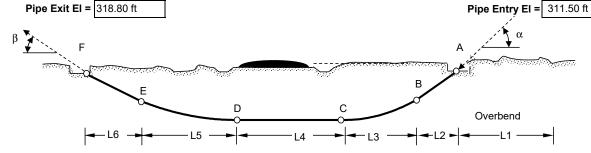
Lowest Invert El., El_m = 285.70 ft

Drill

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V _{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)

ASTM EQ 18: Hydrokinetic, $\Delta T =$

Calculated Buovant Forces


·	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =		17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

1.10 lb/ft

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Entry

Calculated Pull Force					ASS	ESS		
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	1,600 lb	169 psi	OK	1,600 lb	169 psi	OK	OK	OK
В	1,878 lb	47 psi	OK	1,906 lb	48 psi	OK	OK	OK
С	3,235 lb	124 psi	OK	2,536 lb	107 psi	OK	OK	OK
D	4,180 lb	105 psi	OK	3,481 lb	88 psi	OK	OK	OK
Е	7,465 lb	227 psi	OK	5,176 lb	169 psi	OK	OK	OK
F	8,990 lb	227 psi	OK	5,968 lb	151 psi	OK	OK	OK
ASSESS Po	ull Restricted Bu	ickling Capac	ity, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	101.51 psi	Balla	sted	OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

material Boolgii Emilio i el Boolgiioa Biiii i atti		
Safe Pull Strength, SPS =	- ,	SSPS = $\sigma_{PM}\pi D_{OD}^{2}((1/DR)-(1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F _R =	0.948897985	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.098652601	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	227 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	2.94	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _u invert =	14.68	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

22

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company

Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 75 Conduit #1 Guilderland Ave. Brierlev Associates

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #1
Guilderland Ave.

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

po matoriai i roportioo						
Sources: ASTM D3350	Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced					
Design Working Pressure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point				
Quantity of Pipes in Hole, Q =	1					
Pipe Material	PE 4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours				
Standard Dimension	3	,				
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"				
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	3.500 in	Standard Manufacturer's Data Sheets				
Avg. Inside Diameter, D _i =	2.680 in	Standard Manufacturer's Data Sheets				
Minimum Wall, t _{min} =	0.389 in	Standard Manufacturer's Data Sheets				
Wall Section Area, A _W =	3.801889456	$A_{W} = \pi^{*}((D_{o}/2)^{2} - ((D_{o}-2t)/2)^{2})$				
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$				
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{\rm LF} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5				
Hydrostatic Design Stress, HDS =	1000 psi	HDS = HDB*DF				
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only				
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710				
Weight Dry, W=	1.66	Lb/LF				
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638				
Load Duration		Long Term				
Duration Time	10 hours	50 yrs				
Design Temperature, °F	73 deg F	73 deg F Assumed				
Design Ovality, %	2%	4% See Sheets 4 of 5 for design ovality				
Factor of Safety, FS =	2.5	2.5 Industry Practice				
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314				
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours				
Ovality factor f _o =	0.84	0.5 Reference 1: Based on Selected Design Ovality				
Temperature factor, f_t =	1.00	1.00 Source: WL Plastics WL118				
Project Fluids						

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	
	γ_{INT}	γ_{EXT1}	γ _{EXT2}	
Density, γ =	62.4	78	80	
Buoya	-3.55 lb/ft			
Buoya	-3.69 lb/ft			
Ballasted on ground, B _G = 4.1				
Buoyar	-1.11 lb/ft			
Buoya	nt Ballasted in	Fluid 2, B _{BB2} =	-1.24 lb/ft	

	별	suoyant forc	es
t	Dry Weight Pipe on ground, W _P =	1.66 lb/ft	From MFG. Data Shee
	Internal Ballast Weight, W _B =	2.44 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	Expected Displaced Fluid Weight, W_{D1} =	5.21 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
	Heavy Displaced Fluid Weight, W_{D2} =	5.35 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
	W _P -W _{D1}		_

 W_P - W_{D2} W_P + W_B BG- W_{D1} BG- W_{D2}

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #1 Guilderland Ave.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth Short Term (<10 hours)

> Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi $P_A = 2*HDB*f_t/(DR-1)$

Pg 2 of 3

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F

 $PR = 2*HDS*f_{t}*Af_{e}/(DR-1)$ Pressure Rating, PR = 250 psi Maximum Ocassional Surge, Pos = 500 psi

 $P_{OS} = 2*PR$ $P_{RS} = 1.5*PR$ ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

375 psi

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 68.6 psi $P_a = P_{CR}/FS$ 107.0 psi 27.4 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Ballast depth to invert, H_B Max. Depth to Invert 33.10 ft

25.80 ft Drill Fluid depth to invert, H_{DF}

25.80 ft

Pipe Invert Internal Pressure, Pi

izq 00.0 Air Ballast, PA Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 11.24 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_F \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	92.92 psi	13.38 psi	Pull Back Con-
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	92.56 psi	13.02 psi	Pull Back Con-
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	104.16 psi	24.62 psi	Pull Back Con
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.80 psi	24.26 psi	Pull Back Con
Internal Ballasted and External Water = (P _B +P _a)-P _W	106.97 psi	27.43 psi	Long Term Op
Internal Air and External Water = $(P_A+P_a)-P_W$	95.73 psi	16.19 psi	Operational De

ndition - Option 1 ndition - Option 2 ndition - Option 3 ndition - Option 4 perating Conditions Dewatering NO SOIL LOADS

14.05 psi

14.41 psi 11.24 psi

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

TABLE 4 HDPE PROPERTIES

Pg 3 of 3

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #1

Guilderland Ave.

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

		<u></u>
Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

BRIERLEY

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.94890	
$r = \sigma_i/2*(SSAS) =$	0.09865	Example from Table T5, $\sigma_i = 227 \text{ psi}$
P _{CRR} =	253.8 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	126.9 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (\overline{I})	P _B +P _{ACRR})-P _{DF1}	112.83 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (F	$P_B + P_{ACRR}$)- P_{DF2}	112.47 psi Pull Back Condition - Option 4 OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

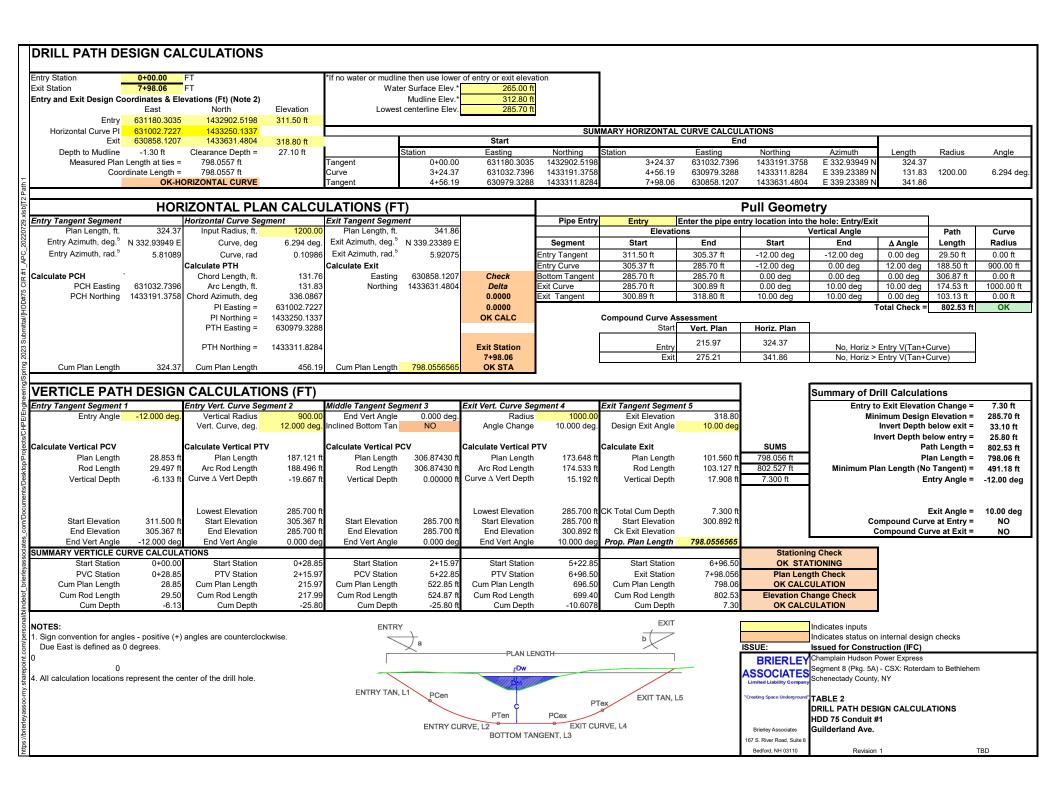
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

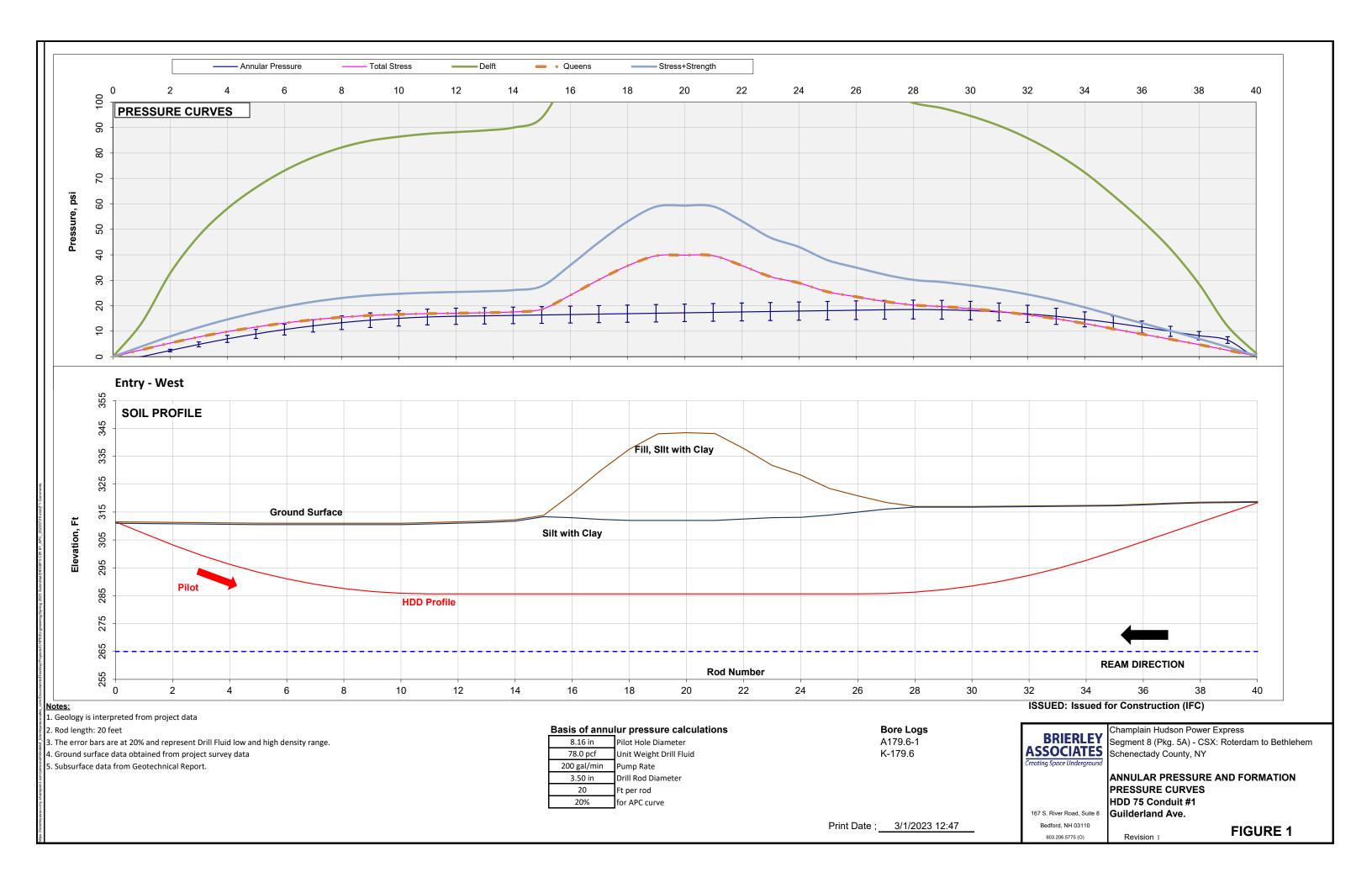
REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7


Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

Documents/Desktop/Projects/CHPE/Engineering/Spring 2023 Submittal/[HDD#75 CIR #1_APC_20220729.xisb]T1 Comments

Page 3 of 3

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75 Conduit #2

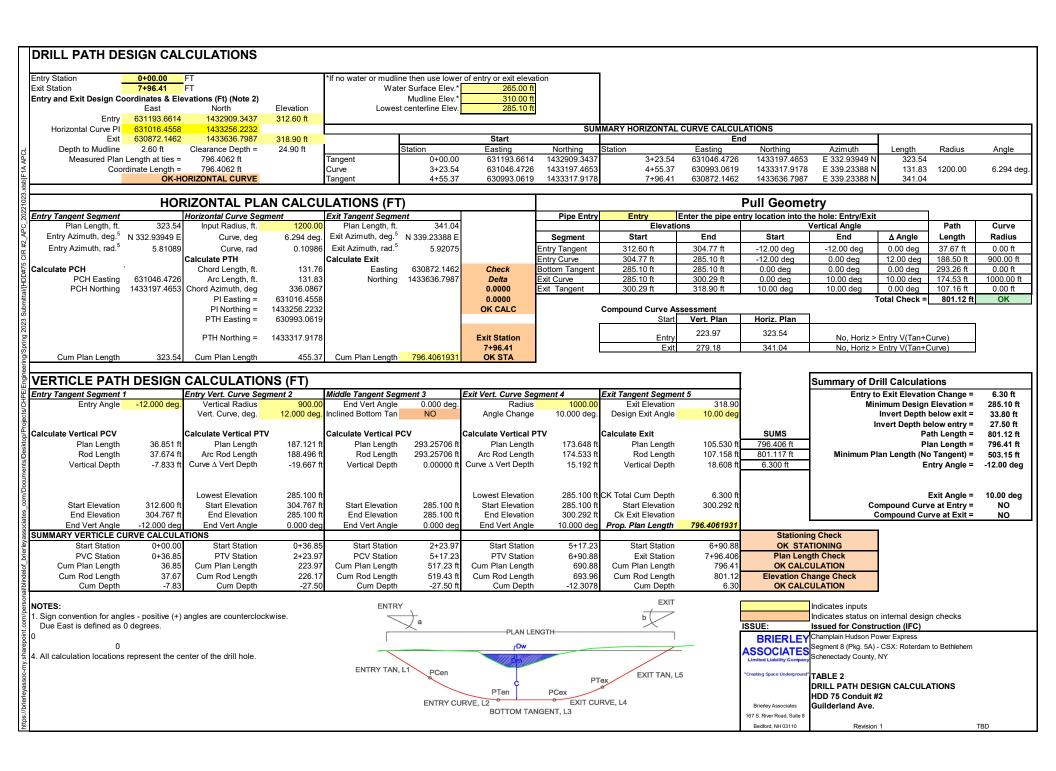
Guilderland Ave.

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 1-Mar-2023

Date	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/24/2023	1	Issued for Construction	ABL

Pull Geometry

top/Projects/CHPE/Engineering/Spring 2023 Submittal/[HDD#75 CIR #2_APC_20221023.xlsb]F1A APCL

Leng	ths (Path)		Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	37.7 ft	α =	-12.0 °	-0.2094	
L3 =	188.5 ft				900.0 ft
L4 =	293.3 ft	χ =	0.0 °	0.0000	
L5 =	174.5 ft				1,000.0 ft
L6 =	107.2 ft	β =	10.0 °	0.1745	
LT =	901.1 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

iiii Giii ipo i io <mark>poilioo</mark>							
HDPE		IPS					
1,150 psi	PPI Table 1	12hr @	73Deg F				
Pipe	PIPE/BUND	LE					
59.28 pcf							
10.75	Pipe or Bun	Pipe or Bundle					
15.70 lb/ft	Pipe or Bundle						
1.194 in	For design installation pull stress						
9	D _{OD} Stress	10.75	inches				
8.22 in	Bundle Mult	iplier F _D	1.0000				
65,000 psi	@T =	73 deg F					
0.45		-					
0.84	2%						
2.5							
1,000 psi	HDB/2						
250 psi	PR = 2HDS	$SF_TA_F/(D$	R-1) [F _T =1]				
	HDPE 1,150 psi Pipe 59.28 pcf 10.75 15.70 lb/ft 1.194 in 9 8.22 in 65,000 psi 0.45 0.84 2.5 1,000 psi	HDPE	HDPE IPS 1,150 psi PPI Table 1 12hr @ Pipe PIPE/BUNDLE 59.28 pcf Pipe or Bundle 15.70 lb/ft Pipe or Bundle 1.194 in For design installation 9 DoD Stress 10.75 8.22 in Bundle Multiplier FD @T = 73 deg FD 0.45 0.84 2% 2.5 1,000 psi HDB/2				

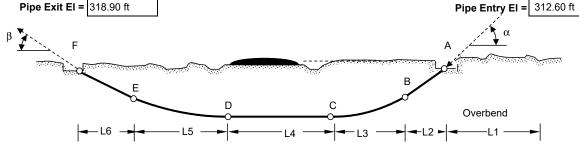
INPUT: Assumed Fluid Densities/Elevations

iiti O1. Assume	a i iaia Beiis	11100/
Ballast Density	62.4	pcf
Drill Fluid Density	78	pcf
Drill fluid elevation, H_F =	312.20 ft	
Ballast Water El., H _W =	312.20 ft	
Lowest Invert El., El _m =	285.10 ft	

Estimated for pull

Calculated Pipe and Fluid Properties

	Pressure Pipe:	YES	
	OD Perimeter Length, P	33.77 in	
	Wall Section Area, A _W	37.70738915	
	Volume Outside, V_{DO}	0.630 cf/LF	
	Volume Inside, V_{DI}	0.368 cf/LF	
	$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)
E	Q 18: Hydrokinetic, ΔT =	0.82 lb/ft	Comparison Only @ 8psi


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Gro	und, $w_a/w_{af} =$	15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

Entry

(schematic, to show definition of variables only)

Calculated Pull Force							ASSESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	1,445 lb	137 psi	OK	1,445 lb	137 psi	OK	OK	OK
В	1,789 lb	50 psi	OK	1,819 lb	51 psi	OK	OK	OK
С	2,940 lb	114 psi	OK	2,314 lb	97 psi	OK	OK	OK
D	3,723 lb	104 psi	OK	3,097 lb	86 psi	OK	OK	OK
E	6,618 lb	214 psi	OK	4,555 lb	156 psi	OK	OK	OK
F	7,983 lb	223 psi	OK	5,258 lb	147 psi	OK	OK	OK

ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 101.62$ psi Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16

Ballasted

OK

OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	41,235 lb	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR)-(1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.949957018	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.096834177	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	223 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	2.94	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	14.68	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem Schenectady County, NY

Guilderland Ave.

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL HDD 75 Conduit #2

Brierley Associates 167 S. River Road, Suite 8

> Bedford, NH 03110 Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #2 Guilderland Ave.

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

·					
Sources: ASTM D3350	and Plastic Pip	pe Institute Publications and as referenced			
Design Working Pressure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point			
Quantity of Pipes in Hole, Q =	1	<u> </u>			
Pipe Material	PE 4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours			
Standard Dimension	10				
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9				
Outside Diameter, D _o =	10.750 in	Standard Manufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Manufacturer's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Manufacturer's Data Sheets			
	35.84514492	$A_{W} = \pi^{*}((D_{o}/2)^{2} - ((D_{o}-2t)/2)^{2})$			
Unit OD Surface Area, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12 \times \pi^* D_{OD}$			
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$			
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837			
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5			
Hydrostatic Design Stress, HDS =	1000 psi	HDS = HDB*DF			
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only			
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710			
Weight Dry, W =	15.7	Lb/LF			
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638			
Load Duration Duration Time	Short Term 10 hours	Long Term 50 yrs			
Design Temperature, °F	73 deg F	73 deg F Assumed			
Design Ovality, %	2%	4% See Sheets 4 of 5 for design ovality			
Factor of Safety, FS =	2.5	2.5 Industry Practice			
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours			
Ovality factor f _o =	0.84	0.5 Reference 1: Based on Selected Design Ovality			
Temperature factor, f_t =	1.00	1.00 Source: WL Plastics WL118			
Project Fluids					

Pipe Internal	Expected	Heavy	В	Suoyant forc	es
Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, W _P =	15.70 lb/ft	From MFG. Data Shee
Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
ant Unballasted	l Fluid 1, B _{B1} =	-33.46 lb/ft	W _P -W _{D1}		
ant Unballasted	l Fluid 2, B _{B2} =	-34.72 lb/ft	W_P - W_{D2}		
Ballasted or	n ground, $B_G =$	38.69 lb/ft	W_P + W_B		
nt Ballasted in I	Fluid 1, BB _{B1} =	-10.47 lb/ft	BG-W _{D1}		
Buoyant Ballasted in Fluid 2, B _{BB2} =			BG-W _{D2}		
	Ballast Fresh Water YINT 62.4 ant Unballasted ant Unballasted Ballasted on t Ballasted in F	$\begin{array}{c c} \text{Ballast} & \text{External Fluid} \\ \hline \text{Fresh Water} & \text{Drill Fluid 1} \\ \hline \gamma_{\text{INT}} & \gamma_{\text{EXT1}} \\ \hline 62.4 & 78 \\ \hline \text{ant Unballasted Fluid 1, B}_{\text{B1}} = \\ \hline \text{ant Unballasted Fluid 2, B}_{\text{B2}} = \\ \hline \text{Ballasted on ground, B}_{\text{G}} = \\ \hline \text{at Ballasted in Fluid 1, BB}_{\text{B1}} = \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #2 Guilderland Ave.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth Short Term (<10 hours)

> Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$

> > 400 psi $P_A = 2*HDB*f_t/(DR-1)$

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F

Pressure Rating, PR = 250 psi Maximum Ocassional Surge, Pos =

500 psi $P_{OS} = 2*PR$ 375 psi

 $PR = 2*HDS*f_{t}*Af_{e}/(DR-1)$

 $P_{RS} = 1.5*PR$

ASSESSMENT TEST PRESSURE

OK if $P_A >= to P_{TEST}$ OK

BRIERLEY

"Creating Space Underground"

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

Pg 2 of 3

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Allowable Internal Pressure, PA =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 68.6 psi $P_a = P_{CR}/FS$ 107.0 psi 27.4 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Ballast depth to invert, H_B 27.50 ft Max. Depth to Invert 33.80 ft

Drill Fluid depth to invert, H_{DF}

15.14 psi

27.50 ft

Pipe Invert Internal Pressure, Pi

izq 00.0 Air Ballast, PA Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 12.11 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$

15.53 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 12.11 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_F \le 0$

Differential Pressures	Short Term	Long Term
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	91.84 psi	12.29 psi
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	91.45 psi	11.90 psi
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.95 psi	24.40 psi
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.56 psi	24.01 psi
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	27.43 psi
Internal Air and External Water = $(P_A+P_a)-P_W$	94.86 psi	15.32 psi

ong Term 2.29 psi Pull Back Condition - Option 1 1.90 psi Pull Back Condition - Option 2 24.40 psi Pull Back Condition - Option 3 24.01 psi Pull Back Condition - Option 4 27.43 psi

Long Term Operating Conditions

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

TABLE 4 HDPE PROPERTIES

Pg 3 of 3

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75 Conduit #2

Guilderland Ave.

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

		_	_	
Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.	.7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	50,200 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	125,499 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF Sugge$	ested SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

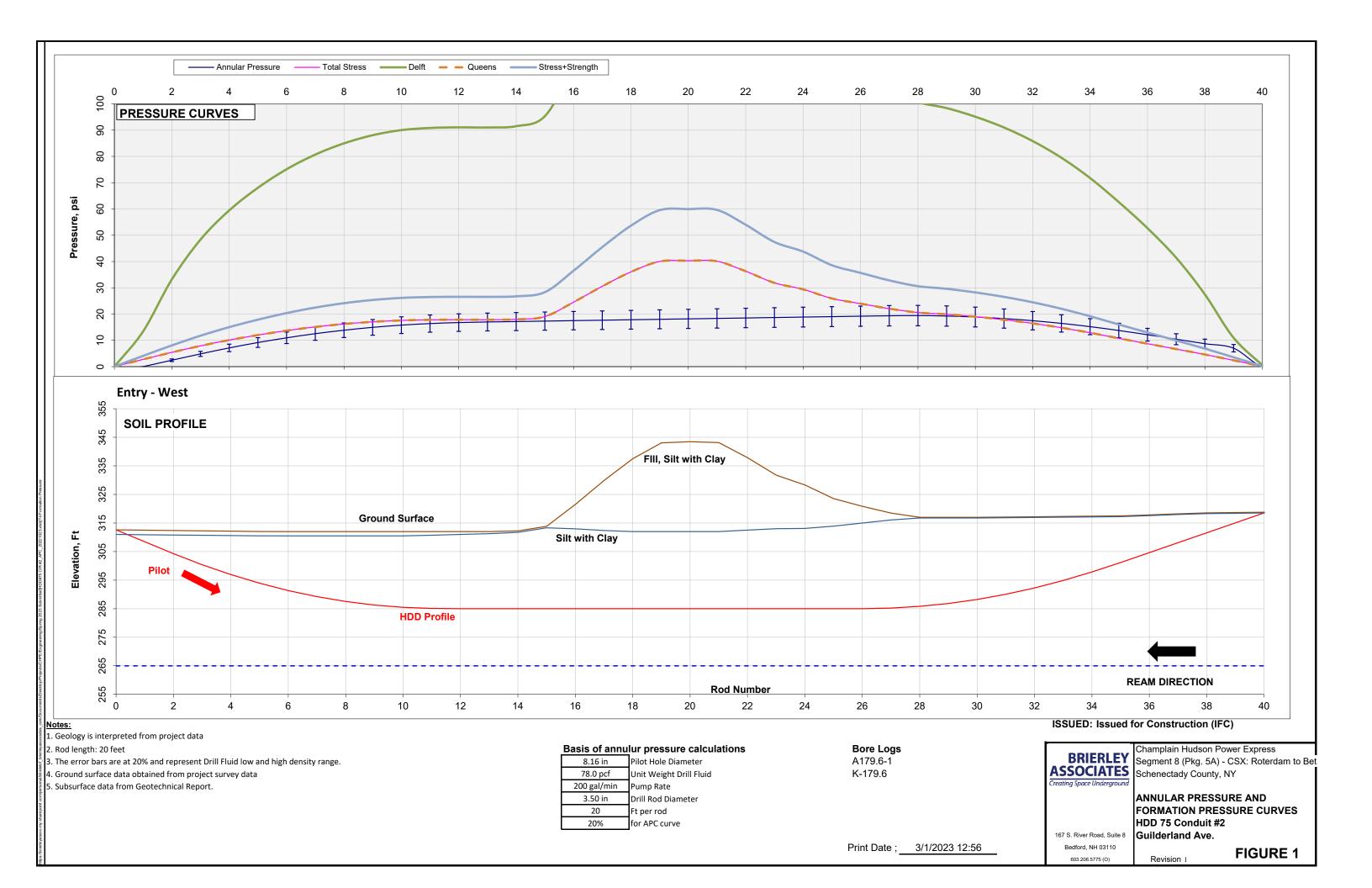
Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	1,400 psi	Design D	epth in DF, H_{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpti	on as Maximum		•
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.94996				
$r = \sigma_i/2*(SSAS) =$	0.09683		Example from	Table T5, σ_i =	223 psi
P _{CRR} =	254.1 psi				
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	127.0 psi	Allowable Reduc	ed Short Term Buc	kling pressure	during pull
Internal Ballasted and External Fluid 1 = (F	P _B +P _{ACRR})-P _{DF1}	111.89 psi	Pull Back Condition	n - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (F	$P_B + P_{ACRR}$)- P_{DF2}	111.50 psi	Pull Back Condition	n - Option 4	OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _⊤	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75A Conduit #2

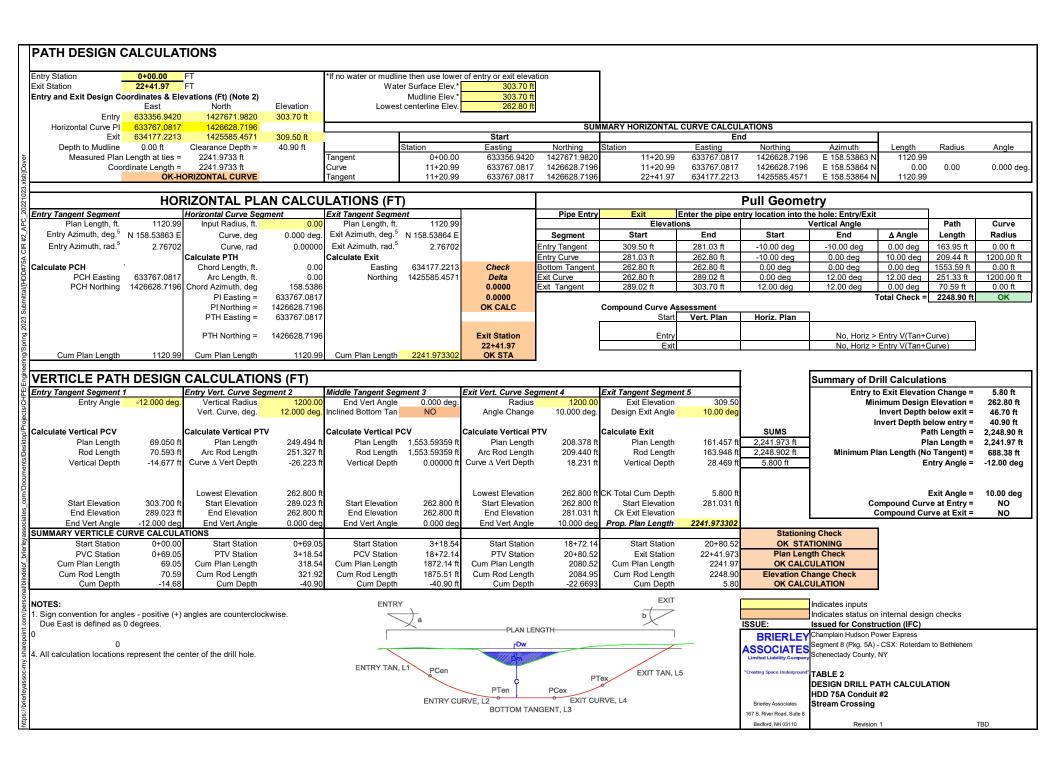
Stream Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

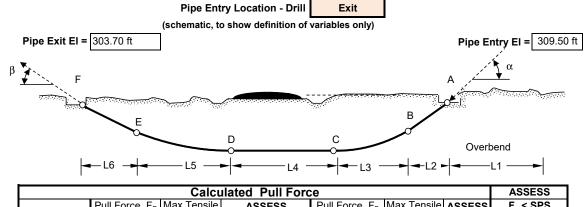
Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 1-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/27/2023	1	Issued for Construction	ABL

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ft500.0 ft Overbend dea radian L2 = 163.9 ft -0.1745 α = -10.0 209.4 ft 1 200 0 ft 1553.6 ft 0.0 0.0000 χ= L5 = 251.3 ft 1,200.0 ft L6 = 70.6 ftB = 12 0 0.2094 LT = 2348.9 ft **INPUT: Assumed Friction Factors** drv + rollers 0.10 $\mu_b =$ drill fluid in hole 0.25 0.30 in hole no fluid INPUT: Assumed Hydrokinetic Drag 0.005 psi Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE IPS Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F PIPE/BUNDLE Pipe/Bundle Diam. 14 25 BUNDI F Material Density, y 59.28 pcf Outside Diameter, Don Pipe or Bundle 14.25 Pipe Dry Weight, W_P = 17.36 lb/ft Pipe or Bundle Min. Wall Thickness. t., 1.194 in For design installation pull stress D_{OD} Stress 10.75 inches $DR = D_O/t_{min} =$ Avg. Inside Diameter, DIA BUNDLE Bundle Multiplier FD 0.9042 12 Hr Pullback Modulus, E_T = 65.000 psi @T = 73 dea FPoisson Ratio, μ = 0.45 Ovality Factor, fo = 0.685 4% Buckling Safety, N = 2.5

Hydrostatic Design Stress, HDS = 1,000 psi HDB/2 Pressure Rating, PR_(80F)= 250 psi $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$ **INPUT: Assumed Fluid Densities/Elevations**


Ballast Density 62.4 pcf **Drill Fluid Density** pcf Drill fluid elevation, H_F = 304.50 ft Ballast Water El., H_w = 304.50 ft Lowest Invert El., El_m = 262.80 ft

Calculated Pipe and Fluid Properties Pressure Pipe: YES OD Perimeter Length, P 44.77 in Wall Section Area, Aw 41.68747289 Volume Outside, V_{DC} 0.697 cf/LF Volume Inside, V_{DI} 0.408 cf/LF 2.69 lb/ft Drill Fluid (unit drag) 0.39 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, $\Delta T =$

Estimated for pull

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			42.80 Lb/LF
In Hole with Drill Fluid, $w_b/w_{bf} =$		-37.01 Lb/LF	-11.58 Lb/LF

Calculated Pull Force						ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	4,149 lb	182 psi	OK	4,149 lb	182 psi	OK	OK	OK
В	5,437 lb	137 psi	OK	5,687 lb	143 psi	OK	OK	OK
С	7,205 lb	214 psi	OK	6,565 lb	198 psi	OK	OK	OK
D	14,643 lb	369 psi	OK	14,002 lb	353 psi	OK	OK	OK
E	20,092 lb	539 psi	OK	17,038 lb	462 psi	OK	OK	OK
F	19,067 lb	481 psi	OK	16,826 lb	424 psi	OK	OK	OK
ASSESS P	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = \frac{75.33 \text{ psi}}{1000 \text{ psi}}$ Ballasted							OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

45,606 lb $|SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))|$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 87.24 psi Maximum 12 hour Pull Stress Reduction, FR = 0.863497337 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ $r = \sigma_T/2SPS$ 0.234329323 Maximum applied pull Stress, σ_T = 539 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 4.52 psi (-) indicates pipe is pressurized 22.59 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert =

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY **ASSOCIATES Limited Liability Company** "Creating Space Underground

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 75A Conduit #2 Brierley Associates Stream Crossing

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Schenectady County, NY

TABLE 4 Pg 1 of 3 HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75A Conduit #2 Stream Crossing

"Creating Space Underground"

BRIERLEY

INPUTS

Pipe Material Properties

P							
Sources: ASTM D3350 and Plastic Pip			e Institute Pu	blications and as referenc	ed	_	
Design Working Pressure,	P _{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig	At high point	
Quantity of Pipes in Hol	e, Q =	1		_			
Pipe Material 4710 HDPE			INPUT RESI	N MATERIAL: PE3408, PE	E3608, PE	4710	
ASTM D3350 Cell Classif	ication	445574C	Design resin	with minimum PENT test	of 10,000 I	nours	
Standard Dime	nsion	10	1				
Pipe measurement sta	ndard	IPS	IPS "Iron Pip	e Size" or DIPS "Ductile Ir	on Pipe Si	ze"	
DR = OD/Minimum	n Wall	9	·		·		
Outside Diamete	r, D _o =	10.750 in	Standard Ma	nufacturer's Data Sheets			
Avg. Inside Diamete	er, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets			
Minimum Wall	, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets			
Wall Section Area	, A _W =	35.85681985	$A_W = \pi^*((D_o/2))$	$((D_o-2t)/2)^2$			
Unit OD Surface Area, in ² /LF,	A _{OD} =		$A_{OD} = 12*\pi*D$				
Unit Outside Volume, V _{Do} = 0.630 cf/LF			$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} = 0.368 cf/LF			$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB = 1,600 psi			Based on PP	PI Publication TR-4/2015 a	nd ASTM	2837	
Design Factor for HDB	, DF =	0.63	Based on PP	PI PE Handbook 2nd ED C	hapter 5		
Hydrostatic Design Stress, I	HDS =	1000 psi	HDS = HDB*	DF			
Environmental Factor	, Af _e =	1	Reference 2:	Use for pressure rating or	nly		
De	nsity =	59.28 pcf	1.410 g/cc	Average from WL Plastics	s WL122 fo	or PE4710	
Weight Dry	, W =	15.68	Lb/LF	-			
Tensile Yield, T	y psi =	3,500 psi	@73°F	Minimum from ASTM D33	350 detern	nined by ASTM D638	
Load Du			Long Term				
Duration		10 hours	50 yrs				
Design Temperati		73 deg F	73 deg F	Assumed			
Design Ovality, %		2%	2%	See Sheets 4 of 5 for des	ign ovality		
The state of the s		2.5	2.5	Industry Practice			
Modulus for given load duration, E = 65,000 psi			Based on PPI Handbook Ch				
Poisson Ratio, υ = 0.45		0.45	WL118: Use 0.35 if load o				
Ovality factor f _o = 0.84		0.84	Reference 1: Based on S		esign Ovality		
Temperature factor, f _t = 1.00		1.00	1.00	Source: WL Plastics WL1	18		
Project Fluids				•			
Pine In	ternal	Expected	Heavy			Buoyant forces	

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	Dry W
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	In
	γ_{INT}	$\gamma_{\sf EXT1}$	γ_{EXT2}	Expected Dis
Density, γ =	62.4	78	80	Heavy Dis
Buoya	ant Unballasted	-33.48 lb/ft	W_P - W_{D1}	
Buoy	-34.74 lb/ft	W_P - W_{D2}		
	$W_P + W_B$			
Buoyar	-10.49 lb/ft	BG-W _{D1}		
Buoya	nt Ballasted in	Fluid 2, B _{BB2} =	-11.75 lb/ft	BG-W _{D2}

	Suoyant forc	
Dry Weight Pipe on ground, W_P =		
Internal Ballast Weight, W _B =		
pected Displaced Fluid Weight, W_{D1} =		
Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
W_P - W_{D1}		•
\\/\\/_		

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 75A Conduit #2 Stream Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, Pu = $P_{U} = 2*Ty*f_{t}/(DR-1)$ 875 psi Allowable Internal Pressure, P_A = 400 psi $P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

73 deg F Design Temperature, °F = $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 250 psi Maximum Ocassional Surge, Pos = 500 psi $P_{OS} = 2*PR$ Maximum Reoccuring Surge, PRS = 375 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)] * [(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F 267.4 psi 115.2 psi $P_{CR} =$ $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_R 46.70 ft

40.90 ft

Drill Fluid depth to invert, H_{DF} 40.90 ft

Pipe Invert Internal Pressure, P.

0.00 psi Air Ballast, P Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 17.92 psi

Pipe Invert External Pressure, PE 22.40 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 22.97 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 17.92 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_F \le 0$

Differential Pressures	Short Terr
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	84.58 psi
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	84.00 psi
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.50 ps
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.92 ps
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 ps
Internal Air and External Water = $(P_A+P_a)-P_W$	89.06 psi

Long Term 23.68 psi Pull Back Condition - Option 1 23.11 psi Pull Back Condition - Option 2 41.60 psi Pull Back Condition - Option 3 Pull Back Condition - Option 4 41.03 psi 46.08 psi Long Term Operating Conditions 28.16 psi Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 75A Conduit #2

Stream Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{-2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1	I
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 d	leg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7	
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb	ŀ
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb	
Гетр Corr Tensile Yield, Ту*f _{temp} =	3,500 psi		
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb	
Pull Time factor, f_T = Design Factor, DF = $f_T^*f_Y$ Temperature factor, f_{temp} = Femp Corr Tensile Yield, Ty^*f_{temp} = Safe Allowable Stress, SAS =	1 0.4 1 3,500 psi 1,400 psi	Plexco Engineering Manual Table 3.7 SAFE PULL STRENTH, SPS = 50,200 lb Ultimate Pull Strength, UPS = 125,499 lb SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi	d

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
$fr = ((5.57-(r+1.09)^2)^5-1.09 =$	0.86350	
$r = \sigma_i/2*(SSAS) =$	0.23433	Example from Table T5, $\sigma_i = 539 \text{ psi}$
P _{CRR} =	230.9 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	115.5 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	93.07 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	92.49 psi Pull Back Condition - Option 4 OK as >0

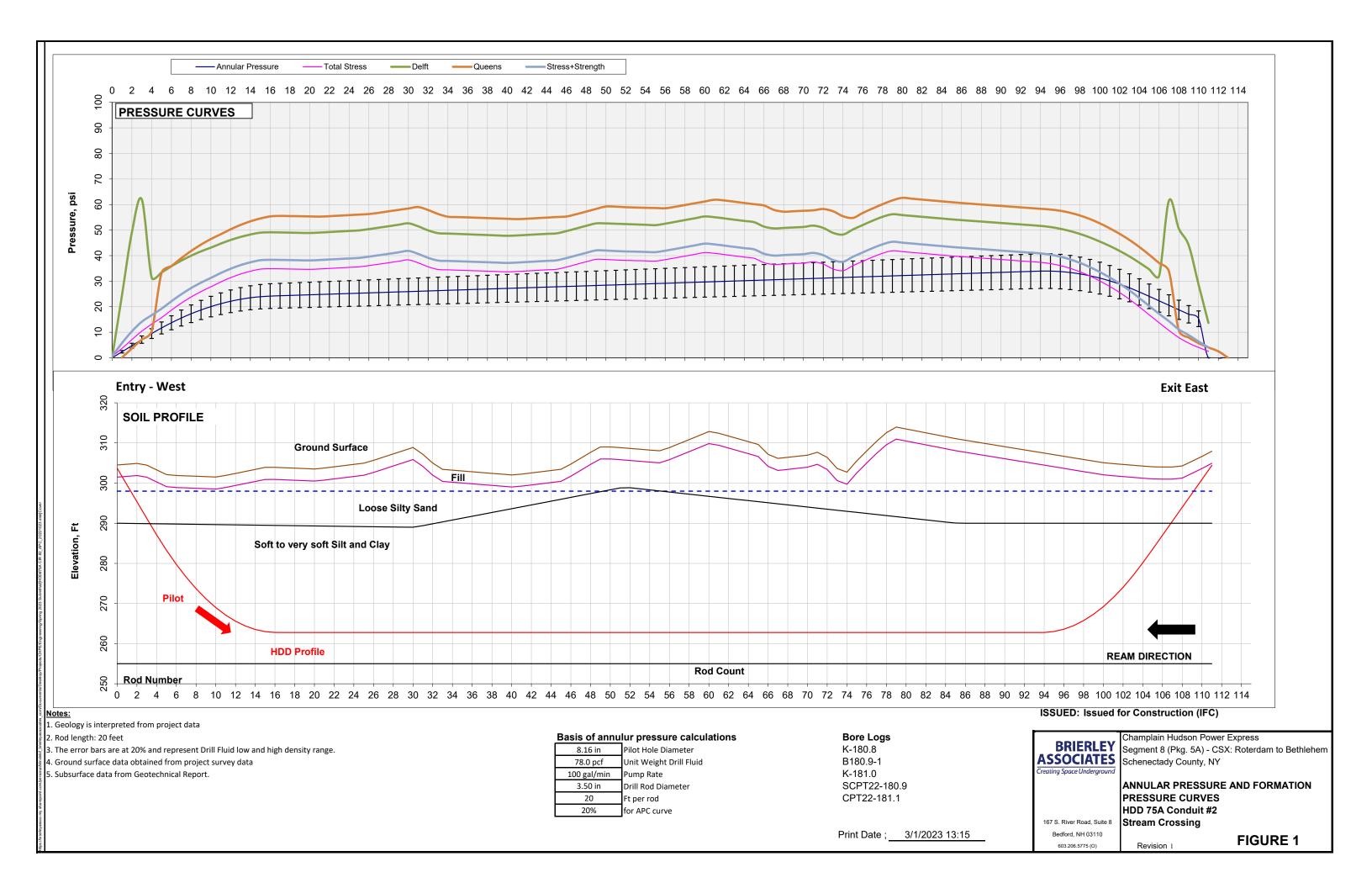
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

ates_c	f_T	Time factor for pull	
associates	1.00	Up to 1 hour pull	1
brierley	0.95	Up tp 12 hours pull	12
elot	0.91	Up to 24 hours	24

https://brierlevassoc-mv.sharepoint.com/perso

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75A Conduit #2

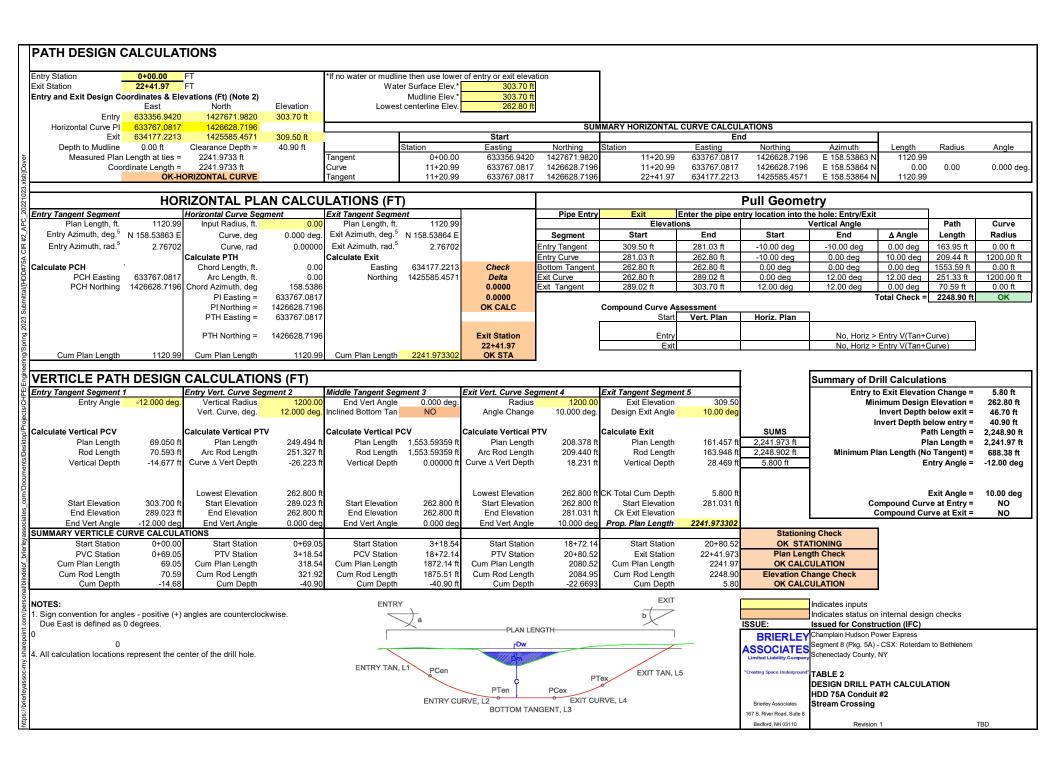
Stream Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 1-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/27/2023	1	Issued for Construction	ABL

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend dea radian 500.0 ft L2 = 163.9 ft -0.1745 α = -10.0 209.4 ft 1 200 0 ft 1553.6 ft 0.0 0.0000 χ = L5 = 251.3 ft 1,200.0 ft L6 = 70.6 ftB = 12 0 0.2094 LT = 2348.9 ft **INPUT: Assumed Friction Factors** drv + rollers 0.10 $\mu_b =$ drill fluid in hole 0.25 in hole no fluid 0.30 INPUT: Assumed Hydrokinetic Drag 0.005 psi Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE IPS Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F PIPE/BUNDLE Pipe/Bundle Diam. 14 25 BUNDI F Material Density, y 59.28 pcf Outside Diameter, Don Pipe or Bundle 14.25 Pipe Dry Weight, W_P = 17.36 lb/ft Pipe or Bundle Min. Wall Thickness. t., 1.194 in For design installation pull stress $DR = D_O/t_{min} =$ D_{OD} Stress 10.75 inches Avg. Inside Diameter, DIA BUNDLE Bundle Multiplier FD 0.9042 12 Hr Pullback Modulus, E_T = 65.000 psi @T = 73 dea FPoisson Ratio, μ = 0.45 Ovality Factor, f_o = 0.685 4%

2.5

1,000 psi

250 psi

62.4

304.50 ft

304.50 ft

262.80 ft

INPUT: Assumed Fluid Densities/Elevations

HDB/2

pcf

pcf

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Estimated for pull

Pipe Exit EI = 303.70 ft **Pipe Entry EI =** 309.50 ft Overbend Calculated Pull Force **ASSESS** Pull Force, F_D Max Tensile **ASSESS** Pull Force, F_B Max Tensile ASSESS F_v < SPS **POINT** Stress, σ_T No Ballast $\sigma_T < \sigma_{PM}$ **Ballasted Pipe** Stress, σ_T $\sigma_T < \sigma_{PM}$ Air Ballast OK OK OK 4,149 lb 182 psi 4.149 lb 182 psi Α В 5,437 lb 137 psi OK 5,687 lb 143 psi OK OK OK С 7,205 lb 214 psi OK 6,565 lb 198 psi OK OK OK D 14,643 lb OK 14,002 lb 353 psi OK OK OK 369 psi OK OΚ ΟK OK Ε 20.092 lb 539 psi 17.038 lb 462 psi OK 19.067 lb 481 psi OK 16.826 lb 424 psi OK Ballasted OK **ASSESS** Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R =$ 75.33 psi No Ballast OK Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R PPI Ch 12 Eq 16 Calculated Material Design Limits For Designed Drill Path

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

45,606 lb $|SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 87.24 psi Maximum 12 hour Pull Stress Reduction, FR = 0.863497337 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ $r = \sigma_T/2SPS$ 0.234329323 Maximum applied pull Stress, σ_T = 539 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 4.52 psi (-) indicates pipe is pressurized 22.59 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert =

Calculated Drill Hole Diameter Assumed for Calculations D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Lowest Invert El., El_m = Calculated Pipe and Fluid Properties

Buckling Safety, N =

Ballast Density

Drill Fluid Density

Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F)=

Drill fluid elevation, H_F =

Ballast Water El., H_w =

Pressure Pipe YES OD Perimeter Length, P 44.77 in 41.68747289 Wall Section Area, A_M Volume Outside, V_{DC} 0.697 cf/LF Volume Inside, V_{DI} 0.408 cf/LF 2.69 lb/ft Drill Fluid (unit drag) 0.39 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, $\Delta T =$

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, $w_a/w_{af} =$ In Hole with Drill Fluid, $w_b/w_{bf} =$			42.80 Lb/LF
		-37.01 Lb/LF	-11.58 Lb/LF

ISSUE: Issued for Construction (IFC)

BRIERLEY **ASSOCIATES Limited Liability Company** "Creating Space Underground

Champlain Hudson Power Express Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

Brierley Associates Stream Crossing

Bedford, NH 03110

Revision 1

TBD

HDD 75A Conduit #2

167 S. River Road, Suite 8

TABLE 4 Pg 1 of 3 HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75A Conduit #2 Stream Crossing

"Creating Space Underground"

BRIERLEY

INPUTS

Pipe Material Properties

P						
Sources: ASTM L	03350	and Plastic Pip	e Institute Pu	blications and as referenc	ed	_
Design Working Pressure,	P _{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig	At high point
Quantity of Pipes in Hol	e, Q =	1		_		
Pipe M	aterial	4710 HDPE	INPUT RESI	N MATERIAL: PE3408, PE	E3608, PE	4710
ASTM D3350 Cell Classif	ication	445574C	Design resin	with minimum PENT test	of 10,000 I	nours
Standard Dime	nsion	10	· ·		•	
Pipe measurement sta	ndard	IPS	IPS "Iron Pip	e Size" or DIPS "Ductile Ir	on Pipe Si	ze"
DR = OD/Minimum	n Wall	9	·		·	
Outside Diamete	r, D _o =	10.750 in	Standard Ma	nufacturer's Data Sheets		
Avg. Inside Diamete	er, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets		
Minimum Wall	, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets		
Wall Section Area	, A _W =	35.85681985	$A_W = \pi^*((D_o/2))$	$((D_o-2t)/2)^2$		
Unit OD Surface Area, in ² /LF,	A _{OD} =		$A_{OD} = 12*\pi*D$			
Unit Outside Volume, $V_{Do} = 0.630$ c		0.630 cf/LF	$V_{Do} = \pi^*(D_o/2$	²) ² /144		
Unit Inside Volume	, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144		
ı	HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 a	nd ASTM	2837
Design Factor for HDB	, DF =	0.63	Based on PP	PI PE Handbook 2nd ED C	hapter 5	
Hydrostatic Design Stress, I	HDS =	1000 psi	HDS = HDB*	DF		
Environmental Factor	, Af _e =	1	Reference 2:	Use for pressure rating or	nly	
De	nsity =	59.28 pcf	1.410 g/cc	Average from WL Plastics	s WL122 fo	or PE4710
Weight Dry	, W =	15.68	Lb/LF	-		
Tensile Yield, T	y psi =	3,500 psi	@73°F	Minimum from ASTM D33	350 detern	nined by ASTM D638
Load Du			Long Term			
Duration		10 hours	50 yrs			
Design Temperati		73 deg F	73 deg F	Assumed		
Design Oval		2%	2%	See Sheets 4 of 5 for des	ign ovality	
		2.5	2.5	Industry Practice		
		65,000 psi		Based on PPI Handbook Ch		
Poisson Ratio, υ = 0.45			0.45	WL118: Use 0.35 if load o		
Ovality fact	-	0.84	0.84	Reference 1: Based on S		esign Ovality
Temperature fact	or, f _t =	1.00	1.00	Source: WL Plastics WL1	18	
Project Fluids				•		
Pine In	ternal	Expected	Heavy			Buoyant forces

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	Dry W
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	In
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Dis
Density, γ =	62.4	78	80	Heavy Dis
Buoya	ant Unballasted	-33.48 lb/ft	W_P - W_{D1}	
Buoy	ant Unballasted	-34.74 lb/ft	W_P - W_{D2}	
	38.67 lb/ft	$W_P + W_B$		
Buoyar	-10.49 lb/ft	BG-W _{D1}		
Buoya	nt Ballasted in	-11.75 lb/ft	BG-W _{D2}	

	es	
Dry Weight Pipe on ground, W_P =		
Internal Ballast Weight, W _B =		
pected Displaced Fluid Weight, W_{D1} =		
Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
W_P - W_{D1}		•
\\/\\/_		

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 75A Conduit #2 Stream Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

BRIERLEY

"Creating Space Underground"

Short Term (<10 hours)

Pg 2 of 3

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, Pu = $P_U = 2*Ty*f_t/(DR-1)$ 875 psi Allowable Internal Pressure, Pa = $P_A = 2*HDB*f_t/(DR-1)$ 400 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

73 deg F Design Temperature, °F = Pressure Rating, PR = 250 psi Maximum Ocassional Surge, Pos = 500 psi Maximum Reoccuring Surge, PRS = 375 psi

 $PR = 2*HDS*f_t*Af_e/(DR-1)$ $P_{OS} = 2*PR$

 $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)] * [(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_B 46.70 ft

40.90 ft

Drill Fluid depth to invert, H_{DF} 40.90 ft

Pipe Invert Internal Pressure, P.

0.00 psi Air Ballast, P Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 17.92 psi

Pipe Invert External Pressure, PE 22.40 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 22.97 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 17.92 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_F \le 0$

Differential Pressures	Short Term	Long
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	84.58 psi	23.6
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	84.00 psi	23.1
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.50 psi	41.6
Internal Ballasted and External Fluid 2 = (P _B +P _a)-P _{DF2}	101.92 psi	41.0
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.0
Internal Air and External Water = (P _A +P _a)-P _W	89.06 psi	28.

g Term 68 psi Pull Back Condition - Option 1 11 psi Pull Back Condition - Option 2 .60 psi Pull Back Condition - Option 3 Pull Back Condition - Option 4 03 psi .08 psi Long Term Operating Conditions 16 psi Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 75A Conduit #2

Stream Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{-2*}((1/DR)-(1/DR^2))$

	-
12 hr	Quantity of pipes, Q = 1
0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
1	Plexco Engineering Manual Table 3.7
0.4	SAFE PULL STRENTH, SPS = 50,200 lb
1	Ultimate Pull Strength, UPS = 125,499 lb
3,500 psi	
1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
50,200 lb	Useing SSAS = 41,235 lb
	0.4 1 0.4 1 3,500 psi 1,400 psi

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.86350	
$r = \sigma_i/2*(SSAS) =$	0.23433	Example from Table T5, $\sigma_i = 539 \text{ psi}$
P _{CRR} =	230.9 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	115.5 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	93.07 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	92.49 psi Pull Back Condition - Option 4 OK as >0

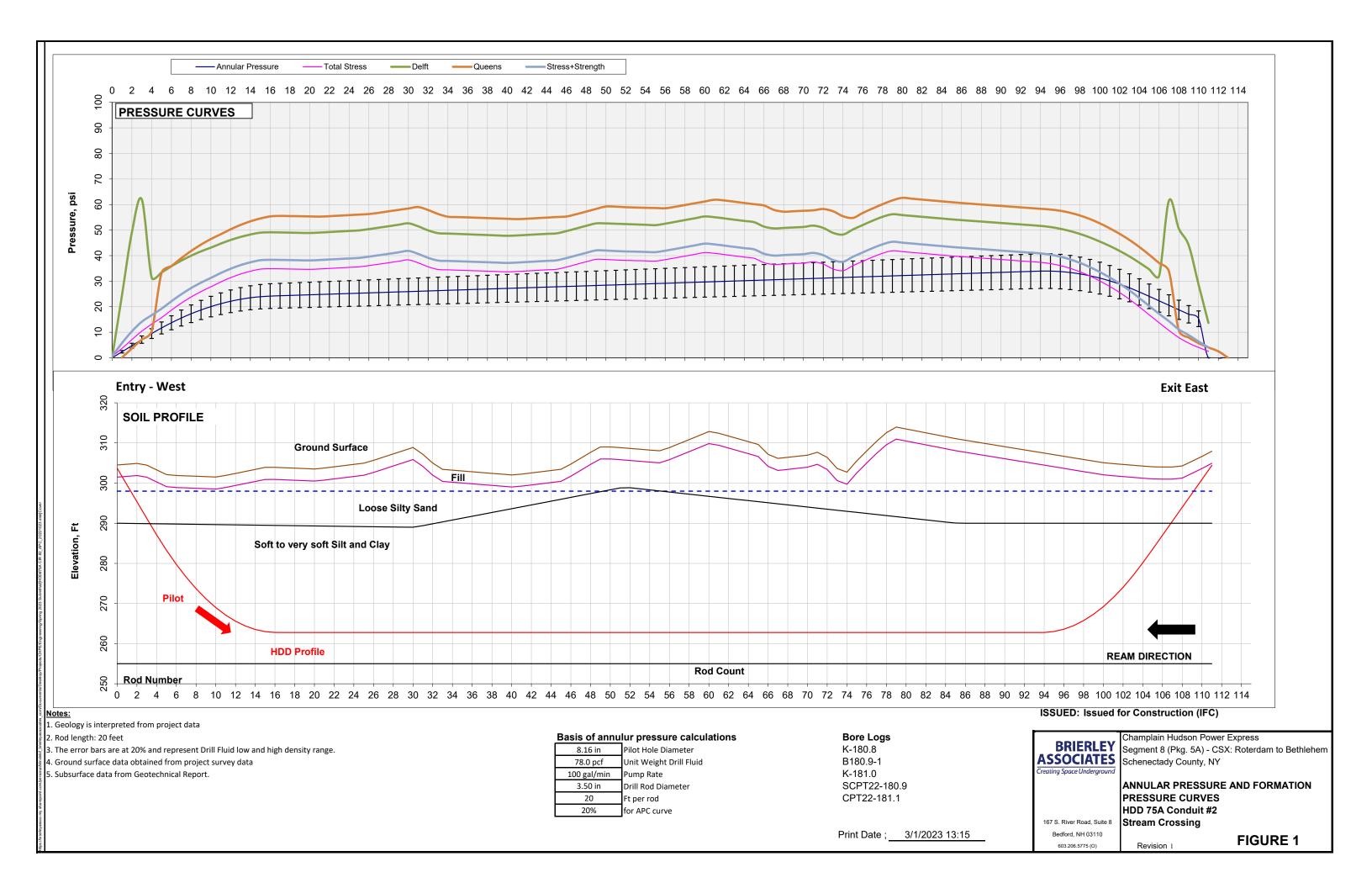
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

ates_cor	f _T	Time factor for pull			
associates	1.00	Up to 1 hour pull	1		
briedey	0.95	Up tp 12 hours pull	12		
5	0.91	Un to 24 hours	24		

https://brierlevassoc-mv.sharepoint.co.

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75A.A Circuit #1

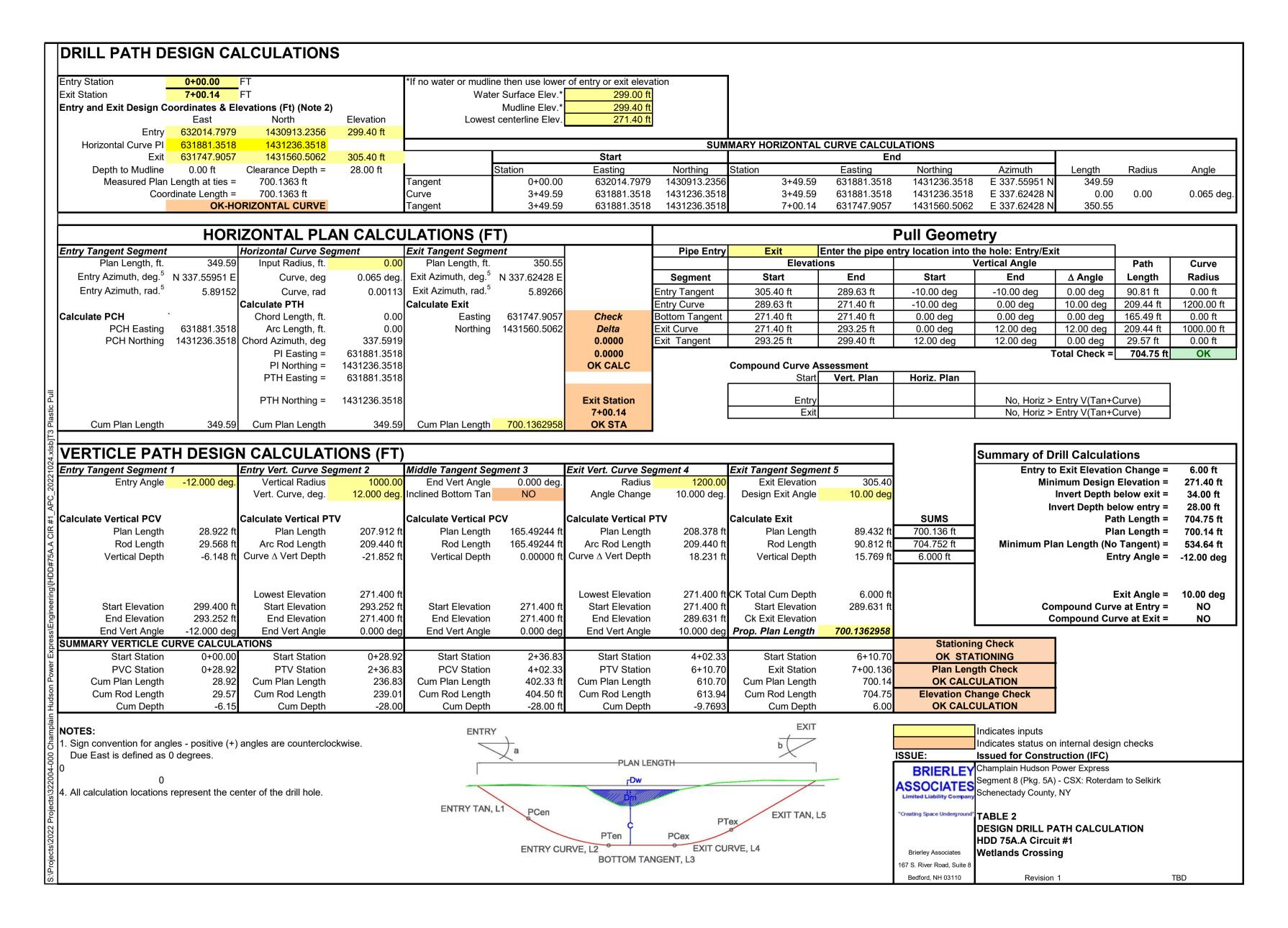
Wetlands Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend 500.0 ft deg radian L2 = 90.8 ft α = -10.0 ° -0.1745 L3 = 209.4 ft 1.200.0 ft L4 = 165.5 ft 0.0 0.0000 χ = L5 = 209.4 ft 1,000.0 ft L6 = 29.6 ft $\beta =$ 12.0 0.2094 LT = 804.8 ft**INPUT: Assumed Friction Factors** dry + rollers $\mu_G =$ 0.10

drill fluid in hole μ_b = 0.25

0.30

INPUT: Assumed Hydrokinetic Drag

0.005 psi Drill Fluid Shear Stress

in hole no fluid

INPUT: Pipe Properties

Material	HDPE		IPS		
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @ 73	3Deg F	
Pipe/Bundle Diam. 14.25	BUNDLE	PIPE/BUND	LE		
Material Density, γ	59.28 pcf				
Outside Diameter, D _{OD}	14.25	Pipe or Bun	dle		
Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bun	dle		
Min. Wall Thickness, t_m	1.194 in	For design i	nstallation	pull stress	
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Diameter, D _{IA}	BUNDLE	Bundle Multiplier F _D		0.9042	
12 Hr Pullback Modulus, E _T =	65,000 psi	@T =	73 deg F		
Poisson Ratio, μ =	0.45				
Ovality Factor, f _o =	0.685	4%			
Buckling Safety, N =	2.5				
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2			
Pressure Rating, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(DR-$	1) [F _T =1]	
INPUT: Assumed Fluid Densities/Elevations					

62.4

78

299.40 ft

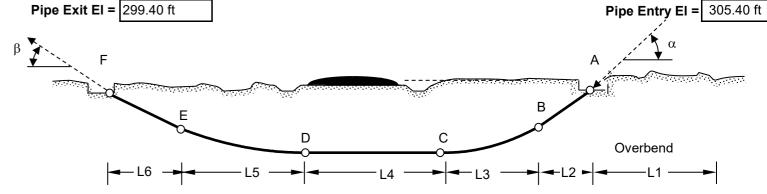
299.40 ft

271.40 ft

pcf

pcf

Estimated for pull


Drill Fluid (unit drag)

Comparison Only @ 8psi

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,422 lb	113 psi	OK	1,422 lb	113 psi	OK	OK	OK
В	2,113 lb	53 psi	OK	2,217 lb	56 psi	OK	OK	OK
С	3,733 lb	126 psi	OK	2,941 lb	106 psi	OK	OK	OK
D	4,001 lb	101 psi	OK	3,209 lb	81 psi	OK	OK	OK
E	8,101 lb	243 psi	OK	5,284 lb	172 psi	OK	OK	OK
F	8,734 lb	220 psi	OK	5,576 lb	141 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 82.42$ psi Ballas						sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

45,606 lb $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ Safe Pull Strength, SPS = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ Allowable Short Term Unconstrained Buckling, PA = 87.24 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.944815242 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ 0.105628258 $r = \sigma_{\tau}/2SPS$ Maximum applied pull Stress, σ_T = 243 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.03 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_U invert = 15.17 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Ballast Density

Drill Fluid Density

Drill fluid elevation, $H_F =$ Ballast Water El., H_w =

Lowest Invert El., El_m =

Pressure Pipe:	YES
OD Perimeter Length, P	44.77 in
Wall Section Area, A_W	41.68747289
Volume Outside, V_{DO}	0.697 cf/LF
Volume Inside, V_{DI}	0.408 cf/LF
$q_d =$	2.69 lb/ft

Calculated Buoyant Forces

ASTM EQ 18: Hydrokinetic, $\Delta T =$

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			42.80 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-37.01 Lb/LF	-11.58 Lb/LF

1.25 lb/ft

ISSUE: Issued for Construction (IFC)

Limited Liability Company

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 75A.A Circuit #1 Wetlands Crossing

Brierley Associates

167 S. River Road. Suite 8

Bedford, NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75A.A Circuit #1
Wetlands Crossing

"Creating Space Underground"

ASSOCIATES

BRIERLEY

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Pg 1 of 3

Sources. ASTIVIDSSSO	and mastic mp	institute i ublicatio	ins and as referenced		
Design Working Pressure, P_{WORK}	250 psi	Te	st Pressure, P _{TEST} 0 ps	<mark>ig At high point</mark>	
Quantity of Pipes in Hole, Q =	1				
Pipe Material	PE4710	INPUT RESIN MAT	ERIAL: PE3408, PE3608,	PE4710	
ASTM D3350 Cell Classification	445574C	Design resin with m	inimum PENT test of 10,0	00 hours	
Standard Dimension	3				
Pipe measurement standard	IPS	IPS "Iron Pipe Size'	of DIPS "Ductile Iron Pipe	e Size"	
DR = OD/Minimum Wall	9				
Outside Diameter, D _o =	3.000 in	Standard Manufact	ırer's Data Sheets		
Avg. Inside Diameter, D _i =	2.675 in	Standard Manufact	ırer's Data Sheets		
Minimum Wall, t _{min} =	0.389 in	Standard Manufactı	ırer's Data Sheets		
Wall Section Area, $A_W =$	3.190849685	$A_W = \pi^* ((D_o/2)^2 - ((D_o/2)^2)^2 - ((D_o/2)^2 - ((D_o/2)^2)^2)^2$	-2t)/2) ²)		
Unit OD Surface Area, in²/LF, A _{OD} =	113.10 in^2/LF	$A_{OD} = 12 \times \pi^* D_{OD}$			
Unit Outside Volume, V_{Do} =	0.049 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$			
HDB =	1,600 psi	Based on PPI Publi	cation TR-4/2015 and AS	TM 2837	
Design Factor for HDB, DF =	0.63	Based on PPI PE H	andbook 2nd ED Chapter	5	
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF			
Environmental Factor, Af _e =	1	Reference 2: Use fo	r pressure rating only		
Density =	59.28 pcf	1.410 g/cc Avera	ge from WL Plastics WL1	22 for PE4710	
Weight Dry, W =	1.66	Lb/LF			
Tensile Yield, Ty psi =	3,500 psi		um from ASTM D3350 de	termined by ASTM D638	
Load Duration		Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	73 deg F Assun	ned		
Design Ovality, %	2%		heets 4 of 5 for design ova	ality	
Factor of Safety, FS =	2.5	2.5 Indust	ry Practice		
Modulus for given load duration, E =	65,000 psi	28,000 psi Based	on PPI Handbook Ch. 3 and	WL Plastics WL118-0314	
Poisson Ratio, υ =	0.45	0.45 WL11	8: Use 0.35 if load duratio	n is less than 12 hours	
Ovality factor f _o =	0.84	0.84 Refere	ence 1: Based on Selected	d Design Ovality	
Temperature factor, f_t =	1.00	1.00 Sourc	e: WL Plastics WL118		

Project Fluids

	Pipe Internal	Expected	Heavy
	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ _{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-2.17 lb/ft		
Buoya	l Fluid 2, B _{B2} =	-2.27 lb/ft	
	n ground, $B_G =$	4.10 lb/ft	
Buoyar	0.27 lb/ft		
Buoya	0.17 lb/ft		

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 3.83 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 3.93 \text{ lb/ft}$ $W_P = V_D * \gamma_{EXT1}$ $W_P = V_D * \gamma_{EXT2}$ $W_P = V_D * \gamma_$

Pg 2 of 3

HDPE PROPERTIES

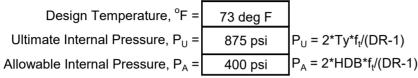
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 75A.A Circuit #1
Wetlands Crossing

Ν

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

		ooigii ioi opoiatiiig oo
Design Temperature, °F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2^* E/(1 - \upsilon^2)]^* [(1/(DR-1))^3]$ Short Term Long Term

Design Temperature, F = 73 deg F $P_{CR} = 267.4 \text{ psi}$ $P_a = P_{CR}/FS$ 107.0 psi

46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 34.00 ft Ballast depth to invert, H_B 28.00 ft Drill Fluid depth to invert, H_{DF} 28.00 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

Air Ballast, P _A	0.00 psi	Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$	15.23 psi
Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$	12.19 psi	Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$	15.63 psi
		Water, $P_W = \gamma_{INT}*(H_{DF}+D_o/24)/144$	12.19 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term]
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	91.74 psi	30.85 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	91.35 psi	30.46 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B + P_a) - P_{DF1}$	103.93 psi	43.03 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.54 psi	42.64 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A + P_a) - P_W$	94.79 psi	33.89 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 75A.A Circuit #1
Wetlands Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F = 73	deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7	7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	3,910 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	9,774 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF Suggestoner{ Suggestoner}{ Suggesto$	ed SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	3,910 lb	Useing SSAS = 3,211 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

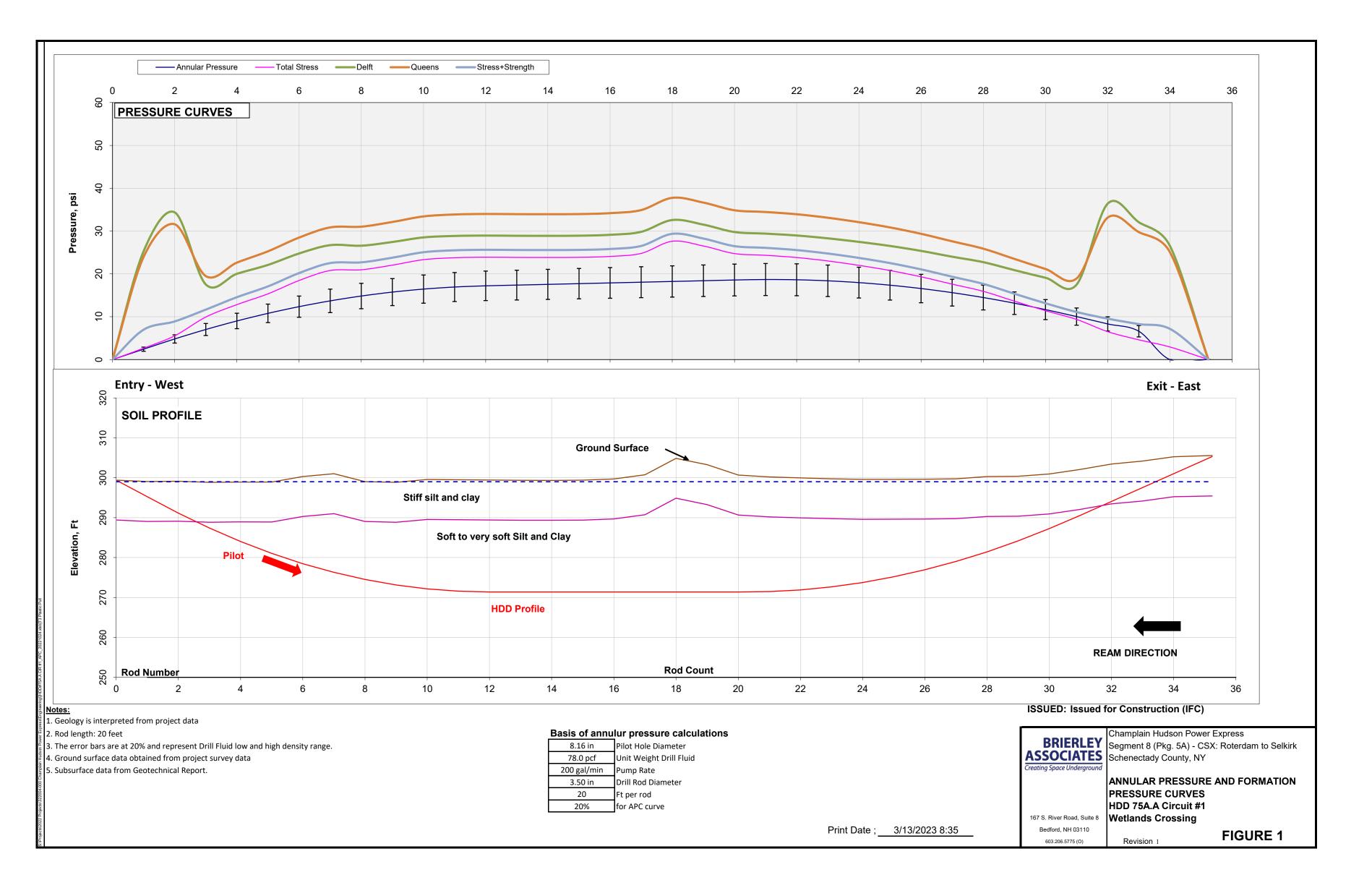
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.94482	
$r = \sigma_i/2*(SSAS) =$	0.10563	Example from Table T5, $\sigma_i = 243 \text{ psi}$
P _{CRR} =	252.7 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	126.3 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	111.11 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	110.71 psi Pull Back Condition - Option 4 OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

i .	f _T	Time factor for pull	
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75A.A Circuit #2

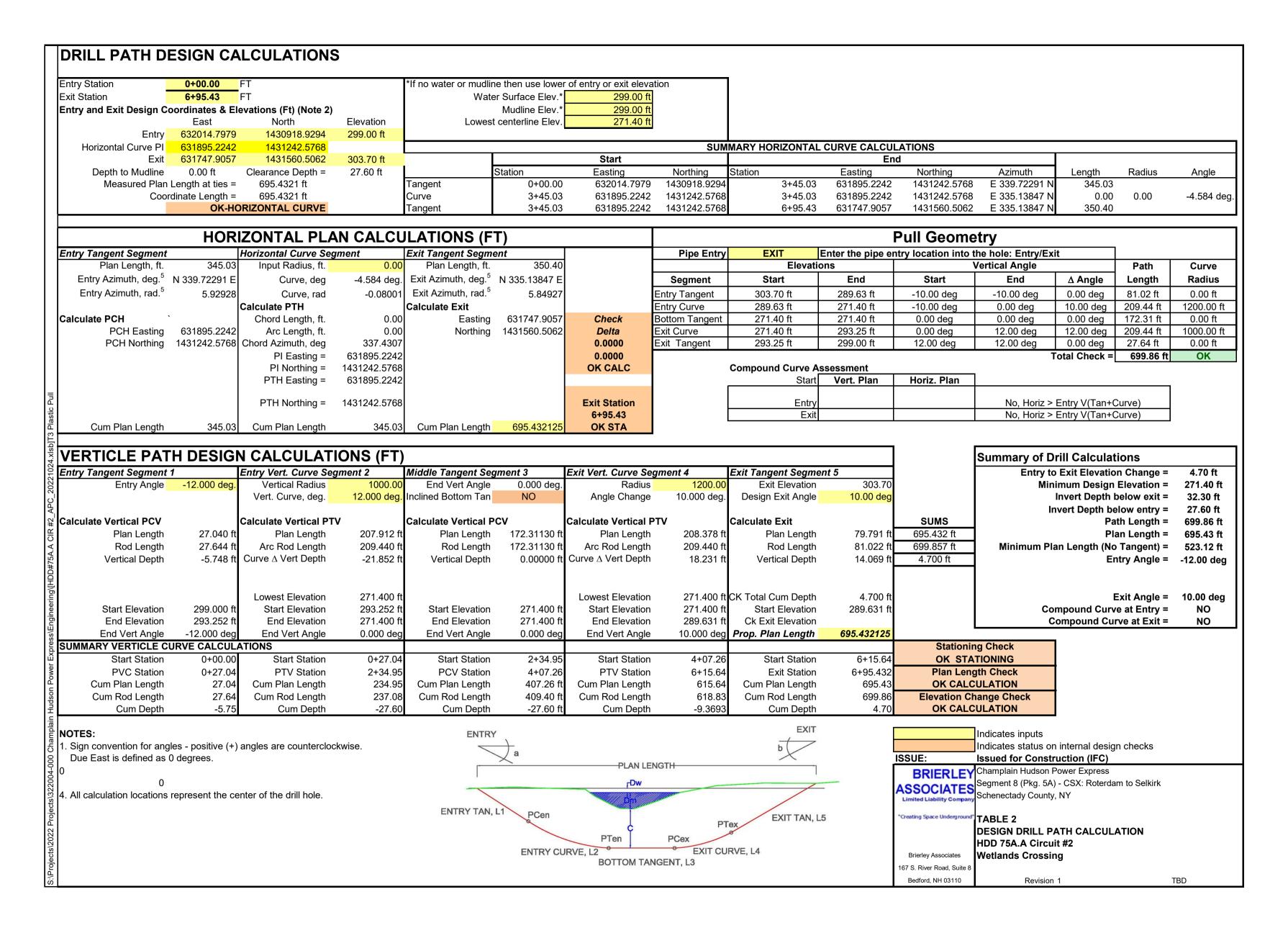
Wetlands Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend 500.0 ft deg radian L2 = 81.0 ft α = -10.0 ° -0.1745 L3 = 209.4 ft 1.200.0 ft L4 = 172.3 ft 0.0 0.0000 χ = L5 = 209.4 ft 1,000.0 ft L6 = 27.6 ft $\beta =$ 12.0 0.2094 LT = 799.9 ft **INPUT: Assumed Friction Factors** dry + rollers $\mu_G =$ 0.10 drill fluid in hole μ_b = 0.25 0.30 in hole no fluid **INPUT:** Assumed Hydrokinetic Drag

0.005 psi Drill Fluid Shear Stress

INPUT: Pipe Properties

	Material	HDPE		IPS		
Safe Pull Max. Stress, σ_{PM}		1,150 psi	PPI Table 1	12hr @ 73	BDeg F	
Pipe/Bundle Diam.	14.25	PIPE	PIPE/BUND	LE		
Materia	al Density, γ	59.28 pcf				
Outside Dia	ameter, D _{OD}	10.75	Pipe or Bun	Pipe or Bundle		
Pipe Dry Weight, W _P =		15.70 lb/ft	Pipe or Bundle			
Min. Wall Thickness, t_{m}		1.194 in	For design installation pull stress			
$DR = D_O/t_{min} =$		9	D _{OD} Stress	10.75	inches	
Avg. Inside Diameter, D _{IA}		8.22 in	Bundle Mult	iplier F _D	1.0000	
12 Hr Pullback Modulus, E _T =		65,000 psi	@T =	73 deg F		
Poisso	n Ratio, μ =	0.45				
Ovality	Factor, f _o =	0.685	4%			
Buckling	Safety, N =	2.5				
Hydrostatic Design Stress, HDS =		1,008 psi	HDB/2			
Pressure Ratin	ıg, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(DR-$	1) [F _T =1]	

INPUT: Assumed Fluid Densities/Elevations

62.4

78

299.00 ft

299.00 ft

pcf

pcf

Lowest Invert El., El_m = 7.00 ft

ASTM EQ 18: Hydrokinetic, $\Delta T =$

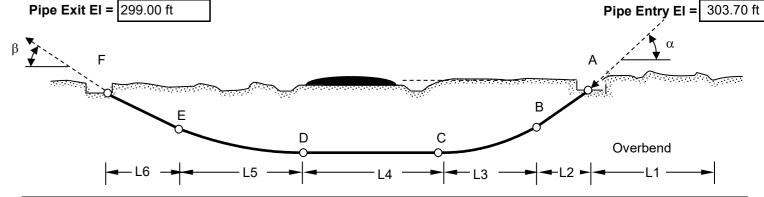
Ballast Density

Drill Fluid Density

Drill fluid elevation, $H_F =$

Ballast Water El., H_w =

Calculated Pipe and Fluid Properties Pressure Pipe: YES OD Perimeter Length, P 33.77 in Wall Section Area, Aw 37.70738915 Volume Outside, V_{DO} 0.630 cf/LF Volume Inside, V_{DI} 0.368 cf/LF


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =		15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

EXIT

(schematic, to show definition of variables only)

	Calculated Pull Force							ASSESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS	
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast	
Α	1,278 lb	94 psi	OK	1,278 lb	94 psi	OK	OK	OK	
В	1,863 lb	52 psi	OK	1,953 lb	54 psi	OK	OK	OK	
С	3,237 lb	115 psi	OK	2,517 lb	94 psi	OK	OK	OK	
D	3,515 lb	98 psi	OK	2,795 lb	78 psi	OK	OK	OK	
E	7,128 lb	228 psi	OK	4,577 lb	157 psi	OK	OK	OK	
F	7,651 lb	213 psi	OK	4,812 lb	134 psi	OK	OK	OK	
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 82.75$ psi Ballasted OK								

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 REJECT

Calculated Material Design Limits For Designed Drill Path

41,235 lb $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 87.24 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.948629062 $F_R = (5.57 - (r+1.09)^2)^{1/2} - 1.09$ 0.099113766 $r = \sigma_{\tau}/2SPS$ Maximum applied pull Stress, σ_T = 228 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 31.63 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 158.17 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 75A.A Circuit #2 Wetlands Crossing

Brierley Associates

167 S. River Road. Suite 8

Bedford, NH 03110

Revision 1 TBD

2.03 lb/ft 0.94 lb/ft

Drill Fluid (unit drag)

Estimated for pull

Comparison Only @ 8psi

TABLE 4 Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75A.A Circuit #2
Wetlands Crossing

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350	Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced					
Design Working Pressure, P _{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point			
Quantity of Pipes in Hole, Q =	1		<u></u>			
Pipe Material	PE4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
ASTM D3350 Cell Classification	445574C	Design resin with min	imum PENT test of 10,000 hours			
Standard Dimension	10	_				
Pipe measurement standard	IPS	IPS "Iron Pipe Size" o	of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	10.750 in	Standard Manufacture	er's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Manufacture	er's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Manufacture	er's Data Sheets			
Wall Section Area, A _W =	35.85681985	$A_W = \pi^* ((D_o/2)^2 - ((D_o-2)^2)$	2t)/2) ²)			
Unit OD Surface Area, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$				
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
Design Factor for HDB, DF =	0.63	Based on PPI PE Hai	ndbook 2nd ED Chapter 5			
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF				
Environmental Factor, Af _e =	1	Reference 2: Use for	pressure rating only			
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710			
Weight Dry, W =	15.68	Lb/LF				
Tensile Yield, Ty psi =		@73°F	Minimum from ASTM D3350 determined by ASTM D638			
Load Duration		Long Term				
Duration Time	10 hours	50 yrs	<u>.</u>			
Design Temperature, °F	73 deg F	73 deg F	Assumed			
Design Ovality, %	2% 2.5	2% 2.5	See Sheets 4 of 5 for design ovality Industry Practice			
Factor of Safety, FS = Modulus for given load duration, E =		28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, $v = \frac{1}{2}$		0.45	WL118: Use 0.35 if load duration is less than 12 hours			
Ovality factor $f_0 =$		0.43	Reference 1: Based on Selected Design Ovality			
Temperature factor, $f_t =$		1.00	Source: WL Plastics WL118			
Tomperature factor, it	1.00	1.00	JOSEPH ASSISS WELLIO			

Project Fluids

luids				•		
	Pipe Internal	Expected		E	Suoyant forc	es
	Ballast	External Fluid	Heavy External Fluid	Dry Weight Pipe on ground, W_P =	15.68 lb/ft	From MFG. Data Sheet
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γ_{INT}	$\gamma_{\sf EXT1}$	$\gamma_{\sf EXT2}$	Expected Displaced Fluid Weight, W_{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoyant Unballasted Fluid 1, B _{B1} =		-33.48 lb/ft	W _P -W _{D1}			
Buoyant Unballasted Fluid 2, B _{B2} =		-34.74 lb/ft	W_P - W_{D2}			
Ballasted on ground, B _G =		38.67 lb/ft	W_P+W_B			
Buoyant Ballasted in Fluid 1, BB _{B1} =		-10.49 lb/ft	BG-W _{D1}			
Buoya	nt Ballasted in	Fluid 2, B _{BB2} =	-11.75 lb/ft	BG-W _{D2}		

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75A.A Circuit #2

Wetlands Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth Short Term (<10 hours)

Design Temperature, °F 73 deg F Ultimate Internal Pressure, Pu = $P_U = 2*Ty*f_t/(DR-1)$ 875 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

BRIERLEY

"Creating Space Underground"

 $P_A = 2*HDB*f_t/(DR-1)$ Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi Maximum Ocassional Surge, Pos = 504 psi $P_{OS} = 2*PR$ Maximum Reoccuring Surge, PRS = 378 psi $P_{RS} = 1.5*PR$

400 psi

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Allowable Internal Pressure, $P_A =$

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$ Short Term Long Term Design Temperature, F = 73 deg F 73 deg F 115.2 psi $P_{CR} =$ 267.4 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Drill Fluid depth to invert, H_{DF} 27.60 ft Max. Depth to Invert Ballast depth to invert, H_B 32.30 ft 27.60 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

0.00 psi Air Ballast, PA 12.15 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$

Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 15.19 psi 15.58 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 12.15 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	91.78 psi	30.89 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	91.39 psi	30.50 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.94 psi	43.04 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.55 psi	42.65 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	94.82 psi	33.93 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

TABLE 4 Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75A.A Circuit #2
Wetlands Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Quantity of pipes, Q = Designed Pull Duration Time = 12 hr Yield Strength Factor, f_Y = 0.4 Pull Temperature, F = 73 deg. Recommended (FS = 2.5) Pull Time factor, $f_T =$ 1 Plexco Engineering Manual Table 3.7 Design Factor, DF = $f_T * f_Y$ 0.4 SAFE PULL STRENTH, SPS = 50,200 lb Temperature factor, $f_{temp} =$ 1 Ultimate Pull Strength, UPS = 125,499 lb Temp Corr Tensile Yield, Ty*f_{temp} = 3,500 psi Safe Allowable Stress, SAS = 1,400 psi $SAS = Ty*f_{temp}*DF$ Suggested SSAS = 1,150 psi Safe Pull Strength, SPS Pipe = 50,200 lb Useing SSAS = 41,235 lb

BRIERLEY

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

7 TIVIT - 1302 LQ. 22)		
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.94863	
$r = \sigma_i/2*(SSAS) =$	0.09911	Example from Table T5, $\sigma_i = 228 \text{ psi}$
P _{CRR} =	253.7 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	126.8 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	111.66 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	111.27 psi Pull Back Condition - Option 4 OK as >0

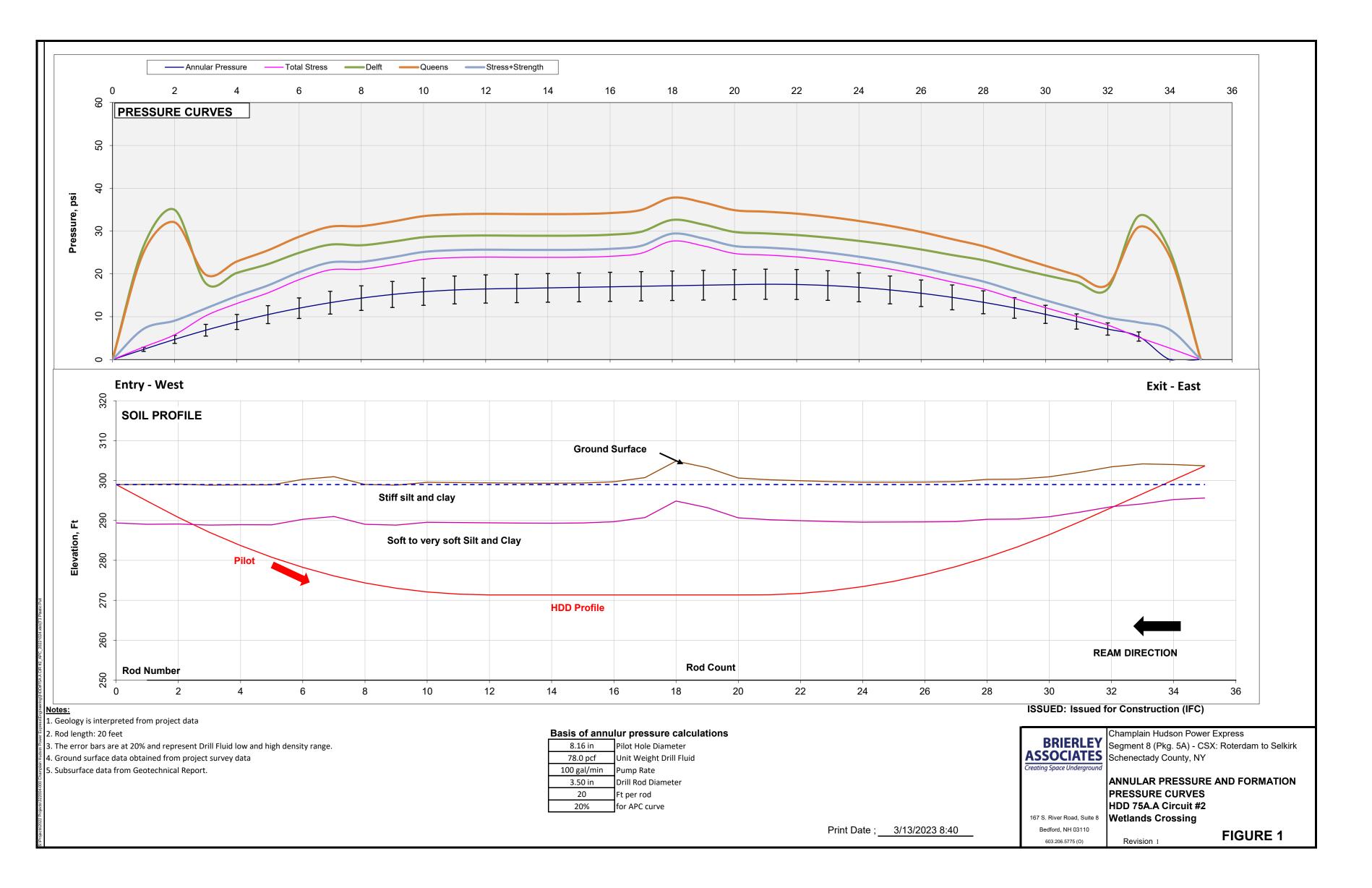
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

o i	f _T	Time factor for pull	
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
	ი 91	Un to 24 hours	24

Page 6 of 7

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75B Circuit #1

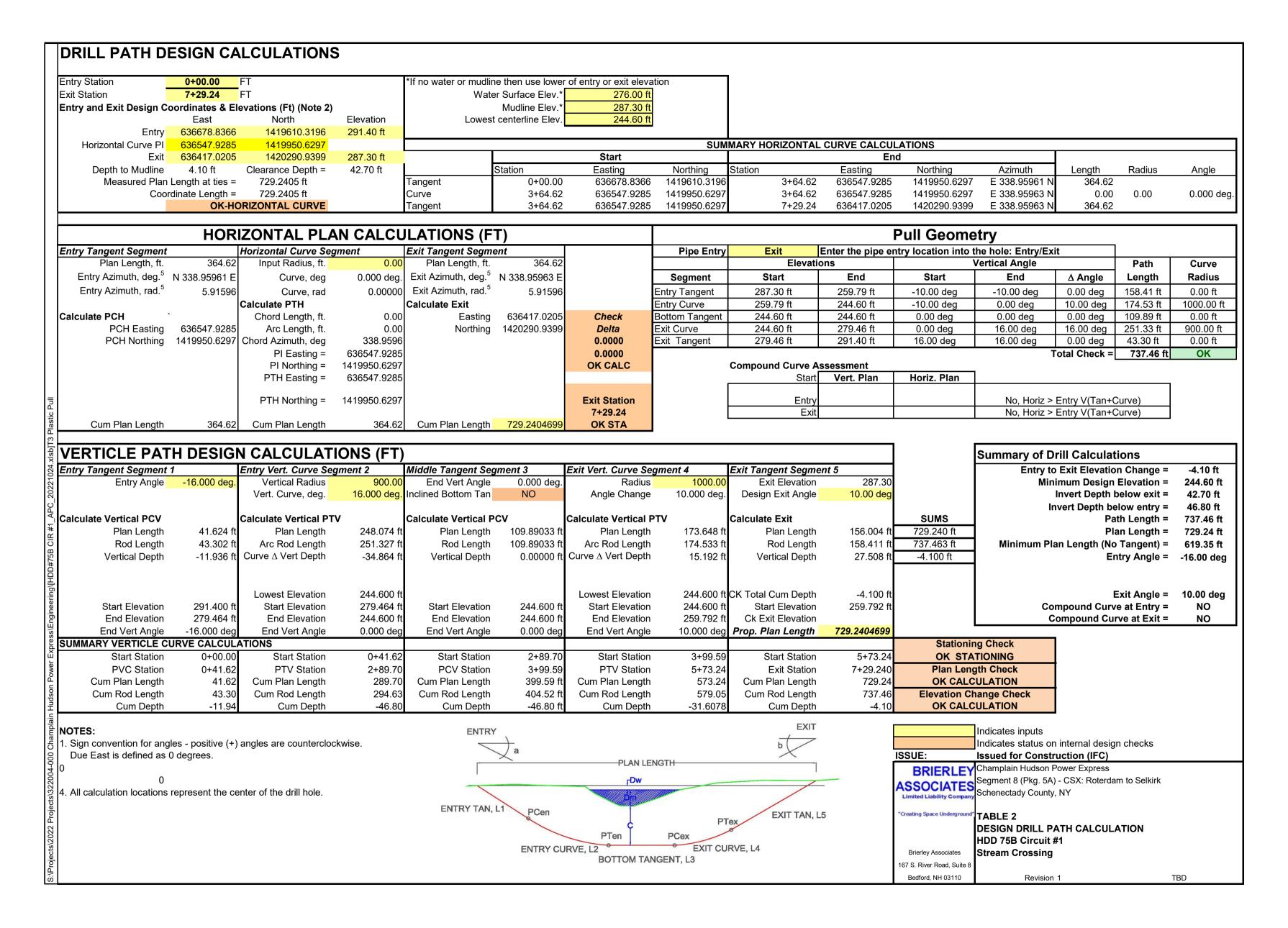
Stream Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

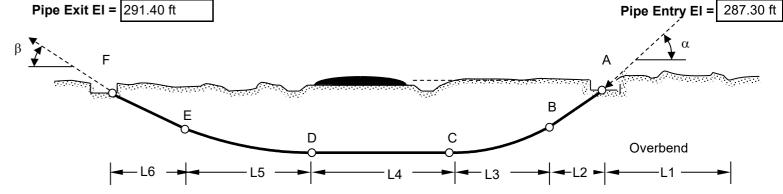

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF



Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend deg radian 500.0 ft L2 = 158.4 ft -10.0 -0.1745 L3 = 174.5 ft 1.000.0 ft L4 = 109.9 ft 0.0 0.0000 χ = L5 = 251.3 ft 900.0 ft L6 = 43.3 ft $\beta =$ 0.2793 16.0 LT = 837.5 ft **INPUT: Assumed Friction Factors** dry + rollers $\mu_G =$ 0.10 drill fluid in hole 0.25 0.30 in hole no fluid INPUT: Assumed Hydrokinetic Drag 0.005 psi Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F PIPE/BUNDLE Pipe/Bundle Diam. 14.25 BUNDLE Material Density, y 59.28 pcf Outside Diameter, Dop 14.25 Pipe or Bundle Pipe Dry Weight, W_P = 17.36 lb/ft | Pipe or Bundle Min. Wall Thickness, tm 1.194 in For design installation pull stress D_{OD} Stress 10.75 $DR = D_O/t_{min} =$ inches 0.9042 BUNDLE Bundle Multiplier F_D Avg. Inside Diameter, DIA 12 Hr Pullback Modulus, E_T = $@T = 73 \deg F$ 65,000 psi Poisson Ratio, μ = 0.45 Ovality Factor, fo = 0.685 4% 2.5 Buckling Safety, N = Hydrostatic Design Stress, HDS = 1,008 psi HDB/2 Pressure Rating, PR_(80F) = 252 psi $PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$ **INPUT: Assumed Fluid Densities/Elevations Ballast Density** 62.4 pcf **Drill Fluid Density** 78 pcf Estimated for pull Drill fluid elevation, $H_F =$ 287.30 ft Ballast Water El., H_w = 287.30 ft

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force					ASS	ESS		
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,479 lb	115 psi	OK	1,479 lb	115 psi	OK	OK	OK
В	2,888 lb	73 psi	OK	3,180 lb	80 psi	OK	OK	OK
С	4,288 lb	147 psi	OK	3,842 lb	136 psi	OK	OK	OK
D	4,164 lb	105 psi	OK	3,718 lb	94 psi	OK	OK	OK
E	9,544 lb	284 psi	OK	6,415 lb	205 psi	OK	OK	OK
F	10,252 lb	259 psi	OK	6,750 lb	170 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F$					Balla	sted	OK

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16

psi (-) indicates pipe is pressurized

Calculated Material Design Limits For Designed Drill Path

Unballasted Max. Differential Pressure on Pipe, ΔP_{IJ} invert =

 $|SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ 45,606 lb Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 87.24 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.93432214 $F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$ 0.123309471 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 284 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_R invert = 4.63 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

Du = 22

23.13

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Lowest Invert El., El_m =

•	
Pressure Pipe:	YES
OD Perimeter Length, P	44.77 in
Wall Section Area, A _W	41.68747289
Volume Outside, V_{DO}	0.697 cf/LF
Volume Inside, V_{DI}	0.408 cf/LF
$q_d =$	2.69 lb/ft

244.60 ft

 $q_d = 2.69 \text{ lb/ft}$ Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T = 1.20 \text{ lb/ft}$ Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

ISSUE: Issued for Construction (IFC)

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

g space Underground*

TABLE 3 - PULL ASSESSMENT
ANTICIPATED PULLING FORCE - HDPE PULL
HDD 75B Circuit #1

Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

Stream Crossing

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75B Circuit #1
Stream Crossing

"Creating Space Underground"

BRIERLEY

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTIVIDSSOU	anu Piasiic Pip	e msiliale Pui	ulicalions and as reference	tu	
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig At hig	gh point
Quantity of Pipes in Hole, Q =	1		_		
Pipe Material	PE4710	INPUT RESII	N MATERIAL: PE3408, PE	3608, PE4710	
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of	of 10,000 hours	
Standard Dimension	3				
Pipe measurement standard	IPS	IPS "Iron Pipe	e Size" of DIPS "Ductile Iro	on Pipe Size"	
DR = OD/Minimum Wall	9				
Outside Diameter, D_o =	3.000 in	Standard Ma	nufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	2.675 in	Standard Ma	nufacturer's Data Sheets		
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets		
Wall Section Area, $A_W =$	3.190849685	$A_{W} = \pi^{*}((D_{o}/2))$	$((D_0-2t)/2)^2$		
Unit OD Surface Area, in²/LF, A _{OD} =	113.10 in^2/LF	$A_{OD} = 12 \times \pi^* D_{OD}$			
Unit Outside Volume, V_{Do} =	0.049 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$			
HDB =	1,600 psi	Based on PP	l Publication TR-4/2015 ar	nd ASTM 2837	
Design Factor for HDB, DF =	0.63	Based on PP	I PE Handbook 2nd ED Cl	napter 5	
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF		
Environmental Factor, $Af_e =$	1	Reference 2:	Use for pressure rating or	nly	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics	WL122 for PE4	710
Weight Dry, W =	1.66	Lb/LF			
Tensile Yield, Ty psi =	3,500 psi	<u> </u>	Minimum from ASTM D33	50 determined b	y ASTM D638
Load Duration	Short Term	Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	J	Assumed		
Design Ovality, %	2%	2%	See Sheets 4 of 5 for des	ign ovality	
Factor of Safety, FS =	2.5		Industry Practice		
Modulus for given load duration, E =	65,000 psi		Based on PPI Handbook Ch	. 3 and WL Plastic	s WL118-0314
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load o	luration is less th	an 12 hours
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Se	elected Design C	vality
Temperature factor, $f_t =$	1.00	1.00	Source: WL Plastics WL1	18	

Project Fluids

	Pipe Internal	Expected	Heavy		
	Ballast	External Fluid	External Fluid	l	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Ì	
	γ_{INT}	γ _{EXT1}	γ_{EXT2}	E:	
Density, γ =	62.4	78	80		
Buoya	Buoyant Unballasted Fluid 1, B _{B1} =				
Buoya	-2.27 lb/ft				
	4.10 lb/ft				
Buoyar	0.27 lb/ft				
Buoya	0.17 lb/ft	Ì			

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 3.83 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 3.93 \text{ lb/ft}$ $W_P = V_D * \gamma_{EXT1}$ $W_P = V_D * \gamma_{EXT2}$ $W_P = V_D * \gamma_$

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 75B Circuit #1 **Stream Crossing**

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, Pu = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

73 deg F Design Temperature, °F = $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi 504 psi $P_{OS} = 2*PR$ Maximum Ocassional Surge, Pos = Maximum Reoccuring Surge, PRS = 378 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$ **Short Term Long Term** Design Temperature, F = 73 deg F 73 deg F 267.4 psi 115.2 psi P_{CR} =

107.0 psi CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 46.80 ft Ballast depth to invert, H_B 42.70 ft Drill Fluid depth to invert, H_{DF} 42.70 ft

46.1 psi

Pipe Invert Internal Pressure, PI

 $P_a = P_{CR}/FS$

Pipe Invert External Pressure, PF

23.20 psi Air Ballast, PA 0.00 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 18.56 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 23.79 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 18.56 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	
Internal Air and External Water = $(P_A+P_a)-P_W$	

I	Short Term	Long Term	
	83.78 psi	22.88 psi	Pull Back Condition
	83.18 psi	22.29 psi	Pull Back Condition
ĺ	102.34 psi	41.44 psi	Pull Back Condition
ا	101.74 psi	40.85 psi	Pull Back Condition
ŀ	106.97 psi	46.08 psi	Long Term Operatin
	88.42 psi	27.52 psi	Operational Dewate

- Option 1 - Option 2 - Option 3 - Option 4 ng Conditions ering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 75B Circuit #1
Stream Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

•		
Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 3,910 lb
Temperature factor, f _{temp} =	1	Ultimate Pull Strength, UPS = 9,774 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	3,910 lb	Useing SSAS = 3,211 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pcr = 267.4 psi
DF, H _{MDF} = 0.0 ft
aximum
ple from Table T5, $\sigma_i = 284 \text{ psi}$
•
t Term Buckling pressure during pull
ck Condition - Option 3 OK as >0
ck Condition - Option 4 OK as >0
t

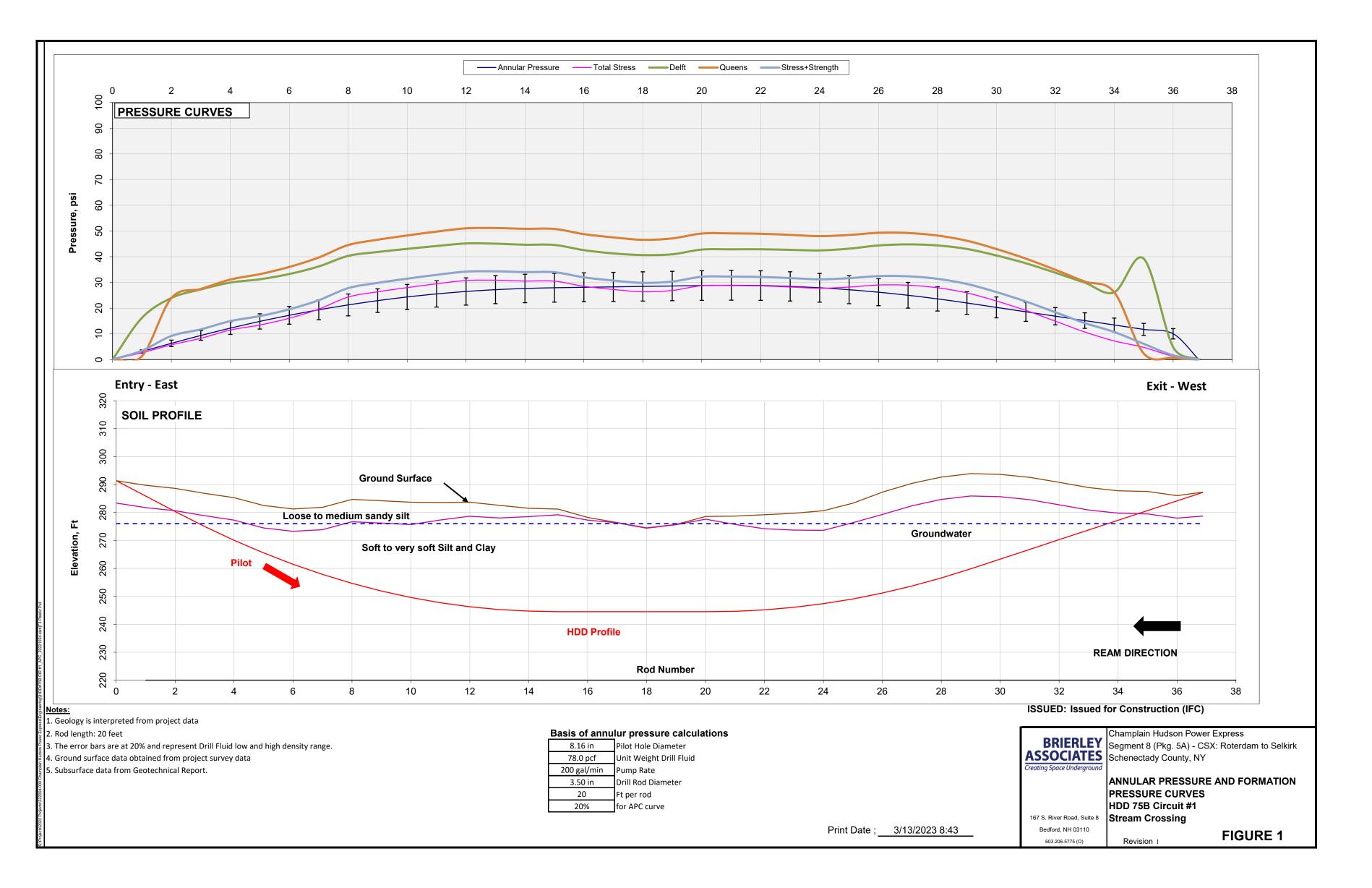
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _⊤	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S./Projects/2022 Projects/322004-000 Champlain Hudson Power Express/Engineering/[HDD#75B CIR #1_APC_20221024.xlsb]T3 Plastic Pull

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 75B Circuit #2

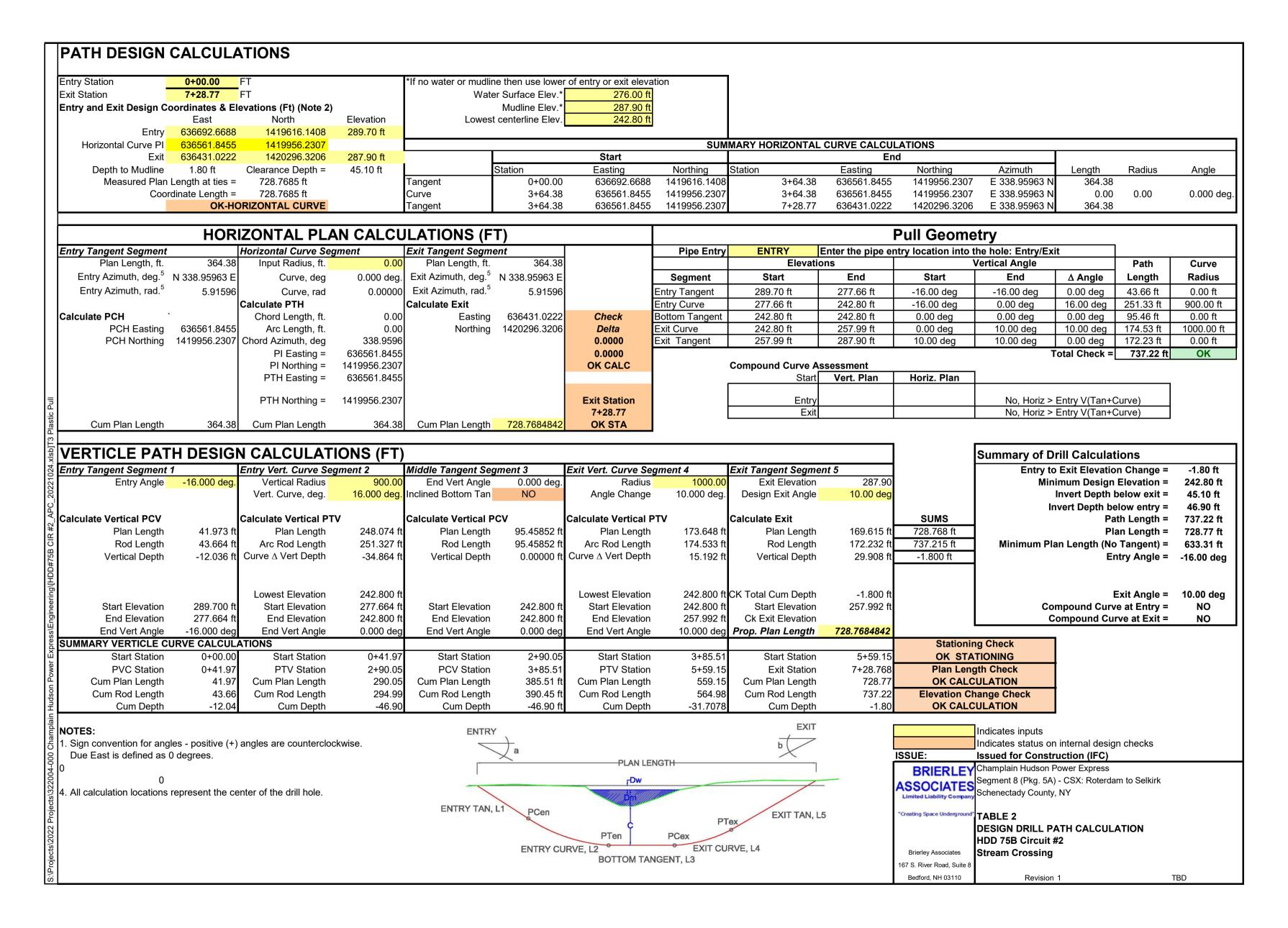
Stream Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry Lengths (Path) **Angles** Radius, R L1 = 100.0 ftOverbend 500.0 ft deg radian L2 = 43.7 ft -16.0 ° -0.2793 L3 = 251.3 ft 900.0 ft L4 = 95.5 ft 0.0 0.0000 $\chi =$ L5 = 174.5 ft 1,000.0 ft L6 = 172.2 ft $\beta =$ 10.0 0.1745 LT = 837.2 ft**INPUT: Assumed Friction Factors** dry + rollers $\mu_G =$ 0.10 drill fluid in hole μ_b = 0.25

0.30 in hole no fluid

INPUT: Assumed Hydrokinetic Drag

0.005 psi Drill Fluid Shear Stress

INPUT: Pipe Properties

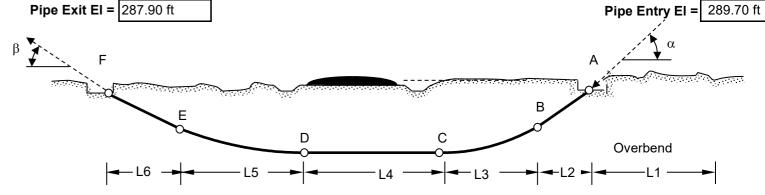
Material	HDPE		IPS		
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @ 73	3Deg F	
Pipe/Bundle Diam. 14.25	PIPE	PIPE/BUND	LE		
Material Density, γ	59.28 pcf				
Outside Diameter, D_{OD}	10.75	Pipe or Bun	dle		
Pipe Dry Weight, W_P =	15.70 lb/ft	Pipe or Bun	Pipe or Bundle		
Min. Wall Thickness, t_{m}	1.194 in	For design i	nstallation	pull stress	
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Diameter, D_{IA}	8.22 in	Bundle Mult	iplier F _D	1.0000	
12 Hr Pullback Modulus, E_T =	65,000 psi	@T =	73 deg F		
Poisson Ratio, μ =	0.45				
Ovality Factor, f _o =	0.685	4%			
Buckling Safety, N =	2.5				
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2			
Pressure Rating, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(DR-$	·1) [F _T =1]	
INPUT: Assumed Fluid Densities/Elevations					

62.4

78

287.90 ft

287.90 ft


pcf

Estimated for pull

Pipe Entry Location - Drill

ENTRY

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,352 lb	96 psi	OK	1,352 lb	96 psi	OK	OK	OK
В	1,896 lb	53 psi	OK	1,866 lb	52 psi	OK	OK	OK
С	3,145 lb	120 psi	OK	2,441 lb	100 psi	OK	OK	OK
D	2,872 lb	80 psi	OK	2,168 lb	60 psi	OK	OK	OK
E	5,736 lb	189 psi	OK	3,592 lb	129 psi	OK	OK	OK
F	8,817 lb	246 psi	OK	5,010 lb	140 psi	OK	OK	OK
ASSESS	Pull Restricted B	uckling Capac	ity, $P_{PA} > \Delta P$ invert	$P_{PA} = P_A F_R =$	82.35 psi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 REJECT

Calculated Material Design Limits For Designed Drill Path

41,235 lb $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 87.24 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.944043459 $F_R = (5.57 - (r+1.09)^2)^{1/2} - 1.09$ $r = \sigma_T/2SPS$ 0.106940771 Maximum applied pull Stress, σ_T = 246 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 30.43 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_U invert = 152.15 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Ballast Density

Drill Fluid Density

Drill fluid elevation, $H_F =$

Ballast Water El., H_w =

Lowest Invert El., El_m =

Pressure Pipe:	YES
OD Perimeter Length, P	33.77 in
Wall Section Area, A_W	37.70738915
Volume Outside, V_{DO}	0.630 cf/LF
Volume Inside, V_{DI}	0.368 cf/LF
$q_d =$	2.03 lb/ft

Drill Fluid (unit drag) ASTM EQ 18: Hydrokinetic, $\Delta T =$ 0.89 lb/ft Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

ISSUE: Issued for Construction (IFC)

Limited Liability Company

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 75B Circuit #2 Stream Crossing

Brierley Associates

167 S. River Road. Suite 8

Bedford, NH 03110

Revision 1 TBD

TABLE 4 Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75B Circuit #2 Stream Crossing

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced						
Design Working Pressure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point				
Quantity of Pipes in Hole, Q =	1					
Pipe Material	PE4710	INPUT RESIN MATEI	RIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin with min	imum PENT test of 10,000 hours			
Standard Dimension	10					
Pipe measurement standard	IPS	IPS "Iron Pipe Size" o	of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	10.750 in	Standard Manufacture	er's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Manufacture	er's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Manufacture	er's Data Sheets			
Wall Section Area, A _W =	35.85681985	$A_W = \pi^* ((D_o/2)^2 - ((D_o-2)^2)$	2t)/2) ²)			
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$				
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5				
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF				
Environmental Factor, Af _e =	1	Reference 2: Use for	pressure rating only			
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710			
Weight Dry, W=	15.68	Lb/LF	_			
Tensile Yield, Ty psi =	•	@73°F	Minimum from ASTM D3350 determined by ASTM D638			
Load Duration		Long Term				
Duration Time		50 yrs				
Design Temperature, °F	73 deg F	73 deg F Assumed				
Design Ovality, %	2% 2.5	2% See Sheets 4 of 5 for design ovality				
Factor of Safety, FS = Modulus for given load duration, E =		2.5 Industry Practice				
Poisson Ratio, $v = \frac{1}{2}$		28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314 0.45 WL118: Use 0.35 if load duration is less than 12 hours				
Ovality factor $f_0 =$		0.45 WL118: Use 0.35 if load duration is less than 12 hours 0.84 Reference 1: Based on Selected Design Ovality				
Temperature factor, $f_t =$		1.00	Source: WL Plastics WL118			
Temperature ractor, It	1.00	1.00	Couloc. VVE I lastics VVE I TO			

Project Fluids

luids				1		
	Pipe Internal	Expected		E	Buoyant ford	es
	Ballast	External Fluid	Heavy External Fluid	Dry Weight Pipe on ground, W_P =	15.68 lb/ft	From MFG. Data Sheet
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γιντ	$\gamma_{\sf EXT1}$	$\gamma_{\sf EXT2}$	Expected Displaced Fluid Weight, W_{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoya	ant Unballasted	l Fluid 1, B _{B1} =	-33.48 lb/ft	W _P -W _{D1}		
Buoya	ant Unballasted	fluid 2, B _{B2} =	-34.74 lb/ft	W_P - W_{D2}		
	Ballasted or	n ground, B _G =	38.67 lb/ft	W_P+W_B		
Buoyant Ballasted in Fluid 1, BB _{B1} =		-10.49 lb/ft	BG-W _{D1}			
Buoya	nt Ballasted in	Fluid 2, B _{BB2} =	-11.75 lb/ft	BG-W _{D2}		

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75B Circuit #2

Stream Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

400 psi

Design Temperature, °F 73 deg F Ultimate Internal Pressure, Pu = $P_U = 2*Ty*f_t/(DR-1)$ 875 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

 $P_A = 2*HDB*f_t/(DR-1)$ Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi Maximum Ocassional Surge, Pos = 504 psi $P_{OS} = 2*PR$ Maximum Reoccuring Surge, PRS = 378 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork

BRIERLEY

"Creating Space Underground"

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Allowable Internal Pressure, $P_A =$

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$ Short Term Long Term

Design Temperature, F = 73 deg F 73 deg F 115.2 psi $P_{CR} =$ 267.4 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_B Drill Fluid depth to invert, H_{DF} 45.10 ft 46.90 ft 45.10 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

0.00 psi Air Ballast, PA Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 19.74 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 24.67 psi 25.30 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 19.74 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	82.30 psi	21.41 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	81.67 psi	20.78 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.04 psi	41.15 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.41 psi	40.51 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	87.24 psi	26.34 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

TABLE 4 Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 75B Circuit #2 Stream Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Quantity of pipes, Q = Designed Pull Duration Time = 12 hr Yield Strength Factor, f_Y = 0.4 Pull Temperature, F = 73 deg. Recommended (FS = 2.5) Pull Time factor, $f_T =$ Plexco Engineering Manual Table 3.7 1 Design Factor, DF = $f_T * f_Y$ 0.4 SAFE PULL STRENTH, SPS = 50,200 lb Temperature factor, $f_{temp} =$ 1 Ultimate Pull Strength, UPS = 125,499 lb Temp Corr Tensile Yield, Ty*f_{temp} = 3,500 psi Safe Allowable Stress, SAS = 1,400 psi $SAS = Ty*f_{temp}*DF$ Suggested SSAS = 1,150 psi Safe Pull Strength, SPS Pipe = 50,200 lb Useing SSAS = 41,235 lb

BRIERLEY

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

51W1 1002 EQ: 22)		
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, $H_{MDF} = 0.0 \text{ ft}$
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
$fr = ((5.57-(r+1.09)^2)^5-1.09 =$	0.94404	
$r = \sigma_i/2*(SSAS) =$	0.10694	Example from Table T5, $\sigma_i = 246 \text{ psi}$
P _{CRR} =	252.5 psi	· · · · · · · · · · · · · · · · · · ·
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	126.2 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	101.56 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	100.93 psi Pull Back Condition - Option 4 OK as >0

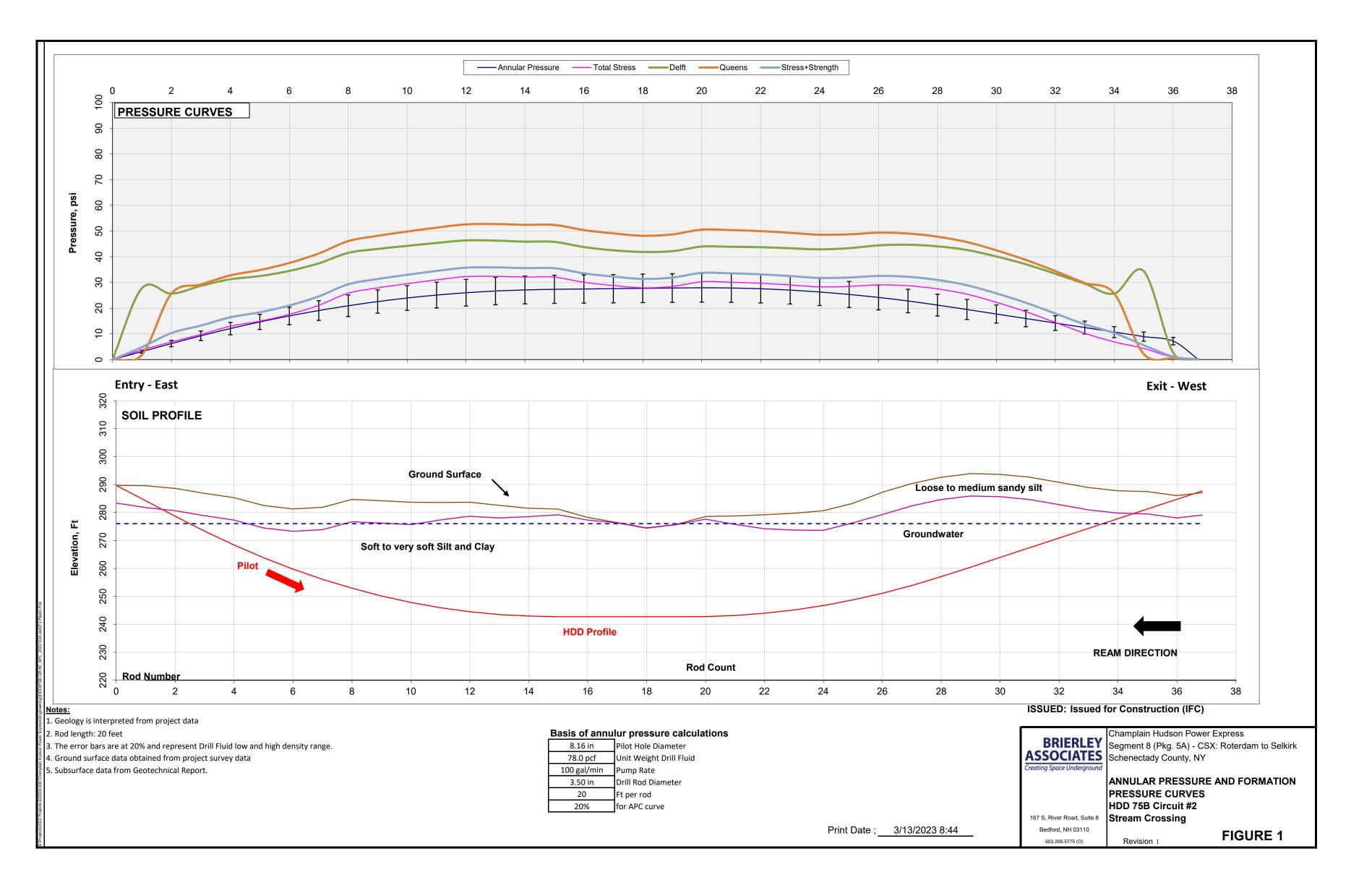
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f_T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
ი 91	Un to 24 hours	24

S:\Projects\2022 Projects\322004-000 Champlain Hudson Power Express\Engineering\[HDD#75B C

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 77 Circuit #1

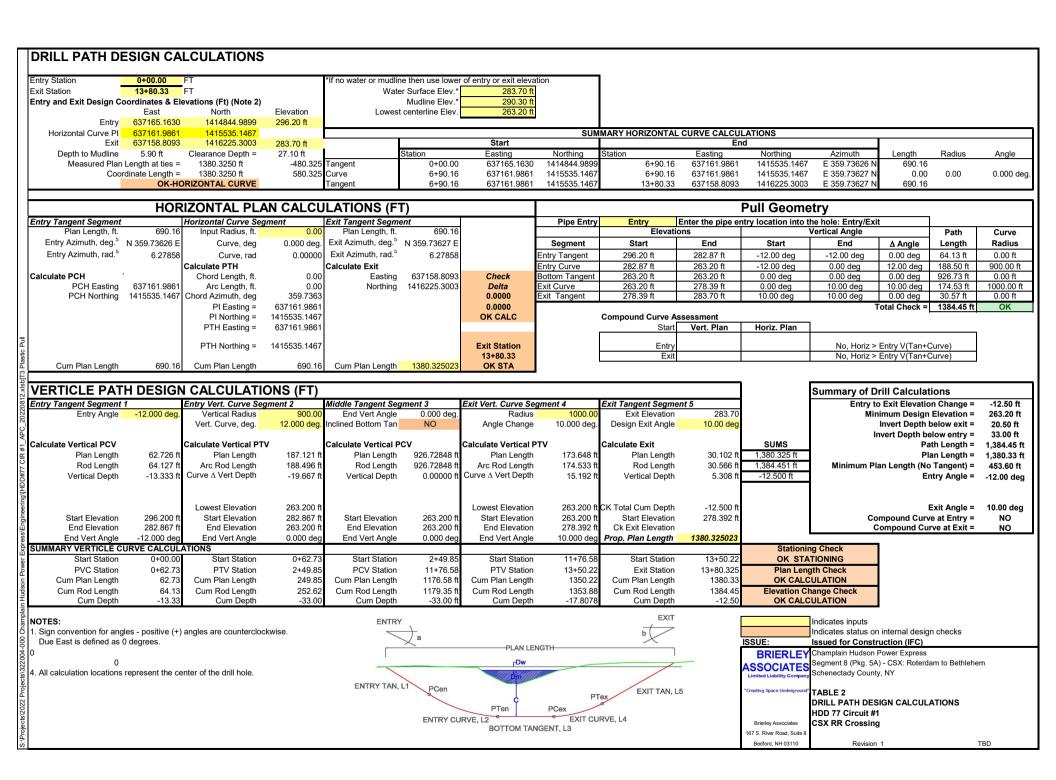
CSX RR Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 28-Feb-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/28/2023	1	Issued for Construction	ABL

Pull Geometry

Leng	ths (Path)		Radius, R			
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft	
L2 =	64.1 ft	α =	-12.0 °	-0.2094		
L3 =	188.5 ft				900.0 ft	
L4 =	926.7 ft	χ =	0.0 °	0.0000		
L5 =	174.5 ft				1,000.0 ft	
L6 =	30.6 ft	β =	10.0 °	0.1745		
LT =	1484.5 ft					

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

•	- p			
Materia	HDPE	IPS		
Safe Pull Max. Stress, σ _{Pl}	1,150 psi	PPI Table 1 12hr @ 73Deg F		
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE		
Material Density,	7 59.28 pcf			
Outside Diameter, Doi	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bundle		
Min. Wall Thickness, t _r	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D _L	BUNDLE	Bundle Multiplier F _D 0.9042		
12 Hr Pullback Modulus, E _T =	65,000 psi	@T = 73 deg F		
Poisson Ratio, μ =	0.45			
Ovality Factor, f _o =	0.84	2%		
Buckling Safety, N =	2.5			
Hydrostatic Design Stress, HDS :	1.000 psi	HDB/2		

250 psi **INPUT: Assumed Fluid Densities/Elevations**

cf	рс	62.4	Ballast Density
of Estimated for pull	рс	78	Drill Fluid Density
		283.00 ft	Drill fluid elevation, H_F =
		283.00 ft	Ballast Water El., H _w =

263.20 ft

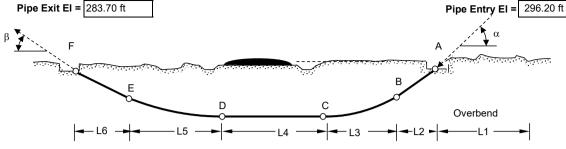
 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Calculated Pipe and Fluid Properties

Lowest Invert El., El_m =

Calculated Buoyant Forces

Pressure Rating, PR(80F) =


Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
EQ 18: Hydrokinetic, ΔT =	0.64 lb/ft	Comparison Only @ 8psi

ASTM EQ 18: Hydrokinetic, $\Delta T =$

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =		17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Entry

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	May Tancila	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,632 lb	195 psi	OK	2,632 lb	195 psi	OK	OK	OK
В	2,976 lb	75 psi	OK	2,976 lb	75 psi	OK	OK	OK
С	4,391 lb	154 psi	OK	3,664 lb	135 psi	OK	OK	OK
D	8,742 lb	221 psi	OK	8,014 lb	202 psi	OK	OK	OK
Е	12,231 lb	347 psi	OK	9,912 lb	289 psi	OK	OK	OK
F	12,783 lb	322 psi	OK	10,180 lb	257 psi	OK	OK	OK
ASSESS Pu	III Restricted Bu	ckling Capac	ity, P _{PA} > ΔP invert	$P_{PA} = P_A F_R =$	98.15 psi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =		$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.91751862	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.150914578	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	347 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	2.15	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	10.73	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company

Champlain Hudson Power Express ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 77 Circuit #1 CSX RR Crossing Brierley Associates

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 77 Circuit #1 CSX RR Crossing

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced						
Design Working Pressure, P _{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig	At high point	
Quantity of Pipes in Hole, Q =	1		•		•	
Pipe Material	4710 HDPE	INPUT RESI	N MATERIAL: PE3408, P	E3608, PE	4710	
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test	of 10,000 h	nours	
Standard Dimension	3					
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile I	ron Pipe Siz	ze"	
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	3.500 in	Standard Ma	nufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets			
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets			
Wall Section Area, A _W =	3.80188946	$A_W = \pi^*((D_o/2))$	$(D_0-2t)/2$			
Unit OD Surface Area, in ² /LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*E$	O _{OD}			
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837			2837	
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5				
Hydrostatic Design Stress, HDS =	1000 psi	HDS = HDB*				
Environmental Factor, Af _e =	1		Use for pressure rating of	-		
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastic	s WL122 fo	or PE4710	
Weight Dry, W =	1.66	Lb/LF	•			
Tensile Yield, Ty psi =	3,500 psi	(-2	Minimum from ASTM D3	350 determ	ined by ASTM D638	
Load Duration Duration Time	Short Term 10 hours	Long Term 50 yrs				
Design Temperature, °F	73 deg F	,	Assumed			
Design Ovality, %	2%	2%	See Sheets 4 of 5 for des	sian ovality		
Factor of Safety, FS =	2.5	2.5	Industry Practice	3 ,		
Modulus for given load duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Cl	h. 3 and WL	Plastics WL118-0314	
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load	duration is	less than 12 hours	
Ovality factor f _o =	0.84	0.84	Reference 1: Based on S	Selected De	sign Ovality	
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL	118		
Project Fluids						

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ_{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-3.55 lb/ft		
Buoya	I Fluid 2, $B_{B2} =$	-3.69 lb/ft	
	ground, $B_G =$	4.10 lb/ft	
Buoyar	-1.11 lb/ft		
Buoyai	nt Ballasted in	Fluid 2, $B_{BB2} =$	-1.24 lb/ft

Buoyant forces

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_D = V_{D0} \gamma_{EXT1}$ $W_D = V_{D0} \gamma_{EXT2}$ $W_P - W_D$ $W_D = V_D - \gamma_{EXT2}$

 $W_P + W_B$ $BG - W_{D1}$ $BG - W_{D2}$

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 77 Circuit #1 **CSX RR Crossing**

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Pg 2 of 3

Design Temperature. °F = 73 deg F Ultimate Internal Pressure, Pu = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature. °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 250 psi

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

 $P_{OS} = 2*PR$ Maximum Ocassional Surge, Pos = 500 psi Maximum Reoccuring Surge, PRS = 375 psi $P_{RS} = 1.5*PR$

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)] * [(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 33.00 ft Ballast depth to invert, H_B

Drill Fluid depth to invert, H_{DF} 20.50 ft 20.50 ft

Pipe Invert Internal Pressure, P.

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 8.95 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2} * (H_{MDF} + D_o/24)/144$

11.18 psi 11.47 psi 8.95 psi

Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_F \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	95.79 psi	34.90 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	95.51 psi	34.61 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	104.74 psi	43.84 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	104.45 psi	43.56 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	98.03 psi	37.13 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 77 Circuit #1 CSX RR Crossing

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr = 267.4 psi		
SAS =	1,400 psi	Design D	epth in DF, H _{MDF} = 0.0 ft		
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpt	tion as Maximum	•	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91752				
r = σ _i /2*(SSAS) =	0.15091		Example from Table T5, σ_i =	347 psi	
P _{CRR} =	245.4 psi			-	
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	122.7 psi	Allowable Reduc	ed Short Term Buckling pressu	re during pu	II
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	111.51 psi	Pull Back Condition - Option 3	OK as >0	
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	111.22 psi	Pull Back Condition - Option 4	OK as >0	

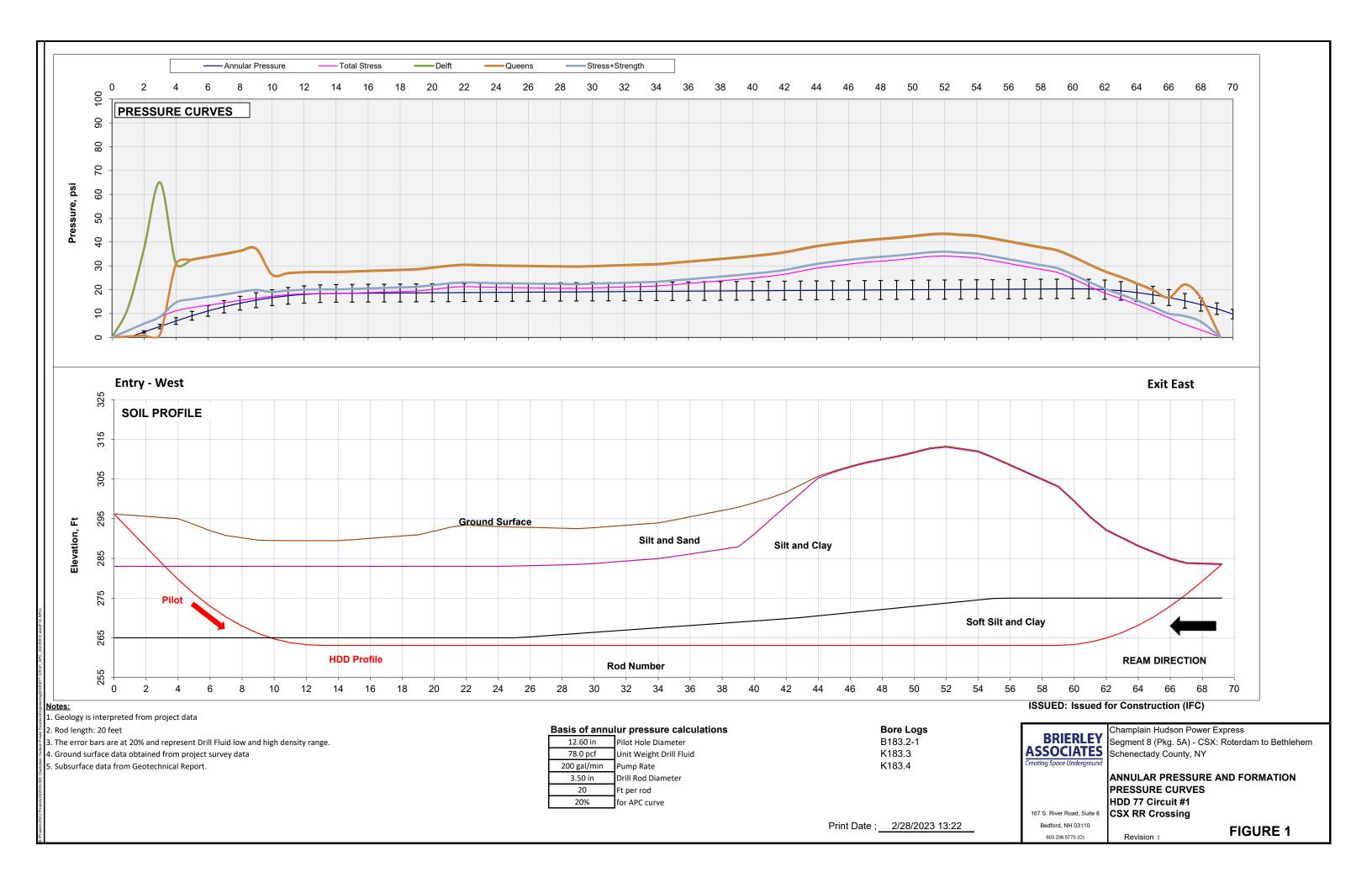
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

20220812.xlsbTT3 Plastic Pull

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 77 Circuit #2

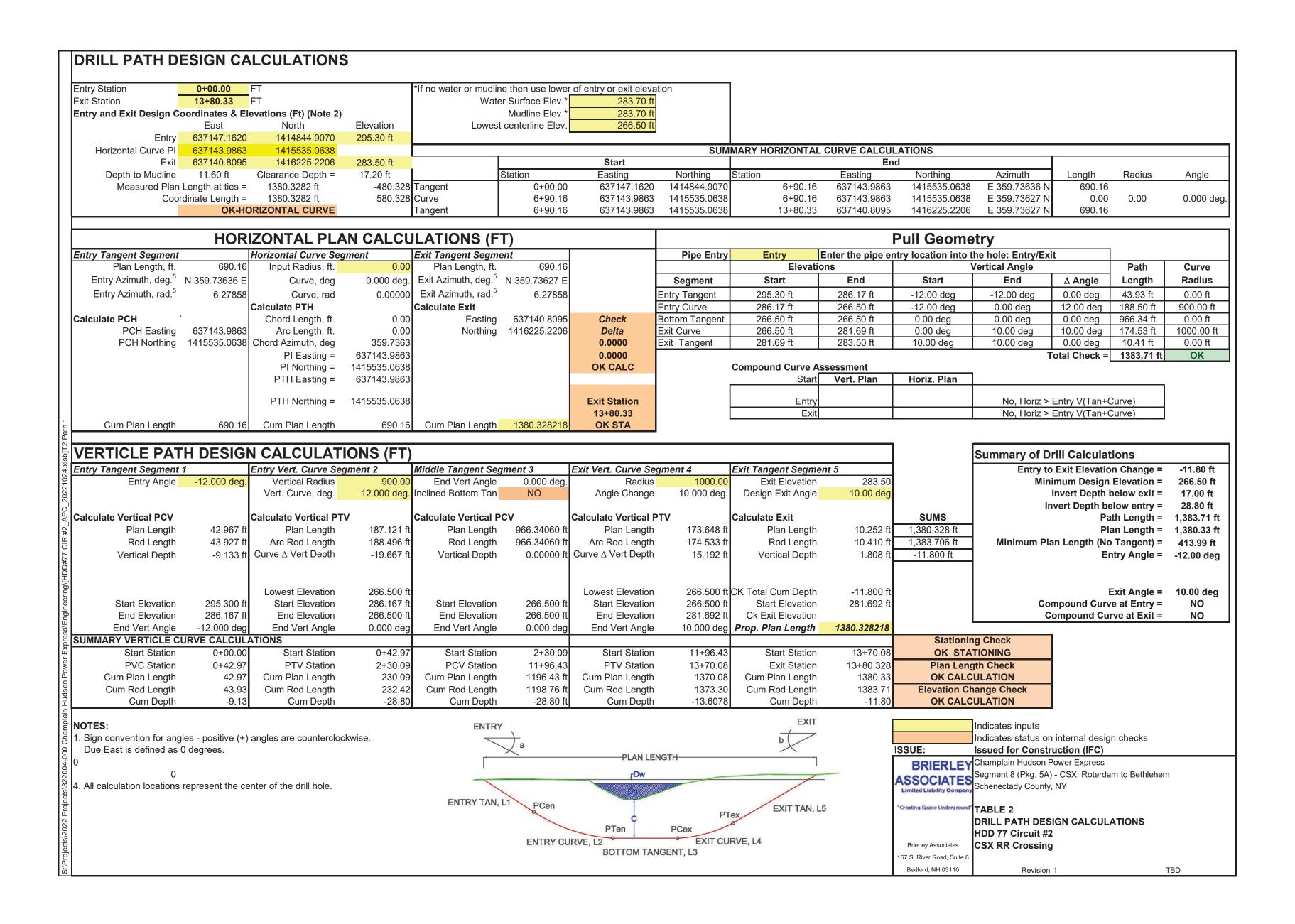
CSX RR Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 28-Feb-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
2/28/2023	1	Issued for Construction	ABL

Pull Geometry Lengths (Path) **Anales** Radius, R L1 = 100.0 ftOverbend deg radian 300.0 ft L2 = 43.9 ft α = -12.0 -0.2094 L3 = 188.5 ft 900.0 ft L4 = 966.3 ft 0.0000 χ = 0.0 L5 = 174.5 ft 1,000.0 ft β = L6 = 10.4 ft 10.0 0.1745 LT = 1483.7 ft **INPUT: Assumed Friction Factors** dry + rollers 0.10 drill fluid in hole μ_{b} 0.25 in hole no fluid 0.30 **INPUT: Assumed Hydrokinetic Drag** $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress **INPUT: Pipe Properties** Material HDPE IPS Safe Pull Max. Stress, σ_{PM} 1,150 psi PPI Table 1 12hr @ 73Deg F Pile/Bundle Diam. PIPE/BUNDLE 14.25 PIPE Material Density, 59.28 pcf Outside Diameter, Dor 14.25 Pipe or Bundle Pipe Dry Weight, W_P = Pipe or Bundle 15.70 lb/ft Min. Wall Thickness, t. 1.194 in For design installation pull stress D_{OD} Stress 10.75 inches $DR = D_O/t_{min}$ 9 Avg. Inside Diameter, DIA **BUNDLE** Bundle Multiplier FD 1.0000 12 Hr Pullback Modulus, E_T = @ $T = 73 \deg F$ 65,000 psi 0.45 Poisson Ratio, μ = Ovality Factor, fo = 2% 0.84 Buckling Safety, N = 2.5 Hydrostatic Design Stress, HDS = 1,000 psi HDB/2 250 psi $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$ Pressure Rating, PR_(80F) =

INPUT: Assumed Fluid Densities/Elevations 62.4

78

283.00 ft

283.00 ft

266.50 ft

pcf

pcf

Pipe Entry Location - Drill Entry (schematic, to show definition of variables only) **Pipe Exit EI = 283.50 ft Pipe Entry EI =** 295.30 ft Overbend Calculated Pull Force **ASSESS** ASSESS Pull Force, F_B **ASSESS** F_x < SPS Pull Force, FD Max Tensile Max Tensile **POINT** Stress, σ_T Stress, σ_T No Ballast $\sigma_T < \sigma_{PM}$ **Ballasted Pipe** $\sigma_T < \sigma_{PN}$ Ballas OK OK OK 2,379 lb 195 psi 2,379 lb OK 195 psi В 2,559 lb 2,559 lb 71 psi OK 71 psi OK OK OK С 3,863 lb 151 psi OK 3,261 lb 134 psi OK OK OK D 8,020 lb OK 7,417 lb OK OK OK 224 psi 207 psi OK OK OK OK Ε 11,226 lb 352 psi 9,188 lb 295 psi OK OK OK OK 11,376 lb 317 psi 9,265 lb 258 psi **ASSESS** Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R =$ Ballasted OK 98.02 psi OK No Ballast Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$ PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = 41,235 lb Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.916258771 $F_R = (5.57 - (r+1.09)^2)^{1/2} - 1.09$ 0.152950419 r = $\sigma_T/2SPS$ Maximum applied pull Stress, σ_T = From Pull Force Calculations 352 psi Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 1.79 psi (-) indicates pipe is pressurized 8.94 Unballasted Max. Differential Pressure on Pipe, ΔP_U invert = psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Ballast Density

Drill Fluid Density

Drill fluid elevation, H_E =

Ballast Water El., H_w =

Lowest Invert El., El_m =

Pressure Pipe: YES 44.77 in OD Perimeter Length, P Wall Section Area, A 37.70738915 0.630 cf/LF Volume Outside, V_{DC} 0.368 cf/LF Volume Inside, V_{DI} 2.69 lb/ft Drill Fluid (unit drag) 0.64 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, $\Delta T =$

Estimated for pull

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

ISSUE: Issued for Construction (IFC)

ASSOCIATES Limited Liability Company "Creating Space Underground

BRIERLEY Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 77 Circuit #2 **CSX RR Crossing Brierley Associates**

167 S River Road Suite 8 Bedford NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 77 Circuit #2 **CSX RR Crossing**

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced Design Working Pressure, Pwork 250 psi Test Pressure, P_{TEST} 0 psig At high point Quantity of Pipes in Hole, Q = Pipe Material 4710 HDPE INPUT RESIN MATERIAL: PE3408, PE3608, PE4710 445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours **Standard Dimension** 10 IPS IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard DR = OD/Minimum Wall 9 10.750 in Outside Diameter, Do = Standard Manufacturer's Data Sheets Avg. Inside Diameter, Di = 8.219 in Standard Manufacturer's Data Sheets Minimum Wall, t_{min} = 1.194 in Standard Manufacturer's Data Sheets Wall Section Area, A_W = 35.85681985 $A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$ Unit OD Surface Area, in LF, AOD = $A_{OD} = 12*\pi*D_{OD}$ 405.27 in^2/LF Unit Outside Volume, V_{Do} = $V_{Do} = \pi^* (D_0/2)^2 / 144$ 0.630 cf/LF Unit Inside Volume, V_{Di} = 0.368 cf/LF $V_{Di} = \pi^* (D_i/2)^2 / 144$ 1,600 psi HDB = Based on PPI Publication TR-4/2015 and ASTM 2837 Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5 Hydrostatic Design Stress, HDS = 1000 psi HDS = HDB*DF Environmental Factor, Afe = Reference 2: Use for pressure rating only 59.28 pcf 1.410 g/cc Average from WL Plastics WL122 for PE4710 Density = Weight Dry, W = 1.66 Lb/LF Tensile Yield, Ty psi = 3,500 psi Minimum from ASTM D3350 determined by ASTM D638 @73°F **Load Duration Short Term Long Term Duration Time** 10 hours 50 yrs 73 deg F 73 deg F Assumed Design Temperature, °F Design Ovality, % See Sheets 4 of 5 for design ovality Factor of Safety, FS = 2.5 2.5 **Industry Practice** Modulus for given load duration, E = 65,000 psi 28,000 psi

0.45

0.84

1.00

Project Fluids

143	143			
	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	
	γιντ	γ _{EXT1}	γ _{EXT2}	
Density, γ =	62.4	78	80	
Buoyant Unballasted Fluid 1, B _{B1} = -47.50 lb/ft				
Buoyant Unballasted Fluid 2, B _{B2} = -48.76 lb/ft				
Ballasted on ground, B _G = 24.65 lb/ft				
Buoyant Ballasted in Fluid 1, BB _{B1} = -24.51 lb/ft				
Buoyant Ballasted in Fluid 2, B _{BB2} = -25.77 lb/ft				

Poisson Ratio, υ =

Ovality factor f_o =

Temperature factor, f_t =

0.45

0.84

1.00

E	Buoyant forc	es
Dry Weight Pipe on ground, W _P =	1.66 lb/ft	From MFG. Data Sheet
Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
Expected Displaced Fluid Weight, W_{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
W _P -W _{D1}	-	-
W_P - W_{D2}		
W _P +W _B		
BG-W _{D1}		
BG-W _{D2}		

Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314

WL118: Use 0.35 if load duration is less than 12 hours

Reference 1: Based on Selected Design Ovality

Source: WL Plastics WL118

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 77 Circuit #2 **CSX RR Crossing**

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, $P_A =$ 400 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_{t}*Af_{e}/(DR-1)$ Pressure Rating, PR = 250 psi P_{os} = 2*PR Maximum Ocassional Surge, P_{OS} = 500 psi Maximum Reoccuring Surge, PRS = 375 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 28.80 ft

Ballast depth to invert, H_B 17.00 ft Drill Fluid depth to invert, H_{DF}

Pipe Invert External Pressure, PE

17.00 ft

Pipe Invert Internal Pressure, PI

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 7.56 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 9.45 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 9.69 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 7.56 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	97.52 psi	36.63 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	97.28 psi	36.39 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	105.08 psi	44.19 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	104.84 psi	43.95 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	99.41 psi	38.52 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 77 Circuit #2 CSX RR Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

,				
Pull Duration Time =	12 Hr	Pcr = 267.4 psi		
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft		
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum		
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91626			
$r = \sigma_i/2*(SSAS) =$	0.15295	Example from Table T5, σ _i = 352 psi		
P _{CRR} =	245.0 psi			
FS =	2.0			
$P_{ACRR} = P_{CRR}/FS =$	122.5 psi	Allowable Reduced Short Term Buckling pressure during pull		
Internal Ballasted and External Fluid 1 = $(P_B+P_{ACRR})-P_{DF1}$		113.07 psi Pull Back Condition - Option 3 OK as >0		
Internal Ballasted and External Fluid 2 = $(P_B+P_{ACRR})-P_{DF2}$		112.83 psi Pull Back Condition - Option 4 OK as >0		

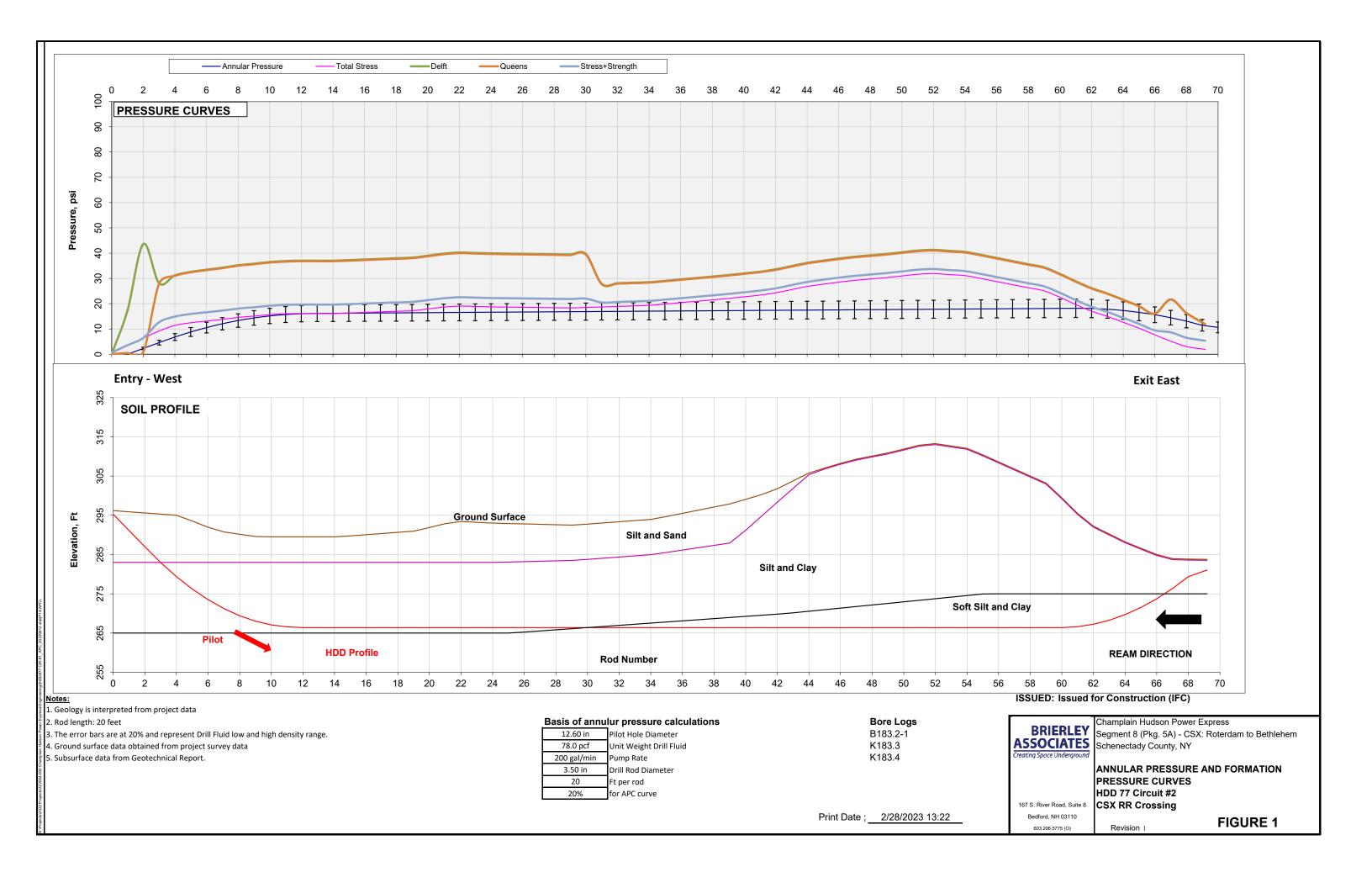
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

	f _⊤	Time factor for pull		
Apress	1.00	Up to 1 hour pull	1	
II OMO	0.95	Up tp 12 hours pull	12	
5	0.91	Up to 24 hours	24	

:/Projects/2022 Projects/322004-000 Champlain Hudson Power Express/Engineering/[HDD#77 CIR #2_AF

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 78 Circuit #1

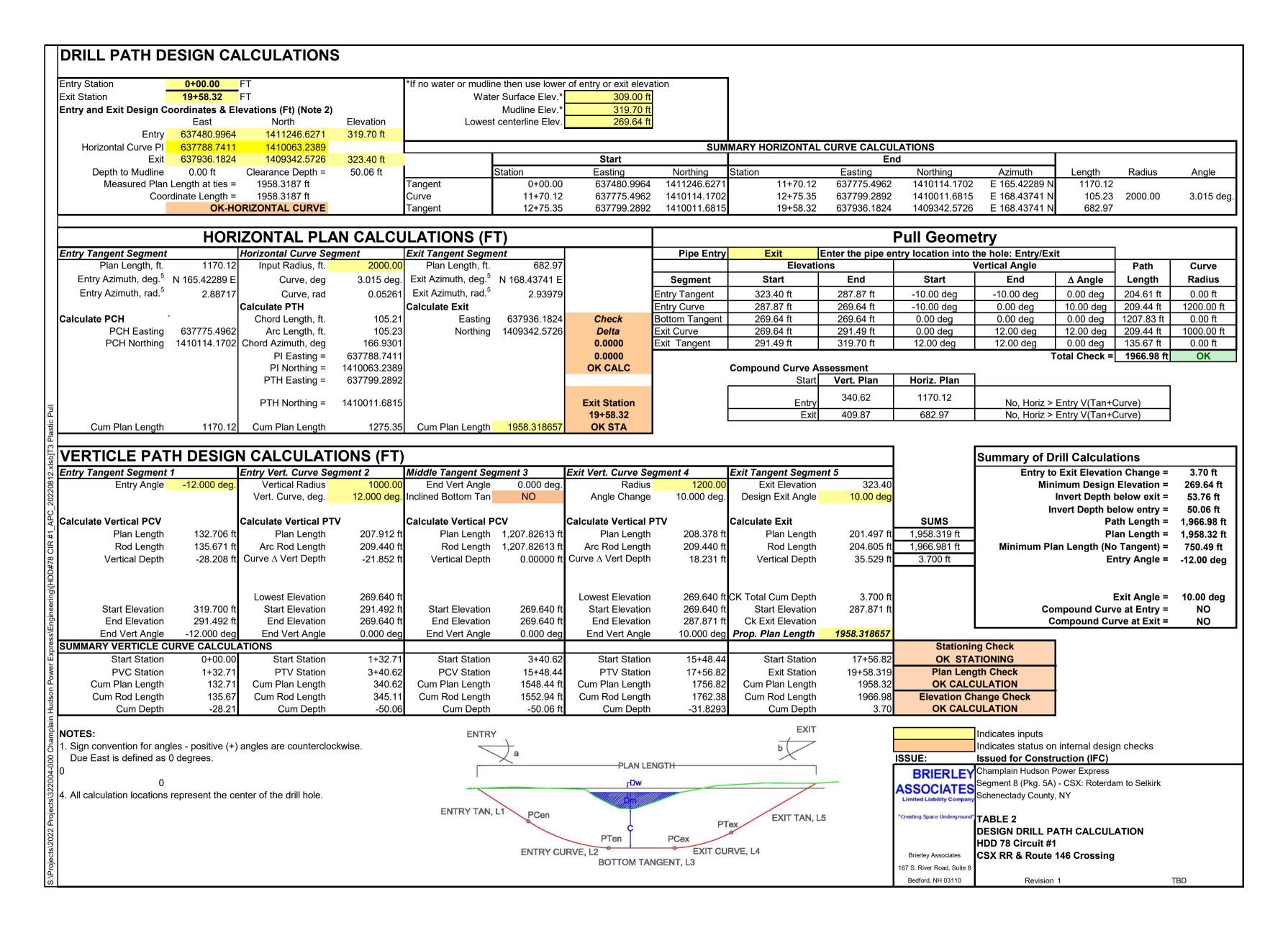
CSX RR & Route 146 Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 16-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/16/2023	1	Issued for Construction	KRF

Leng	ths (Path)		Radius, R		
L1 =	100.0 ft	Overbend	Overbend deg radian		500.0 ft
L2 =	204.6 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	1207.8 ft	χ =	0.0 °	0.0000	
L5 =	209.4 ft				1,000.0 ft
L6 =	135.7 ft	β =	12.0 °	0.2094	
LT =	2067.0 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

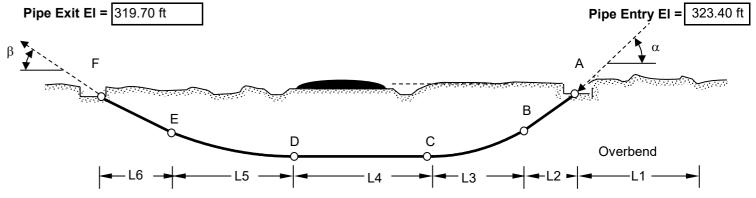
INPUT: Pipe Properties

	INFOI. FIPE FIO	pernes				
	Material	HDPE	IPS			
Safe Pull Max. Stress, σ _{PM}		1,150 psi	PPI Table 1 12hr @ 73Deg F			
	Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE			
	Material Density, γ	59.28 pcf				
	Outside Diameter, D _{OD}	14.25	Pipe or Bundle			
	Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bundle			
	Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress			
	$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches			
5	Avg. Inside Diameter, D _{IA}	BUNDLE	Bundle Multiplier F _D 0.9042			
last	12 Hr Pullback Modulus, $E_T =$	65,000 psi	@T = 73 deg F			
2	Poisson Ratio, μ =	0.45				
2.713	Ovality Factor, f _o =	0.84	2%			
2200	Buckling Safety, N =	2.5				
7	Hydrostatic Design Stress, HDS =	101 psi	HDB/2			
5	Pressure Rating, PR _(80F) =	25 psi	$PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$			
:	INPUT: Assumed Fluid Densities/Elevations					

INPUT: Assumed Fluid Densities/Elevations						
Ballast Density	62.4	pcf				
Drill Fluid Density	78	pcf Estimated for pull				
Drill fluid elevation, H_F =	319.70 ft					
Ballast Water El., H _w =	319.70 ft					
Lowest Invert El., El _m =	269.64 ft					

Calculated Pipe and Fluid Properties

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A_W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ΔT =	0.45 lb/ft	Comparison Only @ 8psi


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force					ASS	ESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Air	Ballast
Α	3,651 lb	169 psi	OK	3,651 lb	169 psi	OK	OK	OK
В	5,351 lb	135 psi	OK	5,690 lb	144 psi	OK	OK	OK
С	7,116 lb	212 psi	OK	6,568 lb	198 psi	OK	OK	OK
D	12,689 lb	320 psi	OK	12,142 lb	306 psi	OK	OK	OK
E	17,256 lb	474 psi	OK	14,697 lb	409 psi	OK	OK	OK
F	20,157 lb	508 psi	OK	16,036 lb	404 psi	OK	OK	OK
ASSESS P	ull Restricted Bu	ickling Capaci	ity, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	93.33 psi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

Unball

Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.87243003	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.221056207	r = σ _τ /2SPS
Maximum applied pull Stress, σ_T =	508 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	5.42	psi (-) indicates pipe is pressurized
Inballasted Max. Differential Pressure on Pipe, ΔP_U invert =	27.12	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 78 Circuit #1 CSX RR & Route 146 Crossing **Brierley Associates**

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 78 Circuit #1

CSX RR & Route 146 Crossing

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

167 South River Road, Suite 8 Bedford, NH 03110 Ph 603-206-5775

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Cources. ACTIVIDSSO	ana masiici ip	1 11301016 1 U	bileations and as referenced	
Design Working Pressure, P _{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point	
Quantity of Pipes in Hole, Q =	1			
Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710	
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 10,000 hours	
Standard Dimension	3			
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iron Pipe Size"	
DR = OD/Minimum Wall	9			
Outside Diameter, D_o =	3.500 in	Standard Ma	nufacturer's Data Sheets	
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets	
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets	
Wall Section Area, $A_W =$	3.801889456	$A_W = \pi^*((D_o/2$	$(D_0-2t)/2$	
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*E$	\mathcal{O}_{OD}	
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^*(D_o/2$	2) ² /144	
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^*(D_i/2)^2/144$		
HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 and ASTM 2837	
Design Factor for HDB, DF =	0.06	Based on PP	PI PE Handbook 2nd ED Chapter 5	
Hydrostatic Design Stress, HDS =	101 psi	HDS = HDB*	DF	
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710	
Weight Dry, W =	1.66	Lb/LF		
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638	
Load Duration		Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F	Assumed	
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality	
Factor of Safety, FS =	2.5	2.5	Industry Practice	
Modulus for given load duration, E =		28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314	
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours	
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality	
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL118	

Project Fluids

· ·				
	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	
	γιντ	γ _{EXT1}	γ _{EXT2}	
Density, γ =	Density, γ = 62.4 78			
Buoya	-3.55 lb/ft			
Buoya	ant Unballasted	d Fluid 2, B _{B2} =	-3.69 lb/ft	
	n ground, $B_G =$	4.10 lb/ft		
Buoyar	-1.11 lb/ft			
Buoya	-1.24 lb/ft			

Buoyant forces

		· · , · · · · ·	
ı	Dry Weight Pipe on ground, W_P =		
	Internal Ballast Weight, W _B =		
	Expected Displaced Fluid Weight, W_{D1} =	5.21 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
	Heavy Displaced Fluid Weight, W_{D2} =	5.35 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
	14/ 14/		_

 W_P-W_{D1} W_P-W_{D2} W_P+W_B $BG-W_{D1}$

 $BG-W_{D2}$

.

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 78 Circuit #1

CSX RR & Route 146 Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground" 167 South River Road, Suite 8

Bedford, NH 03110 Ph 603-206-5775

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{HDB} \text{ f}_t \text{/(DR-1)}$

ASSESSMENT TEST PRESSURE

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

Design Temperature, ${}^{\circ}F = 73 \text{ deg F}$ Pressure Rating, PR = 25 psiMaximum Ocassional Surge, Pos = 50 psiMaximum Reoccuring Surge, PRS = 38 psiPR = $2*HDS*f_t*Af_e/(DR-1)$ Pos = 2*PRPressure Rating, PR = 2*PRPressure Rating, PR = 38 psiPressure Rating, PR = 38 psi

ASSESSMENT PRESSURE RATING
REJECT OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-\upsilon^2)] * [(1/(DR-1))^3]$ Short Term | Long Term

Design Temperature, F = $\begin{array}{c|cccc} & Short Term & Long Term \\ \hline P_{CR} = & 73 deg F & 73 deg F \\ \hline P_{CR} = & 267.4 psi & 115.2 psi \\ \hline P_{a} = P_{CR}/FS & 107.0 psi & 46.1 psi \\ \end{array}$

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 53.76 ft Ballast depth to invert, H_B 50.06 ft Drill Fluid depth to invert, H_{DF} 50.06 ft

Pipe Invert Internal Pressure, Pi

Pipe Invert External Pressure, PE

Air Ballast, P_A 0.00 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^*(H_{MDF} + D_o/24)/144$ 27.19 psi Full Ballast, $P_B = \gamma_{INT}^*(H_B + D_o/24)/144$ 21.76 psi Water, $P_W = \gamma_{INT}^*(H_{DF} + D_o/24)/144$ 21.76 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$ Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$ Internal Ballasted and External Fluid 1 = $(P_B + P_a) - P_{DF2}$ Internal Ballasted and External Fluid 2 = $(P_B + P_a) - P_{DF2}$ Internal Ballasted and External Water = $(P_B + P_a) - P_W$ Internal Air and External Water = $(P_A + P_a) - P_W$

s	Short Term	Long Term
1	79.78 psi	18.89 psi
2	79.08 psi	18.19 psi
1	101.54 psi	40.64 psi
2	100.84 psi	39.95 psi
Ν	106.97 psi	46.08 psi
Ν	85.22 psi	24.33 psi

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4

Long Term Operating Conditions
Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

S.\Draiarts\2022 Braiarts\322004.000 Champlain Hirdson Dower Evnrass\Engineditation\(IHDD#78 CID #1 ADC 20

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 78 Circuit #1

CSX RR & Route 146 Crossing

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

167 South River Road Suite 8, Bedford, NH 03110 Ph 603-206-5775

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

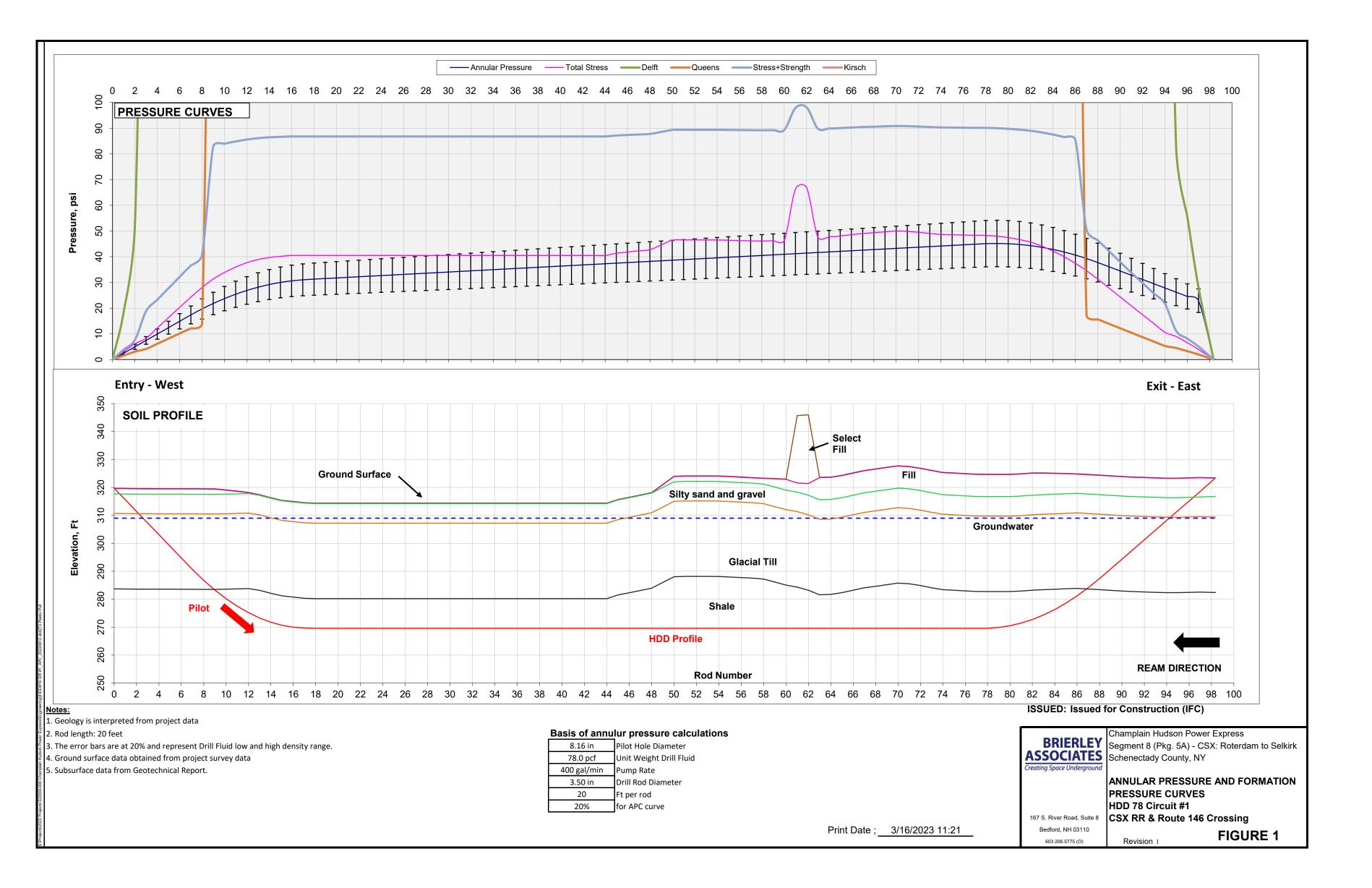
Pull Duration Time =	12 Hr		Pcr = 267.4 psi	1
SAS =	1,400 psi	Design D	Depth in DF, H _{MDF} = 0.0 ft	1
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpt	tion as Maximum	-
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.87243			
$r = \sigma_i/2*(SSAS) =$	0.22106	Example from Table T5, σ _i = 508		508 psi
P _{CRR} =	233.3 psi			
FS =	2.0			
$P_{ACRR} = P_{CRR}/FS =$	116.7 psi	Allowable Reduc	ced Short Term Buckling pressu	ire during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	89.47 psi	Pull Back Condition - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	88.77 psi	Pull Back Condition - Option 4	OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 78 Circuit #2

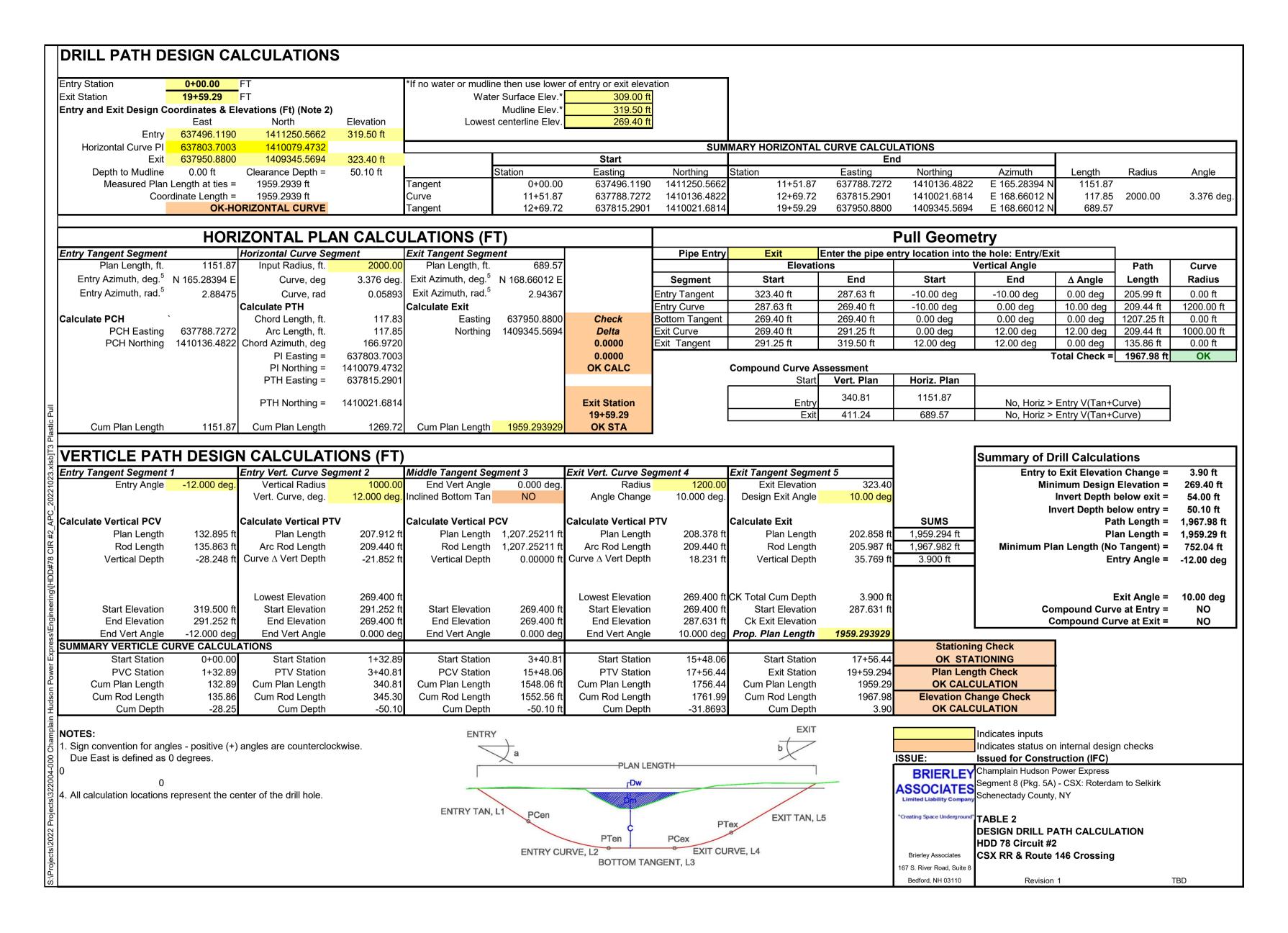
CSX RR & Route 146 Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 16-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/16/2023	1	Issued for Construction	KRF

Leng	Lengths (Path) Angles				Radius, R
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	206.0 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	1207.3 ft	χ =	0.0 °	0.0000	
L5 =	209.4 ft				1,000.0 ft
L6 =	135.9 ft	β =	12.0 °	0.2094	
LT =	2068.0 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

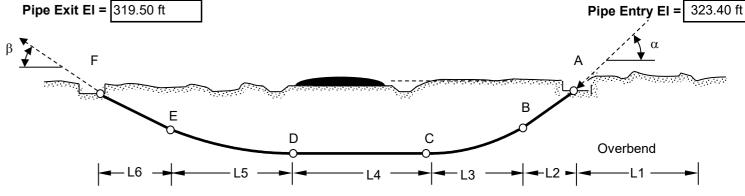
INPUT: Pipe Properties

INPOT: Pipe Properties						
Material	HDPE		IPS			
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F		
Pile/Bundle Diam. 14.25	Pipe	PIPE/BUNDLE				
Material Density, γ	59.28 pcf					
Outside Diameter, D _{OD}	10.75	Pipe or Bund	dle			
Pipe Dry Weight, W _P =	15.70 lb/ft	Pipe or Bund	dle			
Min. Wall Thickness, t_{m}	1.194 in	For design in	nstallatio	on pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches		
Avg. Inside Diameter, D _{IA}	8.22 in	Bundle Mult	iplier F _D	1.0000		
12 Hr Pullback Modulus, E _T =	65,000 psi	@T =	73 deg F			
Poisson Ratio, μ =	0.45					
Ovality Factor, f _o =	0.84	2%				
Buckling Safety, N =	2.5					
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2				
Pressure Rating, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D$	R-1) [F _T =1]		
INPUT: Assumed Fluid Densities/Elevations						

INPUT: Assumed Fluid Densities/Elevations					
Ballast Density	62.4	pcf			
Drill Fluid Density	78	pcf Estimated for pull			
Drill fluid elevation, H_F =	319.50 ft				
Ballast Water El., H _W =	319.50 ft				
Lowest Invert El., El _m =	269.40 ft				

Calculated Pipe and Fluid Properties

Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V_{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ΔT =	0.33 lb/ft	Comparison Only @ 8psi


Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force					ASS	ESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	3,304 lb	150 psi	OK	3,304 lb	150 psi	OK	OK	OK
В	4,924 lb	137 psi	OK	5,230 lb	146 psi	OK	OK	OK
С	6,435 lb	204 psi	OK	5,940 lb	190 psi	OK	OK	OK
D	11,472 lb	320 psi	OK	10,978 lb	306 psi	OK	OK	OK
Е	15,513 lb	462 psi	OK	13,200 lb	397 psi	OK	OK	OK
F	18,084 lb	504 psi	OK	14,358 lb	401 psi	OK	OK	OK
ASSESS P	ull Restricted Ru	ickling Canaci	ity $P_{PA} > AP$ invert	$P_{DA} = P_A F_D =$	93 45 nsi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast

Calculated Material Design Limits For Designed Drill Path

material besign Elimits For besigned brill Fath		
Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, $P_A =$	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.873570993	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.219346767	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	504 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	5.43	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _{II} invert =	27.14	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 78 Circuit #2 CSX RR & Route 146 Crossing **Brierley Associates**

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

BRIERLEY Champlain Hudson Power Express

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 78 Circuit #2

CSX RR & Route 146 Crossing

INPUTS

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources: ASTM D3350	and Plastic Pip	e institute Pu	blications and as referenc <u>e</u>	<u>'a </u>	
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig At high point	
Quantity of Pipes in Hole, Q =	1		_		
Pipe Material	PE4710	INPUT RESI	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710		
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test o	f 10,000 hours	
Standard Dimension	10				
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iro	n Pipe Size"	
DR = OD/Minimum Wall	9				
Outside Diameter, D_o =	10.750 in	Standard Ma	nufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets		
Minimum Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets		
Wall Section Area, A _W =	35.84514492	$A_W = \pi^*((D_o/2))$	$((D_0-2t)/2)^2$		
Unit OD Surface Area, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12 \times \pi^* D_{OD}$			
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.368 cf/LF				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837			
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Ch	napter 5	
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF		
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating on	ly	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics	WL122 for PE4710	
Weight Dry, W =	15.68	Lb/LF	•		
Tensile Yield, Ty psi =	1,120 psi	@73°F	Minimum from ASTM D33	50 determined by ASTM D638	
Load Duration	Short Term	Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	73 deg F	Assumed		
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design	gn ovality	
Factor of Safety, FS =	2.5	2.5	Industry Practice		
Modulus for given load duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch.	3 and WL Plastics WL118-0314	
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load do	uration is less than 12 hours	
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Se	elected Design Ovality	
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL11	18	
Project Fluids			-		

Heavy

Project Fluids

	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ _{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-33.48 lb/ft		
Buoya	-34.74 lb/ft		
	38.67 lb/ft		
Buoyar	-10.49 lb/ft		
Buoya	-11.75 lb/ft		

Expected

Pipe Internal

Dry Weight Pipe on ground, $W_P = 15.68 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 22.99 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 49.16 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 50.42 \text{ lb/ft}$ $W_P - W_{D1}$ $W_P - W_{D2}$ $W_P + W_B$ BG- W_{D2}

Pg 2 of 3

HDPE PROPERTIES

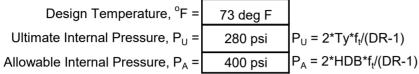
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 78 Circuit #2

CSX RR & Route 146 Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long renn Design for operatin		
Design Temperature, ⁰F =	73 deg F		
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$	
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR	
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR	

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork **OK**

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$ **Short Term** Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 54.00 ft Ballast depth to invert, H_B 50.10 ft Drill Fluid depth to invert, HDF 50.10 ft

46.1 psi

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PF

Air Ballast, P _A	0.00 psi	Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$	27.38 psi
Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$	21.90 psi	Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$	28.08 psi
		Water, $P_W = \gamma_{INT}*(H_{DF}+D_o/24)/144$	21.90 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A+P_a)-P_W$

•[Short Term	Long Term	
	79.59 psi	18.70 psi	Pull Back Condition - Option 1
2	78.89 psi	18.00 psi	Pull Back Condition - Option 2
I	101.50 psi	40.61 psi	Pull Back Condition - Option 3
2	100.80 psi	39.90 psi	Pull Back Condition - Option 4
,[106.97 psi	46.08 psi	Long Term Operating Conditions
,	85.07 psi	24.18 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 78 Circuit #2

CSX RR & Route 146 Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.	.7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	16,064 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	40,160 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	1,120 psi			
Safe Allowable Stress, SAS =	448 psi	$SAS = Ty^*f_{temp}^*DF Sugges$	ted SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	16,064 lb	Useing SSAS = 41,235 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	448 psi	Design Dep	oth in DF, H _{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption	as Maximum		
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.87357			_	
$r = \sigma_i/2*(SSAS) =$	0.21935	1	Example from Ta	ble T5, σ_i =	504 psi
P _{CRR} =	233.6 psi				.
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	116.8 psi	Allowable Reduced	Short Term Buck	ling pressur	e during pull
Internal Ballasted and External Fluid 1 = $(I$	P _B +P _{ACRR})-P _{DF1}	89.43 psi Pu	ull Back Condition	- Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	88.73 psi Pu	ull Back Condition	- Option 4	OK as >0

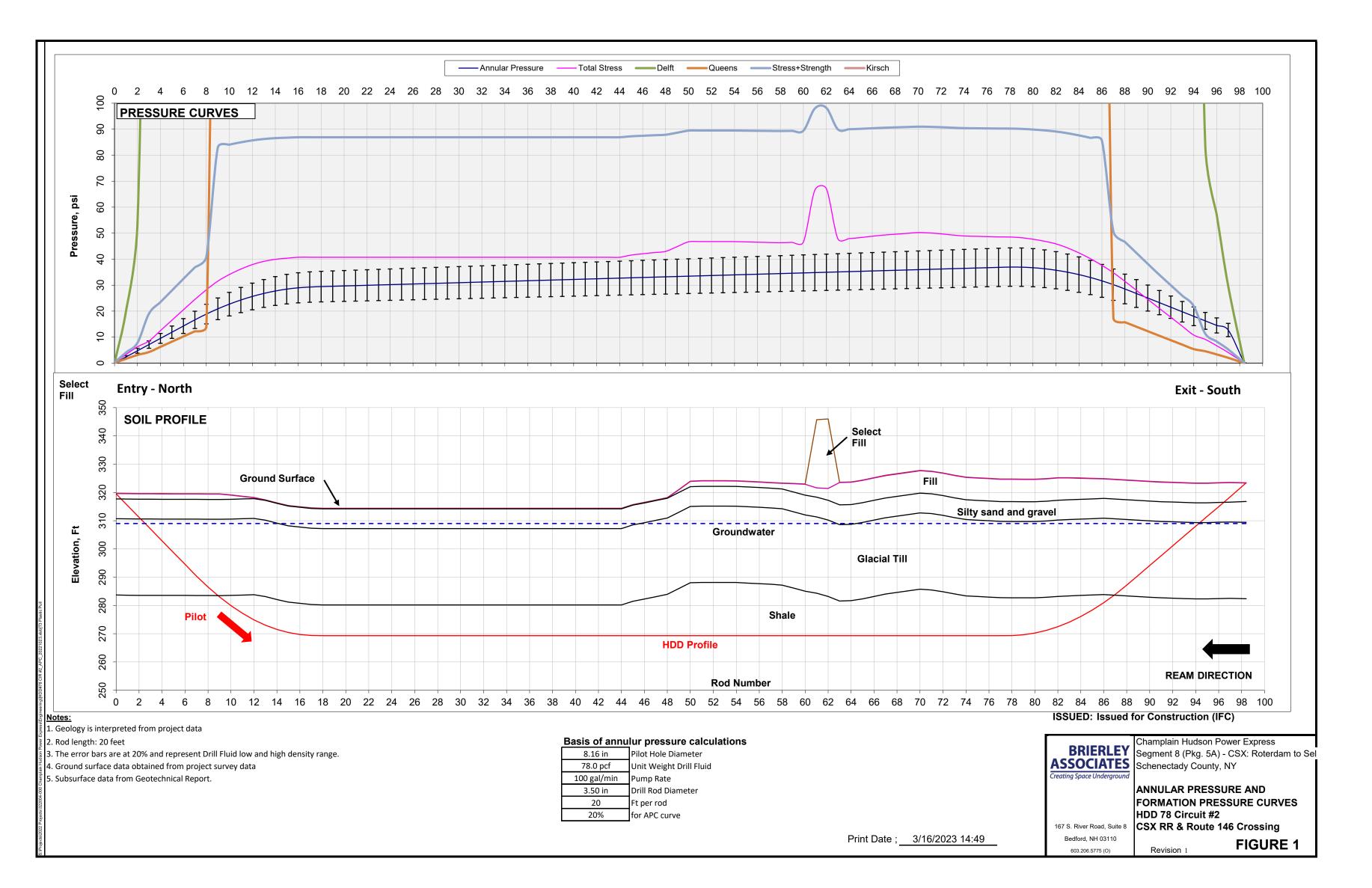
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

Projects/2022 Projects/322004-000 Champlain Hudson Power Express/Engineering/[HDD#78 CIR #2_APC_20221023,xisb]T3 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 79B Circuit #1

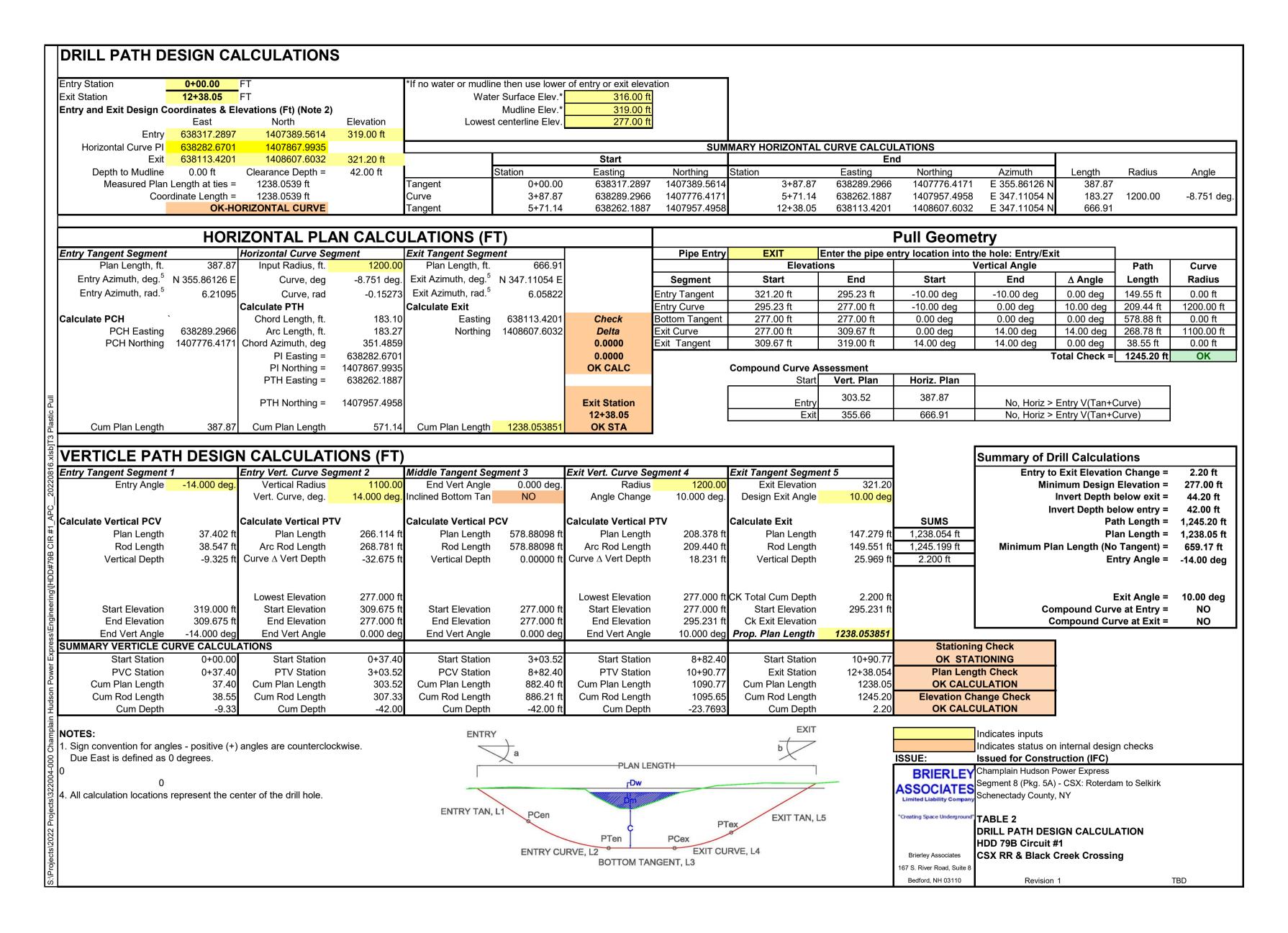
CSX RR & Black Creek Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Date	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

Leng	ths (Path)		Radius, R				
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft		
L2 =	149.6 ft	α =	-10.0 °	-0.1745			
L3 =	209.4 ft				1,200.0 ft		
L4 =	578.9 ft	χ =	0.0 °	0.0000			
L5 =	268.8 ft				1,100.0 ft		
L6 =	38.5 ft	β =	14.0 °	0.2443			
LT =	1345.2 ft						

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{\text{Drill Fluid Shear Stress}}$

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

HDB/2

INPUT: Pipe Properties

	-				
Mate	HDPE			IPS	
Safe Pull Max. Stress, of	м 1,150	psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam. 14.2	BUNI	DLE	PIPE/BUNDLE		
Material Densit	γ 59.28	pcf			
Outside Diameter, I	D 14.2	25	Pipe or Bundle		
Pipe Dry Weight, W	= 17.36	lb/ft	Pipe or Bun	dle	
Min. Wall Thickness	m 1.194	4 in	For design i	nstallatio	on pull stress
$DR = D_O/t_m$	= 9		D _{OD} Stress	10.75	inches
Avg. Inside Diameter,	BUNI	DLE	Bundle Mult	iplier F _D	0.9042
12 Hr Pullback Modulus, E	= 65,000) psi	@T =	73 deg F	
Poisson Ratio,	= 0.4	5			
Ovality Factor,	= 0.8	4	2%		

1,008 psi

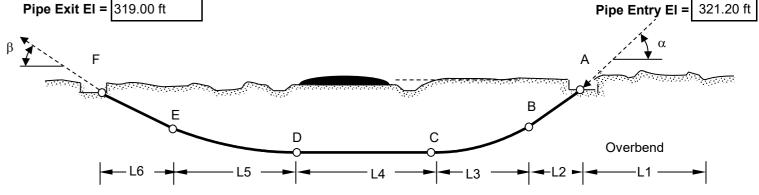
INPUT: Assumed Fluid Densities/Elevations						
Ballast Density	62.4	pcf				
Drill Fluid Density	78	pcf	Estimated for pull			
Drill fluid elevation, H _F =	319.00 ft					
Ballast Water El., H _W =	319.00 ft					

Calculated Pipe and Fluid Properties

Lowest Invert El., $El_m = 277.00 \text{ ft}$

Buckling Safety, N =

Hydrostatic Design Stress, HDS = Pressure Rating, PR_(80F)


-		_
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A_W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.71 lb/ft	Comparison Only @ 8psi
•		

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

EXIT

Calculated Pull Force					ASS	ESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,376 lb	189 psi	OK	2,376 lb	189 psi	OK	OK	OK
В	3,637 lb	92 psi	OK	3,890 lb	98 psi	OK	OK	OK
С	5,325 lb	166 psi	OK	4,688 lb	150 psi	OK	OK	OK
D	7,650 lb	193 psi	OK	7,013 lb	177 psi	OK	OK	OK
E	13,340 lb	372 psi	OK	9,974 lb	287 psi	OK	OK	OK
F	14,210 lb	358 psi	OK	10,369 lb	262 psi	OK	OK	OK
ASSESS	Pull Restricted E	Buckling Capa	city, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	97.44 psi	Balla	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

naterial Design Limits for Designed Dim Fath		
Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR)-(1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, $P_A =$	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F _R =	0.910904773	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.161551073	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	372 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	4.55	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _{II} invert =	22.75	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY ASSOCIATES **Limited Liability Company**

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL HDD 79B Circuit #1

CSX RR & Black Creek Crossing **Brierley Associates**

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 79B Circuit #1

CSX RR & Black Creek Crossing

INPUTS

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTW DSSSO	and mastic mp	e monute i u	bilications and as referenced
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point
Quantity of Pipes in Hole, Q =	1		<u></u>
Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 10,000 hours
Standard Dimension	3		
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iron Pipe Size"
DR = OD/Minimum Wall	9		
Outside Diameter, D_o =	3.500 in	Standard Ma	nufacturer's Data Sheets
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets
Wall Section Area, A_W =	3.801889456	$A_W = \pi^*((D_o/2$	$(D_0-2t)/2$
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*D$	Pop
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^*(D_o/2$	²) ² /144
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144
HDB =	1,600 psi	Based on PP	Pl Publication TR-4/2015 and ASTM 2837
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Chapter 5
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710
Weight Dry, W =	1.66	Lb/LF	
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638
Load Duration		Long Term	
Duration Time	10 hours	50 yrs	
Design Temperature, °F	73 deg F	73 deg F	Assumed
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality
Factor of Safety, FS =	2.5	2.5	Industry Practice
Modulus for given load duration, E =		28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL118
Project Fluids			

Project Fluids

	Pipe Internal	Expected	Heavy
	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γιντ	γ _{EXT1}	γ _{EXT2}
Density, γ =	62.4	78	80
Buoya	-3.55 lb/ft		
Buoya	d Fluid 2, B _{B2} =	-3.69 lb/ft	
	4.10 lb/ft		
Buoyar	-1.11 lb/ft		
Buoya	-1.24 lb/ft		

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_P - W_{D1}$ $W_P - W_{D2}$ $W_P + W_B$

 $BG-W_{D1}$ $BG-W_{D2}$

Pg 2 of 3

HDPE PROPERTIES

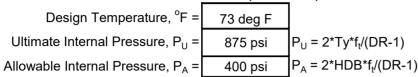
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 79B Circuit #1

CSX RR & Black Creek Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

_		_
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-f_t)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2^*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$ Short Term Long Term

Design Temperature, F = 73 deg F $P_{CR} = 267.4 \text{ psi}$ $P_a = P_{CR}/FS$ 107.0 psi

46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 44.20 ft Ballast depth to invert, H_B 42.00 ft Drill Fluid depth to invert, H_{DF} 42.00 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

Air Ballast, P _A	0.00 psi	Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$	22.83 psi
Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$	18.26 psi	Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$	23.41 psi
		Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$	18.26 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	84.15 psi	23.25 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	83.56 psi	22.67 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B + P_a) - P_{DF1}$	102.41 psi	41.52 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B + P_a) - P_{DF2}$	101.82 psi	40.93 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	88.71 psi	27.82 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

S.\Projecte\'9029 Drojecte\'322004.000 Champlain Hirdson Dower Evorace\Engineering(HDD#79R CIR #1_ABC = 20220846 vis

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 79B Circuit #1

CSX RR & Black Creek Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

		_	<u>_</u>	
Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.	7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	5,321 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	13,303 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty^*f_{temp}^*DF Sugges$	ted SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	1,400 psi	Design D	epth in DF, H _{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpti	ion as Maximum		•
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91090				
$r = \sigma_i/2*(SSAS) =$	0.16155		Example from Ta	able T5, σ_i =	372 psi
P _{CRR} =	243.6 psi				.
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	121.8 psi	Allowable Reduc	ed Short Term Buck	kling pressur	e during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	98.98 psi	Pull Back Conditior	n - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (I	98.39 psi	Pull Back Condition	n - Option 4	OK as >0	

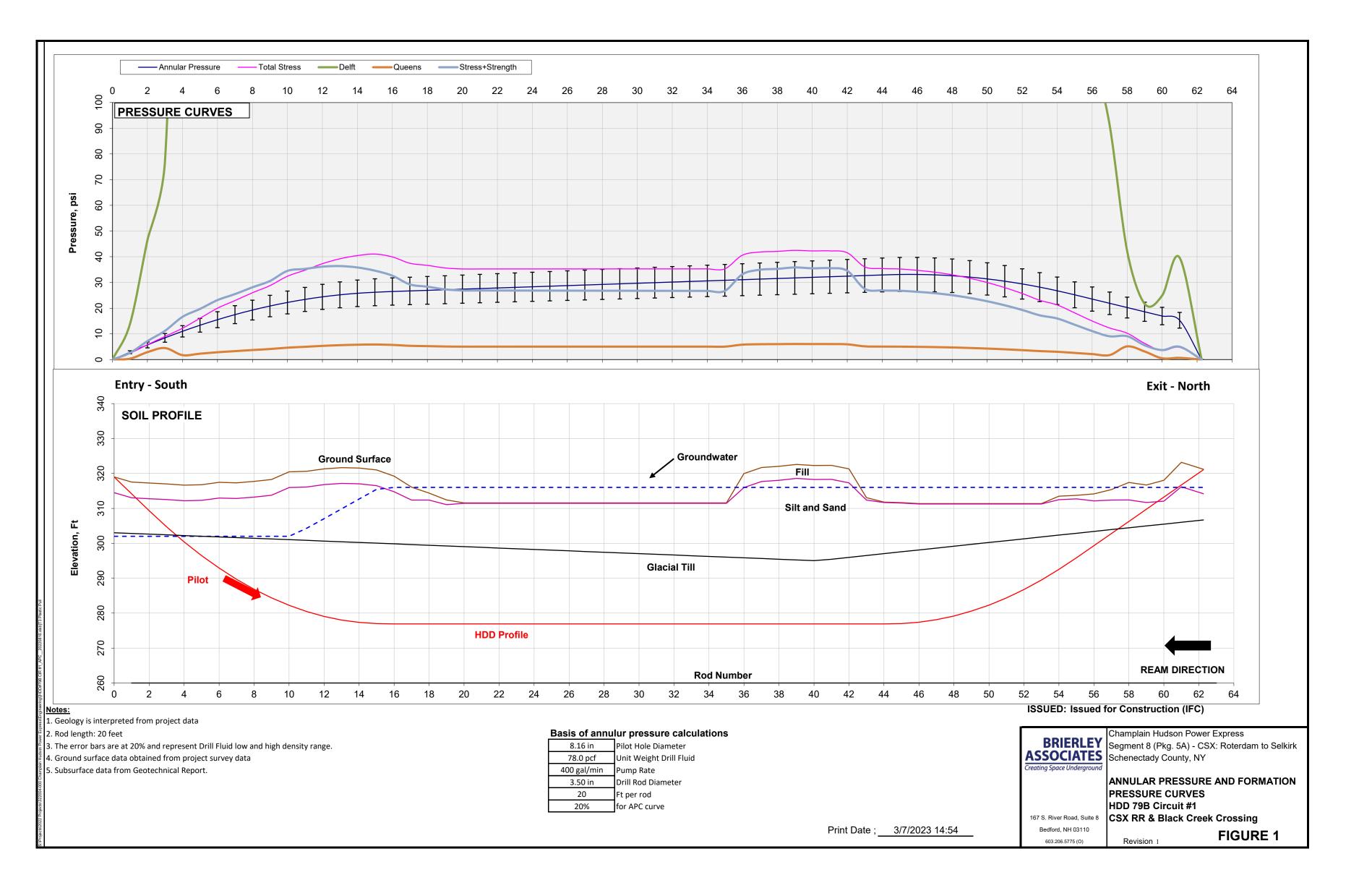
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

i .	f _T	Time factor for pull	
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

S:\Projects\z0222 Projects\z22004-000 Champian Hudson Power Express\Engineening\H0U#/9B CiR #1 _APC__20z20816 xisb]13 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 79B Circuit #2

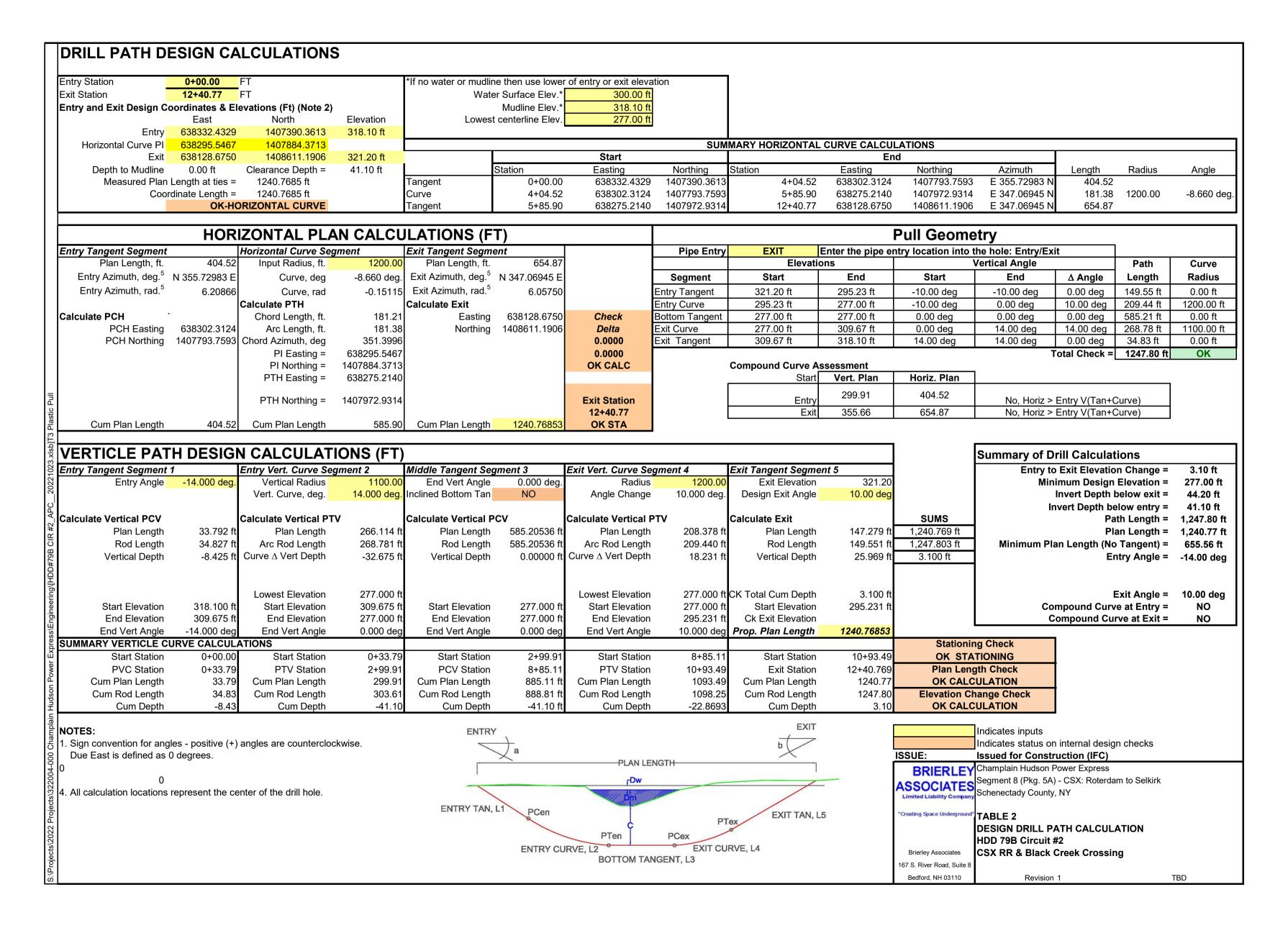
CSX RR & Black Creek Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

Leng	ths (Path)	Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	149.6 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	585.2 ft	χ =	0.0 °	0.0000	
L5 =	268.8 ft				1,100.0 ft
L6 =	34.8 ft	β =	14.0 °	0.2443	
LT =	1347.8 ft				

INPUT: Assumed Friction Factors

μ _G =	00	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

2%

 $PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$

Drill Fluid (unit drag)

Comparison Only @ 8psi

HDB/2

INPUT: Pipe Properties

	Material	HDPE		IPS	
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam.	14.25	PIPE	PIPE/BUNDLE		
Materia	al Density, γ	59.28 pcf			
Outside Dia	ameter, D _{OD}	10.75	Pipe or Bundle		
Pipe Dry W	′eight, W _P =	15.70 lb/ft	Pipe or Bundle		
Min. Wall Th	nickness, t _m	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$		9	D _{OD} Stress	10.75	inches
Avg. Inside Diameter, D_{IA}		8.22 in	Bundle Mult	iplier F _D	1.0000
12 Hr Pullback Modulus, $E_T =$		65,000 psi	@T =	73 deg F	
Poisso	n Ratio, μ =	0.45			

0.84

2.5 1,008 psi

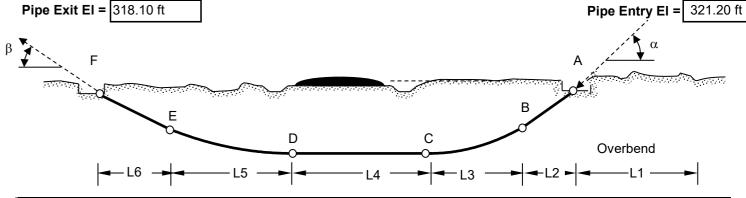
INPUT: Assumed Fluid Densities/Elevations					
Ballast Density	62.4	pcf			
Drill Fluid Density	78	pcf Estimated for pull			
Drill fluid elevation, H _F =	318.10 ft				
Ballast Water El., H _W =	318.10 ft				
Lowest Invert El., El _m =	277.00 ft				

Calculated Pipe and Fluid Properties

Ovality Factor, f_o =

Buckling Safety, N =

Hydrostatic Design Stress, HDS = Pressure Rating, PR_(80F)=


ateu ripe anu i lulu ri opeities	
Pressure Pipe:	YES
OD Perimeter Length, P	33.77 in
Wall Section Area, A_W	37.70738915
Volume Outside, V_{DO}	0.630 cf/LF
Volume Inside, V _{DI}	0.368 cf/LF
$q_d =$	2.03 lb/ft
ASTM EQ 18: Hydrokinetic, ∆T =	0.52 lb/ft

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			38.69 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

EXIT

	Calculated Pull Force				ASS	ESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,153 lb	118 psi	OK	2,153 lb	118 psi	OK	OK	OK
В	3,333 lb	93 psi	OK	3,553 lb	99 psi	OK	OK	OK
С	4,773 lb	157 psi	OK	4,188 lb	141 psi	OK	OK	OK
D	6,912 lb	193 psi	OK	6,328 lb	177 psi	OK	OK	OK
E	11,941 lb	360 psi	OK	8,889 lb	274 psi	OK	OK	OK
F	12,638 lb	353 psi	OK	9,198 lb	257 psi	OK	OK	OK
ASSESS P	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 97.79$ psi Ballasted						OK	

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

g.:g		
Safe Pull Strength, SPS =	,	SSPS = $\sigma_{PM}\pi D_{OD}^2((1/DR)-(1/DR^2))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.914149914	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.156347913	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	360 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	4.45	psi (-) indicates pipe is pressurized
Inballasted Max. Differential Pressure on Pipe. Δ P₁₁ invert =	22.26	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 79B Circuit #2 CSX RR & Black Creek Crossing

Brierley Associates 167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 79B Circuit #2

CSX RR & Black Creek Crossing

INPUTS

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTM D3350	and Plastic Pip	pe institute Publications and as referen <u>ced</u>		
Design Working Pressure, Pwork	250 psi	Test Pressure, P _{TEST} 0 psig At high point		
Quantity of Pipes in Hole, Q =	1			
Pipe Material	PE4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710		
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours		
Standard Dimension	3			
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"		
DR = OD/Minimum Wall	9			
Outside Diameter, D_o =	3.500 in	Standard Manufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	2.680 in	Standard Manufacturer's Data Sheets		
Minimum Wall, t _{min} =	0.389 in	Standard Manufacturer's Data Sheets		
Wall Section Area, A _W =	3.801889456	$A_{W} = \pi^{*}((D_{o}/2)^{2} - ((D_{o}-2t)/2)^{2})$		
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12^*\pi^*D_{OD}$		
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$		
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$		
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837		
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5		
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF		
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only		
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710		
Weight Dry, W=	1.66	Lb/LF		
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638		
Load Duration	Short Term	Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F Assumed		
Design Ovality, %	2%	See Sheets 4 of 5 for design ovality		
Factor of Safety, FS =		2.5 Industry Practice		
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314		
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours		
Ovality factor f _o =	0.84	0.84 Reference 1: Based on Selected Design Ovality		
Temperature factor, f _t =	1.00	1.00 Source: WL Plastics WL118		

Project Fluids

	Pipe internal	Expected	неаvy	
	Ballast	External Fluid	External Fluid	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	
Density, γ =	62.4	78	80	
Buoya	-3.55 lb/ft			
Buoya	-3.69 lb/ft			
Ballasted on ground, $B_G = 4.10 \text{ lb/ft}$				
Buoyant Ballasted in Fluid 1, BB _{B1} = -1.11 lb/ft				
Buoyar	-1.24 lb/ft			

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_P - W_{D1}$ $W_P - W_{D2}$ $W_P + W_B$

Page 4 of 7

 $\begin{array}{c} BG\text{-}W_{D1} \\ BG\text{-}W_{D2} \end{array}$

Pg 2 of 3

HDPE PROPERTIES

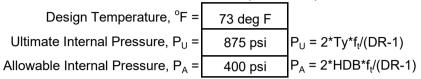
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 79B Circuit #2

CSX RR & Black Creek Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

nditions

_	Long Term	Design for operating con
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
•		

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Drill Fluid depth to invert, H_{DF} Max. Depth to Invert Ballast depth to invert, H_B 41.10 ft 41.10 ft 44.20 ft

Pipe Invert Internal Pressure, P.

Pipe Invert External Pressure, PE

Air Ballast, P _A	0.00 psi	Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_{o}/24)/144$	22.34 psi
Full Ballast, P _B =γ _{INT} *(H _B +D _o /24)/144	17.87 psi	Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$	22.91 psi
		Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$	17.87 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

	Differential Pressures
Inte	ernal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Inte	ernal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal B	allasted and External Fluid 1 = $(P_B + P_a) - P_{DF1}$
Internal B	allasted and External Fluid 2 = $(P_B + P_a) - P_{DF2}$
Internal	Ballasted and External Water = $(P_B+P_a)-P_W$
lı	nternal Air and External Water = (P _A +P _a)-P _W

Short Term	Long Term	
84.63 psi	23.74 psi	Pull Back Condition - Option 1
84.06 psi	23.17 psi	Pull Back Condition - Option 2
102.51 psi	41.61 psi	Pull Back Condition - Option 3
101.93 psi	41.04 psi	Pull Back Condition - Option 4
106.97 psi	46.08 psi	Long Term Operating Conditions
89.10 psi	28.21 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 79B Circuit #2

CSX RR & Black Creek Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

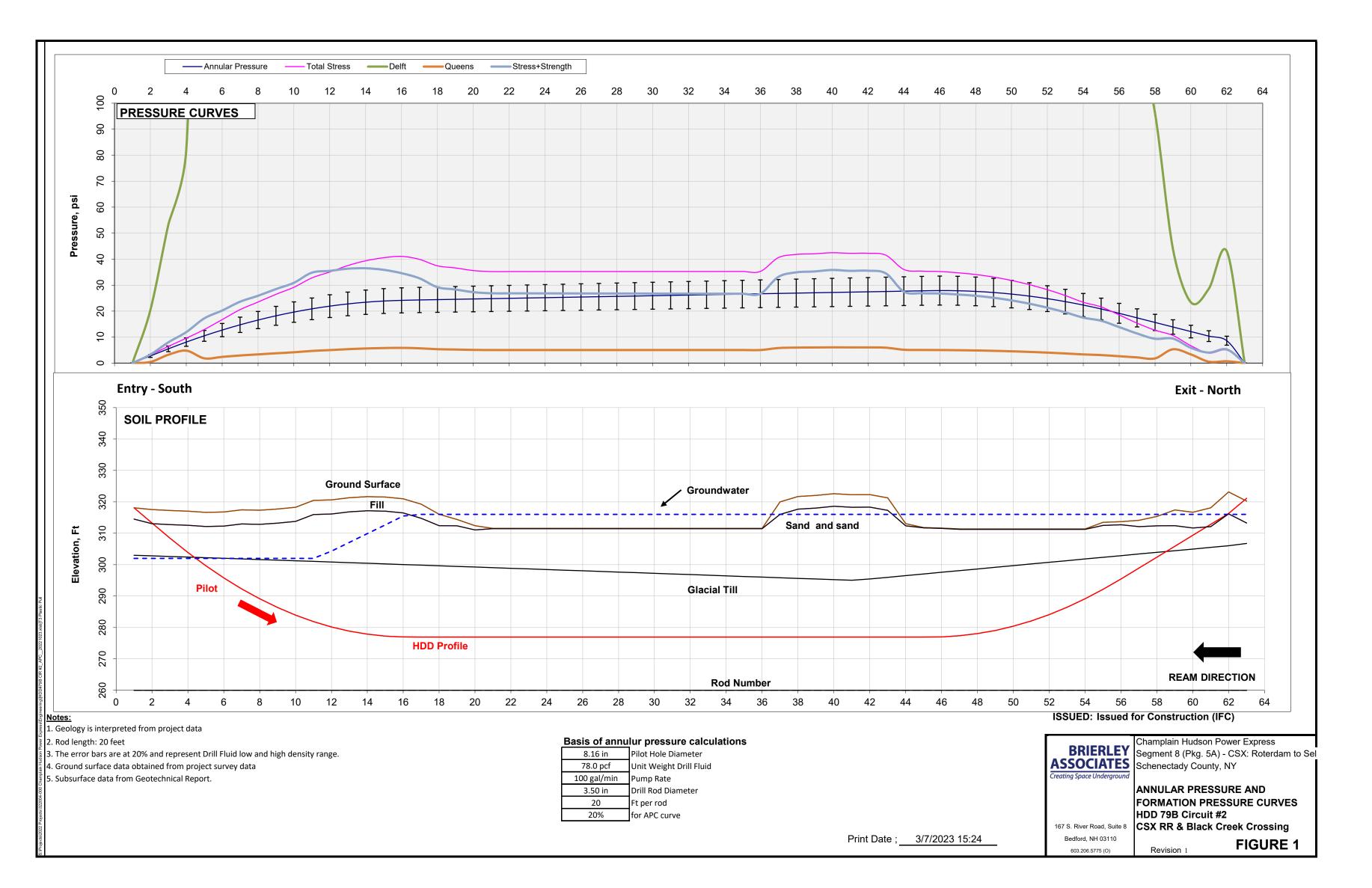
Pcr = 267.4 psi
Design Depth in DF, H _{MDF} = 0.0 ft
ign Assumption as Maximum
Example from Table T5, $\sigma_i = \boxed{360 \text{ psi}}$
wable Reduced Short Term Buckling pressure during pull
99.90 psi Pull Back Condition - Option 3 OK as >0
99.32 psi Pull Back Condition - Option 4 OK as >0
ign Assumption as Maximum Example from Table T5, $\sigma_i = 360 \text{ p}$ wable Reduced Short Term Buckling pressure during pressure Pull Back Condition - Option 3 OK as

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition


Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

ngınee	f_T	f _⊤ Time factor for pull			
xpress∖⊏ngınee	1.00	Up to 1 hour pull	1		
wer Ex	0.95	Up tp 12 hours pull	12		
n Po	0.91	Up to 24 hours	24		

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 80 Circuit #1

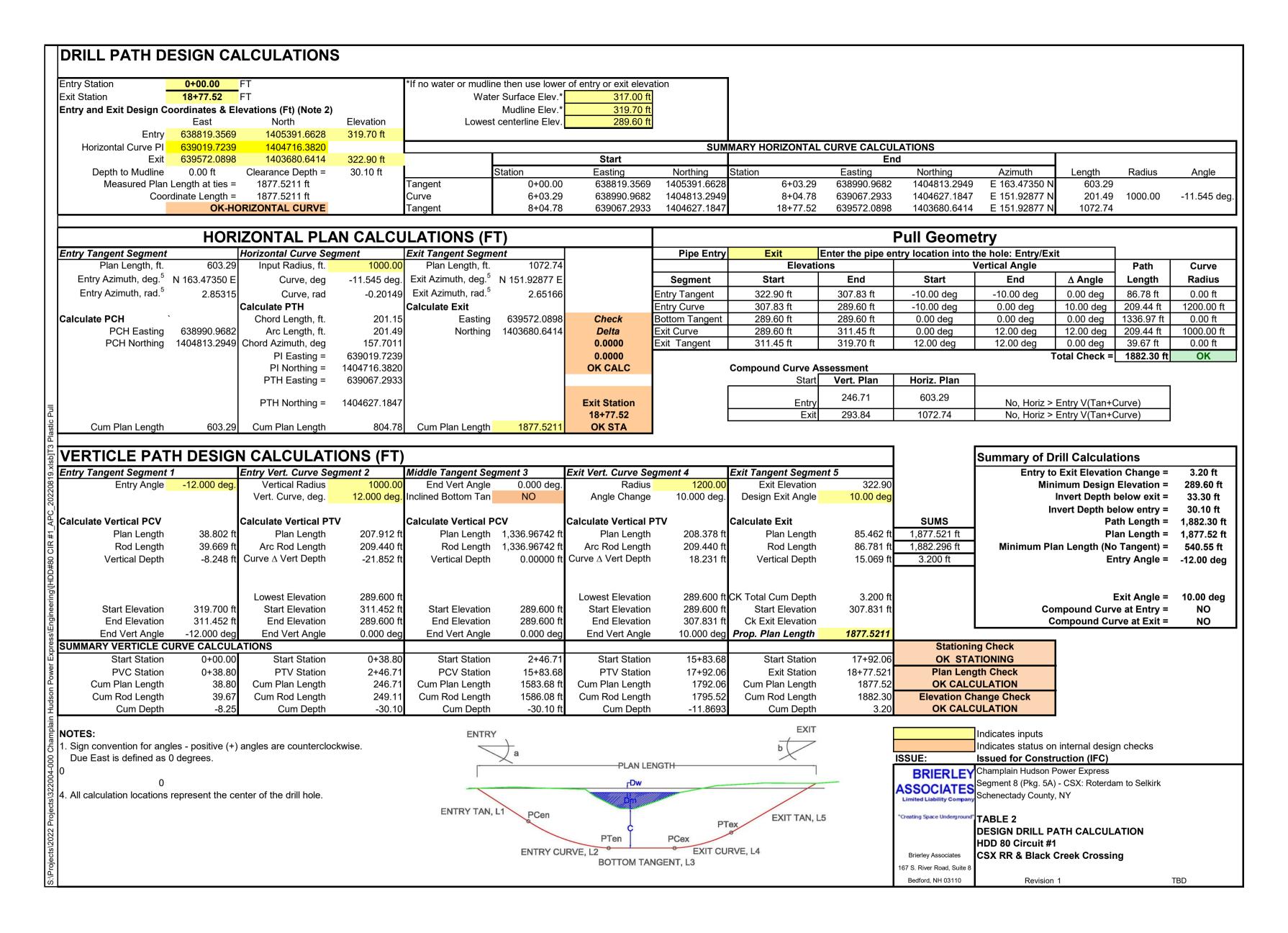
CSX RR & Black Creek Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 7-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/7/2023	1	Issued for Construction	KRF

Leng	ths (Path)		Radius, R					
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft			
L2 =	86.8 ft	α =	-10.0 °	-0.1745				
L3 =	209.4 ft				1,200.0 ft			
L4 =	1337.0 ft	$\chi =$	0.0 °	0.0000				
L5 =	209.4 ft				1,000.0 ft			
L6 =	39.7 ft	β =	12.0 °	0.2094				
LT =	1982.3 ft							

INPUT: Assumed Friction Factors

μ_G =	0	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

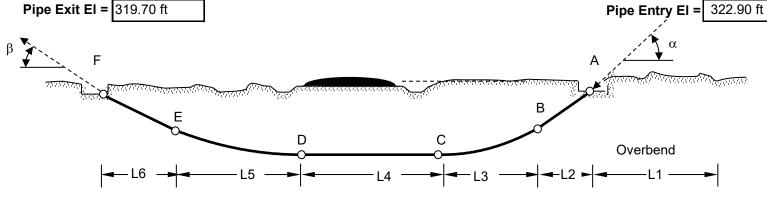
 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

• .		P 0 : 4: 0 0				
	Material	HDPE		IPS		
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F	
Pile/Bundle Diam.	14.25	BUNDLE	PIPE/BUND	LE		
Materi	al Density, γ	59.28 pcf				
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bun	dle		
Pipe Dry W	eight, W _P =	17.36 lb/ft	Pipe or Bun	dle		
Min. Wall T	hickness, t _m	1.194 in	For design i	nstallatio	on pull stress	
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Diameter, D _{IA}		BUNDLE	Bundle Mult	iplier F _D	0.9042	
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F		
Poisso	n Ratio, μ =	0.45				
Ovality Factor, f _o =		0.84	2%			
Buckling	Safety, N =	2.5				
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2			
Pressure Rati	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D$	R-1) [F _T =1]	
INPUT: Assumed Fluid Densities/Elevations						

62.4

78


319.70 ft

319.70 ft

289.60 ft

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	3,502 lb	166 psi	OK	3,502 lb	166 psi	OK	OK	OK
В	4,130 lb	104 psi	OK	4,256 lb	107 psi	OK	OK	OK
С	5,839 lb	179 psi	OK	5,070 lb	160 psi	OK	OK	OK
D	12,265 lb	309 psi	OK	11,496 lb	290 psi	OK	OK	OK
E	16,809 lb	463 psi	OK	14,016 lb	392 psi	OK	OK	OK
F	17,657 lb	445 psi	OK	14,408 lb	363 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = \frac{94.74 \text{ psi}}{94.74 \text{ psi}}$ Ballas						sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

Calculated Material Design Limits For Designed Drill Path

45,606 lb $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ 106.97 psi $0.88\overline{5599772}$ F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ Maximum 12 hour Pull Stress Reduction, F_R = 0.201125688 r = $\sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 463 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.26 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_U invert = 16.30 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_H = 22

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Ballast Density

Drill Fluid Density

Drill fluid elevation, H_F =

Ballast Water El., H_W =

Lowest Invert El., El_m =

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A_W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ΔT =	0.47 lb/ft	Comparison Only @ 8psi

pcf

pcf

Estimated for pull

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			42.80 Lb/LF
In Hole with Drill Fluid, $w_b/w_{bf} =$		-37.01 Lb/LF	-11.58 Lb/LF

ISSUE: Issued for Construction (IFC)

BRIERLEY
ASSOCIATES
Limited Liability Company
"Creating Space Underground"

Champlain Hudson Power Express

CSX RR & Black Creek Crossing

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 80 Circuit #1

Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

TBD

No Ballast

PPI Ch 12 Eq 16

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 80 Circuit #1

CSX RR & Black Creek Crossing

INPUTS

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTIVIDSSSU	anu Piasiic Pip	bilcations and as referenced	<u> </u>	
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig At high point
Quantity of Pipes in Hole, Q =	1			
Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, PE3	3608, PE4710
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of	10,000 hours
Standard Dimension	3			
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iror	າ Pipe Size"
DR = OD/Minimum Wall	9			
Outside Diameter, D_o =	3.500 in	Standard Ma	nufacturer's Data Sheets	
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets	
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets	
Wall Section Area, A _W =	3.80093926	$A_W = \pi^*((D_o/2$	$((D_0-2t)/2)^2$	
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12 \times \pi^* D_{OD}$		
Unit Outside Volume, V_{Do} =	0.067 cf/LF	$V_{Do} = \pi^*(D_o/2$	² /144	
Unit Inside Volume, V _{Di} =	0.039 cf/LF			
HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 and	d ASTM 2837
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Cha	apter 5
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF	
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only	y
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics \	WL122 for PE4710
Weight Dry, W =	1.66	Lb/LF	_	
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D335	60 determined by ASTM D638
Load Duration		Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F	Assumed	
Design Ovality, %	2%	2% See Sheets 4 of 5 for design ovality		
Factor of Safety, FS =	2.5	2.5	Industry Practice	
Modulus for given load duration, E =	65,000 psi	28,000 psi		3 and WL Plastics WL118-0314
Poisson Ratio, υ =	0.45	0.45	4	ıration is less than 12 hours
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Sel	ected Design Ovality
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL11	8
Project Fluids			-	

Project Fluids

	Pipe Internal Expected		Heavy
	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	$\gamma_{\sf EXT1}$	γ _{EXT2}
Density, γ =	Density, $\gamma = \frac{62.4}{78}$		
Buoya	-3.55 lb/ft		
Buoya	ant Unballasted	fluid 2, B _{B2} =	-3.69 lb/ft
	4.10 lb/ft		
Buoyar	-1.11 lb/ft		
Buoya	-1.24 lb/ft		

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_P - W_{D1}$ $W_P - W_{D2}$ $W_P + W_B$

Page 4 of 7

 $BG-W_{D1}$ $BG-W_{D2}$

jects\322004-000 Champlain Hudson Power Express\Engineering\[HDD#80 CIR #1_APC_20220819.xlsb]T3 Plastic Pull

Pg 2 of 3

HDPE PROPERTIES

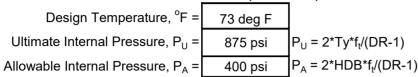
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 80 Circuit #1

CSX RR & Black Creek Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

_		_
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2^*E/(1-\upsilon^2)]^*[(1/(DR-1))^3]$ Short Term Long Term

Design Temperature, F = 73 deg F $P_{CR} = 267.4 \text{ psi}$ $P_a = P_{CR}/FS$ 107.0 psi

46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 33.30 ft Ballast depth to invert, H_B 30.10 ft Drill Fluid depth to invert, H_{DF} 30.10 ft

Pipe Invert Internal Pressure, PI

Pipe Invert External Pressure, PE

Air Ballast, P _A	0.00 psi	Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$	16.38 psi
Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$	13.11 psi	Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$	16.80 psi
		Water, $P_W = \gamma_{INT}*(H_{DF}+D_o/24)/144$	13.11 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short 7
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	90.59
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	90.17
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.70
Internal Ballasted and External Fluid 2 = (P _B +P _a)-P _{DF2}	103.28
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97
Internal Air and External Water = $(P_A+P_a)-P_W$	93.87

			_
s	Short Term	Long Term	
1	90.59 psi	29.70 psi	Pull Back Condition - Option 1
2	90.17 psi	29.28 psi	Pull Back Condition - Option 2
-1	103.70 psi	42.80 psi	Pull Back Condition - Option 3
2	103.28 psi	42.38 psi	Pull Back Condition - Option 4
N	106.97 psi	46.08 psi	Long Term Operating Conditions
N	93.87 psi	32.97 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

S.\Drniarte\2002 Braiarte\2020/Drniarte\2020/OM Braiarte\2005 Braiarte\2

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 80 Circuit #1

CSX RR & Black Creek Crossing

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi		
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft		
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum		
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.88560			
$r = \sigma_i/2*(SSAS) =$	0.20113	Example from Table T5, $\sigma_i = 463 \text{ psi}$		
P _{CRR} =	236.8 psi			
FS =	2.0			
$P_{ACRR} = P_{CRR}/FS = \boxed{118.4 \text{ psi}}$ All		Allowable Reduced Short Term Buckling pressure during pull		
Internal Ballasted and External Fluid 1 = $(P_B + P_{ACRR}) - P_{DF1}$		102.04 psi Pull Back Condition - Option 3 OK as >0		
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	101.62 psi Pull Back Condition - Option 4 OK as >0		

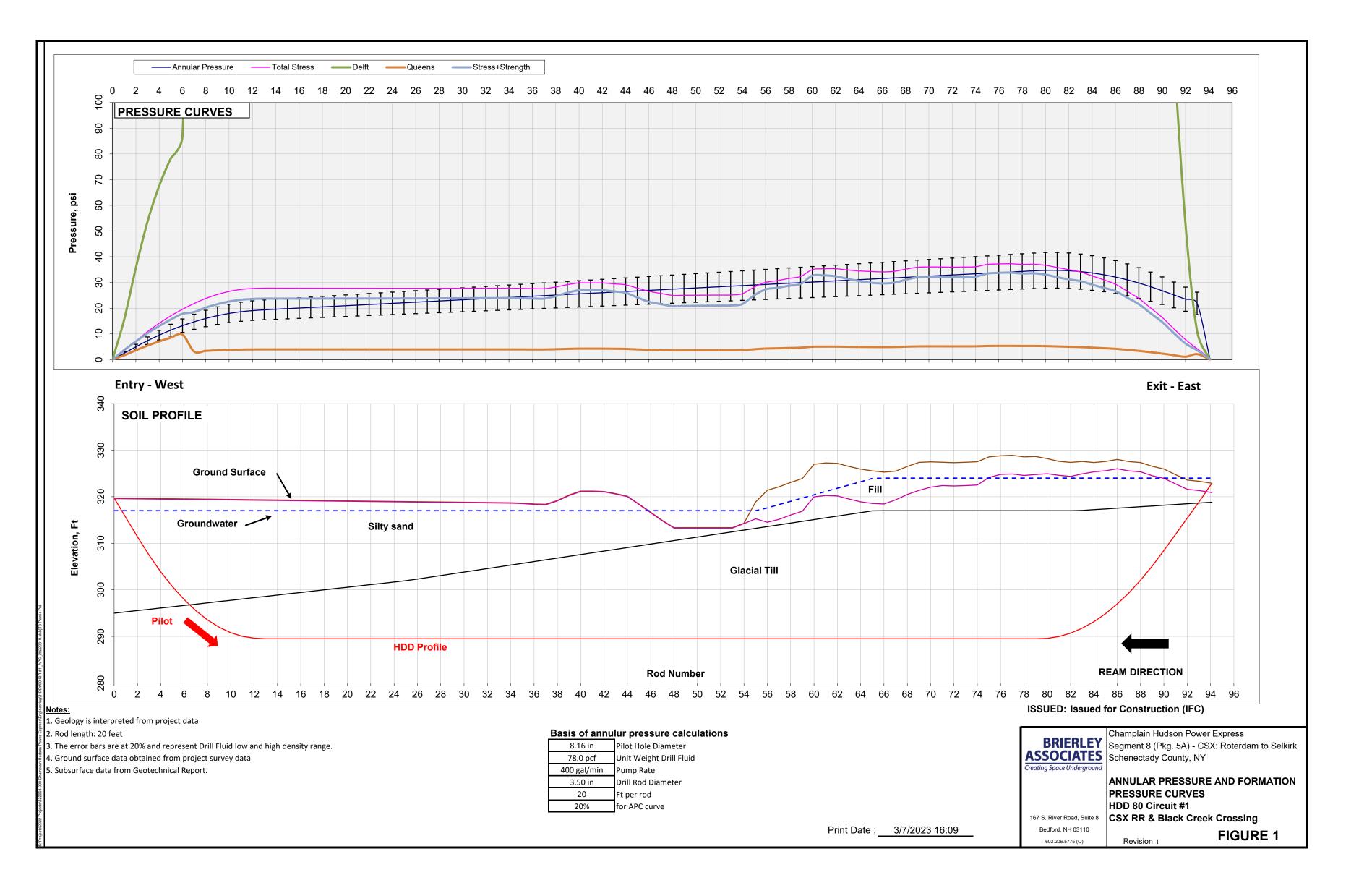
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

b i	t _T	Time factor for pull	
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

S://Projects/2022 Projects/322004-000 Champiain Hudson Power Expressit-ngineering/(HDD#80 CiR #1_APC_20220819.xisb) 13 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 80 Circuit #2

CSX RR & Black Creek Crossing

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry

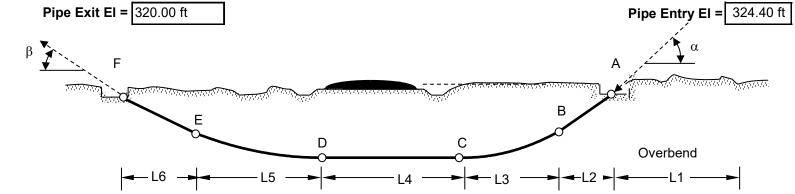
Leng	ths (Path)		Radius, R			
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft	
L2 =	96.0 ft	α =	-10.0 °	-0.1745		
L3 =	209.4 ft				1,200.0 ft	
L4 =	1321.5 ft	χ =	0.0 °	0.0000		
L5 =	209.4 ft				1,000.0 ft	
L6 =	41.6 ft	β =	12.0 °	0.2094		
LT =	1978.0 ft					

INPUT: Assumed Friction Factors

μ_G =		dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress


INPUT: Pipe Properties

into i. Fipe Fig	into i. Fipe Floperties						
Material	HDPE	IPS					
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F					
Pile/Bundle Diam. 14.25	PIPE	PIPE/BUNDLE					
Material Density, γ	59.28 pcf						
Outside Diameter, D_{OD}	10.75	Pipe or Bundle					
Pipe Dry Weight, W _P =	15.70 lb/ft	Pipe or Bundle					
Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress					
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches					
Avg. Inside Diameter, D_{IA}	8.22 in	Bundle Multiplier F _D 1.0000					
12 Hr Pullback Modulus, E_T =	65,000 psi	@T = 73 deg F					
Poisson Ratio, μ =	0.45						
Ovality Factor, f _o =	0.84	2%					
Buckling Safety, N =	2.5						
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2					
Pressure Rating, $PR_{(80F)}$ =	252 psi	$PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$					
INDIT: Assumed Fluid Densities/Floyations							

INPUT: Assumed Fluid Densities/Elevations								
Ballast Density	62.4	pcf						
Drill Fluid Density	78	pcf Estimated for pull						
Drill fluid elevation, $H_F =$	320.00 ft							
Ballast Water El., H _W =	320.00 ft							
Lowest Invert El., El _m =	289.50 ft							

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	May Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
А	3,160 lb	146 psi	OK	3,160 lb	146 psi	OK	OK	OK
В	3,816 lb	106 psi	OK	3,934 lb	110 psi	OK	OK	OK
С	5,277 lb	171 psi	OK	4,586 lb	152 psi	OK	OK	OK
D	11,012 lb	307 psi	OK	10,321 lb	288 psi	OK	OK	OK
E	15,027 lb	448 psi	OK	12,507 lb	378 psi	OK	OK	OK
F	15,815 lb	441 psi	OK	12,862 lb	359 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 95.17$ psi Ballasted OK							OK

ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 95.17$ psi

Ballasted No Ballast PPI Ch 12 Eq 16

OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

Calculated Material Design Limits For Designed Drill Path

41,235 lb $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, $F_R = \begin{bmatrix} 0.889633401 \end{bmatrix} F_R = (5.57-(r+1.09)^2)^{1/2}-1.09$ 0.194932527 $r = \sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 448 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.30 psi (-) indicates pipe is pressurized 16.52 Unballasted Max. Differential Pressure on Pipe, ΔP_U invert = psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

o ana i iaia i iopoitioo	
Pressure Pipe:	YES
OD Perimeter Length, P	33.77 in
Wall Section Area, A_W	37.70738915
Volume Outside, V_{DO}	0.630 cf/LF
Volume Inside, V_{DI}	0.368 cf/LF
$q_d =$	2.03 lb/ft

Drill Fluid (unit drag) 0.35 lb/ft ASTM EQ 18: Hydrokinetic, $\Delta T =$ Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, $w_a/w_{af} =$		38.69 Lb/LF
In Hole with Drill Fluid, $w_b/w_{bf} =$		-33.46 Lb/LF	-10.47 Lb/LF

ISSUE: Issued for Construction (IFC)

BRIERLEY ASSOCIATES Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 80 Circuit #2

CSX RR & Black Creek Crossing

Brierley Associates 167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 80 Circuit #2

CSX RR & Black Creek Crossing

"Creating Space Underground"

167 South River Road, Suite 8 Bedford, NH 03110 Ph 603-206-5775

INPUTS

Pipe Material Properties

	Pipe Material Properties								
	Sources:	ASTM D3350	and Plastic Pip	e Institute Pu	blications and as referenc	ed			
	Design Working Pr	essure, P _{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig	At high poin	t	
	Quantity of Pipe	es in Hole. Q =	1		L				
	, , ,	Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, P	E3608. PE	4710		
	ASTM D3350 Cell	•	445574C		with minimum PENT test				
		rd Dimension	10	· g · · · · · ·					
	Pipe measurer		IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Ir	on Pipe Si	ze"		
	•	Minimum Wall	9	'		•			
	Outside [Diameter, D _o =	10.750 in	Standard Manufacturer's Data Sheets					
		Diameter, D _i =			nufacturer's Data Sheets				
	Minim	um Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets				
		on Area, A _W =	35.85681985	$A_W = \pi^*((D_0/2))$	$((D_o-2t)/2)^2$				
	Unit OD Surface Area	, in²/LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$					
	Unit Outside	Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)$	2) ² /144				
		Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$					
		HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837					
	Design Factor		0.63	Based on PPI PE Handbook 2nd ED Chapter 5					
	Hydrostatic Design	1008 psi	HDS = HDB*		•				
	Environmenta	1	Reference 2: Use for pressure rating only						
		Density =	59.28 pcf	1.410 g/cc	Average from WL Plastic	s WL122 f	or PE4710		
II.	We	eight Dry, W =	15.68	Lb/LF	•				
lastic F	Tensile	Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D33	350 determ	nined by ASTI	M D638	
sbjT3 P		Load Duration		Long Term					
023.xls		Duration Time		50 yrs					
20221		emperature, °F ign Ovality, %	73 deg F 2%	73 deg F 2%	Assumed See Sheets 4 of 5 for des	sian ovality	,		
-APC		of Safety, FS =	2.5	2.5	Industry Practice	sigir ovality			
CIR #	Modulus for given load	-	65,000 psi		Based on PPI Handbook Ch	a. 3 and WI	Plastics WI 11	8-0314	
DD#80	•	son Ratio, ບ =	0.45	0.45	WL118: Use 0.35 if load				
ering\[H	Ov	ality factor f _o =	0.84	0.84	Reference 1: Based on S	elected De	esign Ovality		
Engine	Tempera	ture factor, f _t =	1.00	1.00	Source: WL Plastics WL ²	118			
xpress\	Project Fluids	•							
wer E	•	Pipe Internal	Expected	Heavy			Buoyant ford	es	
Json Po		Ballast	External Fluid	External Fluid	Dry Weight Pipe on g	round, W _P =	15.68 lb/ft		
ain Huc	Fluids	Drill Fluid 1	Drill Fluid 2	Internal Ballast W			$W_B = V_{Di}^* \gamma$		
Champl		γ_{INT}	γ _{EXT1}	127112	Expected Displaced Fluid W			1 0 00	
4-000	Density, γ =	62.4	78	80	Heavy Displaced Fluid W	eight, W _{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}$	
\32200	•	ant Unballasted	٥.	-33.48 lb/ft	W _P -W _{D1}				
rojects	Buoya	ant Unballasted		-34.74 lb/ft	W _P -W _{D2}				
2022 F	_		n ground, B _G =	38.67 lb/ft	W _P +W _B				
S:NPojects 2022 Projects\322004-000 Champiain Hudson Power Express\Engineering\(HDD#80 CIR #2_APC_20221023.xtsb)T3 Plastic Pull		nt Ballasted in F		-10.49 lb/ft	BG-W _{D1}				
S:\F	Buoya	nt Ballasted in	rıula 2, B _{BB2} =	-11.75 lb/ft	BG-W _{D2}				

iulus				_		
	Pipe Internal	Expected	Heavy	В	Buoyant forc	es
	Ballast	External Fluid	External Fluid			
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoyant Unballasted Fluid 1, B _{B1} =			-33.48 lb/ft	W _P -W _{D1}		
Buoya	ant Unballasted	d Fluid 2, B_{B2} =	-34.74 lb/ft	W _P -W _{D2}		
Ballasted on ground, B _G = 3			38.67 lb/ft	W_P+W_B		
Buoyant Ballasted in Fluid 1, BB _{B1} = -10.49 lb/			-10.49 lb/ft	BG-W _{D1}		
Buoyant Ballasted in Fluid 2, B _{BB2} = -11.75 lb/ft			BG-W _{D2}			

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 80 Circuit #2

CSX RR & Black Creek Crossing

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_{U} = 2*Ty*f_{t}/(DR-1)$ Allowable Internal Pressure, $P_A =$ 400 psi $P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

BRIERLEY

"Creating Space Underground" 167 South River Road. Suite 8

Bedford, NH 03110

Ph 603-206-5775

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi $P_{OS} = 2*PR$ Maximum Ocassional Surge, Pos = 504 psi Maximum Reoccuring Surge, PRS = 378 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR \geq to P_{WORK} OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o*[2*E/(1-v^2)]*[(1/(DR-1))^3]$

	•	,
	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_B 30.50 ft Drill Fluid depth to invert, H_{DF} 30.50 ft 34.90 ft

Pipe Invert Internal Pressure, P.

Pipe Invert External Pressure, PE

0.00 psi Air Ballast, PA Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 13.41 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 16.76 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 17.19 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 13.41 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	90.21 psi	29.32 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	89.78 psi	28.89 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.62 psi	42.73 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.19 psi	42.30 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	93.56 psi	32.67 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 80 Circuit #2

CSX RR & Black Creek Crossing

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

167 South River Road Suite 8, Bedford, NH 03110 Ph 603-206-5775

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR}^* f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi	
SAS =	1,400 psi	Design Depth in DF, $H_{MDF} = 0.0 \text{ ft}$	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.88963		
$r = \sigma_i/2*(SSAS) =$	0.19493	Example from Table T5, $\sigma_i = 448 \text{ psi}$	
P _{CRR} =	237.9 psi		
FS =	2.0		
$P_{ACRR} = P_{CRR}/FS =$	119.0 psi	Allowable Reduced Short Term Buckling pressure during pul	I
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	102.20 psi Pull Back Condition - Option 3 OK as >0	
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	101.77 psi Pull Back Condition - Option 4 OK as >0	

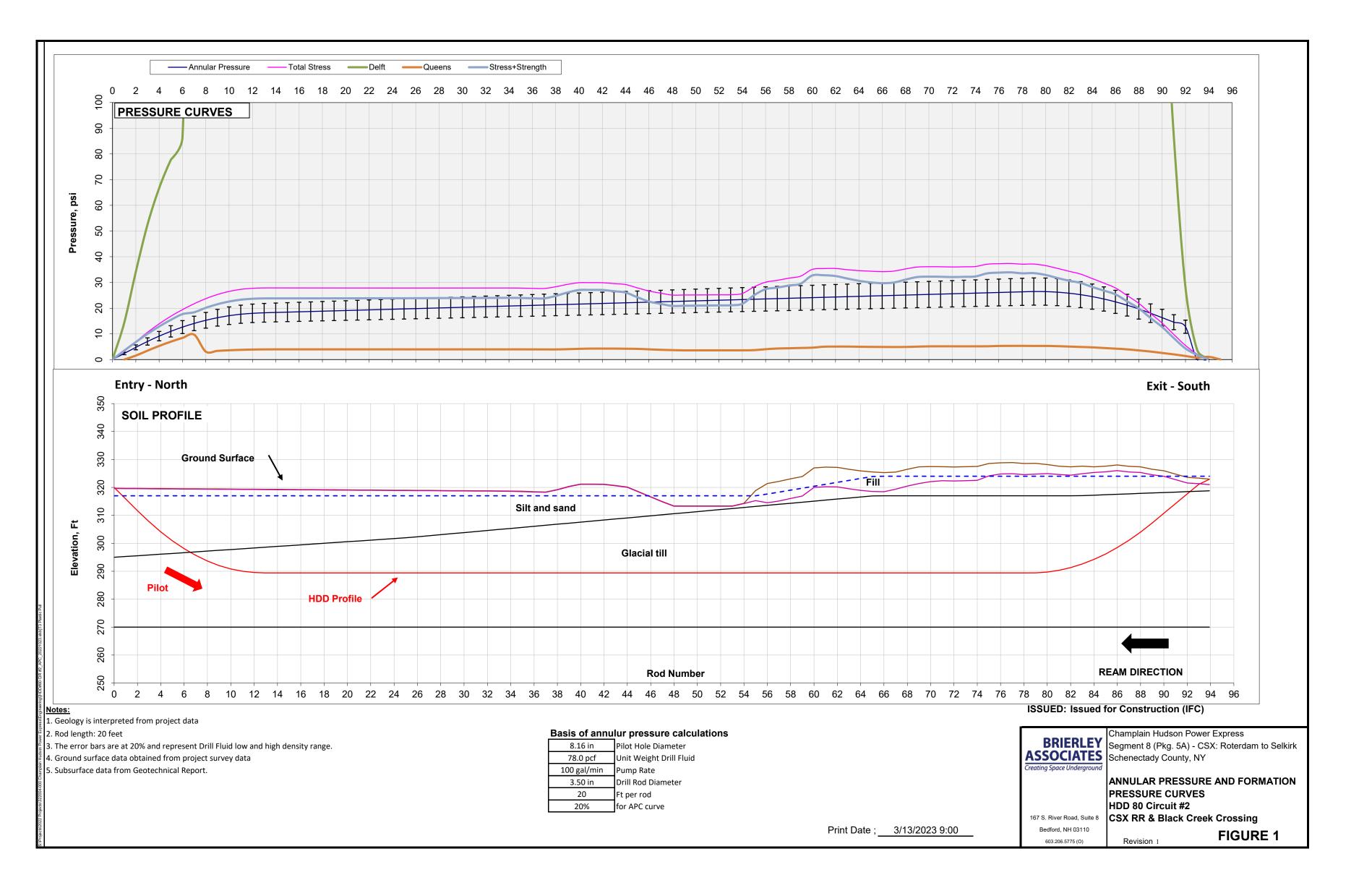
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f_T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Projects\2022 Projects\322004-000 Champlain Hudson Power Express

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 81 Circuit #1

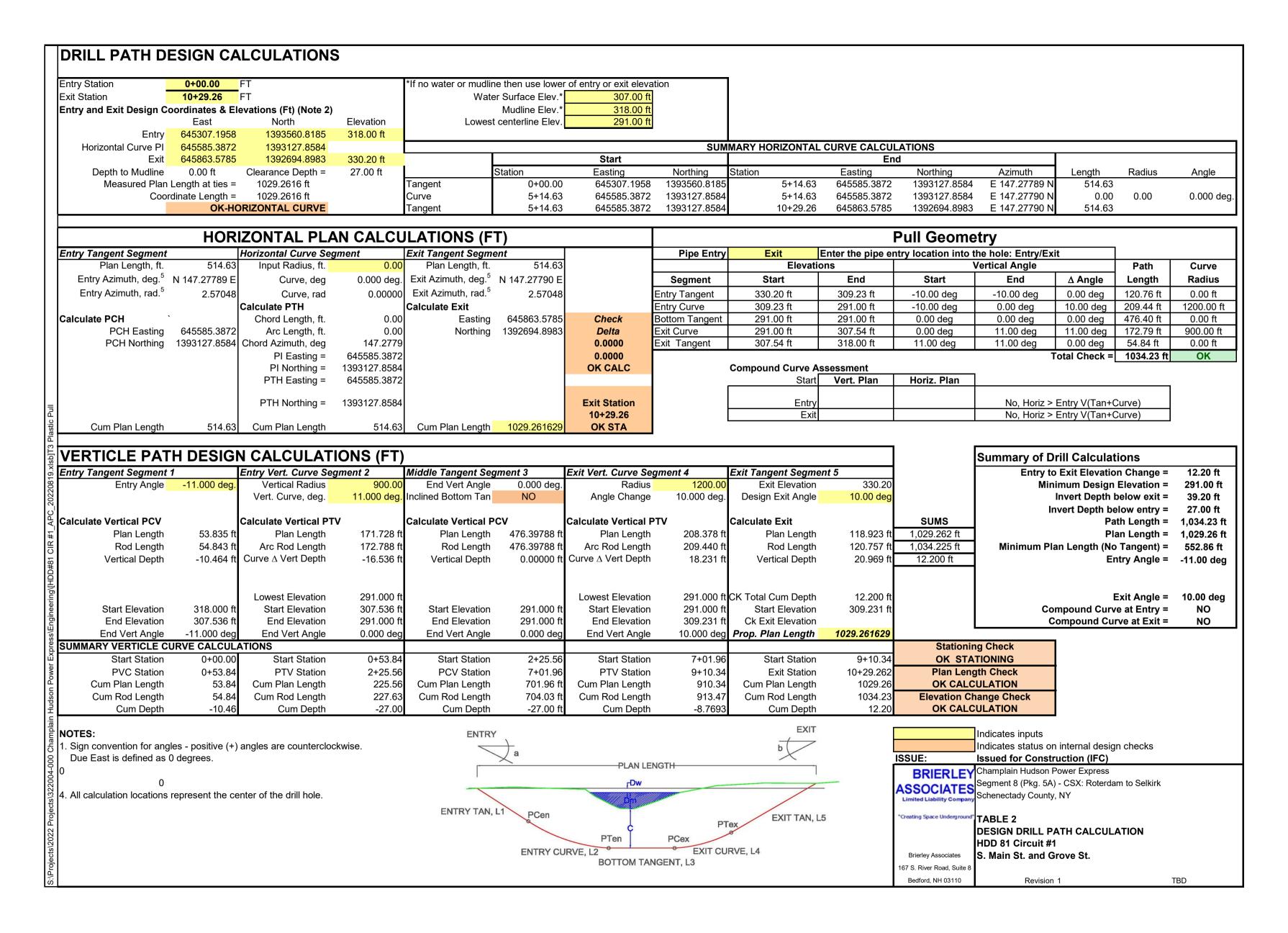
S. Main St. and Grove St.

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	400.0 ft
L2 =	120.8 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	476.4 ft	χ =	0.0 °	0.0000	
L5 =	172.8 ft				900.0 ft
L6 =	54.8 ft	β =	11.0 °	0.1920	
LT =	1134.2 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

2%

 $PR = 2HDSF_TA_F/(DR-1)[F_T=1]$

Estimated for pull

HDB/2

pcf

INPUT: Pipe Properties

•	- 1				-	
Mate	rial	HDPE		IPS		
Safe Pull Max. Stress, o	σ_{PM}	1,150 psi	PPI Table 1	12hr @ 1	73Deg F	
Pile/Bundle Diam. 14.2	5	BUNDLE	PIPE/BUND)LE		
Material Densit	y, γ	59.28 pcf				
Outside Diameter, D _{OD}		14.25	Pipe or Bundle			
Pipe Dry Weight, W _P =		17.36 lb/ft	Pipe or Bundle			
Min. Wall Thickness, t_m		1.194 in	For design installation pull stress			
$DR = D_O/t_m$	_{in} =	9	D _{OD} Stress	10.75	inches	
Avg. Inside Diameter,	D_{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042	
12 Hr Pullback Modulus, F	:- =[65 000 psi	⊘ Τ=	73 dea F		

INPUT: Assumed Fluid Densities/Elevations

0.45

0.84

2.5

1,008 psi

252 psi

Ballast Density 62.4 pcf Drill Fluid Density 78 Drill fluid elevation, H_F = 318.00 ft Ballast Water El., H_w = 318.00 ft

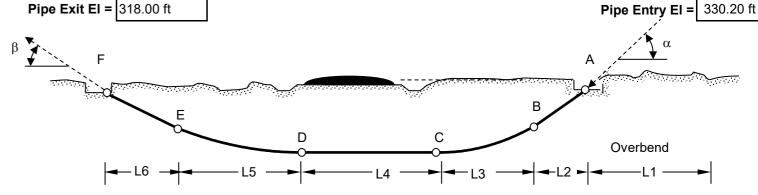
Poisson Ratio, μ = Ovality Factor, f_o =

Buckling Safety, N =

Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F)=

Lowest Invert El., El_m = 291.00 ft


Exple	Calculated Pipe and Fluid Properties		
J MCI	Pressure Pipe:	YES	
100	OD Perimeter Length, P	44.77 in	
SDDL	Wall Section Area, A_W	41.68747289	
plall	Volume Outside, V _{DO}	0.697 cf/LF	
Cla	Volume Inside, V_{DI}	0.408 cf/LF	
-000	$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
22002	ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.85 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

Pipe		Air Filled	Ballasted
On Ground, $w_a/w_{af} =$			42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

Exit (schematic, to show definition of variables only)

Calculated Pull Force					ASS	ASSESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
А	2,004 lb	147 psi	OK	2,004 lb	147 psi	OK	OK	OK
В	2,852 lb	72 psi	OK	2,945 lb	74 psi	OK	OK	OK
С	4,505 lb	146 psi	OK	3,701 lb	126 psi	OK	OK	OK
D	6,432 lb	162 psi	OK	5,629 lb	142 psi	OK	OK	OK
Е	9,883 lb	292 psi	OK	7,451 lb	231 psi	OK	OK	OK
F	11,022 lb	278 psi	OK	7,981 lb	201 psi	OK	OK	OK
ASSESS F	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 99.71$ psi Ballaste						sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ Safe Pull Strength, SPS = 45,606 lb Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.932087208 $F_R = (5.57 - (r+1.09)^2)^{1/2} - 1.09$ 0.127030536 r = $\sigma_T/2$ SPS Maximum applied pull Stress, σ_T = From Pull Force Calculations 292 psi Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 2.93 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 14.63 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY ASSOCIATES **Limited Liability Company**

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 81 Circuit #1

Brierley Associates 167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

S. Main St. and Grove St.

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 81 Circuit #1

S. Main St. and Grove St.

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources: ASTM D3350	and Plastic Pip	e Institute Pui	blications and as referenc <u>e</u>	<u>ed</u>	
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig At high point	
Quantity of Pipes in Hole, Q =	1		_		
Pipe Material	PE4710	NPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test o	f 10,000 hours	
Standard Dimension	3				
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iro	on Pipe Size"	
DR = OD/Minimum Wall	9				
Outside Diameter, D _o =	3.500 in	Standard Ma	nufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets		
Minimum Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets		
Wall Section Area, A _W =	3.80093926	$A_W = \pi^*((D_o/2))$	$(2)^2 - ((D_0 - 2t)/2)^2$		
Unit OD Surface Area, in ² /LF, A _{OD} =	131.95 in^2/LF	A _{OD} = 12*π*Ε	O _{OD}		
Unit Outside Volume, V_{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$			
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$			
HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 an	nd ASTM 2837	
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Ch	napter 5	
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF		
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating on	ıly	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics	WL122 for PE4710	
Weight Dry, W =	1.66	Lb/LF	<u>.</u>		
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D33	50 determined by ASTM D638	
Load Duration		Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	73 deg F	Assumed	an avality	
Design Ovality, % Factor of Safety, FS =	2% 2.5	2% 2.5	See Sheets 4 of 5 for desi Industry Practice	gn ovality	
Modulus for given load duration, E =	65,000 psi				
Poisson Ratio, $v = \frac{1}{2}$	0.45				
Ovality factor $f_0 =$	0.43				
Temperature factor, $f_t =$		1.00	Source: WL Plastics WL1	•	
romperature factor, it	1.00	1.00	Codice. WE Flastics WET	10	

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γιντ	γ _{EXT1}	γ _{EXT2}
Density, γ =	80		
Buoyant Unballasted Fluid 1, B _{B1} =			-3.55 lb/ft
Buoy	-3.69 lb/ft		
	4.10 lb/ft		
Buoyai	-1.11 lb/ft		
Buoya	-1.24 lb/ft		

E	suoyant torc	es
Dry Weight Pipe on ground, W_P =	1.66 lb/ft	From MFG. Data Sheet
Internal Ballast Weight, W _B =	2.44 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
Expected Displaced Fluid Weight, W_{D1} =	5.21 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Heavy Displaced Fluid Weight, W_{D2} =	5.35 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
W_P - W_{D1}		-

 W_P - W_{D2} W_P + W_B BG- W_{D1} BG- W_{D2} **HDPE PROPERTIES**

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 81 Circuit #1

S. Main St. and Grove St.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK OK if $P_A >= to P_{TEST}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = Pressure Rating, PR = Maximum Ocassional Surge, Pos =

73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ 252 psi 504 psi $P_{OS} = 2*PR$ 378 psi $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 39.20 ft

Ballast depth to invert, H_B 27.00 ft

Drill Fluid depth to invert, HDF 27.00 ft

Pipe Invert Internal Pressure, P.

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 11.76 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 14.70 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 15.08 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 11.76 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A + P_a) - P_W$

Long Term	
31.38 psi	Pull Back Condition - Option 1
31.00 psi	Pull Back Condition - Option 2
43.14 psi	Pull Back Condition - Option 3
42.76 psi	Pull Back Condition - Option 4
46.08 psi	Long Term Operating Conditions
34.32 psi	Operational Dewatering NO SOIL LOADS
	31.38 psi 31.00 psi 43.14 psi 42.76 psi 46.08 psi

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

Limited Liability Company

BRIERLEY

HDD 81 Circuit #1

S. Main St. and Grove St.

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7	7
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS =	5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	_	
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF Suggest$	ted SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb	

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_{i} =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.93209	
$r = \sigma_i/2*(SSAS) =$	0.12703	Example from Table T5, σ _i = 292 psi
P _{CRR} =	249.3 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	124.6 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	109.93 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	109.56 psi Pull Back Condition - Option 4 OK as >0

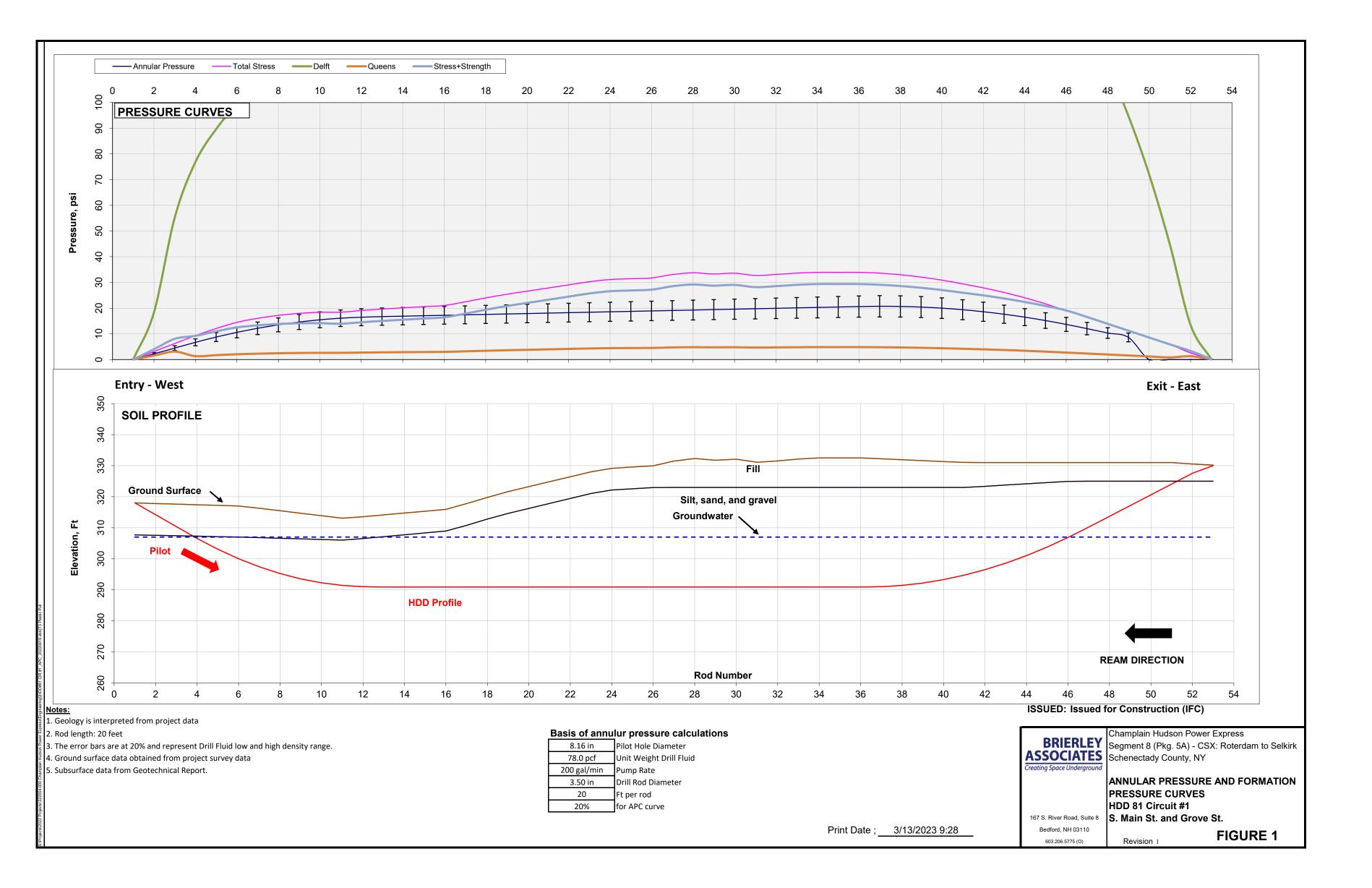
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

 $^{\frac{1}{2}}$ Time factor for pull duration, f_T

5	f _T	Time factor for pull	
5	1.00	Up to 1 hour pull	1
ì	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

ects/2022 Projects/322004-000 Champian Hudson Power Express/Engineering/HDD#81 CIR#1_APC_20220819.xisb]13 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 81 Circuit #1

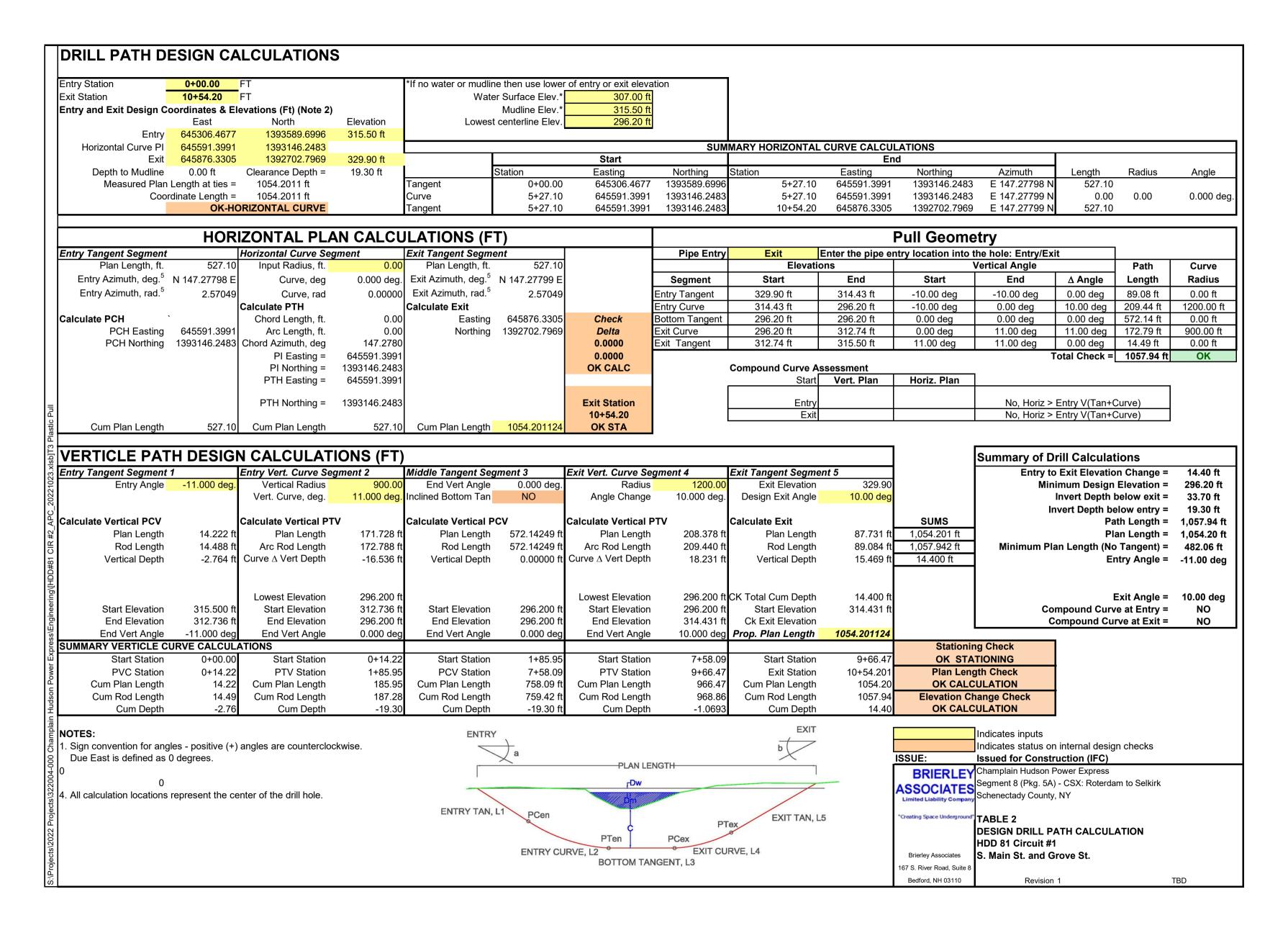
S. Main St. and Grove St.

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry

Leng	ths (Path)	Path) Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	89.1 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	572.1 ft	χ =	0.0 °	0.0000	
L5 =	172.8 ft				900.0 ft
L6 =	14.5 ft	β =	11.0 °	0.1920	
LT =	1157.9 ft				

INPUT: Assumed Friction Factors

μ _G =	00	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

INPOT: Pipe Properties						
	Material	HDPE		IPS		
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @ 7	73Deg F	
Pile/Bundle Diam.	14.25	PIPE	PIPE/BUND)LE		
Materia	al Density, γ	59.28 pcf				
Outside Dia	ameter, D _{OD}	10.75	Pipe or Bun	Pipe or Bundle		
Pipe Dry Weight, W _P =		15.70 lb/ft	Pipe or Bundle			
Min. Wall Thickness, t_{m}		1.194 in	For design installation pull stress			
DR	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Di	ameter, D _{IA}	8.22 in	Bundle Mult	iplier F _D	1.0000	
12 Hr Pullback Modulus, E _T =		65,000 psi	@T =	73 deg F		
Poisso	n Ratio, μ =	0.45				
Ovality Factor, f _o =		0.84	2%			
Buckling	Safety, N =	2.5		_		

,						
INPUT: Assumed Fluid Densities/Elevations						
Ballast Density	62.4	pcf				
Drill Fluid Density	78	pcf Estimated for pull				
Drill fluid elevation, $H_F =$	315.50 ft					
Ballast Water El., H _W =	315.50 ft					
Lowest Invert El., El _m =	296.20 ft					

1,008 psi

252 psi

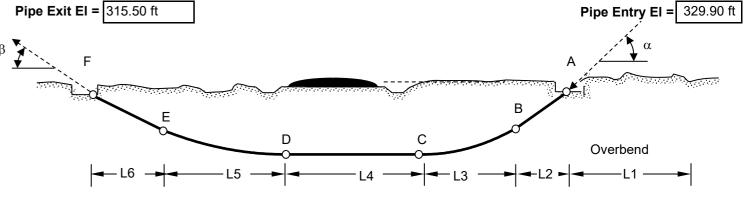
HDB/2

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Calculated Pipe and Fluid Properties

Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F) =


Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V_{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ∆T =	0.62 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			38.69 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	May Tanaila	ASSESS	Pull Force, F _B	May Tanaila	ASSESS	F _x <	SPS
POINT	No Ballast	Max Tensile Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Max Tensile Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,850 lb	110 psi	OK	1,850 lb	110 psi	OK	OK	OK
В	2,323 lb	65 psi	OK	2,333 lb	65 psi	OK	OK	OK
С	3,718 lb	128 psi	OK	2,914 lb	106 psi	OK	OK	OK
D	5,982 lb	167 psi	OK	5,179 lb	144 psi	OK	OK	OK
Е	9,037 lb	284 psi	OK	6,758 lb	221 psi	OK	OK	OK
F	9,303 lb	260 psi	OK	6,878 lb	192 psi	OK	OK	OK
ASSESS P	ASSESS Pull Restricted Buckling Capacity, P _{PA} > ΔP invert			$P_{PA} = P_A F_R =$	99.93 psi	Ballas	sted	OK
						No Ba	allast	OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

· · · · · · · · · · · · · · · · · · ·		
Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, $P_A =$	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.93409858	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.123682387	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	284 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	2.09	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP_U invert =	10.45	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

HDD 81 Circuit #1 S. Main St. and Grove St.

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 81 Circuit #1

S. Main St. and Grove St.

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTM D3350	and Plastic Pip	e msiliule Pul	olications and as referenced	
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point	
Quantity of Pipes in Hole, Q =	1		<u></u>	
Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710	
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 10,000 hours	
Standard Dimension	10			
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"		
DR = OD/Minimum Wall	9			
Outside Diameter, D _o =	10.750 in	Standard Ma	nufacturer's Data Sheets	
Avg. Inside Diameter, D _i =	8.216 in	Standard Ma	nufacturer's Data Sheets	
Minimum Wall, t_{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets	
Wall Section Area, A_W =	35.85681985	$A_{W} = \pi^{*}((D_{o}/2$	$(1)^2 - ((D_o - 2t)/2)^2)$	
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$		
Unit Outside Volume, V_{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$		
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$		
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837		
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5		
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF	
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710	
Weight Dry, W =	1.66	Lb/LF		
Tensile Yield, Ty psi =	1,120 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638	
Load Duration		Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F	Assumed	
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality	
Factor of Safety, FS =	2.5	2.5	Industry Practice	
Modulus for given load duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314	
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours	
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality	
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL118	

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid			
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2			
	γιντ	γ _{EXT1}	γ _{EXT2}			
Density, γ =	62.4	78	80			
Buoya	-47.50 lb/ft					
Buoya	Buoyant Unballasted Fluid 2, B _{B2} = -48.76 lb/ft					
	Ballasted on ground, B _G = 24.63 lb/ft					
Buoyant Ballasted in Fluid 1, BB _{B1} = -24.53 lb/ft						
Buoya	-25.79 lb/ft					

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ Internal Ballast Weight, $W_B = 22.97 \text{ lb/ft}$ Expected Displaced Fluid Weight, $W_{D1} = 49.16 \text{ lb/ft}$ Heavy Displaced Fluid Weight, $W_{D2} = 50.42 \text{ lb/ft}$ $W_P - W_{D1}$ $W_P - W_{D2}$

 $W_P + W_B$ $BG - W_{D1}$ $BG - W_{D2}$ **HDPE PROPERTIES**

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 81 Circuit #1

S. Main St. and Grove St.

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 280 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK OK if $P_A >= to P_{TEST}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi Maximum Ocassional Surge, Pos = 504 psi $P_{OS} = 2*PR$ 378 psi $P_{RS} = 1.5*PR$ Maximum Reoccuring Surge, PRS =

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2*E/(1-v^2)]^* [(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 33.70 ft Ballast depth to invert, H_B 19.30 ft Drill Fluid depth to invert, HDF 19.30 ft

Pipe Invert Internal Pressure, P.

0.00 psi Air Ballast, PA Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 8.56 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 10.70 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 10.97 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 8.56 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	96.28 psi	35.38 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	96.00 psi	35.11 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	104.84 psi	43.94 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	104.56 psi	43.67 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	98.42 psi	37.52 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

Limited Liability Company

BRIERLEY

HDD 81 Circuit #1

S. Main St. and Grove St.

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 16,064 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 40,160 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	1,120 psi	
Safe Allowable Stress, SAS =	448 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	16,064 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, Pcrr = Pcr*fr

(ASTM F-1962 EQ. 22)

· /			
Pull Duration Time =	12 Hr	Pcr = 267.4 psi	
SAS =	448 psi	Design Depth in DF, H _{MDF} = 0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.93410		
$r = \sigma_i/2*(SSAS) =$	0.12368	Example from Table T5, σ _i = 284 psi	
P _{CRR} =	249.8 psi		
FS =	2.0		
$P_{ACRR} = P_{CRR}/FS =$	124.9 psi	Allowable Reduced Short Term Buckling pressure during pull	ı
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	114.21 psi Pull Back Condition - Option 3 OK as >0	
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	113.94 psi Pull Back Condition - Option 4 OK as >0	

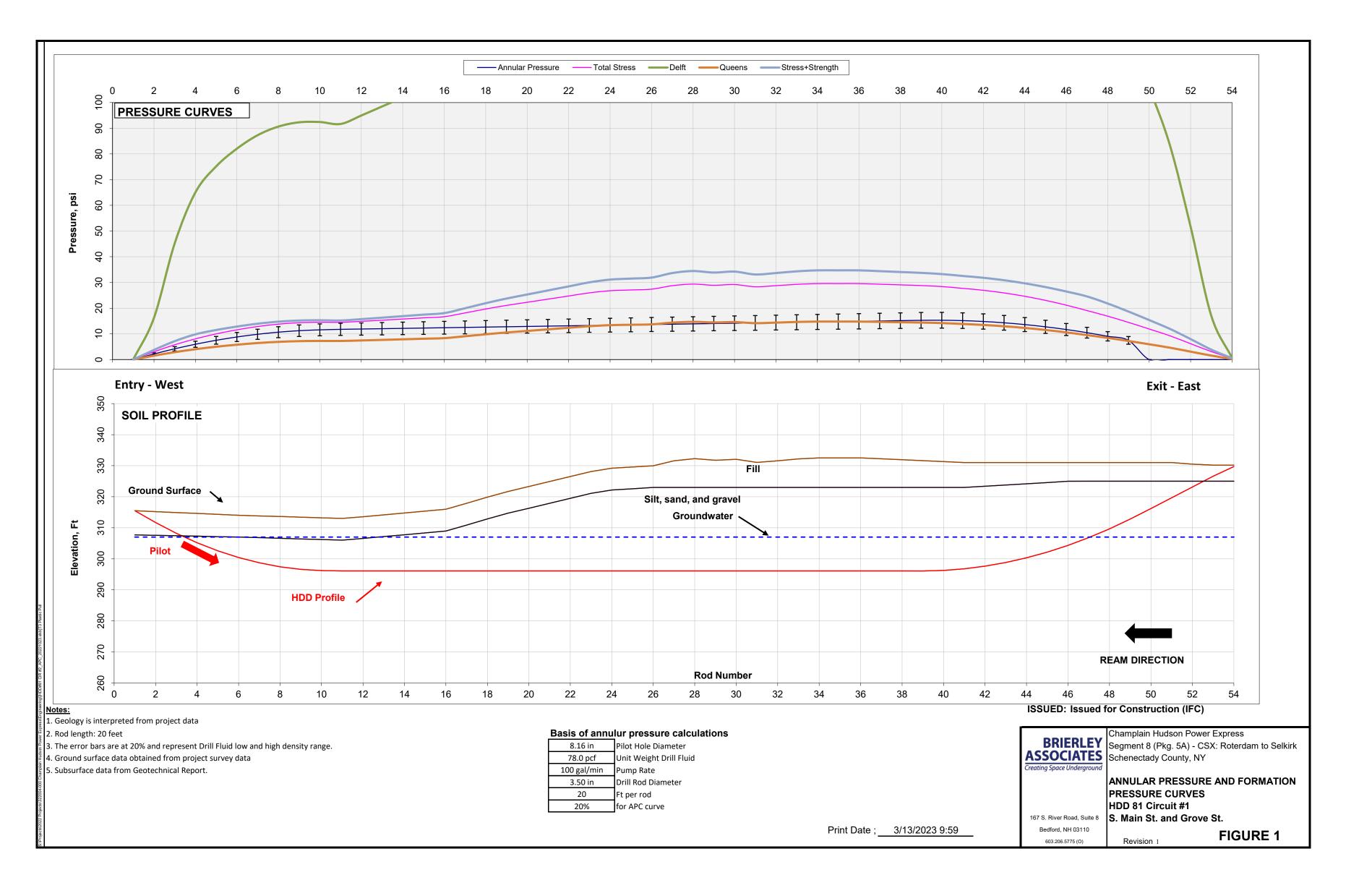
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

yjects∖322004-000 Champlain Hudson Power Express∖Engineering≬HDD#81 CIR #2_APC_20221023.xisb∫13 Plastic i

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 82-83 Conduit #1

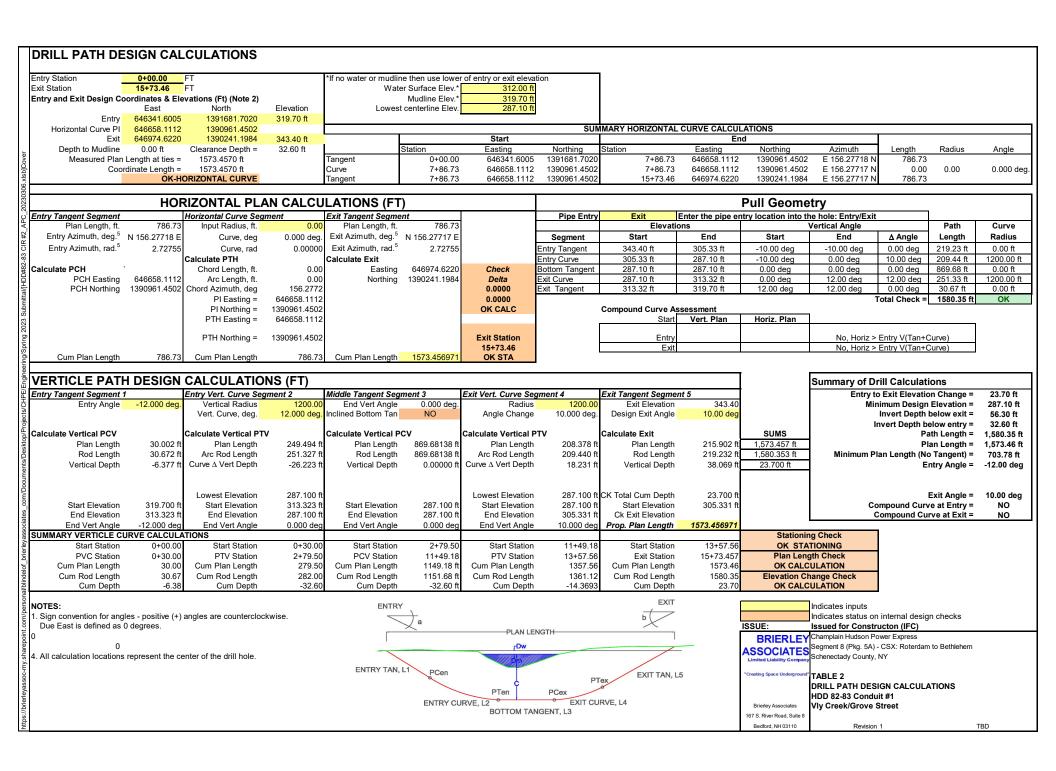
Vly Creek/Grove Street

ISSUE: Issued for Constructon (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 6-Mar-2023

DATE	REV	DESCRIPTION	
10/23/2022	0	Design Submittal	
3/6/2023	1	ssued for Construction	

Pull Geometry

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	219.2 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	869.7 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	30.7 ft	β =	12.0 °	0.2094	
LT =	1680.4 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

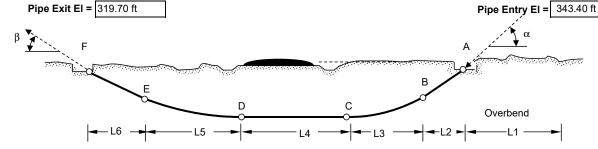
INPUT: Pipe Pr	operties			
Materia	HDPE	IPS		
Safe Pull Max. Stress, σ_P	и 1,150 psi	PPI Table 1 12hr @ 73Deg F		
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE		
Material Density,	γ 59.28 pcf			
Outside Diameter, Do	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P	= 17.36 lb/ft	Pipe or Bundle		
Min. Wall Thickness, t	ո 1.194 in	For design installation pull stress		
$DR = D_O/t_{min}$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D	BUNDLE	Bundle Multiplier F _D 0.9042		
12 Hr Pullback Modulus, E _T	= 65,000 psi	@T = 73 deg F		
Poisson Ratio, μ	0.45			
Ovality Factor, f _o	0.84	2%		
Buckling Safety, N	2.5			
Hydrostatic Design Stress, HDS	= 1,000 psi	HDB/2		

INPUT: Assumed Fluid Densities/Elevations							
Ballast Density	62.4	pcf					
Drill Fluid Density	78	pcf Estimated for pull					
Drill fluid elevation, H _F =	319.70 ft						
Ballast Water El., H _W =	319.70 ft						
Lowest Invert El., El _m =	287.10 ft						

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Calculated Pipe and Fluid Properties

Pressure Rating, PR_(80F)=


Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V _{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.56 lb/ft	Comparison Only @ 8psi

Calculated Buovant Forces

	Pipe	Air Filled	Ballasted	
On Gro	und, w _a /w _{af} =	17.36 Lb/LF	42.80 Lb/LF	
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF	

Pipe Entry Location - Drill (schematic, to show definition of variables only)

Exit

Calculated Pull Force						ASSESS		
	Pull Force, F _D	May Tanaila ASSESS		Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,968 lb	204 psi	OK	2,968 lb	204 psi	OK	OK	OK
В	4,507 lb	114 psi	OK	4,660 lb	118 psi	OK	OK	OK
С	6,234 lb	189 psi	OK	5,492 lb	171 psi	OK	OK	OK
D	10,137 lb	256 psi	OK	9,396 lb	237 psi	OK	OK	OK
E	15,344 lb	419 psi	OK	12,184 lb	339 psi	OK	OK	OK
F	16,000 lb	404 psi	OK	12,487 lb	315 psi	OK	OK	OK
ASSES	ASSESS Pull Restricted Buckling Canacity Pa. > AP invert Pa. = P.Fa = 96.04 psi Ballasted OK							

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Ea 16 OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = 45.606 lb Allowable Short Term Unconstrained Buckling, $P_A =$ $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi 0.897799078 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ Maximum 12 hour Pull Stress Reduction, $F_R =$ 0.182263662 r = $\sigma_{T}/2$ SPS Maximum applied pull Stress, σ_T = 419 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.53 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 17.66 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations D_H =

 D_0 <8" Use D_H = D_0 +4"; 8"< $\overline{D_0}$ <24" Use D_H = $\overline{1.5*D_0}$; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Constructon (IFC)

BRIERLEY ASSOCIATES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

TABLE 4 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 82-83 Conduit #1 Vly Creek/Grove Street

Brierley Associates 167 S. River Road, Suite 8 Bedford NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 82-83 Conduit #1
Vly Creek/Grove Street

"Creating Space Underground"

INPUTS

Pipe Material Properties

	Sources:	urces: ASTM D3350 and Plastic Pipe Institute Publications and as referenced						
	Design Working Pre	essure, P _{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point				
	Quantity of Pipe	s in Hole, Q =	1					
		Pipe Material	HDPE	INPUT RESI	NPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification				Design resin	Design resin with minimum PENT test of 10,000 hours			
	Standa	rd Dimension	3					
	Pipe measuren	nent standard	IPS	IPS "Iron Pip	PS "Iron Pipe Size" or DIPS "Ductile Iron Pipe Size"			
	DR = OD/N	/linimum Wall	9					
	Outside D	Diameter, D _o =	3.500 in	Standard Manufacturer's Data Sheets				
	Avg. Inside I	Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets			
	Minimu	um Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets			
5	Wall Section	on Area, A _W =	3.801889456	$A_W = \pi^*((D_o/2$	$(1)^2 - ((D_0 - 2t)/2)^2)$			
i aniwo	Unit OD Surface Area	, in 2 /LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*D$	ООД			
2000	Unit Outside \	√olume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)$) ² /144			
Í	Unit Inside	Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144			
7		HDB =	1,600 psi	Based on PP	I Publication TR-4/2015 and ASTM 2837			
3	Design Factor f	for HDB, DF =	0.63	Based on PP	Based on PPI PE Handbook 2nd ED Chapter 5			
<u> </u>			1000 psi	HDS = HDB*DF				
lana.	Environmenta	l Factor, Af _e =	1	Reference 2:	Use for pressure rating only			
Density = 59.28 pc		59.28 pcf		Average from WL Plastics WL122 for PE4710				
Weight Dry, W = 1.66			Lb/LF					
do iĝi		Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638			
6		Load Duration	Short Term 10 hours	Long Term				
		Duration Time mperature, °F	73 deg F	50 yrs 73 deg F	Assumed			
		gn Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality			
5		f Safety, FS =	2.5	2.5	Industry Practice			
500	Modulus for given load	l duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
	Pois	son Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours			
	Ova	ality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality			
3	Temperat	ure factor, f _t =	1.00	1.00	Source: WL Plastics WL118			
20000	Project Fluids							
2		Pipe Internal	Expected	Heavy	Buoyant forces			
5		Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ From MFG. Data Sheet			
200	Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, $W_B = \frac{2.44 \text{ lb/ft}}{W_B} = V_{Di}^* \gamma_{INT}$			
YINT YEXT1		γ _{EXT2}	Expected Displaced Fluid Weight, W _{D1} = 5.21 lb/ft W _{D1} = V _{D0} * γ_{EXT1}					
	Density, γ =	62.4 int Unballasted	78	80	Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_{D2} = V_{D0} * \gamma_{EXT2}$ $W_{P}-W_{D1}$			
			= :	-3.55 lb/ft	W_{P} - W_{D2}			
Buoyant Unballasted Fluid			-3.69 lb/ft	W_P+W_B				
Ballasted on grour		i giouliu, b _G –	4.10 lb/ft	AAB.AAB				

-1.24 lb/ft

 $BG-W_{D1}$

 $BG-W_{D2}$

Buoyant Ballasted in Fluid 1, BB_{B1} = -1.11 lb/ft

Buoyant Ballasted in Fluid 2, B_{BB2} =

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #1

Vly Creek/Grove Street

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{+HDB+f}_{1/2}(DR-1)$

ASSESSMENT TEST PRESSURE

OK

OK if $P_A >= \text{to } P_{\text{TEST}}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F

Pressure Rating, PR = 250 psi

Maximum Ocassional Surge, P_{OS} = 500 psi

PR = $2*HDS*f_t*Af_e/(DR-1)$ i $P_{OS} = 2*PR$

 $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING
OK If PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 56.30 ft

Ballast depth to invert, H_B

32.60 ft Drill Fluid depth to invert, H_{DF}

32.60 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 14.19 psi Pipe Invert External Pressure, P_E Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ 17.74 psi

Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$ 18.19 psi

Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 14.19 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E <= 0$

Differential Pressures	Short Term	Long Term
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	89.24 psi	28.34 psi
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	88.78 psi	27.89 psi
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.43 psi	42.53 psi
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	102.97 psi	42.08 psi
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi
Internal Air and External Water = $(P_A+P_a)-P_W$	92.79 psi	31.89 psi

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4
Long Term Operating Conditions

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Page 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #1

Vly Creek/Grove Street

"Creating Space Underground"

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7	7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	5,321 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	13,303 lb	
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi			_
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF Sugg$	gested SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR}^* f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	1,400 psi	Design D	epth in DF, H _{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpti	ion as Maximum		•
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.89780				
$r = \sigma_i/2*(SSAS) =$	0.18226	Example from Table T5, $\sigma_i = 419 \text{ p}$			419 psi
P _{CRR} =	240.1 psi				
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	120.1 psi	Allowable Reduc	ed Short Term Buck	ling pressure c	luring pull
Internal Ballasted and External Fluid 1 = (F	P _B +P _{ACRR})-P _{DF1}	102.32 psi	Pull Back Condition	- Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (F	P _B +P _{ACRR})-P _{DF2}	101.86 psi	Pull Back Condition	- Option 4	OK as >0

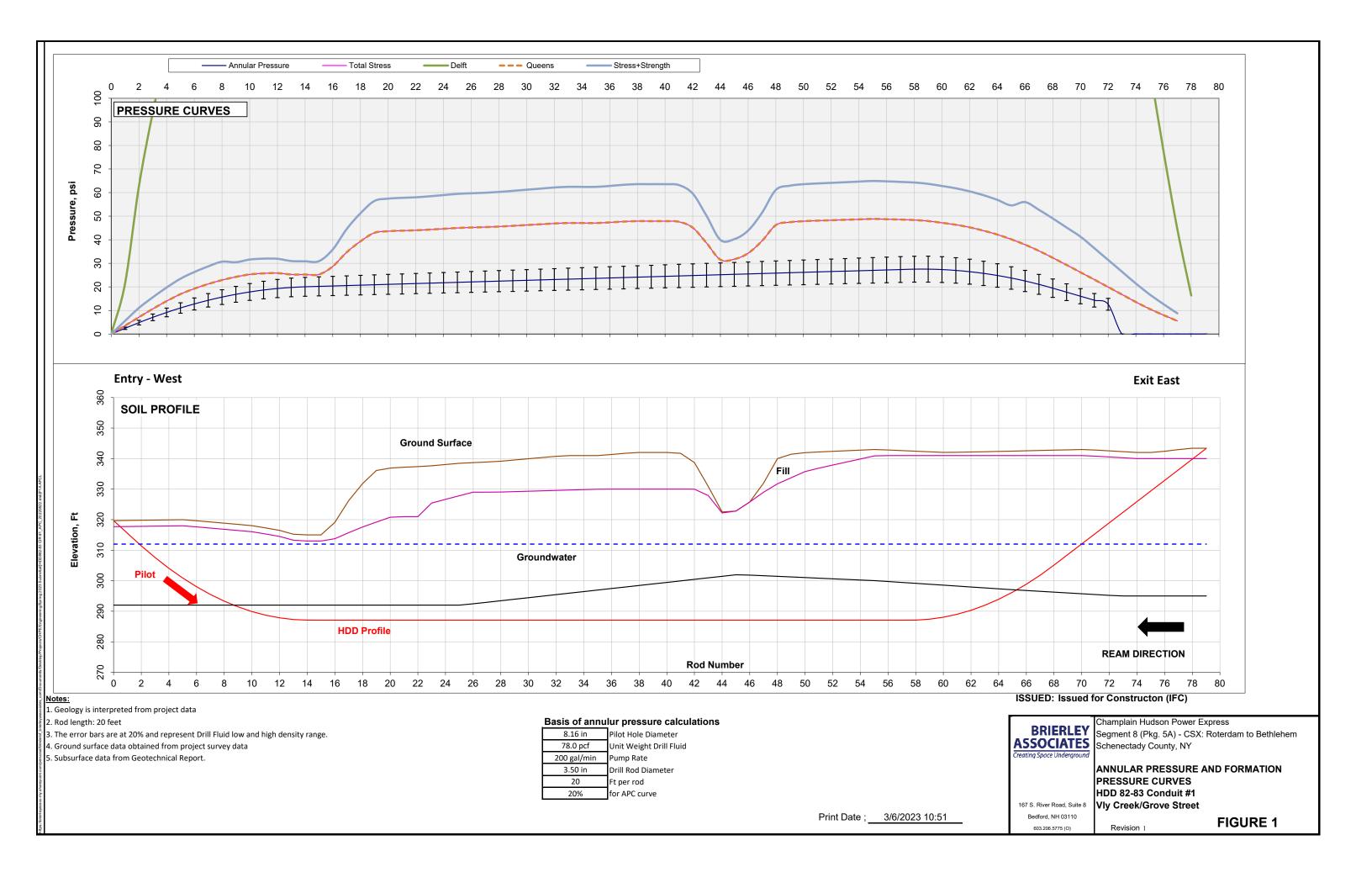
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

https://brierleya

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 82-83 Conduit #1

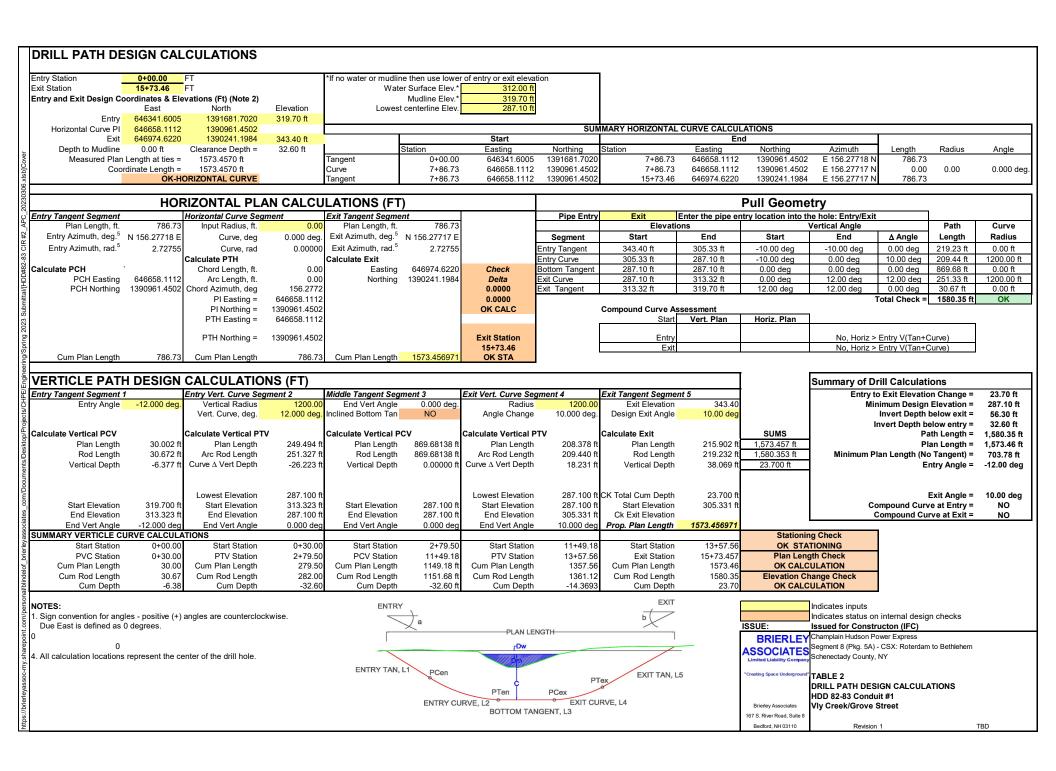
Vly Creek/Grove Street

ISSUE: Issued for Constructon (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 6-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/6/2023	1	Issued for Construction	ABL

Pull Geometry

Lengths (Path)		Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	219.2 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	869.7 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	30.7 ft	β =	12.0 °	0.2094	
LT =	1680.4 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

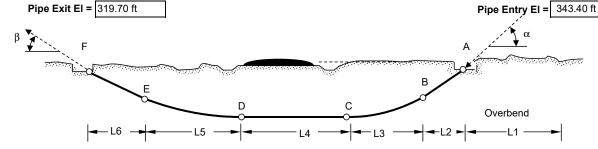
INPUT: Pipe Properties				
Materia	HDPE	IPS		
Safe Pull Max. Stress, σ_P	и 1,150 psi	PPI Table 1 12hr @ 73Deg F		
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE		
Material Density,	γ 59.28 pcf			
Outside Diameter, Do	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P	= 17.36 lb/ft	Pipe or Bundle		
Min. Wall Thickness, t	ո 1.194 in	For design installation pull stress		
$DR = D_O/t_{min}$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D	BUNDLE	Bundle Multiplier F _D 0.9042		
12 Hr Pullback Modulus, E _T	= 65,000 psi	@T = 73 deg F		
Poisson Ratio, μ	0.45			
Ovality Factor, f _o	0.84	2%		
Buckling Safety, N	2.5			
Hydrostatic Design Stress, HDS	= 1,000 psi	HDB/2		

INPUT: Assumed Fluid Densities/Elevations				
Ballast Density	62.4	pcf		
Drill Fluid Density	78	pcf Estimated for pull		
Drill fluid elevation, H _F =	319.70 ft			
Ballast Water El., H _W =	319.70 ft			
Lowest Invert El., El _m =	287.10 ft			

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Calculated Pipe and Fluid Properties

Pressure Rating, PR_(80F)=


Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V _{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.56 lb/ft	Comparison Only @ 8psi

Calculated Buovant Forces

	Pipe	Air Filled	Ballasted
On Gro	und, w _a /w _{af} =	17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill (schematic, to show definition of variables only)

Exit

	Calculated Pull Force					ASSESS		
	Pull Force, F _D	May Tancila	Tensile ress, σ_T $\sigma_T < \sigma_{PM}$	Pull Force, F _B	Max Tensile	ASSESS	SSESS F _x < S	
POINT	No Ballast	Stress, σ _T		Ballasted Pipe		$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,968 lb	204 psi	OK	2,968 lb	204 psi	OK	OK	OK
В	4,507 lb	114 psi	OK	4,660 lb	118 psi	OK	OK	OK
С	6,234 lb	189 psi	OK	5,492 lb	171 psi	OK	OK	OK
D	10,137 lb	256 psi	OK	9,396 lb	237 psi	OK	OK	OK
E	15,344 lb	419 psi	OK	12,184 lb	339 psi	OK	OK	OK
F	16,000 lb	404 psi	OK	12,487 lb	315 psi	OK	OK	OK
ASSESS Pull Restricted Buckling Canacity Po. > AP invert Po. = P.F. = 96.04 psi Ballasi							sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Ea 16 OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = 45.606 lb Allowable Short Term Unconstrained Buckling, $P_A =$ $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi 0.897799078 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ Maximum 12 hour Pull Stress Reduction, $F_R =$ 0.182263662 r = $\sigma_{T}/2$ SPS Maximum applied pull Stress, σ_T = 419 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.53 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 17.66 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations D_H =

 D_0 <8" Use D_H = D_0 +4"; 8"< $\overline{D_0}$ <24" Use D_H = $\overline{1.5*D_0}$; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Constructon (IFC)

BRIERLEY ASSOCIATES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

TABLE 4 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 82-83 Conduit #1 Vly Creek/Grove Street

Brierley Associates 167 S. River Road, Suite 8 Bedford NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 82-83 Conduit #1
Vly Creek/Grove Street

"Creating Space Underground"

INPUTS

Pipe Material Properties

	Sources:	ASTM D3350	and Plastic Pip	e Institute Pu	blications and as referenced		
Design Working Pressure, P _{WORK}			250 psi		Test Pressure, P _{TEST} 0 psig At high point		
	Quantity of Pipe	s in Hole, Q =	1				
		Pipe Material	HDPE	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710		
	ASTM D3350 Cell	Classification		Design resin	with minimum PENT test of 10,000 hours		
	Standa	rd Dimension	3				
	Pipe measuren	nent standard	IPS	IPS "Iron Pip	e Size" or DIPS "Ductile Iron Pipe Size"		
	DR = OD/N	/linimum Wall	9				
	Outside D	Diameter, D _o =	3.500 in	Standard Ma	nufacturer's Data Sheets		
	Avg. Inside I	Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets		
	Minimu	um Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets		
5	Wall Section	on Area, A _W =	3.801889456	$A_W = \pi^*((D_0/2)^2 - ((D_0-2t)/2)^2)$			
i aniwo	Unit OD Surface Area	, in 2 /LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*D$	Pod		
2000	Unit Outside \	√olume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)$) ² /144		
Í	Unit Inside	Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144		
7		HDB =	1,600 psi	Based on PP	I Publication TR-4/2015 and ASTM 2837		
3	Design Factor f	for HDB, DF =	0.63	Based on PP	I PE Handbook 2nd ED Chapter 5		
	Hydrostatic Design S	Stress, HDS =	1000 psi	HDS = HDB*	DF		
lana.	Environmenta	l Factor, Af _e =	1	Reference 2:	Use for pressure rating only		
900		Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710			
8:1		ight Dry, W =	1.66	Lb/LF			
Tensile Yield, Ty psi =		3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638			
6		Load Duration	Short Term 10 hours	Long Term			
		Duration Time mperature, °F	73 deg F	50 yrs 73 deg F	Assumed		
		gn Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality		
5		f Safety, FS =	2.5	2.5	Industry Practice		
500	Modulus for given load	l duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314		
	Pois	son Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours		
	Ova	ality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality		
3	Temperat	ure factor, f _t =	1.00	1.00	Source: WL Plastics WL118		
20000	Project Fluids						
2		Pipe Internal	Expected	Heavy	Buoyant forces		
5		Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ From MFG. Data Sheet		
200	Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, $W_B = \frac{2.44 \text{ lb/ft}}{W_B} = V_{Di}^* \gamma_{INT}$		
200	5	γ _{INT}	γ _{EXT1}	γ _{EXT2}	Expected Displaced Fluid Weight, W _{D1} = 5.21 lb/ft W _{D1} = V _{D0} * γ_{EXT1}		
	Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_{D2} = V_{D0} * \gamma_{EXT2}$ $W_{P}-W_{D1}$		
Buoyant Unballasted Buoyant Unballasted		= :	-3.55 lb/ft	W_{P} - W_{D2}			
-			-3.69 lb/ft	W_P+W_B			
3		บลแลงเซน 0I	n ground, $B_G =$	4.10 lb/ft	AAB.AAB		

-1.24 lb/ft

 $BG-W_{D1}$

 $BG-W_{D2}$

Buoyant Ballasted in Fluid 1, BB_{B1} = -1.11 lb/ft

Buoyant Ballasted in Fluid 2, B_{BB2} =

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #1

Vly Creek/Grove Street

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{+HDB+f}_{1/2}(DR-1)$

ASSESSMENT TEST PRESSURE

OK

OK if $P_A >= \text{to } P_{\text{TEST}}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F

Pressure Rating, PR = 250 psi

Maximum Ocassional Surge, P_{OS} = 500 psi

PR = $2*HDS*f_t*Af_e/(DR-1)$ i $P_{OS} = 2*PR$

 $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING
OK If PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 56.30 ft

Ballast depth to invert, H_B

32.60 ft Drill Fluid depth to invert, H_{DF}

32.60 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 14.19 psi Pipe Invert External Pressure, P_E Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ 17.74 psi

Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$ 18.19 psi

Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 14.19 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E <= 0$

Differential Pressures	Short Term	Long Term
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	89.24 psi	28.34 psi
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	88.78 psi	27.89 psi
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.43 psi	42.53 psi
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	102.97 psi	42.08 psi
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi
Internal Air and External Water = $(P_A+P_a)-P_W$	92.79 psi	31.89 psi

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4
Long Term Operating Conditions

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Page 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #1

Vly Creek/Grove Street 3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{-2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time = Quantity of pipes, Q = 12 hr Yield Strength Factor, fy = 73 deg. 0.4 Pull Temperature, F = Recommended (FS = 2.5) Pull Time factor, f_T = 1 Plexco Engineering Manual Table 3.7 Design Factor, DF = $f_T * f_V$ 0.4 SAFE PULL STRENTH, SPS = 5,321 lb Temperature factor, f_{temp} = 1 Ultimate Pull Strength, UPS = 13,303 lb Temp Corr Tensile Yield, Ty*f_{temp} = 3,500 psi $SAS = Ty*f_{temp}*DF$ Suggested SSAS = 1,150 psi Safe Allowable Stress, SAS = 1,400 psi Safe Pull Strength, SPS Pipe = 5,321 lb Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	1,400 psi	Design De	epth in DF, H _{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumptio	n as Maximum		-
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.89780				
$r = \sigma_i/2*(SSAS) =$	0.18226		Example from	Table T5, σ _i =	419 psi
P _{CRR} =	240.1 psi				
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	120.1 psi	Allowable Reduce	d Short Term Buck	ding pressure o	luring pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	102.32 psi F	Pull Back Condition	n - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	101.86 psi F	Pull Back Condition	ı - Option 4	OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

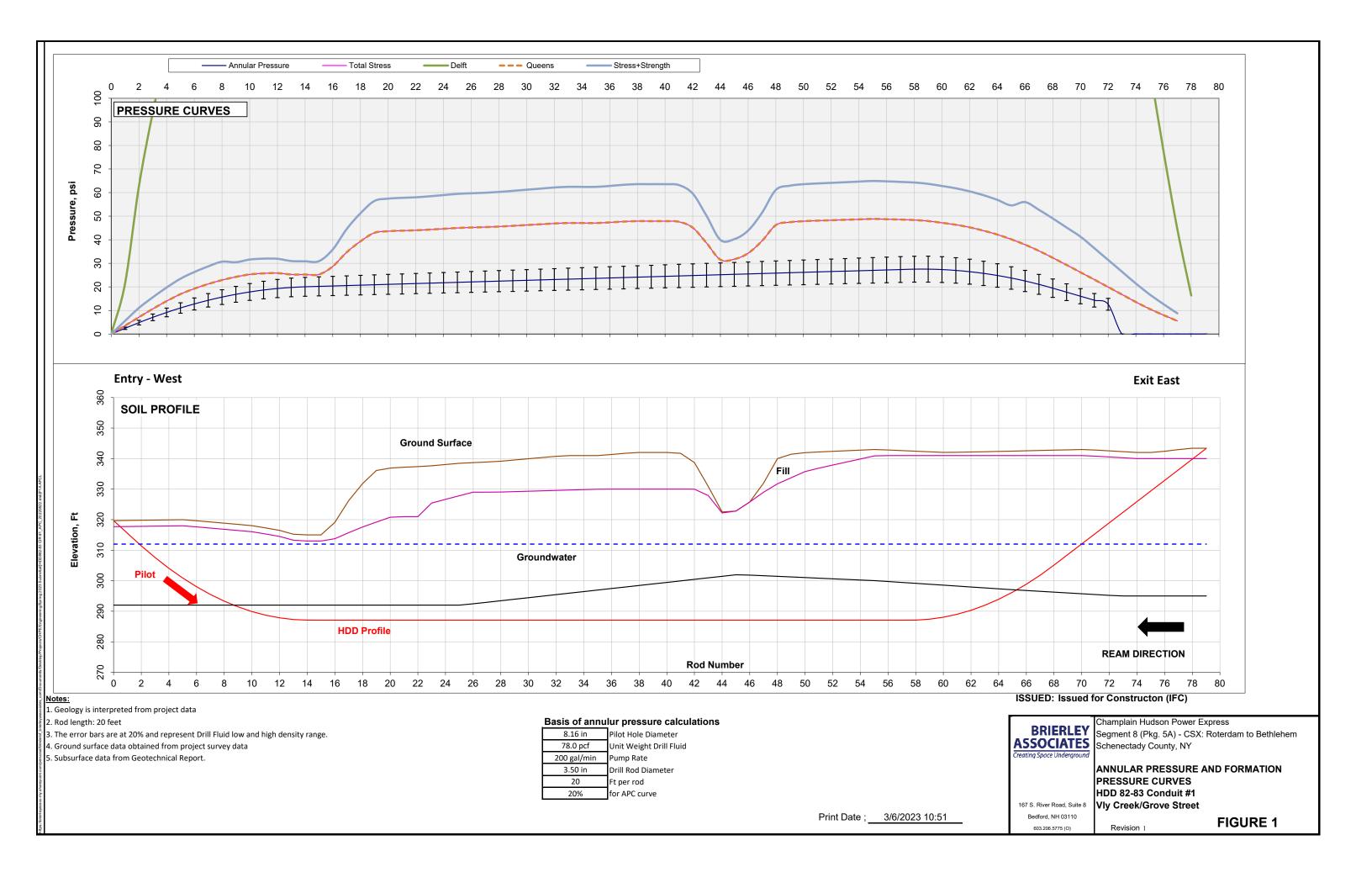
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

≒	· · · · · · · · · · · · · · · · · · ·					
f _T		Time factor for pull				
associ	1.00	Up to 1 hour pull	1			
prierie	0.95	Up tp 12 hours pull	12			
٥	N 91	Un to 24 hours	24			

BRIERLEY

"Creating Space Underground"

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 82-83 Conduit #2

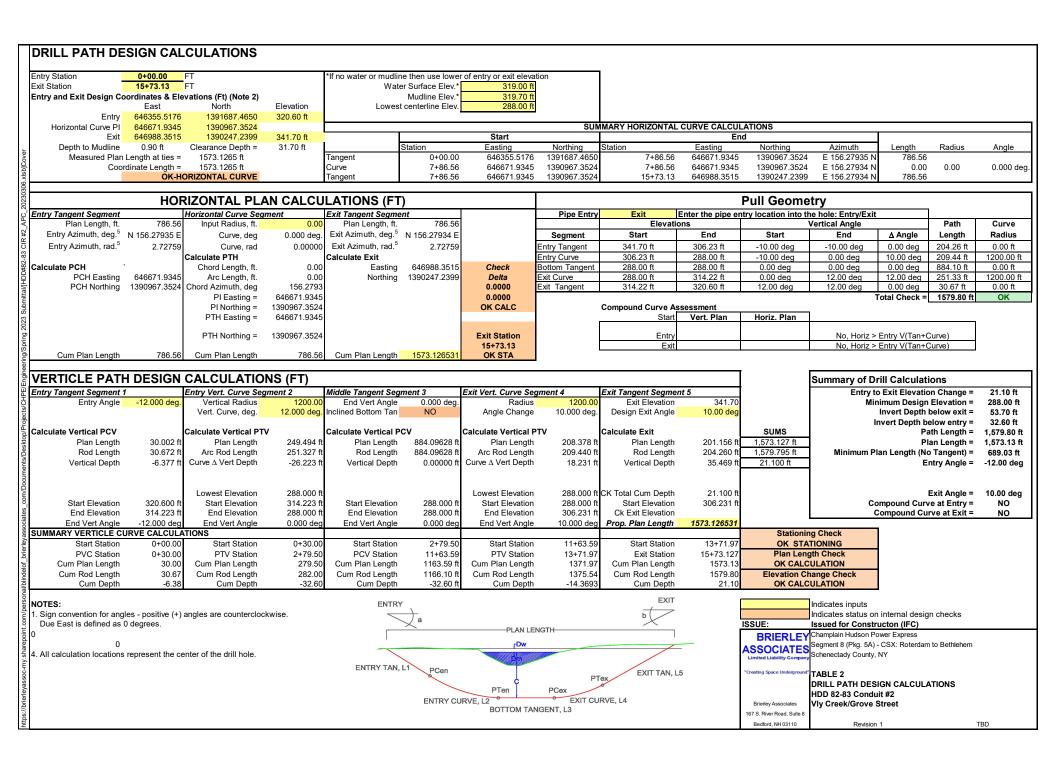
Vly Creek/Grove Street

ISSUE: Issued for Constructon (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 6-Mar-2023

DATE	REV	DESCRIPTION	
10/23/2022	0	Design Submittal	ABL
3/6/2023	1	Issued for Construction	ABL

Pull Geometry

Leng	ths (Path)		Angles		
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	204.3 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	884.1 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	30.7 ft	β =	12.0 °	0.2094	
LT =	1679.8 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties						
	Material	HDPE		IPS		
Safe Pull Max. S	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F	
Pile/Bundle Diam.	14.25	PIPE	PIPE/BUND	LE		
Materia	l Density, γ	59.28 pcf				
Outside Dia	meter, D _{OD}	10.75	Pipe or Bun	dle		
Pipe Dry We	eight, W _P =	15.70 lb/ft	Pipe or Bun	dle		
Min. Wall Thickness, t_m		1.194 in	For design i	nstallatio	on pull stress	
DR	$= D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Dia	ameter, D _{IA}	8.22 in	Bundle Mult	iplier F _D	1.0000	
12 Hr Pullback Mo	dulus, E _T =	65,000 psi	@T =	73 deg F		
Poisson	n Ratio, μ =	0.45				
Ovality l	Factor, f _o =	0.84	2%			
Buckling Safety, N =		2.5				
Hydrostatic Design Stress, HDS =		1,000 psi	HDB/2			

INPUT: Assumed Fluid Densities/Elevations						
<mark>4</mark> pcf	62.4	Ballast Density				
pcf Estimated for pull	78	Drill Fluid Density				
O ft	319.00 ft	Drill fluid elevation, H _F =				
O ft	319.00 ft	Ballast Water El., H _W =				
0 ft	288.00 ft	Lowest Invert El., El _m =				

250 psi

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

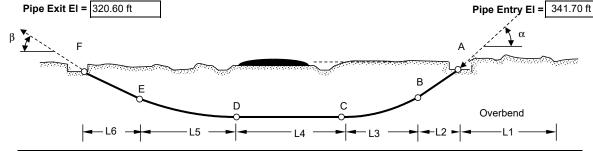
Drill Fluid (unit drag)

Comparison Only @ 8psi

Calculated Pipe and Fluid Properties

Pressure Rating, PR_(80F)=

o una i lula i roportios					
Pressure Pipe:	YES				
OD Perimeter Length, P	33.77 in				
Wall Section Area, A _W	37.70738915				
Volume Outside, V_{DO}	0.630 cf/LF				
Volume Inside, V _{DI}	0.368 cf/LF				
$q_d =$	2.03 lb/ft				
EQ 18: Hydrokinetic, ΛT =	0.41 lb/ft				


ASTM EQ 18: Hydrokinetic, $\Delta T =$

Calculated Buovant Forces

_	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Air	Ballast
Α	2,684 lb	172 psi	OK	2,684 lb	172 psi	OK	OK	OK
В	3,995 lb	111 psi	OK	4,118 lb	115 psi	OK	OK	OK
С	5,464 lb	177 psi	OK	4,778 lb	158 psi	OK	OK	OK
D	9,063 lb	253 psi	OK	8,377 lb	234 psi	OK	OK	OK
Е	13,659 lb	405 psi	OK	10,785 lb	325 psi	OK	OK	OK
F	14,117 lb	394 psi	OK	11,005 lb	307 psi	OK	OK	OK
ASSES	S Pull Restricted	Buckling Ca	pacity, P_{PA} > ∆P invert	$P_{PA} = P_A F_R =$	96.45 psi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = 41.235 lb Allowable Short Term Unconstrained Buckling, $P_A =$ $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi 0.901653373 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ Maximum 12 hour Pull Stress Reduction, $F_R =$ 0.176221483 r = $\sigma_{T}/2$ SPS Maximum applied pull Stress, σ_T = 405 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 3.36 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 16.79 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations $D_H =$

 D_0 <8" Use D_H = D_0 +4"; 8"< $\overline{D_0}$ <24" Use D_H = $\overline{1.5*D_0}$; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Constructon (IFC)

BRIERLEY ASSOCIATES "Creating Space Underground"

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 4 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL HDD 82-83 Conduit #2

Brierley Associates 167 S. River Road, Suite 8. Bedford NH 03110

Revision 1

Vly Creek/Grove Street

TBD

No Ballast

PPI Ch 12 Eq 16

OK

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 82-83 Conduit #2 Vly Creek/Grove Street

"Creating Space Underground"

INPUTS

jects/CHPE/Engineering/Spring 2023 Submittal/[HDD#82-83 CIR #2_APC_20230306.xlsb]Cover

Pipe Material Properties

	Sources: ASTM D3350	and Plastic Pip	pe Institute Publications and as referenced				
	Design Working Pressure, Pwork	250 psi	Test Pressure, P _{TEST} 0 psig At high point				
	Quantity of Pipes in Hole, Q	1					
	Pipe Materia	HDPE	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
	ASTM D3350 Cell Classificatio	ו	Design resin with minimum PENT test of 10,000 hours				
	Standard Dimension	10					
Pipe measurement standard		IPS	IPS "Iron Pipe Size" or DIPS "Ductile Iron Pipe Size"				
	DR = OD/Minimum Wal	9					
	Outside Diameter, D _o	10.750 in	Standard Manufacturer's Data Sheets				
	Avg. Inside Diameter, D _i	8.219 in	Standard Manufacturer's Data Sheets				
	Minimum Wall, t _{min}	1.194 in	Standard Manufacturer's Data Sheets				
over	Wall Section Area, A _W	35.84514492	$A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$				
3.xlsb]C	Unit OD Surface Area, in ² /LF, A _{OD}	405.27 in^2/LF	$A_{OD} = 12 \times \pi D_{OD}$				
230306	Unit Outside Volume, V _{Do}	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
PC_20	Unit Inside Volume, V _{Di}		$V_{Di} = \pi^* (D_i/2)^2 / 144$				
4 #2_^ م_	HDB:	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
-83 CI	Design Factor for HDB, DF	-	Based on PPI PE Handbook 2nd ED Chapter 5				
DD#85	Hydrostatic Design Stress, HDS		HDS = HDB*DF				
ittal/[H	Environmental Factor, Af _e	= 1	Reference 2: Use for pressure rating only				
3 Subn	Density :	= 59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710				
3 202 gr	Weight Dry, W	15.7	Lb/LF				
ıg/Spri	Tensile Yield, Ty psi		@73°F Minimum from ASTM D3350 determined by ASTM D638				
jineerir	Load Duratio		Long Term				
PE/Enç	Duration Time		50 yrs				
sts/CH	Design Temperature, °		73 deg F Assumed				
λ/Proje≀	Design Ovality, % Factor of Safety, FS		2% See Sheets 4 of 5 for design ovality 2.5 Industry Practice				
Deskto p	Modulus for given load duration, E		28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314				
nents/I	Poisson Ratio, v		0.45 WL118: Use 0.35 if load duration is less than 12 hours				
n/Docui	Ovality factor fo		0.84 Reference 1: Based on Selected Design Ovality				
es_con	Temperature factor, f _t		1.00 Source: WL Plastics WL118				
ssociat	Project Fluids						
ierleya	Pipe Internal	Expected	Heavy Buoyant forces				
elof_bı	Ballast		External Fluid Dry Weight Pipe on ground, W _P = 15.70 lb/ft From MFG. Data Sheet				
aVblind	Fluids Fresh Water	Drill Fluid 1	Drill Fluid 2 Internal Ballast Weight, $W_B = 22.99 \text{ lb/ft}$ $W_B = V_{Di}^* \gamma_{INT}$				
person	γιντ	γ _{EXT1}	γ_{EXT2} Expected Displaced Fluid Weight, $W_{\text{D1}} = 49.16 \text{ lb/ft}$ $W_{\text{D1}} = V_{\text{D0}}^* \gamma_{\text{EXT1}}$				
rt.com/	Density, γ = 62.4	78	80 Heavy Displaced Fluid Weight, $W_{D2} = 50.42 \text{ lb/ft}$ $W_{D2} = V_{Do}^* \gamma_{EXT2}$				
Buoyant Unballasted Fluid 1, B _{B1} =							
-my.sh	Buoyant Unballasted Fluid 2, B _{B2} =		-34.72 lb/ft W _P -W _{D2}				
yassoc	Ballasted on ground, B _G =		38.69 lb/ft W _P +W _B				
/brierle	Buoyant Ballasted ir	Fluid 1, $BB_{B1} =$	-10.47 lb/ft BG-W _{D1}				
			1 1				

 $BG-W_{D2}$

Buoyant Ballasted in Fluid 2, B_{BB2} = -11.73 lb/ft

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #2

Vly Creek/Grove Street

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{+HDB+f}_{1/2}(DR-1)$

ASSESSMENT TEST PRESSURE

OK

OK if $P_A >= \text{to } P_{\text{TEST}}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, $^{\circ}F = \begin{bmatrix} 73 \text{ deg F} \\ \text{Pressure Rating, PR} = \\ \end{bmatrix}$ Maximum Ocassional Surge, $P_{OS} = \begin{bmatrix} 500 \text{ psi} \\ \end{bmatrix}$

250 psi PR = $2*HDS*f_t*Af_e/(DR-1)$ 500 psi P_{OS} = 2*PR

 $P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

375 psi

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

 Short Term
 Long Term

 Design Temperature, F =
 73 deg F
 73 deg F

 P_{CR} =
 267.4 psi
 115.2 psi

 $P_a = P_{CR}/FS$ 107.0 psi
 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 53.70 ft B

Ballast depth to invert, H_B

32.60 ft Drill Fluid depth to invert, H_{DF}

Pipe Invert External Pressure, P_E

32.60 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, P_A 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 14.32 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ 17.90 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$ 18.36 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 14.32 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. ($P_1 + P_a$) - $P_E <= 0$

Differential Pressures	Short Term	Long Term
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	89.07 psi	28.18 psi
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	88.61 psi	27.72 psi
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.39 psi	42.50 psi
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	102.94 psi	42.04 psi
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi
Internal Air and External Water = $(P_A+P_a)-P_W$	92.65 psi	31.76 psi

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4
Long Term Operating Conditions

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Page 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 82-83 Conduit #2

Vly Creek/Grove Street

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7	7	
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS =	50,200 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS =	125,499 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			_
Safe Allowable Stress, SAS =	1,400 psi	$SAS = Ty*f_{temp}*DF Sugg$	ested SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb		

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

71M1 1002 EQ: 22)					
Pull Duration Time =	12 Hr		Pcr =	267.4 psi	
SAS =	1,400 psi	Design D	epth in DF, H _{MDF} =	0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpti	on as Maximum		•
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.90165				
$r = \sigma_i/2*(SSAS) =$	0.17622		Example from	Table T5, σ_i =	405 psi
P _{CRR} =	241.1 psi				
FS =	2.0				
$P_{ACRR} = P_{CRR}/FS =$	120.6 psi	Allowable Reduc	ed Short Term Buck	ding pressure o	luring pull
Internal Ballasted and External Fluid 1 = (F	P _B +P _{ACRR})-P _{DF1}	102.67 psi	Pull Back Condition	- Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (F	$P_B + P_{ACRR}$)- P_{DF2}	102.21 psi	Pull Back Condition	- Option 4	OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

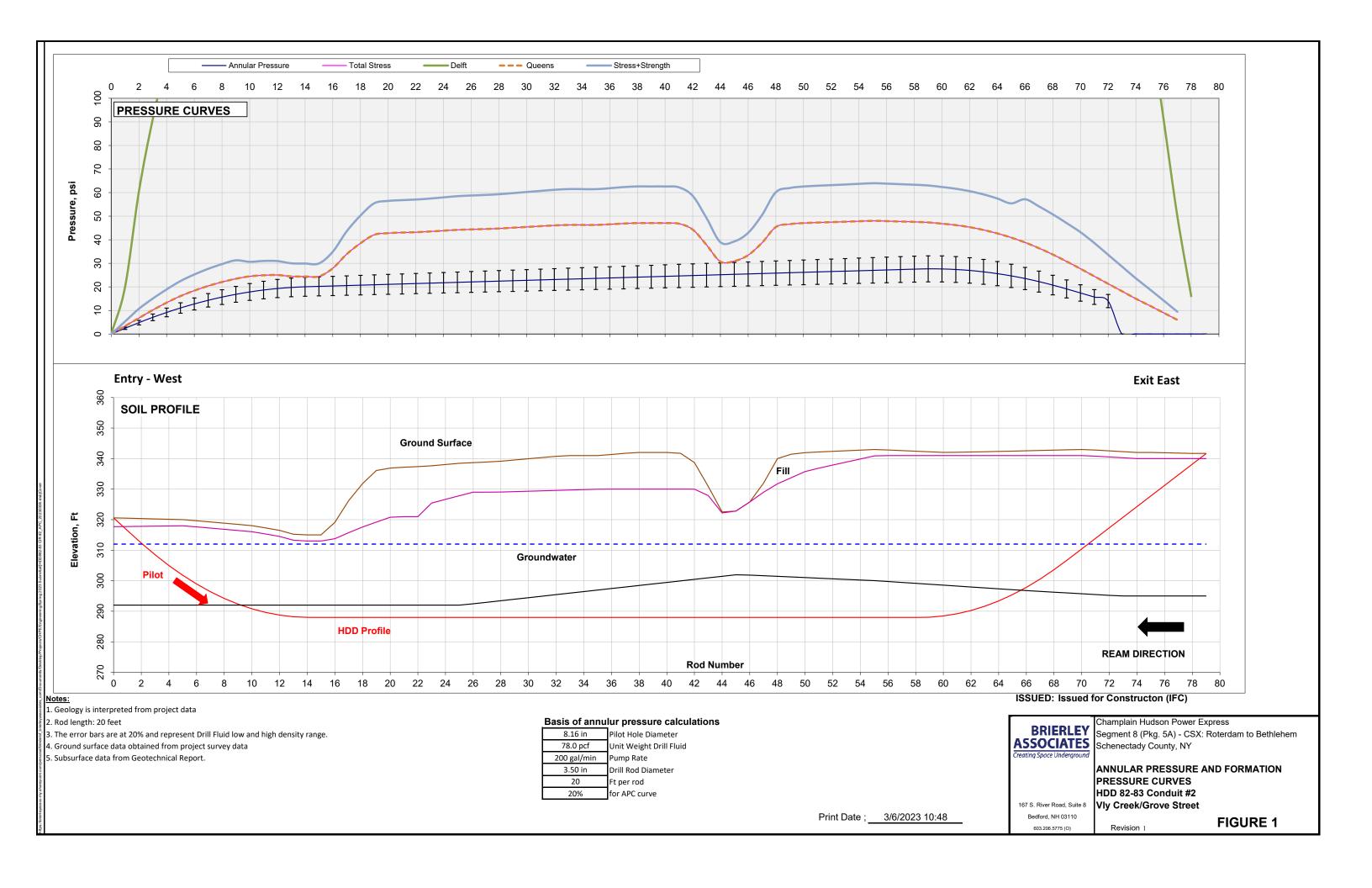
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 83A Circuit #1

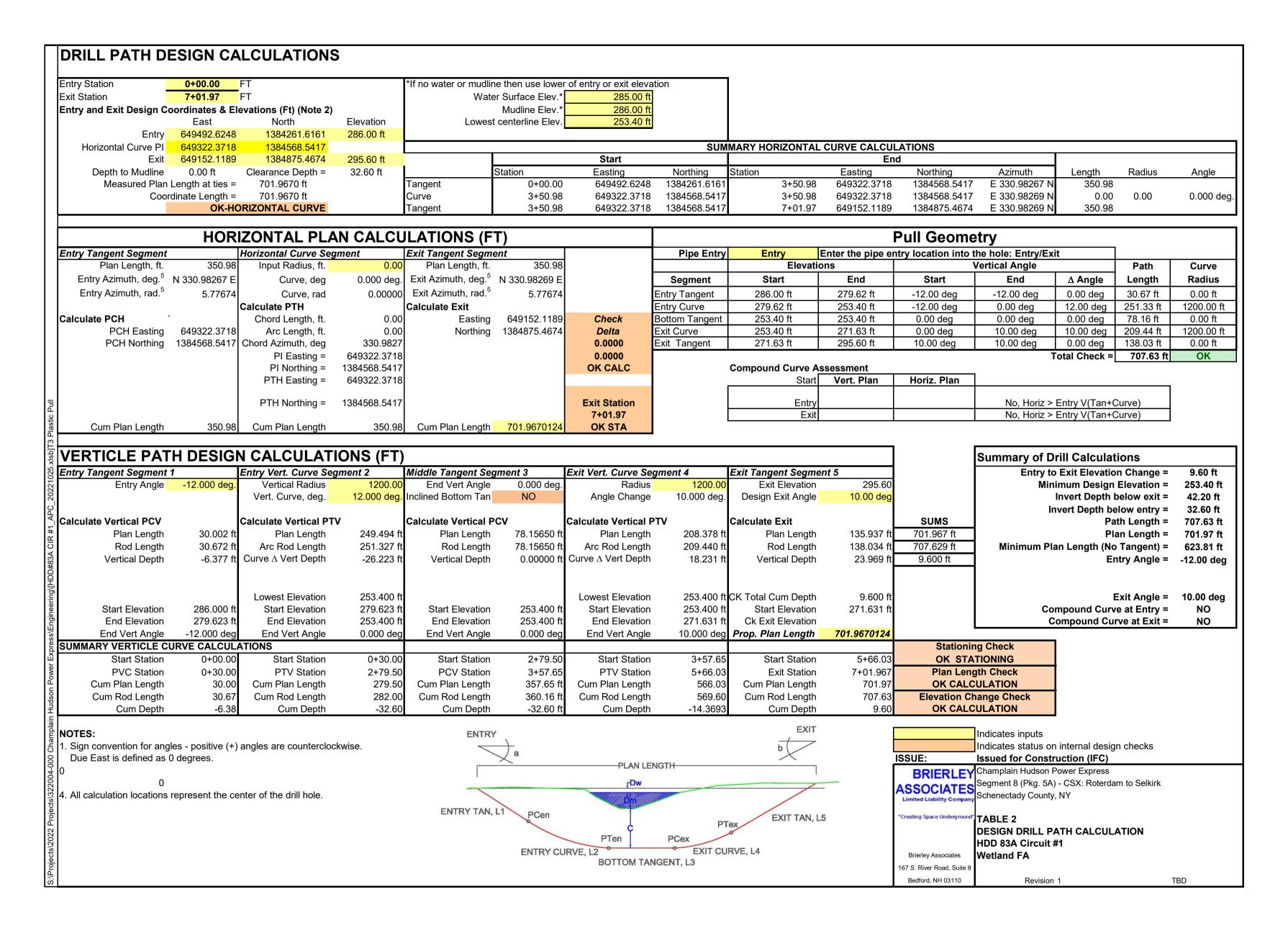
Wetland FA

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION
Appendix	

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	30.7 ft	α =	-12.0 °	-0.2094	
L3 =	251.3 ft				1,200.0 ft
L4 =	78.2 ft	χ =	0.0 °	0.0000	
L5 =	209.4 ft				1,200.0 ft
L6 =	138.0 ft	β =	10.0 °	0.1745	
LT =	807.6 ft				

INPUT: Assumed Friction Factors

μ _G =	0.10	dry + rollers
μ _b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

IPS

Estimated for pull

INPUT: Pipe Properties Material HDPE

	Matchai	1101 -		IF O			
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F		
Pile/Bundle Diam.	14.25	BUNDLE	PIPE/BUND	LE			
Materi	al Density, γ	59.28 pcf					
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bundle				
Pipe Dry W	/eight, W _P =	17.36 lb/ft	Pipe or Bundle				
Min. Wall T	hickness, t_m	1.194 in	For design installation pull stress				
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches		
Avg. Inside D	iameter, D _{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042		
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F			
Poisso	n Ratio, μ =	0.45					
Ovality	Factor, f _o =	0.84	2%				
Buckling	Safety, N =	2.5					
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2				
Pressure Ratir	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]		
INPUT: Assumed Fluid Densities/Elevations							

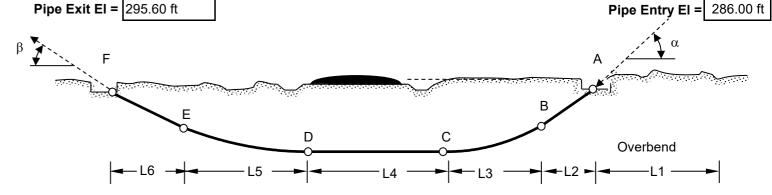
Ballast Density	62.4
Drill Fluid Density	
Drill fluid elevation, H_F =	286.00 ft
Ballast Water El., H _W =	286.00 ft
Lowest Invert El., El., =	253 40 ft

pcf

Calculated Pipe and Fluid Properties

•		_
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	Ī
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
		I

ASTM EQ 18: Hydrokinetic, $\Delta T =$ 1.25 lb/ft Comparison Only @ 8psi


Calculated Buoyant Forces

_	Pipe	Air Filled	Ballasted
On Gro	und, w _a /w _{af} =	17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

Entry

(schematic, to show definition of variables only)

Calculated Pull Force						ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,432 lb	113 psi	OK	1,432 lb	113 psi	OK	OK	OK
В	1,731 lb	44 psi	OK	1,759 lb	44 psi	OK	OK	OK
С	3,498 lb	120 psi	OK	2,557 lb	97 psi	OK	OK	OK
D	3,109 lb	78 psi	OK	2,168 lb	55 psi	OK	OK	OK
Е	6,967 lb	208 psi	OK	4,113 lb	136 psi	OK	OK	OK
F	8,861 lb	224 psi	OK	5,124 lb	129 psi	OK	OK	OK
ASSESS	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 101.60$ psi Ballas							OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.949756365	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.097178997	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	224 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	3.53	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	17.66	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

ASSOCIATES Limited Liability Company

BRIERLEY Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Undergroun

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 83A Circuit #1 Wetland FA

Brierley Associates 167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 83A Circuit #1

Wetland FA

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced							
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point				
Quantity of Pipes in Hole, Q =	1		-				
Pipe Material	PE4710	INPUT RESI	NPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test	of 10,000 hours			
Standard Dimension	3						
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Ir	on Pipe Size"			
DR = OD/Minimum Wall	9						
Outside Diameter, D _o =	3.500 in	Standard Ma	nufacturer's Data Sheets				
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets				
Minimum Wall, t_{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets				
Wall Section Area, A_W =	3.80093926	$A_W = \pi^*((D_o/2$	$((D_0-2t)/2)^2$				
Unit OD Surface Area, in ² /LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12 * \pi * D_{OD}$					
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$					
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$					
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837					
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED C	hapter 5			
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*					
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating or	nly			
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastic	s WL122 for PE4710			
Weight Dry, W =	15.70	Lb/LF	_				
Tensile Yield, Ty psi =	3,500 psi	@73°F		350 determined by ASTM D638			
Load Duration		Long Term					
Duration Time	10 hours	50 yrs					
Design Temperature, °F	73 deg F	73 deg F	Assumed	ion avality			
Design Ovality, % Factor of Safety, FS =	2% 2.5	2% 2.5	See Sheets 4 of 5 for des Industry Practice	sign ovality			
Modulus for given load duration, E =	65,000 psi	28,000 psi	1	a. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45	0.45		duration is less than 12 hours			
Ovality factor $f_0 =$	0.84	0.84	Reference 1: Based on S				
Temperature factor, $f_t =$		1.00	Source: WL Plastics WL1				
	1.00	1.00]	: : =			

Project Fluids

uius						
	Pipe Internal	Expected	Heavy	В	Buoyant forc	es
	Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, $W_P =$	15.70 lb/ft	From MFG. Data Sheet
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	2.44 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W _{D1} =	5.21 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	5.35 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$
Buoya	ant Unballasted	d Fluid 1, B _{B1} =	10.49 lb/ft	W _P -W _{D1}		
Buoya	ant Unballasted	d Fluid 2, B _{B2} =	10.35 lb/ft	$W_{P}-W_{D2}$		
Ballasted on ground, B _G = 18.			18.14 lb/ft	W_P+W_B		
Buoyant Ballasted in Fluid 1, BB _{B1} = 12.93 lb/ft			12.93 lb/ft	BG-W _{D1}		
Buoyant Ballasted in Fluid 2, B _{BB2} = 12.80 lb/ft			12.80 lb/ft	BG-W _{D2}		

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 83A Circuit #1

Wetland FA

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

46.1 psi

	Long renn	Design for operating con-
Design Temperature, °F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
•	-	

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$ **Short Term** Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi

107.0 psi CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Ballast depth to invert, H_B Max. Depth to Invert 42.20 ft 32.60 ft

Pipe Invert Internal P	ressure, P _I	
Air Ballast, P _A	0.00 psi	

Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$

 $P_a = P_{CR}/FS$

Pipe Invert External Pressure, PE 17.74 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$

Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 32.60 ft

14.19 psi Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

14.19 psi

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = (P _B +P _a)-P _W
Internal Air and External Water = $(P_A + P_a) - P_W$

S	Short Term	Long Term
1	89.24 psi	28.34 psi
2	88.78 psi	27.89 psi
1	103.43 psi	42.53 psi
2	102.97 psi	42.08 psi
Ν	106.97 psi	46.08 psi
Ν	92.79 psi	31.89 psi

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions

Drill Fluid depth to invert, H_{DF}

18.19 psi

Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 83A Circuit #1

Wetland FA

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

/		
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.94976	
$r = \sigma_i/2*(SSAS) =$	0.09718	Example from Table T5, $\sigma_i = 224 \text{ psi}$
P _{CRR} =	254.0 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	127.0 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	123.45 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}$)- P_{DF2}	123.00 psi Pull Back Condition - C OK as >0

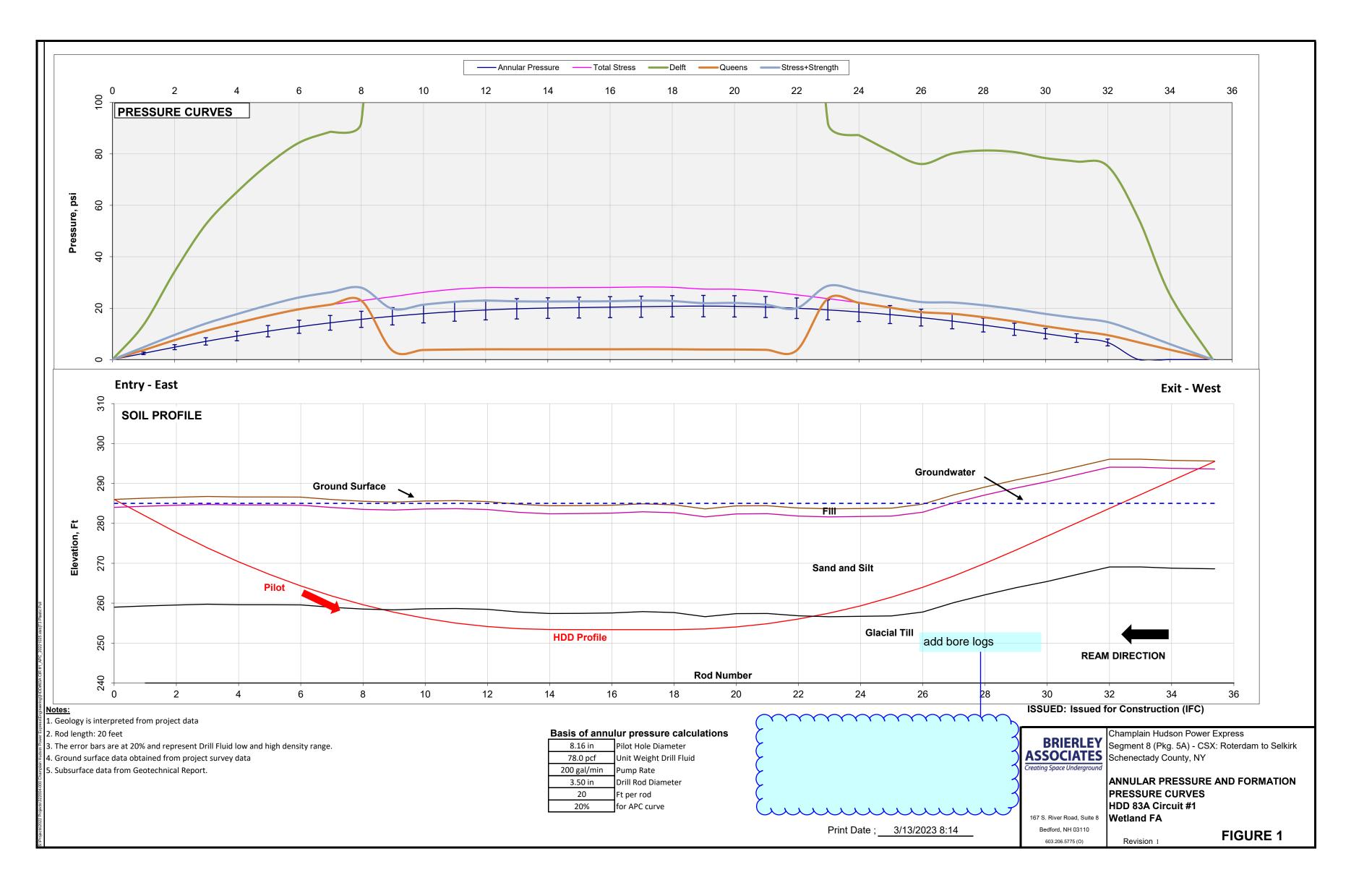
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Projects\2022 Projects\222004-000 Champlain Hudson Power Express\Engineering\(\text{HDD#83A CIR #f_APC_20221025.xlsb]T3 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 83A Circuit #2

Wetland FA

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit

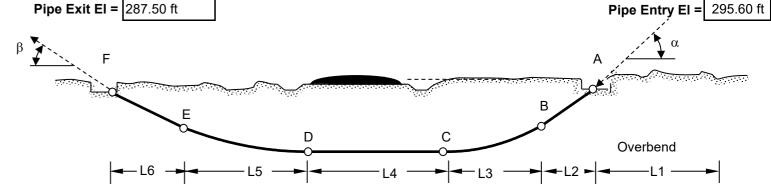

Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF



Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

			Calculated Pull Force							ASSESS	
			POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < 3	SPS
			FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
			Α	1,290 lb	94 psi	OK	1,290 lb	94 psi	OK	OK	OK
			В	2,240 lb	62 psi	OK	2,378 lb	66 psi	OK	OK	OK
			С	3,631 lb	126 psi	OK	2,961 lb	107 psi	OK	OK	OK
) (eg F		D	3,428 lb	96 psi	OK	2,758 lb	77 psi	OK	OK	OK
			E	7,721 lb	240 psi	OK	4,865 lb	160 psi	OK	OK	OK
	10-inches		F	8,302 lb	232 psi	OK	5,126 lb	143 psi	OK	OK	OK
	rinputs ap	pear coi	rrectassess P	ull Restricted Bu	ickling Capac	ity, P _{PA} > ΔP invert	$P_{PA} = P_A F_R =$	101.16 psi	Ballas	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	41,235 lb	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, $F_R =$	0.945652609	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =[0.104202017	r = σ _T /2SPS
Maximum applied pull Stress, $\sigma_T =$	240 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	3.53	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP_U invert =	17.66	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

ASSOCIATES Limited Liability Company

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Undergrou

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 83A Circuit #2

Wetland FA

Brierley Associates 167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

BRIERLEY Champlain Hudson Power Express

Drill Fluid (unit drag) Comparison Only @ 8psi

ASTM EQ 18: Hydrokinetic, $\Delta T =$

Volume Outside, V_{DO}

Volume Inside, V_{DI}

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

0.630 cf/LF

0.368 cf/LF

2.03 lb/ft

0.93 lb/ft

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 83A Circuit #2

Wetland FA

"Creating Space Underground"

BRIERLEY

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced Design Working Pressure, Pwork Test Pressure, P_{TEST} At high point 250 psi 0 psig Quantity of Pipes in Hole, Q = 1 PE4710 Pipe Material INPUT RESIN MATERIAL: PE3408, PE3608, PE4710 445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours Standard Dimension 10 **IPS** IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size" Pipe measurement standard 9 DR = OD/Minimum Wall Outside Diameter, Do = 10.750 in Standard Manufacturer's Data Sheets Avg. Inside Diameter, D_i = 8.219 in Standard Manufacturer's Data Sheets Minimum Wall, t_{min} = Standard Manufacturer's Data Sheets 1.194 in $A_W = \pi^*((D_0/2)^2 - ((D_0-2t)/2)^2)$ Wall Section Area, A_W = 35.85681985 Unit OD Surface Area, in LF, AoD = $A_{OD} = 12*\pi*D_{OD}$ 405.27 in^2/LF

 $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.630 cf/LF

> Unit Inside Volume, V_{Di} = $V_{Di} = \pi^* (D_i/2)^2 / 144$ 0.368 cf/LF HDB = 1,600 psi

Based on PPI Publication TR-4/2015 and ASTM 2837 Based on PPI PE Handbook 2nd ED Chapter 5 Design Factor for HDB, DF = 0.63

Hydrostatic Design Stress, HDS = 1008 psi HDS = HDB*DF

Environmental Factor, Af_e = Reference 2: Use for pressure rating only

1.410 g/cc Average from WL Plastics WL122 for PE4710 Density = 59.28 pcf Weight Dry, W = 15.70 Lb/LF

<u>@</u>73°F 3,500 psi

Tensile Yield, Ty psi = Minimum from ASTM D3350 determined by ASTM D638 Load Duration **Short Term Long Term**

10 hours **Duration Time** 50 yrs 73 deg F 73 deg F Assumed

Design Temperature, °F Design Ovality, % See Sheets 4 of 5 for design ovality 2% 2% Factor of Safety, FS = 2.5 Industry Practice 2.5

Modulus for given load duration, E = 28,000 psi 65,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314

-11.73 lb/ft

Poisson Ratio, υ = 0.45 0.45 WL118: Use 0.35 if load duration is less than 12 hours Ovality factor f_o = 0.84 0.84 Reference 1: Based on Selected Design Ovality

Temperature factor, f_t = 1.00 1.00 Source: WL Plastics WL118

Project Fluids

	Pipe Internal	Expected	Heavy
	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ_{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-33.46 lb/ft		
Buoya	-34.72 lb/ft		
	38.69 lb/ft		
Buoyant Ballasted in Fluid 1, BB_{B1} =			-10.47 lb/ft

Buoyant Ballasted in Fluid 2, B_{BB2} =

	Buoyant forc	
Dry Weight Pipe on ground, W_P =	15.70 lb/ft	F

Г From MFG. Data Sheet Internal Ballast Weight, $W_B = 22.99 \text{ lb/ft} W_B = V_{Di}^* \gamma_{INT}$ Expected Displaced Fluid Weight, $W_{D1} = \frac{1}{49.16} \frac{1}{100} W_{D1} = V_{D0} \gamma_{EXT1}$ Heavy Displaced Fluid Weight, W_{D2} = $\int 50.42 \text{ lb/ft } |W_{D2} = V_{Do}^* \gamma_{EXT2}$

 W_P-W_{D1} $W_P - W_{D2}$ W_P+W_B BG-W_{D1} BG-W_{D2}

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 83A Circuit #2

Wetland FA

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long reini	Design for operating cor
Design Temperature, °F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{os} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$ **Short Term** Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert

Ballast depth to invert, H_B 40.70 ft

Drill Fluid depth to invert, H_{DF} 32.60 ft Pipe Invert External Pressure, PE

32.60 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 14.32 psi

17.90 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 18.36 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 14.32 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A + P_a) - P_W$

s	Short Term	Long Term
1	89.07 psi	28.18 psi
2	88.61 psi	27.72 psi
1	103.39 psi	42.50 psi
2	102.94 psi	42.04 psi
N	106.97 psi	46.08 psi
N	92.65 psi	31.76 psi

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 83A Circuit #2

Wetland FA

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = ########
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

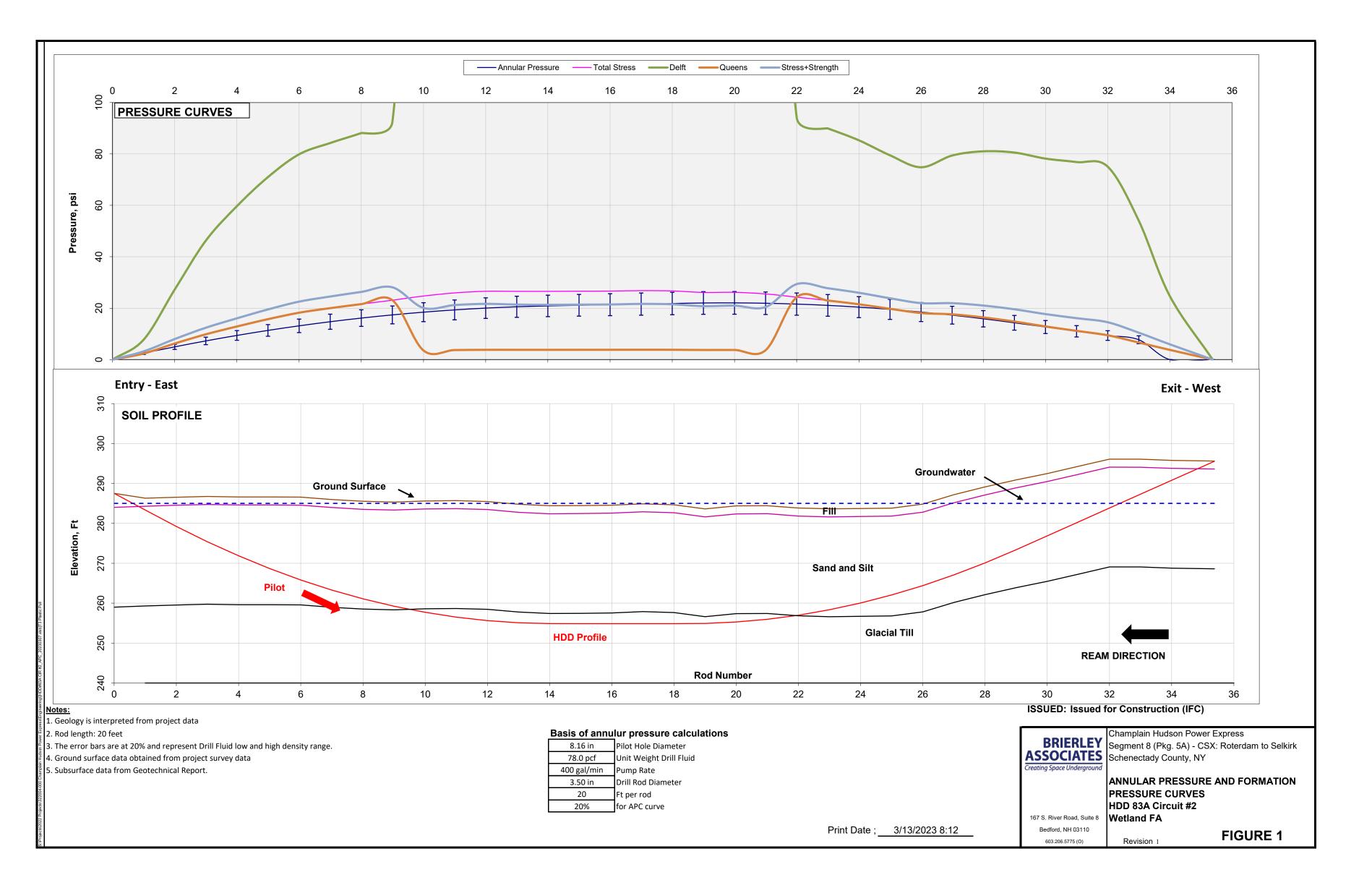
12 Hr	Pcr = 267.4 psi
1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
1,150 psi	Design Assumption as Maximum
0.94565	
0.10420	Example from Table T5, $\sigma_i = \boxed{240 \text{ psi}}$
252.9 psi	
2.0	
126.5 psi	Allowable Reduced Short Term Buckling pressure during pull
P _B +P _{ACRR})-P _{DF1}	122.87 psi Pull Back Condition - C OK as >0
$P_B + P_{ACRR}$)- P_{DF2}	122.41 psi Pull Back Condition - C OK as >0
	1,400 psi 1,150 psi 0.94565 0.10420 252.9 psi 2.0 126.5 psi P _B +P _{ACRR})-P _{DF1}

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f_T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S./Projects/2022 Projects/2020 Champlain Hudson Power Express/Engineering/(HDD#83A CiR #2_APC_20230307.xisb)T3 Plastic Pull

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 84 Conduit #1

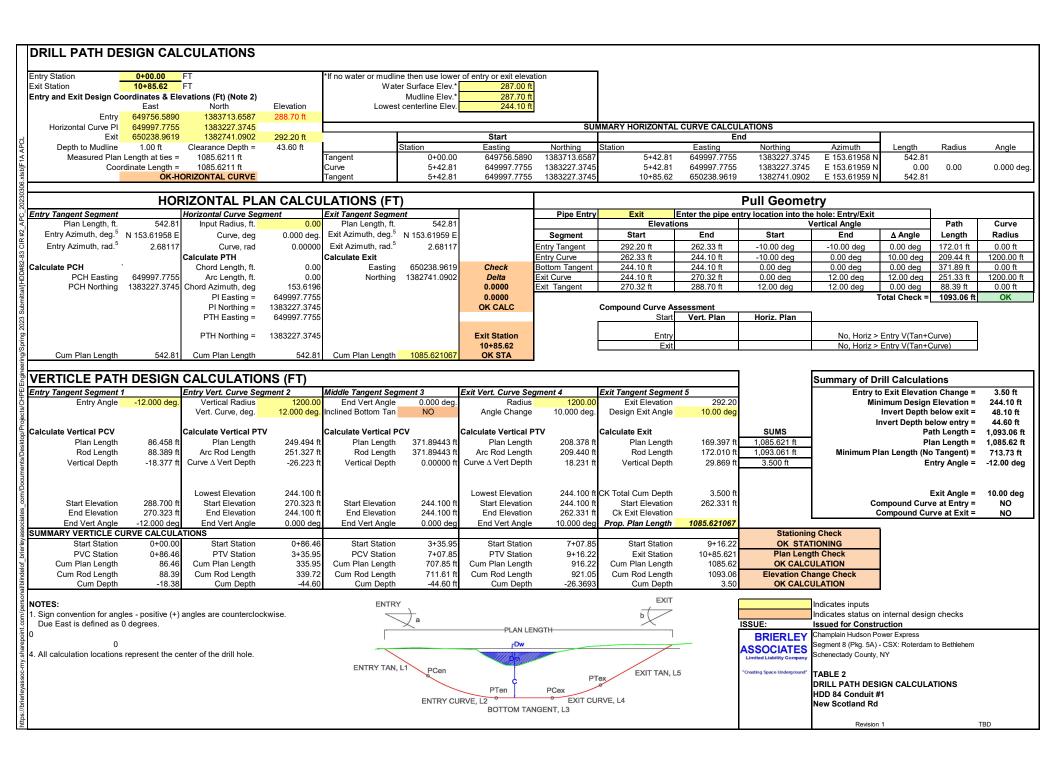
New Scotland Rd

ISSUE: Issued for Construction

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 6-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/6/2023	1	Issued for Construction (IFC)	ABL

Pull Geometry

Lengt	ths (Path)		Angles	Radius, R	
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	172.0 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	371.9 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	88.4 ft	β =	12.0 °	0.2094	
LT =	1193.1 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{\text{Drill Fluid Shear Stress}}$

INPUT: Pine Properties

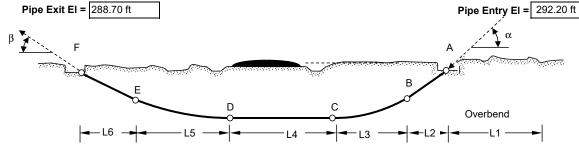
INFUI	. Fipe Fio	pernes			_	
	Material	HDPE		IPS		
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F	
Pile/Bundle Diam.	14.25	BUNDLE	PIPE/BUND	LE		
Materia	al Density, γ	59.28 pcf				
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bun	dle		
Pipe Dry W	eight, W _P =	17.36 lb/ft	Pipe or Bun	Pipe or Bundle		
Min. Wall Thickness, t_m		1.194 in	For design installation pull stress			
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches	
Avg. Inside Di	ameter, D _{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042	
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F		
Poisso	n Ratio, μ =	0.45				
Ovality	Factor, f_o =	0.84	2%			
Buckling	Safety, N =	2.5				
Hydrostatic Design S	tress, HDS =	1,000 psi	HDB/2			
Pressure Ratir	ng, PR _(80F) =	250 psi	PR = 2HDS	$F_TA_F/(D$	R-1) [F _T =1]	

INPUT: Assumed	d Fluid Dens	ities/Elevations
Ballast Density	62.4	pcf
Drill Fluid Density	78	pcf Estimated for pull
rill fluid elevation, H _F =	287.70 ft	
Ballast Water El., H _W =	287.70 ft	
Lowest Invert El., El _m =	244.10 ft	

Calculated Pipe and Fluid Properties

se and i laid i loperties		
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V _{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
EQ 18: Hydrokinetic, $\Delta T =$	0.81 lb/ft	Comparison Only @ 8ps

Calculated Buoyant Forces


ASTM

-	Pipe	Air Filled	Ballasted
On Gro	und, w _a /w _{af} =	17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force							ASS	ESS
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ _T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Air	Ballast
Α	2,108 lb	182 psi	OK	2,108 lb	182 psi	OK	OK	OK
В	3,548 lb	89 psi	OK	3,817 lb	96 psi	OK	OK	OK
С	5,231 lb	164 psi	OK	4,612 lb	148 psi	OK	OK	OK
D	6,408 lb	162 psi	OK	5,789 lb	146 psi	OK	OK	OK
E	11,415 lb	320 psi	OK	8,383 lb	244 psi	OK	OK	OK
F	13,218 lb	333 psi	OK	9,224 lb	233 psi	OK	OK	OK
ASSESS P	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = \frac{98.54 \text{ psi}}{98.54 \text{ psi}}$ Ballasi							

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

TBD

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	-,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.921188217	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.144958281	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	333 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	4.72	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔPu invert =	23.62	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_H =

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

BRIERLEY Champlain Hudson Power Express

ASSOCIATES | Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 84 Conduit #1 New Scotland Rd

Revision 1

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 84 Conduit #1
New Scotland Rd

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

	Sources:	ASTM D3350	and Plastic Pip	e Institute Pui	blications and as referenced		
	Design Working Pro	essure, P _{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point		
	Quantity of Pipe	s in Hole, Q =	1				
		Pipe Material	HDPE	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710		
	ASTM D3350 Cell	Classification		Design resin	with minimum PENT test of 10,000 hours		
	Standa	rd Dimension	3				
	Pipe measuren	nent standard	IPS	IPS "Iron Pipe	e Size" of DIPS "Ductile Iron Pipe Size"		
	DR = OD/N	Minimum Wall	9				
	Outside D	Diameter, D _o =	3.500 in	Standard Ma	nufacturer's Data Sheets		
	Avg. Inside I	Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets		
3	Minimu	um Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets		
	Wall Section	on Area, A _W =	3.801889456	$A_W = \pi^*((D_o/2))$	$(2)^2 - ((D_0 - 2t)/2)^2)$		
GOIV.O.	Unit OD Surface Area	, in 2 /LF, A _{OD} =	131.95 in^2/LF	$A_{OD} = 12*\pi*D$	ООР		
0000	Unit Outside \	Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)$) ² /144		
5	Unit Inside	Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144		
		HDB =	1,600 psi	Based on PP	I Publication TR-4/2015 and ASTM 2837		
3	Design Factor t	for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5			
	Hydrostatic Design S	Stress, HDS =	1000 psi	HDS = HDB*DF			
lanna	Environmenta	I Factor, Af _e =	1	Reference 2:	Use for pressure rating only		
250		Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710		
91		eight Dry, W =	1.66	Lb/LF			
doug		Yield, Ty psi =	3,500 psi	_	Minimum from ASTM D3350 determined by ASTM D638		
6		Load Duration		Long Term			
		Duration Time mperature, °F	10 hours 73 deg F	50 yrs 73 deg F	Assumed		
0.000		gn Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality		
5		of Safety, FS =	2.5	2.5	Industry Practice		
5	Modulus for given load	duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314		
	Pois	son Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours		
	Ova	ality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality		
8	Temperat	ure factor, f _t =	1.00	1.00	Source: WL Plastics WL118		
) manage	Project Fluids						
2		Pipe Internal	Expected	Heavy	Buoyant forces		
	Full	Ballast		External Fluid	Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ From MFG. Data Sheet		
2	Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, $W_B = \frac{2.44 \text{ lb/ft}}{2.44 \text{ lb/ft}}$ $W_B = V_{Di}^* \gamma_{INT}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ $W_{D1} = V_{D0}^* \gamma_{FXT1}$		
inda.	Donoite at -	γ _{INT} 62.4	γ _{EXT1}	γ _{EXT2}	5. 56 (2.0.)		
	Density, γ =	ant Unballasted			Heavy Displaced Fluid Weight, $W_{D2} = 5.35 \text{ lb/ft}$ $W_{D2} = V_{Do}^* \gamma_{EXT2}$ $W_P - W_{D1}$		
0.00			f Fluid 1, B _{B1} =	-3.55 lb/ft	W_P - W_{D2}		
200	Биоуг		in ridid 2, $B_{B2} =$ in ground, $B_G =$	-3.69 lb/ft 4.10 lb/ft	W_P+W_B		
3	_	Dallasted Of	i giouna, D _G –	4.10 ID/IL	AAB.AAB		

-1.24 lb/ft

 $BG-W_{D1}$

 $BG-W_{D2}$

Buoyant Ballasted in Fluid 1, BB_{B1} = -1.11 lb/ft

Buoyant Ballasted in Fluid 2, B_{BB2} =

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 84 Conduit #1

New Scotland Rd

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2 \text{+HDB+f}_{1/2}(DR-1)$

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

 $P_{RS} = 1.5*PR$

Design Temperature, ${}^{\circ}F = \boxed{73 \text{ deg F}}$ Pressure Rating, PR = $\boxed{250 \text{ psi}}$ PR = 2*HDS*f_t*Af_e/(DR-1)

Maximum Ocassional Surge, P_{OS} = $\boxed{500 \text{ psi}}$ Pos = 2*PR

OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

375 psi

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

Design Temperature, F = $\frac{73 \text{ deg F}}{P_{CR}} = \frac{73 \text{ deg F}}{267.4 \text{ psi}} = \frac{73 \text{ deg F}}{115.2 \text{ psi}}$ $P_{a} = P_{CR}/FS = \frac{107.0 \text{ psi}}{107.0 \text{ psi}} = \frac{46.1 \text{ psi}}{115.2 \text{ psi}}$

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 48.10 ft Ballast depth to invert, H_B 44.60

44.60 ft Drill Fluid depth to invert, H_{DF}

44.60 ft

Pipe Invert Internal Pressure, P

Air Ballast, P_A 0.00 psi Full Ballast, $P_B=\gamma_{INT}*(H_B+D_o/24)/144$ 19.39 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E <= 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	82.74 psi	21.84 psi	Pull Back C
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	82.12 psi	21.22 psi	Pull Back C
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.13 psi	41.23 psi	Pull Back C
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.51 psi	40.61 psi	Pull Back C
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term
Internal Air and External Water = $(P_A+P_a)-P_W$	87.59 psi	26.69 psi	Operational

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4
Long Term Operating Conditions
Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84 Conduit #1

New Scotland Rd

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

BRIERLEY

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR}^* f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr = 267.4 psi	
SAS =	1,400 psi	Design D	epth in DF, H _{MDF} = 0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpti	on as Maximum	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.92119		_	
$r = \sigma_i/2*(SSAS) =$	0.14496		Example from Table T5, σ_i =	333 psi
P _{CRR} =	246.4 psi			
FS =	2.0			
$P_{ACRR} = P_{CRR}/FS =$	123.2 psi	Allowable Reduc	ed Short Term Buckling pressure	e during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	98.94 psi	Pull Back Condition - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	98.32 psi	Pull Back Condition - Option 4	OK as >0

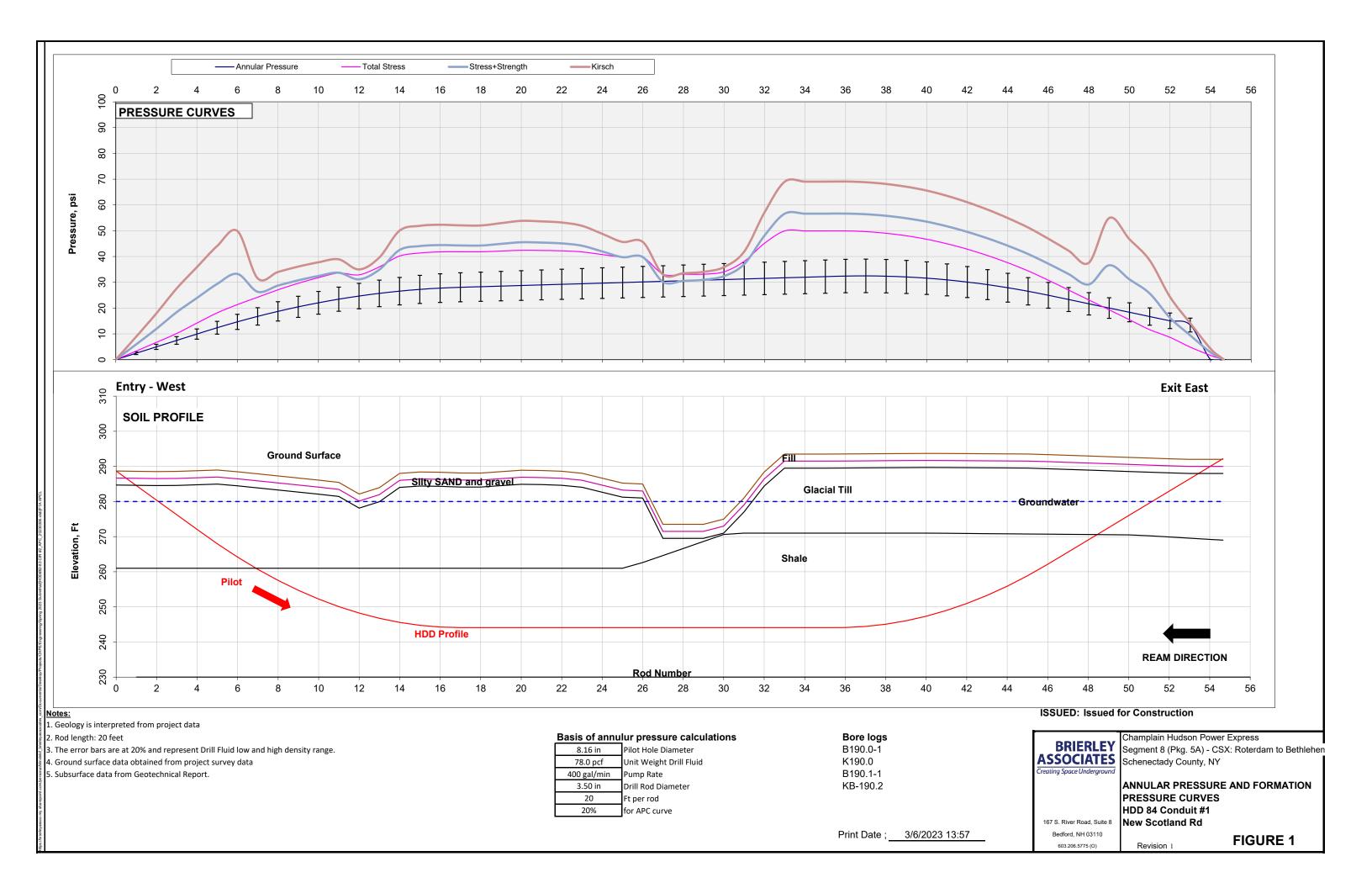
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

≍	· · · · · · · · · · · · · · · · · · ·					
ates_cor	f _T	Time factor for pull				
associates	1.00	Up to 1 hour pull	1			
brierley	0.95	Up tp 12 hours pull	12			
٦	N 91	Un to 24 hours	24			

https://brierleyassoc-my.sharepoint.com/personal/blindelof_brierleyassociates_com/Doc

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 84 Conduit #2

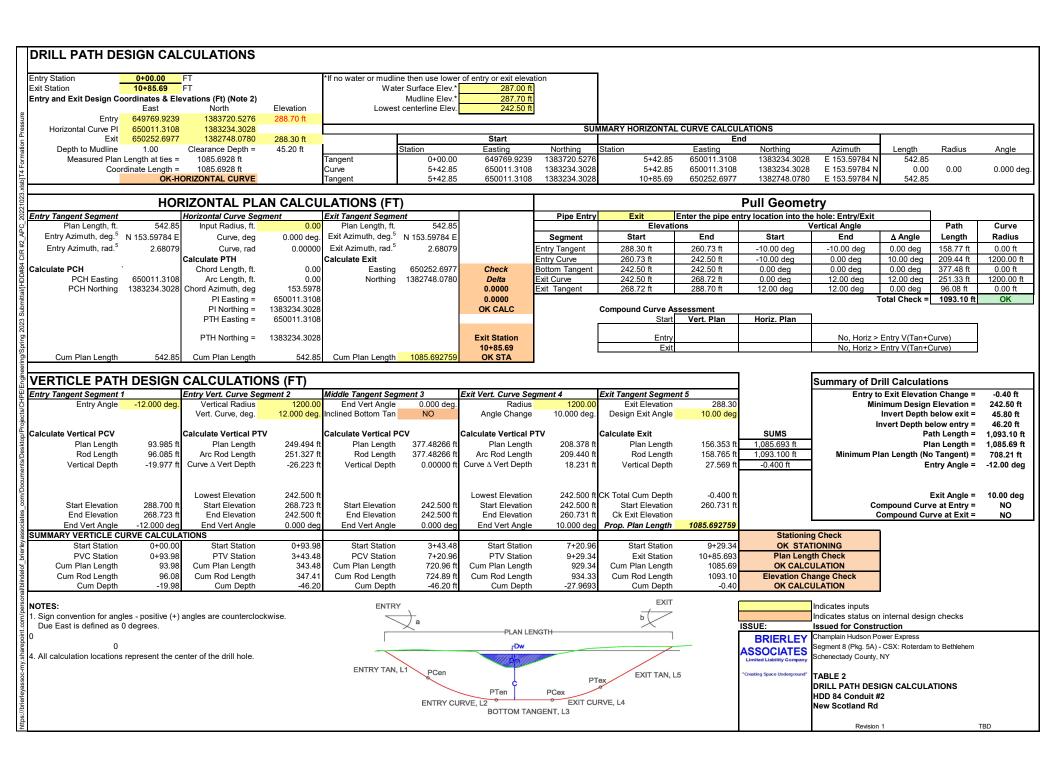
New Scotland Rd

ISSUE: Issued for Construction

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 6-Mar-2023

DATE REV		DESCRIPTION		
10/23/2022	0	Design Submittal	ABL	
3/6/2023	1	Issued for Construction (IFC)	ABL	

Pull Geometry

Leng	ths (Path)		Angles	Radius, R				
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft			
L2 =	158.8 ft	α =	-10.0 °	-0.1745				
L3 =	209.4 ft				1,200.0 ft			
L4 =	377.5 ft	χ =	0.0 °	0.0000				
L5 =	251.3 ft				1,200.0 ft			
L6 =	96.1 ft	β =	12.0 °	0.2094				
LT =	1193.1 ft							

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

Material	HDPE	IPS		
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F		
Pile/Bundle Diam. 14.25	PIPE	PIPE/BUNDLE		
Material Density, γ	59.28 pcf			
Outside Diameter, D _{OD}	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P =	15.70 lb/ft	Pipe or Bundle		
Min. Wall Thickness, t_m	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D _{IA}	BUNDLE	Bundle Multiplier F _D 1.0000		
12 Hr Pullback Modulus, E_T =	65,000 psi	@T = 73 deg F		
Poisson Ratio, μ =	0.45			
Ovality Factor, f _o =	0.84	2%		
Buckling Safety, N =	2.5			
Hydrostatic Design Stress, HDS =	1,000 psi	HDB/2		

250 psi

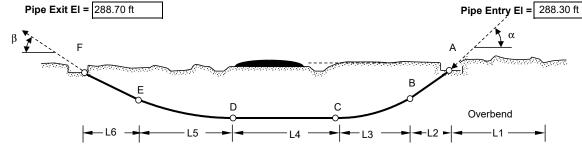
INPUT: Assumed Fluid Densities/Elevations						
Ballast Density	62.4	pcf				
Drill Fluid Density	78	pcf Estimated for pull				
Drill fluid elevation, H _F =	287.70 ft					
Ballast Water El., H _W =	287.70 ft					
Lowest Invert EI., $EI_m =$	242.50 ft					

Calculated Pipe and Fluid Properties

Pressure Rating, PR(80F) =

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V _{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ΔT =	0.81 lb/ft	Comparison Only @ 8ps

 $PR = 2HDSF_{\tau}A_{F}/(DR-1)[F_{\tau}=1]$


Calculated Buovant Forces

	Pipe	Air Filled	Ballasted
On Gro	ound, w _a /w _{af} =	15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force							ASSESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Pull Force, F _B Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Air	Ballast
Α	1,906 lb	182 psi	OK	1,906 lb	182 psi	OK	OK	OK
В	3,115 lb	87 psi	OK	3,374 lb	94 psi	OK	OK	OK
С	4,689 lb	163 psi	OK	4,145 lb	148 psi	OK	OK	OK
D	5,767 lb	161 psi	OK	5,224 lb	146 psi	OK	OK	OK
E	10,361 lb	321 psi	OK	7,637 lb	245 psi	OK	OK	OK
F	12,163 lb	339 psi	OK	8,490 lb	237 psi	OK	OK	OK
ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_{A}F_{R} = 98.37$ psi Ballasted OK								

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	,	SSPS = $\sigma_{PM}\pi D_{OD}^2((1/DR)-(1/DR^2))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.919605708	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.147531777	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	339 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	4.90	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	24.48	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_H =

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

BRIERLEY

Champlain Hudson Power Express

ASSOCIATES | Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 84 Conduit #2 New Scotland Rd

> Revision 1 TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 84 Conduit #2
New Scotland Rd

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced						
Design Working Pressure, P _{WORK} 250 psi				Test Pressure, P _{TEST} 0 psig At high point		
Quantity of Pipe	es in Hole, Q =	1				
Pipe Material HDPE			INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710		
ASTM D3350 Cell Classification			Design resin	Design resin with minimum PENT test of 10,000 hours		
Standard Dimension 10						
Pipe measurement standard IPS			IPS "Iron Pipe	e Size" of DIPS "Ductile Iron Pipe Size"		
DR = OD/Minimum Wall 9						
Outside I	Diameter, D _o =	10.750 in	Standard Ma	Standard Manufacturer's Data Sheets		
Avg. Inside	Diameter, D _i =	8.218 in	Standard Ma	nufacturer's Data Sheets		
Minim	um Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets		
OD Surface Area	$_{\rm i}$, in ² /LF, $A_{\rm OD}$ =	405.27 in^2/LF				
Unit Outside	Volume, V_{Do} =	0.630 cf/LF				
Unit Inside	Volume, V_{Di} =	0.368 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144		
	HDB =	1,600 psi	Based on PP	Based on PPI Publication TR-4/2015 and ASTM 2837		
		0.63	Based on PPI PE Handbook 2nd ED Chapter 5			
_						
		•		Use for pressure rating only		
i				Average from WL Plastics WL122 for PE4710		
				Minimum from ACTM D2250 determined by ACTM DC20		
				Minimum from ASTM D3350 determined by ASTM D638		
			-	Assumed		
		2%	2%	See Sheets 4 of 5 for design ovality		
	-			Industry Practice		
=				Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314		
	-			WL118: Use 0.35 if load duration is less than 12 hours		
	-			Reference 1: Based on Selected Design Ovality		
-	ture factor, f _t =	1.00	1.00	Source: WL Plastics WL118		
t Fluids						
	Pipe Internal	Expected	Heavy	Buoyant forces Dry Weight Pipe on ground, W _P = 15.70 lb/ft From MFG. Data Sheet		
Fluids				Internal Ballast Weight, $W_B = \frac{13.70 \text{ lb/ft}}{22.98 \text{ lb/ft}}$ $W_B = V_{Di}^* \gamma_{INT}$		
			Expected Displaced Fluid Weight, $W_{D1} = 49.16 \text{ lb/ft}$ $W_{D1} = V_{D0}^* \gamma_{EXT1}$			
			80	Heavy Displaced Fluid Weight, $W_{D2} = 50.42 \text{ lb/ft}$ $W_{D2} = V_{Do}^* \gamma_{EXT2}$		
		d Fluid 1, B _{B1} =	-33.46 lb/ft	W_p - W_{D1}		
Buoya	ant Unballasted	d Fluid 2, B _{B2} =		W_{P} - W_{D2}		
Ballasted on ground, B _G			38.68 lb/ft	W_P+W_B		
	esign Working Pr Quantity of Pipe ASTM D3350 Cel Standa Pipe measurer DR = OD/I Outside I Avg. Inside Minim Wall Secti OD Surface Area Unit Outside Unit Inside Design Factor drostatic Design Environmenta We Tensile Design Te Des Factor of Ulus for given load Pois OV Tempera t Fluids Pluids Pluids Pluids	esign Working Pressure, P_{WORK} Quantity of Pipes in Hole, $Q = Pipe$ Material ASTM D3350 Cell Classification Standard Dimension Pipe measurement standard DR = OD/Minimum Wall Outside Diameter, $D_0 = Avg$. Inside Volume, $V_{D0} = Avg$. Unit Outside Volume, $V_{D0} = Avg$. Unit Outside Volume, $V_{D0} = Avg$. Unit Inside Volume,	esign Working Pressure, P_{WORK} Quantity of Pipes in Hole, $Q = 1$ Pipe Material ASTM D3350 Cell Classification Standard Dimension Pipe measurement standard DR = OD/Minimum Wall Outside Diameter, $D_o = 10.750$ in Avg. Inside Diameter, $D_i = 10.750$ in Avg. Inside Diameter, $D_i = 10.750$ in Minimum Wall, $t_{min} = 1.194$ in Wall Section Area, $A_W = 1.194$ in Wall Section Area, $A_W = 1.194$ in Unit Outside Volume, $V_{Do} = 1.194$ in Unit Inside Volume, $V_{Do} = 1.194$ in Unit Inside Volume, $V_{Do} = 1.194$ in Design Factor for HDB, DF = 0.630 cf/LF Unit Outside Volume, $V_{Do} = 1.194$ in Unit Inside Volume, $V_{Do} = 1.194$ in	esign Working Pressure, P_{WORK} Quantity of Pipes in Hole, $Q = Pipe$ Material ASTM D3350 Cell Classification Standard Dimension Pipe measurement standard DR = OD/Minimum Wall Outside Diameter, $D_0 = Avg$. Inside Diameter, $D_0 = Avg$. Sandard Ma Standard Ma		

 $BG-W_{D1}$

 $BG-W_{D2}$

Buoyant Ballasted in Fluid 1, $BB_{B1} = -10.48 \text{ lb/ft}$

Buoyant Ballasted in Fluid 2, B_{BB2} = -11.74 lb/ft

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 84 Conduit #2 **New Scotland Rd**

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, Pu = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ Allowable Internal Pressure, P_A = 400 psi $P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

 $P_{RS} = 1.5*PR$

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 250 psi $P_{OS} = 2*PR$ Maximum Ocassional Surge, Pos = 500 psi

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

Pipe Invert External Pressure, PE

45.80 ft

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

375 psi

CALCULATE: Unconstrained Buckling Capacity of pipe

Maximum Reoccuring Surge, PRS =

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F $P_{CR} =$ 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 46.20 ft

Ballast depth to invert, H_B Drill Fluid depth to invert, HDF 45.80 ft

Pipe Invert Internal Pressure, Pi

0.00 psi Air Ballast, PA Full Ballast, P_B=γ_{INT}*(H_B+D_o/24)/144 20.04 psi

25.05 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 25.69 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 20.04 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	81.92 psi	21.03 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	81.28 psi	20.39 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	101.96 psi	41.07 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.32 psi	40.43 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	86.93 psi	26.04 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84 Conduit #2

New Scotland Rd

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR}^* f_r$

(ASTM F-1962 EQ. 22)

11VI F-1902 EQ. 22)				
Pull Duration Time =	12 Hr		Pcr = 267.4 psi	
SAS =	1,400 psi	Design Depth in D	F, H _{MDF} = 0.0 ft	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Ma	ximum	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91961		_	
$r = \sigma_i/2*(SSAS) =$	0.14753	Examp	le from Table T5, σ_i =	339 psi
P _{CRR} =	245.9 psi			
FS =	2.0			
$P_{ACRR} = P_{CRR}/FS =$	123.0 psi	Allowable Reduced Short	Term Buckling pressur	e during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	97.92 psi Pull Back	Condition - Option 3	OK as >0
Internal Ballasted and External Fluid 2 = (P _B +P _{ACRR})-P _{DF2}	97.28 psi Pull Back	Condition - Option 4	OK as >0

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

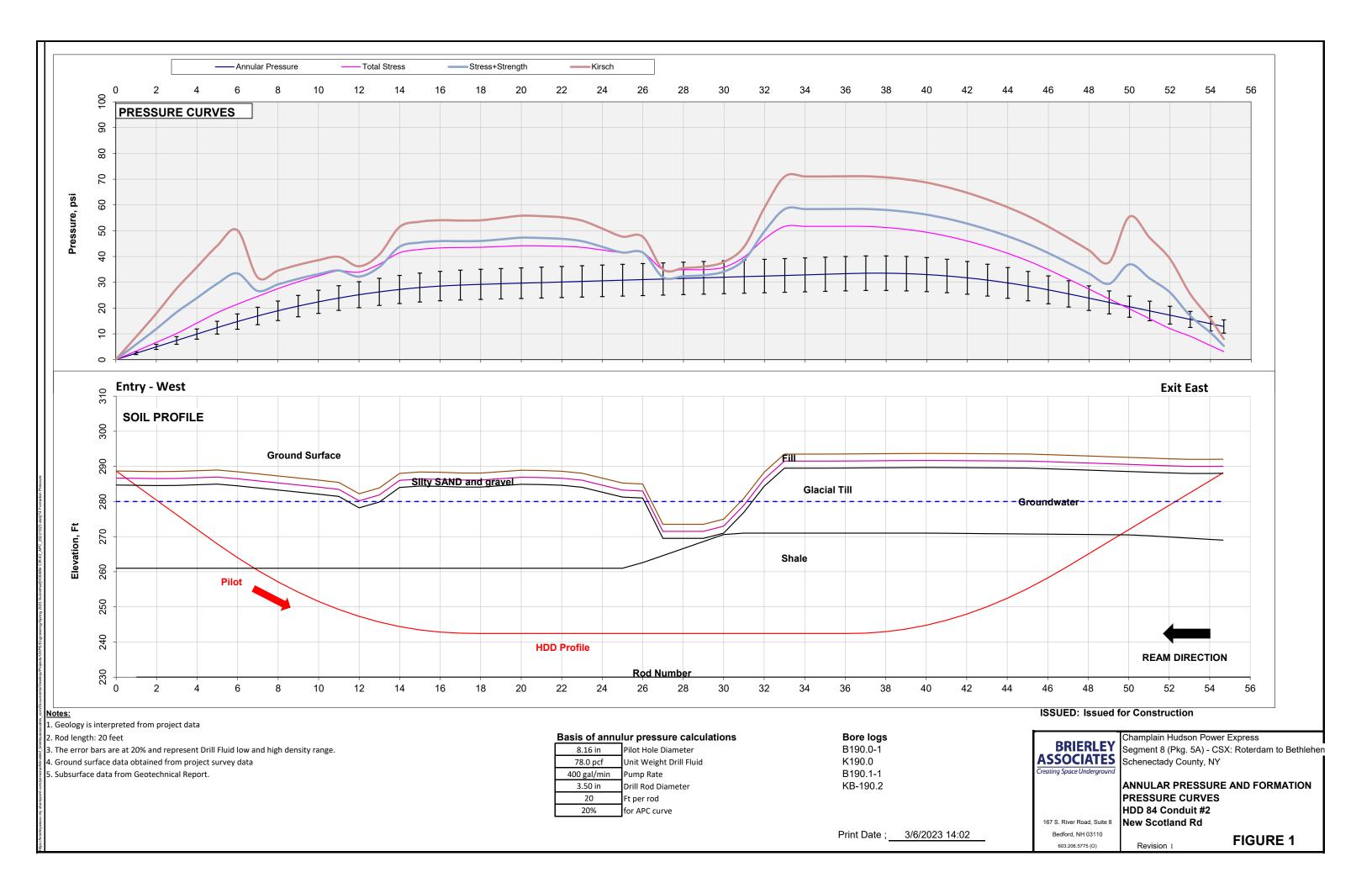
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

S C	f _T	Time factor for pull	
dassoci	1.00	Up to 1 hour pull	1
nielie	0.95	Up tp 12 hours pull	12
0	0.91	Up to 24 hours	24

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 84A Conduit #1

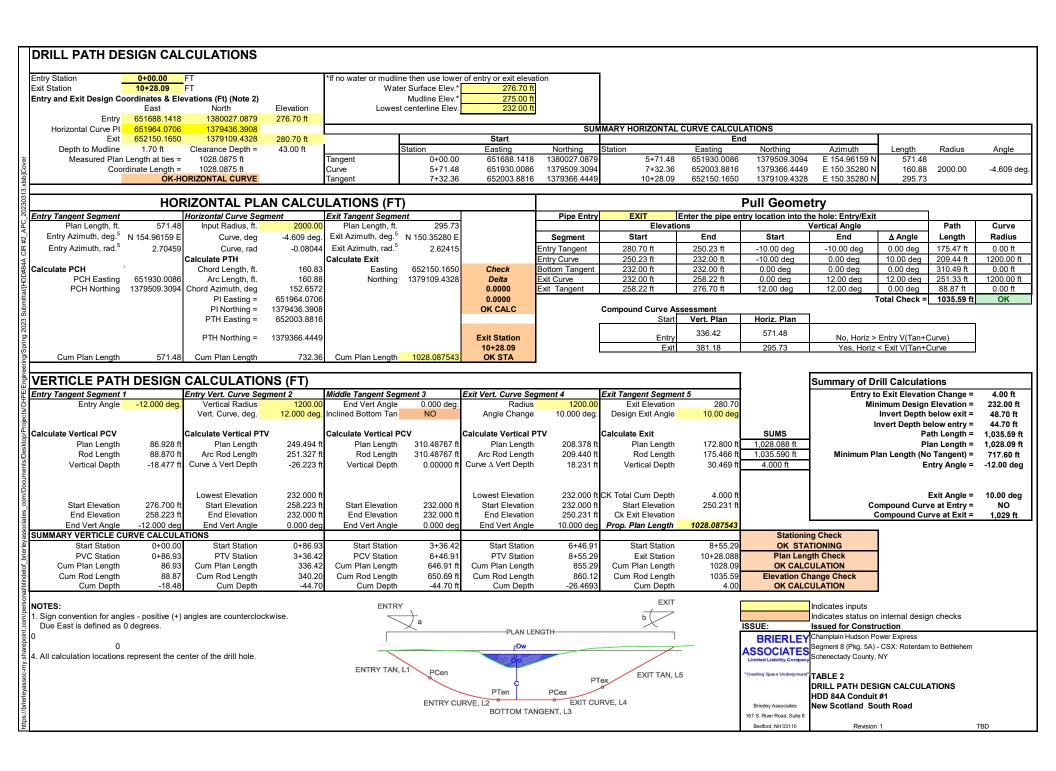
New Scotland South Road

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 14-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/14/2023	1	Issued for Construction (IFC)	ABL

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	175.5 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	310.5 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	88.9 ft	β =	12.0 °	0.2094	
IT=	1135 6 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

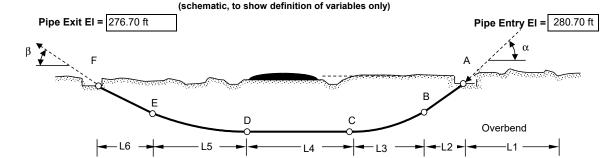
INPUT: Pipe Properties						
Material	HDPE		IPS			
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F		
e/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE				
Material Density, γ	59.28 pcf					
Outside Diameter, D_{OD}	14.25	Pipe or Bun	dle			
Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bundle				
Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress				
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches		
Avg. Inside Diameter, D_{IA}	BUNDLE	Bundle Mult	tiplier F _D	0.9042		
2 Hr Pullback Modulus, E _T =	65,000 psi	@T = 73 deg F				
Poisson Ratio, μ =	0.45		_			
Ovality Factor, f _o =	0.84	2%				
Buckling Safety, N =	2.5		-			
drostatic Design Stress, HDS =	1,000 psi	HDB/2				

250 psi

INPUT: Assumed Fluid Densities/Elevations							
	pcf	62.4	Ballast Density				
Estimated for pull	pcf	78	Drill Fluid Density				
		276.70 ft	Drill fluid elevation, H_F =				
	·	276.70 ft	Ballast Water El., H _W =				
		232.00 ft	Lowest Invert El., El _m =				

Calculated Pipe and Fluid Properties

Pressure Rating, PR_(80F) =


		_
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V _{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.85 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Gro	und, $w_a/w_{af} =$	17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

EXIT

Calculated Pull Force					ASS	ESS		
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,006 lb	179 psi	OK	2,006 lb	179 psi	OK	OK	OK
В	3,489 lb	88 psi	OK	3,771 lb	95 psi	OK	OK	OK
С	5,170 lb	163 psi	OK	4,563 lb	147 psi	OK	OK	OK
D	6,023 lb	152 psi	OK	5,416 lb	137 psi	OK	OK	OK
E	11,008 lb	310 psi	OK	7,990 lb	234 psi	OK	OK	OK
F	12,908 lb	326 psi	OK	8,867 lb	224 psi	OK	OK	OK
ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 98.77$ psi Ballasted					OK			

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

Ballasted No Ballast

OK

PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	- /	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.923268486	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.141564048	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	326 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	4.84	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _{II} invert =	24.21	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

"Creating Space Underground

167 S. River Road, Suite 8

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 84A Conduit #1

Brierley Associates New Scotland South Road

Bedford, NH 03110

Revision 1

p/Projects/CHPE/Engineering/Spring 2023 Submittal/[HDD#84A CIR #2_APC_

TABLE 4 HDPE PROPERTIES

Pg 1 of 3

Champlain Hudson Power Express Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84A Conduit #1

New Scotland South Road

BRIERLEY ASSOCIATES

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350	and Plastic Pip	pe Institute Publications and as referenced				
Design Working Pressure, P_{WORK}	250 psi	Test Pressure, P _{TEST} 0 psig At high point				
Quantity of Pipes in Hole, Q =	1	<u> </u>				
Pipe Material	4710 HDPE	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours				
Standard Dimension	3					
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"				
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	3.500 in	Standard Manufacturer's Data Sheets				
Avg. Inside Diameter, D _i =	2.680 in	Standard Manufacturer's Data Sheets				
Minimum Wall, t _{min} =	0.389 in	Standard Manufacturer's Data Sheets				
Wall Section Area, A _W =	3.80093926	$A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$				
Unit OD Surface Area, in²/LF, A _{OD} =	131.95 in^2/LF					
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5				
Hydrostatic Design Stress, HDS =	1000 psi	HDS = HDB*DF				
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only				
Density =	59.28 pcf	1.410 g/cc Average from WL Plastics WL122 for PE4710				
Weight Dry, W=	1.66	Lb/LF				
Tensile Yield, Ty psi =	3,500 psi	@73°F Minimum from ASTM D3350 determined by ASTM D638				
Load Duration		Long Term				
Duration Time	10 hours	50 yrs				
Design Temperature, °F	73 deg F	73 deg F Assumed				
Design Ovality, %	2%	See Sheets 4 of 5 for design ovality				
Factor of Safety, FS =	2.5	2.5 Industry Practice				
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314				
Poisson Ratio, υ =	0.45	0.45 WL118: Use 0.35 if load duration is less than 12 hours				
Ovality factor f _o =	0.84	0.6 Reference 1: Based on Selected Design Ovality				
Temperature factor, f _t =	1.00	1.00 Source: WL Plastics WL118				
Project Fluids						

iulus				_
	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	Dry V
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	l:
	γ_{INT}	$\gamma_{\sf EXT1}$	γ_{EXT2}	Expected Di
Density, γ =	62.4	78	80	Heavy Di
Buoy	ant Unballasted	-3.55 lb/ft	W_P - W_{D1}	
Buoy	ant Unballasted	d Fluid 2, B _{B2} =	-3.69 lb/ft	W_P - W_{D2}
	Ballasted or	4.10 lb/ft	$W_P + W_B$	
Buoyar	nt Ballasted in F	-1.11 lb/ft	BG-W _{D1}	
Buoya	nt Ballasted in	-1.24 lb/ft	BG-W _{D2}	

Buoyant forces							
Dry Weight Pipe on ground, W _P =	1.66 lb/ft	From MFG. Data Sheet					
Internal Ballast Weight, W _B =	2.44 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$					
xpected Displaced Fluid Weight, W _{D1} =	5.21 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$					
Heavy Displaced Fluid Weight, W _{D2} =	5.35 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$					
W_P - W_{D1}		-					
W_P - W_{D2}							
W_P+W_B							
BG-Wa							

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 84A Conduit #1

New Scotland South Road

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

_		_ ′
Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ oĸ

Long Term Design for operating conditions

_		5
Design Temperature, °F =	73 deg F	
Pressure Rating, PR =	250 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P_{OS} =	500 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	375 psi	$P_{RS} = 1.5*PR$

ASSESSMENT PRESSURE RATING OK if PR \geq to P_{WORK} OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0^* [2*E/(1-v^2)]^* [(1/(DR-1))^3]$ Short Term Long Term 73 deg F 73 deg F

Design Temperature, F = P_{CR} = 267.4 psi 82.3 psi $P_a = P_{CR}/FS$ 107.0 psi 32.9 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 48.70 ft Ballast depth to invert, H_B

44.70 ft

Drill Fluid depth to invert, H_{DF}

Pipe Invert Internal Pressure, P.

Air Ballast, P 0.00 psi Full Ballast, $P_B = \gamma_{INT} * (H_B + D_o/24)/144$ 19.43 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 24.29 psi 24.91 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 19.43 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	82.68 psi	8.62 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	82.06 psi	8.00 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.12 psi	28.06 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.49 psi	27.43 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	32.92 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	87.54 psi	13.48 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Page 2 of 3

TABLE 4 Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84A Conduit #1

New Scotland South Road

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of pipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temperature, F =	73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual T	able 3.7	
Design Factor, DF = $f_T * f_Y$	0.4	FE PULL STRENTH, SPS =	5,321 lb	
Temperature factor, f_{temp} =	1	Jltimate Pull Strength, UPS =	13,303 lb	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi			
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Sugg	gested SSAS = 1,150 psi]
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb		-

BRIERLEY

ASSOCIATES

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, P_{CRR} = P_{CR}*f_r

(ASTM F-1962 EQ. 22)

71M1 1002 EQ. 22)		
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.92327	
$r = \sigma_i/2*(SSAS) =$	0.14156	Example from Table T5, $\sigma_i = 326 \text{ psi}$
P _{CRR} =	246.9 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	123.5 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	118.60 psi Pull Back Condition - Option OK as >0
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	117.98 psi Pull Back Condition - Option OK as >0

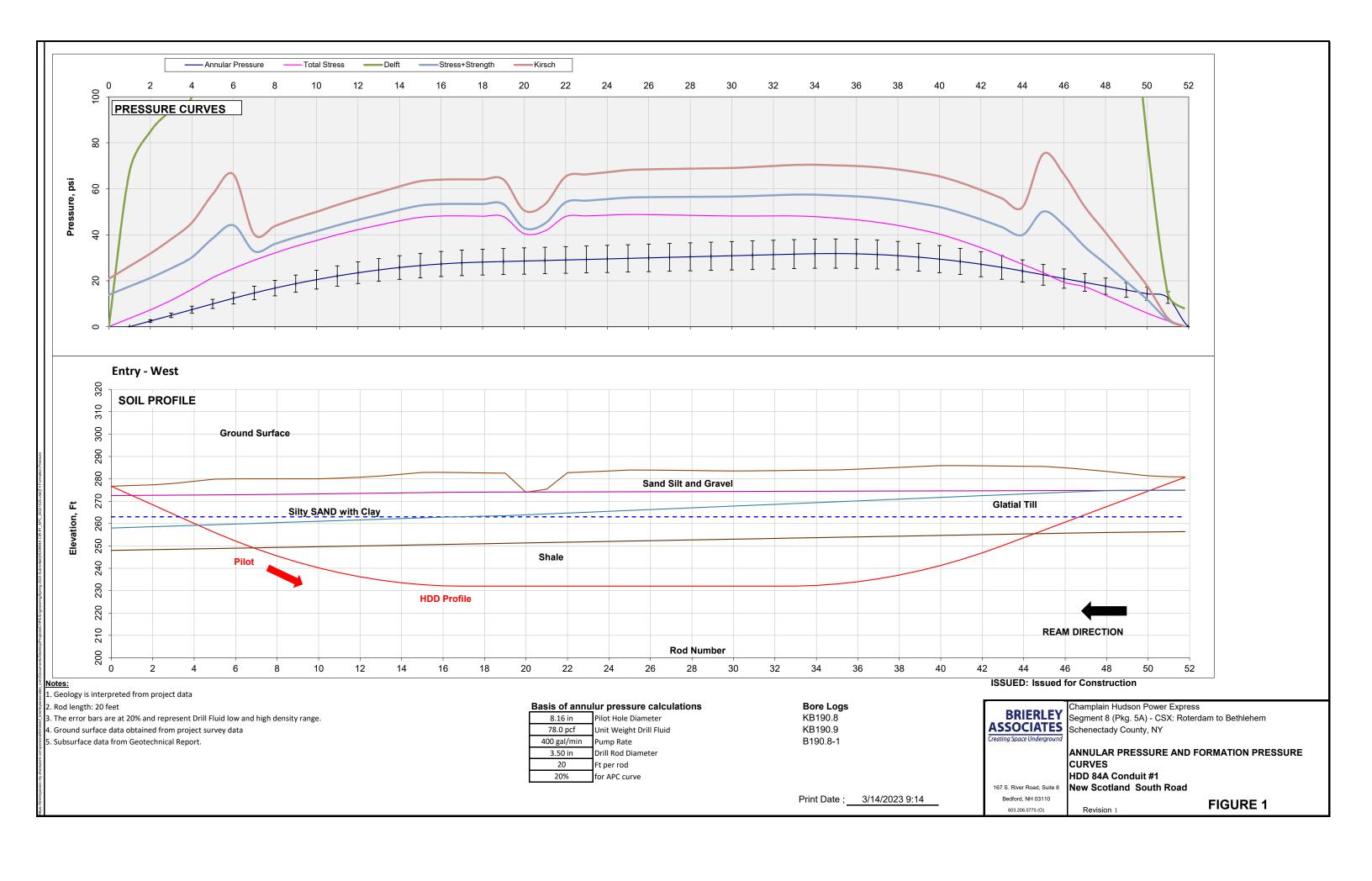
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

https://hrienlevassoc.mv sharenoint.com/nerso

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

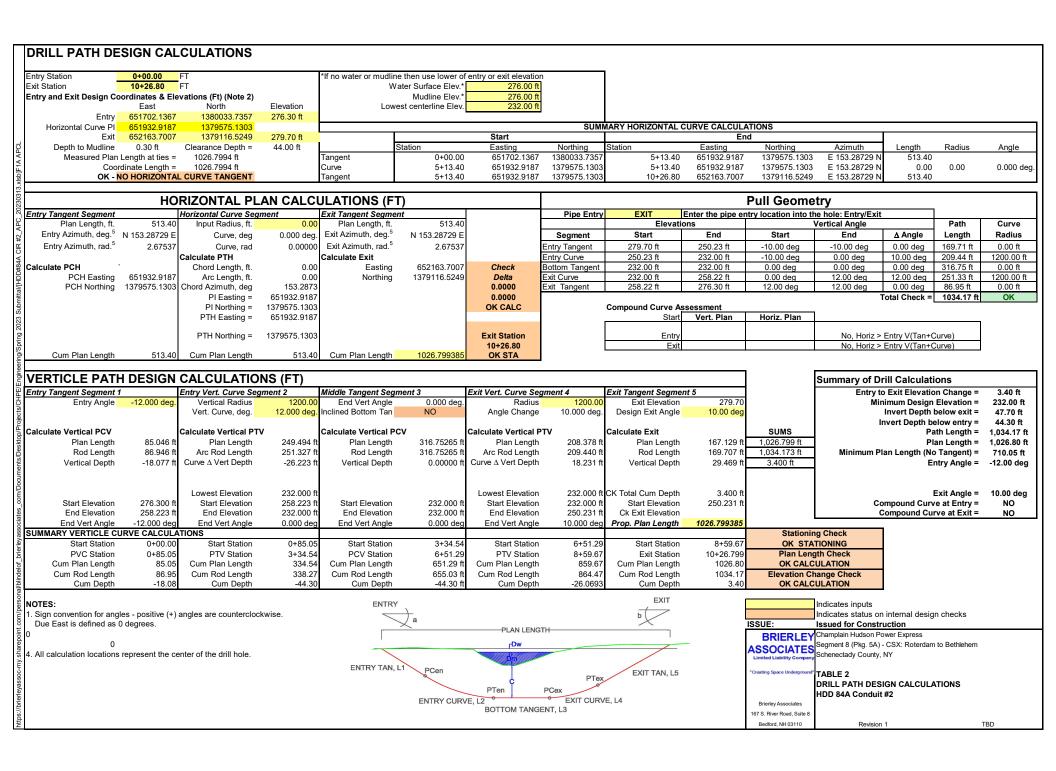
CROSSING: HDD 84A Conduit #2

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DRILL PATH DESIGN CALCULATIONS
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 14-Mar-2023

DATE	REV	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/14/2023	1	Issued for Construction (IFC)	ABL

sts/CHPE/Engineering/Spring 2023 Submittal/[HDD#84A CIR #2_APC_

Drill

Leng	ths (Path)	Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	169.7 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	316.8 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	86.9 ft	β =	12.0 °	0.2094	
LT =	1134.2 ft				

INPUT: Assumed Friction Factors

μ_G =	0	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties				
Material	HDPE	IPS		
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F		
le/Bundle Diam. 10.75	PIPE	PIPE/BUNDLE		
Material Density, γ	59.28 pcf			
Outside Diameter, D _{OD}	10.75	Pipe or Bundle		
Pipe Dry Weight, W _P =	15.70 lb/ft	Pipe or Bundle		
Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D _{IA}	BUNDLE	Bundle Multiplier F _D 1.0000		
2 Hr Pullback Modulus, E _T =	65,000 psi	@T = 73 deg F		
Poisson Ratio, μ =	0.45			
Ovality Factor, f _o =	0.84	2%		
Buckling Safety, N =	2.5			
drostatic Design Stress, HDS =	1,000 psi	HDB/2		
Pressure Rating, PR _(80F) =	250 psi	$PR = 2HDSF_{T}A_{F}/(DR-1) [F_{T}=1]$		

INPUT: Assumed Fluid Densities/Elevations				
Ballast Density	62.4	pcf		
Drill Fluid Density	78	pcf Estimated for pull		
I fluid elevation, H _F =	276.00 ft			
llast Water El., H _W =	276.00 ft			

Lowest Invert El., El_m = 232.00 ft Calculated Pipe and Fluid Properties

Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V _{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.63 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, $w_a/w_{af} =$			38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only) Pipe Exit EI = 276.30 ft **Pipe Entry EI =** 279.70 ft

Calculated Pull Force							ASS	ESS
POINT	Pull Force, F _D Max Tensile ASSESS Pull Force, F _B Max Tensile ASSESS						F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_T < \sigma_{PM}$	Air	Ballast
Α	1,812 lb	148 psi	OK	1,812 lb	148 psi	OK	OK	OK
В	3,170 lb	88 psi	OK	3,417 lb	95 psi	OK	OK	OK
С	4,602 lb	153 psi	OK	4,046 lb	137 psi	OK	OK	OK
D	5,406 lb	151 psi	OK	4,850 lb	135 psi	OK	OK	OK
E	9,805 lb	298 psi	OK	7,069 lb	221 psi	OK	OK	OK
F	11,428 lb	319 psi	OK	7,802 lb	218 psi	OK	OK	OK

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 98.96$ psi

No Ballast PPI Ch 12 Eq 16

Ballasted

OK

OK

Overbend

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS = 41,235 lb $SSPS = \sigma_{PM}\pi D_{OD}^{2}((1/DR)-(1/DR^{2}))$ Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, F_R = 0.925072785 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ r = σ_τ/2SPS 0.13860965 Maximum applied pull Stress, σ_{T} = 319 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 4.77 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 23.83 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL HDD 84A Conduit #2

Brierley Associates

Bedford, NH 03110

167 S. River Road, Suite 8

Revision 1

TABLE 4 HDPE PROPERTIES

Champlain Hudson Power Express Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem Schenectady County, NY

Pg 1 of 3

HDD 84A Conduit #2

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350	and Plastic Pip	e Institute Pu	blications and as reference	ed	
Design Working Pressure, P _{WORK}	250 psi		Test Pressure, P _{TEST}	0 psig At high point	
Quantity of Pipes in Hole, Q =	1		_		
Pipe Material	4710 HDPE	INPUT RESI	N MATERIAL: PE3408, PE	E3608, PE4710	
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of	of 10,000 hours	
Standard Dimension	10				
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iro	on Pipe Size"	
DR = OD/Minimum Wall	9				
Outside Diameter, D _o =	10.750 in	Standard Ma	nufacturer's Data Sheets		
Avg. Inside Diameter, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets		
Minimum Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets		
Wall Section Area, A _W =	35.85681985	$A_W = \pi^*((D_0/2))$	$(D_0-2t)/2$		
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D$	O _{OD}		
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^*(D_o/2$	²) ² /144		
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^*(D_i/2)$	² /144		
HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 ar	nd ASTM 2837	
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Cl	hapter 5	
Hydrostatic Design Stress, HDS =	1000 psi	HDS = HDB*	DF		
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating or	nly	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics	WL122 for PE4710	
Weight Dry, W=	15.70	Lb/LF	_		
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D33	350 determined by ASTM D638	
Load Duration		Long Term			
Duration Time	10 hours	50 yrs			
Design Temperature, °F	73 deg F	73 deg F	Assumed		
Design Ovality, %	2%	2%	See Sheets 4 of 5 for des	ign ovality	
Factor of Safety, FS =	2.5	2.5	Industry Practice		
Modulus for given load duration, E =	65,000 psi	28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45	0.45		luration is less than 12 hours	
Ovality factor f _o =	0.84	0.6 Reference 1: Based on Selected Design Ovality			
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL1	18	
Project Fluids			_		

com/Documents/Desktop/Projects/CHPE/Engineering/Spring 2023 Submittal/[HDD#84A CIR #2_APC_20230313.xlsb]F1A APCL

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid	Dry W
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	In
	YINT	γ _{EXT1}	γ _{EXT2}	Expected Dis
Density, γ =	62.4	78	80	Heavy Dis
Buoyant Unballasted Fluid 1, B _{B1} =			-33.46 lb/ft	W_P - W_{D1}
Buoyant Unballasted Fluid 2, B _{B2} =		-34.72 lb/ft	W_P - W_{D2}	
Ballasted on ground, B_G =			38.69 lb/ft	$W_P + W_B$
Buoyar	nt Ballasted in F	-10.47 lb/ft	BG-W _{D1}	
Buoya	nt Ballasted in	Fluid 2, B _{BB2} =	-11.73 lb/ft	BG-W _{D2}

Buoyant forces						
	From MFG. Data Sheet					
	$W_B = V_{Di}^* \gamma_{INT}$					
	$W_{D1} = V_{Do}^* \gamma_{EXT1}$					
50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$					
	-					
	15.70 lb/ft 22.99 lb/ft 49.16 lb/ft					

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84A Conduit #2

BRIERLEY

"Creating Space Underground"

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Pg 2 of 3

_		_
Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ oĸ

Long Term Design for operating conditions

Design Temperature, °F =		
Pressure Rating, PR =	250 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, Pos =	500 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	375 psi	P _{RS} = 1.5*PR

ASSESSMENT PRESSURE RATING OK if PR \geq to P_{WORK} OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$ Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 82.3 psi $P_a = P_{CR}/FS$ 107.0 psi 32.9 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert Ballast depth to invert, H_B 47.70 ft

44.30 ft

Drill Fluid depth to invert, H_{DF}

Pipe Invert Internal Pressure, P.

Air Ballast, P _A	0.00 psi
Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$	19.39 psi

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 24.24 psi 24.86 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 19.39 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	82.74 psi	8.68 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	82.11 psi	8.06 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	102.13 psi	28.07 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	101.51 psi	27.45 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	32.92 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	87.58 psi	13.52 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

TABLE 4 Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 84A Conduit #2

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{-2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr		Quantity of p	oipes, Q =	1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5)	Pull Temper	ature, F =	73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7			
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS =	50,200 lb		
Temperature factor, f_{temp} =	1	Jltimate Pull Strength, UPS =	125,499 lb		
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi				
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Sugg	gested SSAS =	1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb			

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, P_{CRR} = P_{CR}*f_r

(ASTM F-1962 EQ. 22)

71W1 1002 EQ. 22)						
Pull Duration Time =	12 Hr		Pcr =	267.4 psi		
SAS =	1,400 psi	Design Depth in	DF, $H_{MDF} =$	0.0 ft		
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption	on as Maxim	num	•	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.92507					
$r = \sigma_i/2*(SSAS) =$	0.13861	E:	xample from	n Table T5, σ_i =	319 psi	
P _{CRR} =	247.4 psi					
FS =	2.0					
$P_{ACRR} = P_{CRR}/FS =$	123.7 psi	Allowable Reduce	ed Short Ter	m Buckling pre	ssure during	j pull
Internal Ballasted and External Fluid 1 = (P _B +P _{ACRR})-P _{DF1}	118.85 psi	Pull Back Co	ondition - Option	OK as >0	
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}) - P_{DF2}$	118.23 psi	Pull Back Co	ondition - Option	OK as >0	

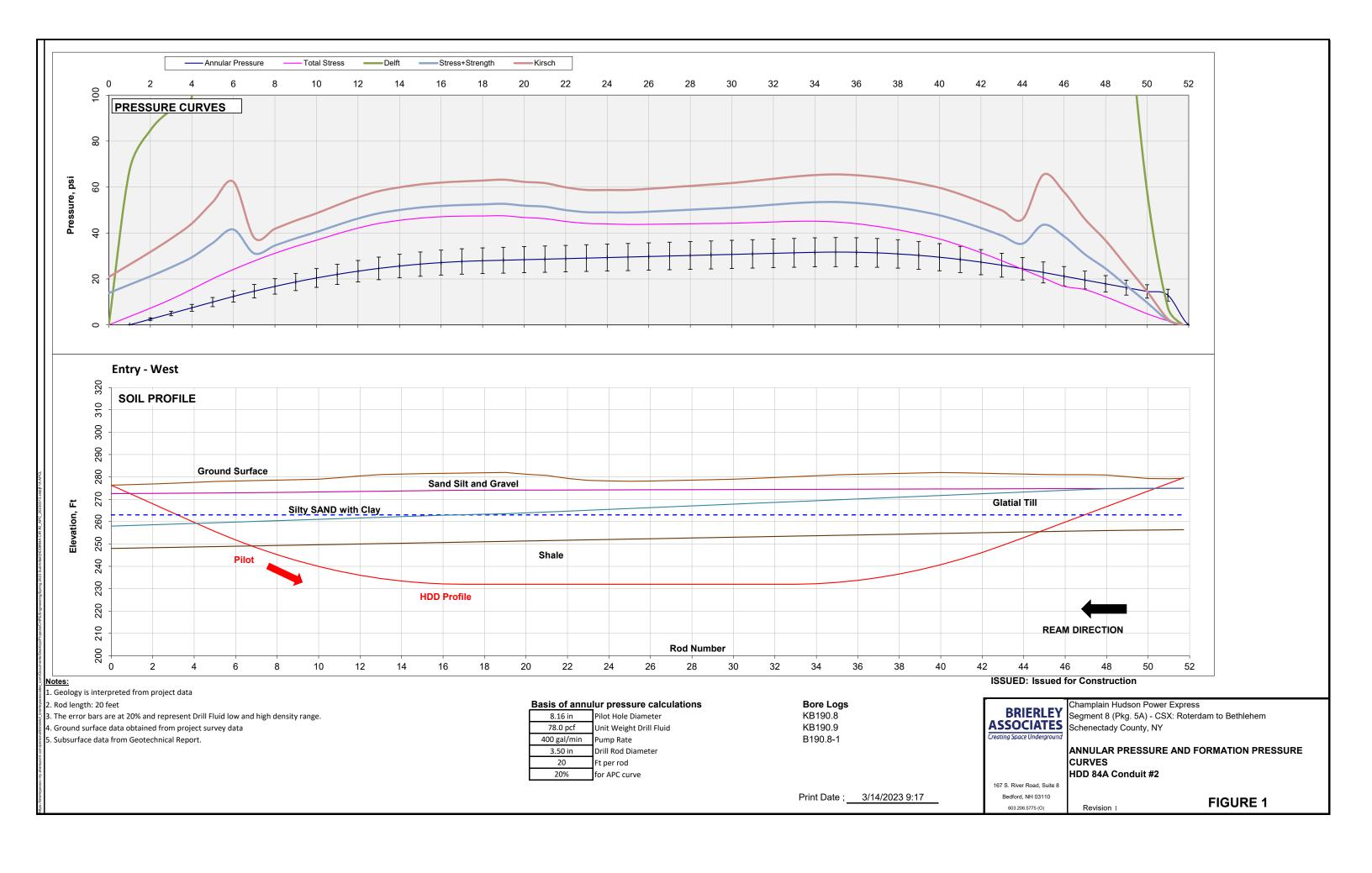
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

https://brierlevassoc-mv.sharepo

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 84B Circuit #1

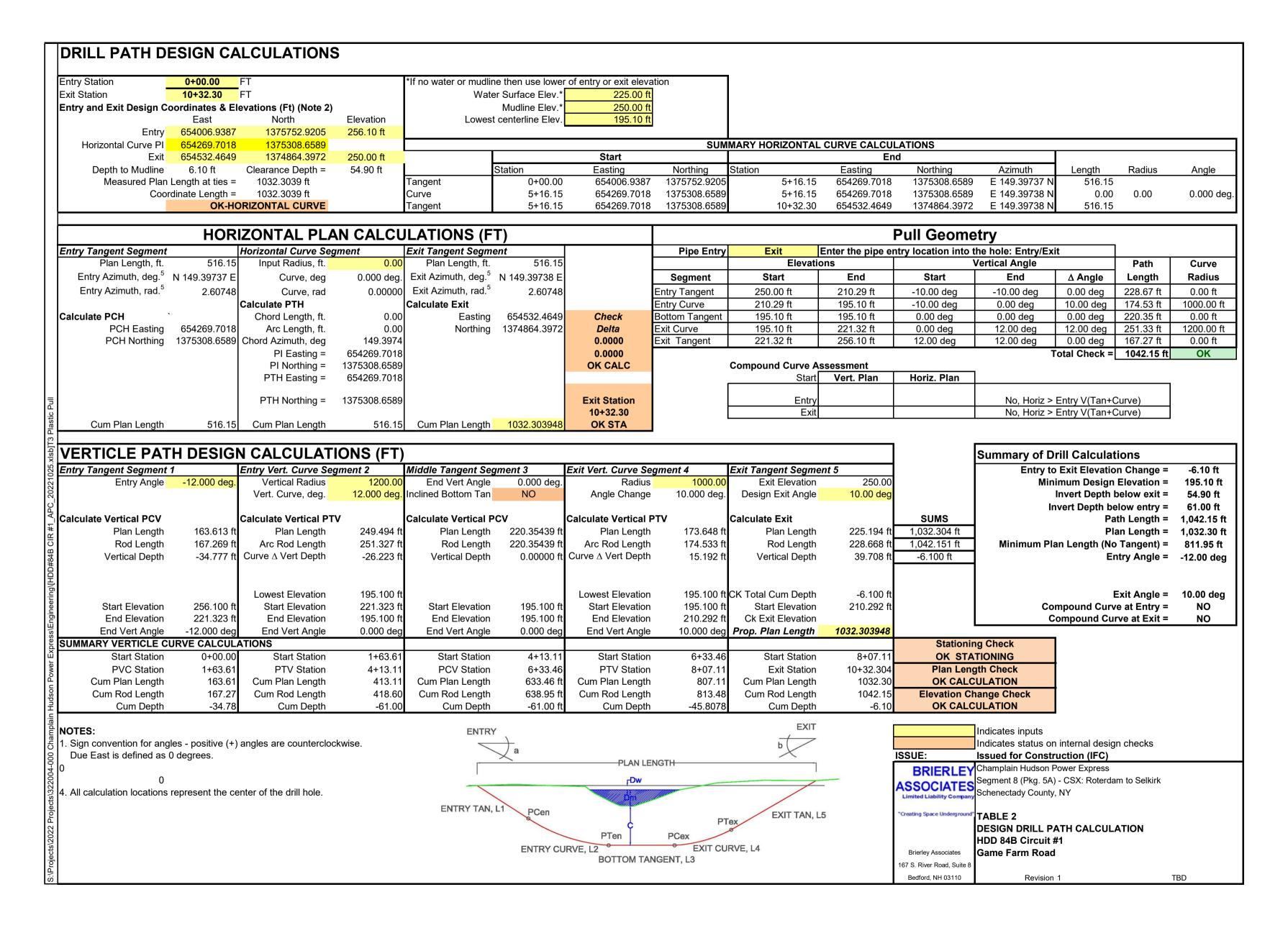
Game Farm Road

ISSUE: Design Submittal

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Lengths (Pa	ıth)	Angles			
L1 = 100.0 ft	Overbend	d c	leg	radian	500.0 ft
L2 = 228.7 ft	t (χ =	-10.0 °	-0.1745	
L3 = 174.5 ft	t				1,000.0 ft
L4 = 220.4 ft	t	χ =	0.0 °	0.0000	
L5 = 251.3 ft	t				1,200.0 ft
L6 = 167.3 ft	t I	3 =	12.0 °	0.2094	
LT = 1142.2	ft				

INPUT: Assumed Friction Factors

μ _G =	00	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
μ _c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

IPS

Estimated for pull

INPUT: Pipe Properties Material HDPE

				•	
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam.	14.25	BUNDLE	PIPE/BUND	LE	
Materi	al Density, γ	59.28 pcf			
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bun	dle	
Pipe Dry W	′eight, W _P =	17.36 lb/ft	Pipe or Bun	dle	
Min. Wall T	hickness, t _m	1.194 in	For design i	nstallatio	on pull stress
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches
Avg. Inside D	iameter, D _{IA}	BUNDLE	Bundle Mult	iplier F _D	0.9042
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F	
Poisso	n Ratio, μ =	0.45			
Ovality	Factor, f _o =	0.84	2%		
Buckling	Safety, N =	2.5			
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2		
Pressure Ratir	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]
INPUT: Assumed Fluid Densities/Elevations					

62.4

78

250.00 ft

pcf

pcf

Drill fluid elevation, $H_F =$ 250.00 ft

Calculated Pipe and Fluid Properties

Ballast Density

Drill Fluid Density

Ballast Water El., H_W =

Lowest Invert El., El_m =

atou i ipo ana i iaia i iopoitioo		_
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A_W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ∆T =	0.85 lb/ft	Comparison Only @ 8psi


Calculated Buoyant Forces

Pipe		Air Filled	Ballasted
On Gro	und, w _a /w _{af} =	17.36 Lb/LF	42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force					ASS	ESS		
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	2,018 lb	128 psi	OK	2,018 lb	128 psi	OK	OK	OK
В	4,054 lb	102 psi	OK	4,476 lb	113 psi	OK	OK	OK
С	5,506 lb	177 psi	OK	5,196 lb	170 psi	OK	OK	OK
D	5,744 lb	145 psi	OK	5,434 lb	137 psi	OK	OK	OK
E	10,715 lb	302 psi	OK	8,009 lb	234 psi	OK	OK	OK
F	13,764 lb	347 psi	OK	9,471 lb	239 psi	OK	OK	OK
ASSESS P	ull Restricted B	uckling Capac	ity, P _{PA} > ΔP invert	$P_{PA} = P_A F_R =$	98.15 psi	Balla	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

· · · · · · · · · · · · · · · · · · ·		
Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.917498868	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.150946532	r = σ _T /2SPS
Maximum applied pull Stress, σ_T =	347 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	5.95	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	29.74	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY Champlain Hudson Power Express **ASSOCIATES Limited Liability Company**

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Undergroun

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 84B Circuit #1 Game Farm Road

Bedford, NH 03110

Brierley Associates 167 S. River Road, Suite 8

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 84B Circuit #1

Game Farm Road

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

At high point

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Design Working Pressure, P_{WORK} 250 psi

Quantity of Pipes in Hole, Q = 1

Pipe Material PE4710 INPUT RESIN MATERIAL: PE3408, PE3608, PE4710
ASTM D3350 Cell Classification 445574C Design resin with minimum PENT test of 10,000 hours

Standard Dimension 3

IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"

Pipe measurement standard

DR = OD/Minimum Wall

Outside Diameter, D_o = 3.500 in Standard Manufacturer's Data Sheets

9

Avg. Inside Diameter, $D_i = 2.680 \text{ in}$ Standard Manufacturer's Data Sheets Minimum Wall, $t_{min} = 0.389 \text{ in}$ Standard Manufacturer's Data Sheets

Wall Section Area, $A_W = 3.80093926$ $A_W = \pi^*((D_o/2)^2 - ((D_o-2t)/2)^2)$ Unit OD Surface Area, in²/LF, $A_{OD} = 131.95 \text{ in}^2/\text{LF}$ $A_{OD} = 12^*\pi^*D_{OD}$

Unit Outside Volume, $V_{Do} = 0.067 \text{ cf/LF}$ $V_{Do} = \pi^* (D_o/2)^2 / 1448$

Unit Inside Volume, $V_{Di} = 0.039 \text{ cf/LF}$ $V_{Di} = \pi^*(D_i/2)^2/144$ HDB = 1,600 psi Based on PPI Publication TF

HDB = 1,600 psi Based on PPI Publication TR-4/2015 and ASTM 2837

Design Factor for HDB, DF = 0.63 Based on PPI PE Handbook 2nd ED Chapter 5

Hydrostatic Design Stress, HDS = 1008 psi HDS = HDB*DF

Environmental Factor, Af_e = 1 Reference 2: Use for pressure rating only

Density = 59.28 pcf 1.410 g/cc Average from WL Plastics WL122 for PE4710

Weight Dry, W = 1.66 Lb/LF

Tensile Yield, Ty psi = 3,500 psi @73°F Minimum from ASTM D3350 determined by ASTM D638 Load Duration Short Term Long Term

Duration Time 10 hours 50 yrs

Design Temperature, °F 73 deg F 73 deg F Assumed

Design Ovality, % 2% See Sheets 4 of 5 for design ovality

Factor of Safety, FS = 2.5 Industry Practice

Modulus for given load duration, E = 65,000 psi 28,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314

Temperature factor, f_t = 1.00 1.00 Source: WL Plastics WL118

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ_{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
- • •			

	γ_{INT}	γ_{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-3.55 lb/ft		
Buoya	-3.69 lb/ft		
	Ballasted or	n ground, B _G =	4.10 lb/ft

ballasted on ground, b _G =	4. 10 lb/1t
Buoyant Ballasted in Fluid 1, BB_{B1} =	-1.11 lb/ft
Buoyant Ballasted in Fluid 2, B_{BB2} =	-1.24 lb/ft

Buoyant forces

Dry Weight Pipe on ground, $W_P = 1.66 \text{ lb/ft}$ From MFG. Data Sheet Internal Ballast Weight, $W_B = 2.44 \text{ lb/ft}$ $W_B = V_{Di}^* \gamma_{INT}$ Expected Displaced Fluid Weight, $W_{D1} = 5.21 \text{ lb/ft}$ $W_{D1} = V_{Do}^* \gamma_{EXT1}$

Heavy Displaced Fluid Weight, $W_{D2} = \frac{5.35 \text{ lb/ft}}{5.35 \text{ lb/ft}} W_{D2} = V_{D0}^* \gamma_{\text{EXT2}}$

 W_P - W_{D1} W_P - W_{D2} W_P + W_R

BG-W_{D1}

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 84B Circuit #1

Game Farm Road

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

	Long renn	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2^*E/(1-v^2)]^* [(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 61.00 ft Ballast depth to invert, H_B 54.90 ft

	Dine Invert Internal B	roccuro P
to invert	61.00 π	ballast depth to invert,

Drill Fluid depth to invert, H_{DF} 54.90 ft

Pipe Invert External Pressure, PE

Pipe Invert Internal Pressure, P_I

Air Ballast, P_A 0.00 psi Full Ballast, $P_B=\gamma_{INT}*(H_B+D_o/24)/144$ 23.85 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^*(H_{MDF} + D_o/24)/144$ 29.82 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^*(H_{MDF} + D_o/24)/144$ 30.58 psi Water, $P_W = \gamma_{INT}^*(H_{DF} + D_o/24)/144$ 23.85 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = (P _B +P _a)-P _W
Internal Air and External Water = (P _A +P _a)-P _W

I	Short Term	Long Term
	77.16 psi	16.27 psi
I	76.39 psi	15.50 psi
Ī	101.01 psi	40.12 psi
ſ	100.25 psi	39.35 psi
ſ	106.97 psi	46.08 psi
ſ	83.12 psi	22.23 psi

Pull Back Condition - Option 1
Pull Back Condition - Option 2
Pull Back Condition - Option 3
Pull Back Condition - Option 4
Long Term Operating Conditions
Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

S.\Projecte\2002 Projecte\302004_000 Champlain Hirdeon Downer Evorese\Engineering\(HDD#84 \text{R C1R #1 4DC 2003}\)

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 84B Circuit #1

Game Farm Road

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91750	
$r = \sigma_i/2*(SSAS) =$	0.15095	Example from Table T5, $\sigma_i = 347 \text{ psi}$
P _{CRR} =	245.4 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	122.7 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	116.72 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	115.96 psi Pull Back Condition - C OK as >0

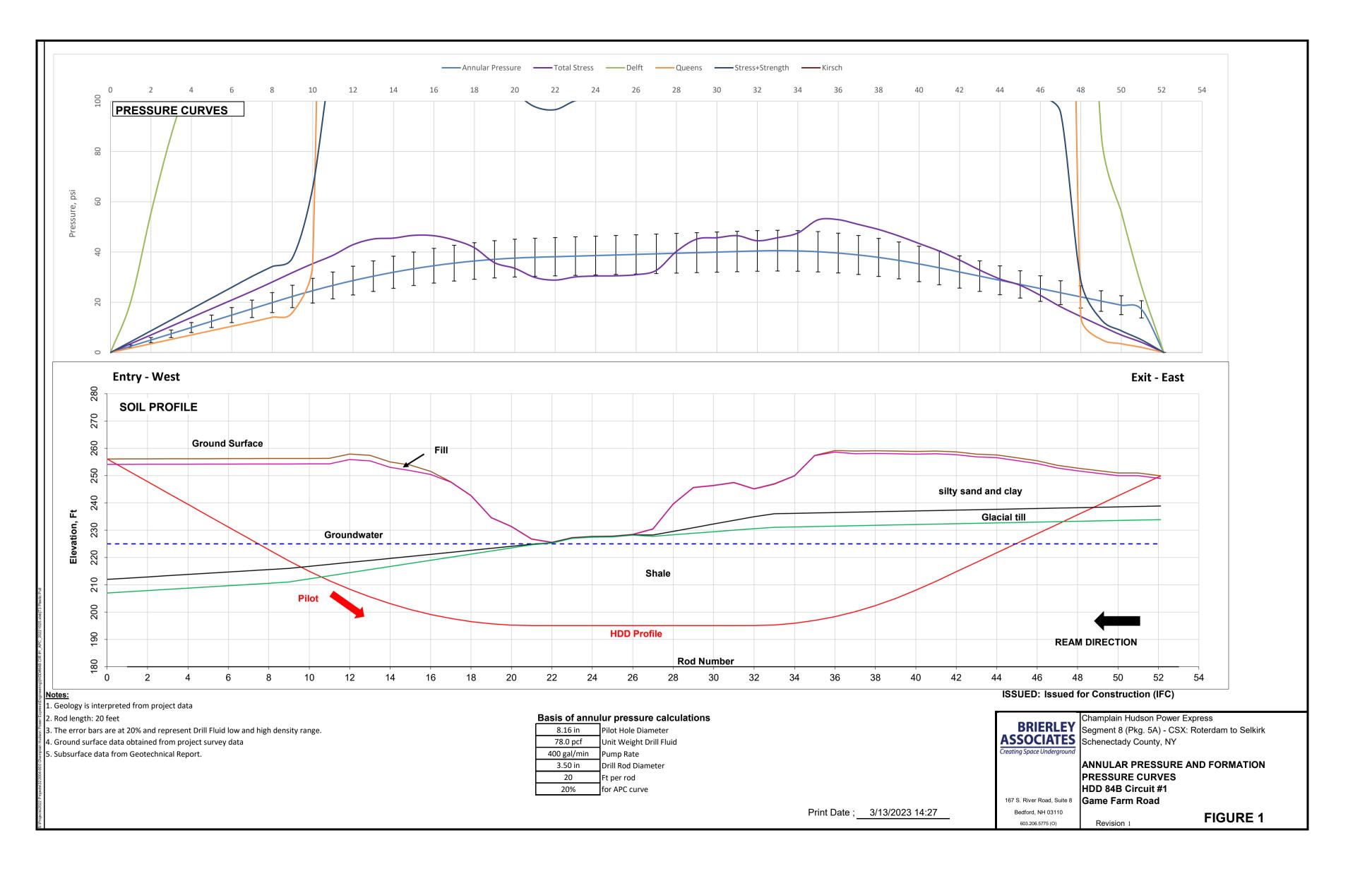
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Projects\2022 Projects\322004-000 Champlain Hudson Power Express\Engineering\HDD#84B CIR #1_APC_20221025.xisb|T3 Plastic Pull

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 84B Circuit #2

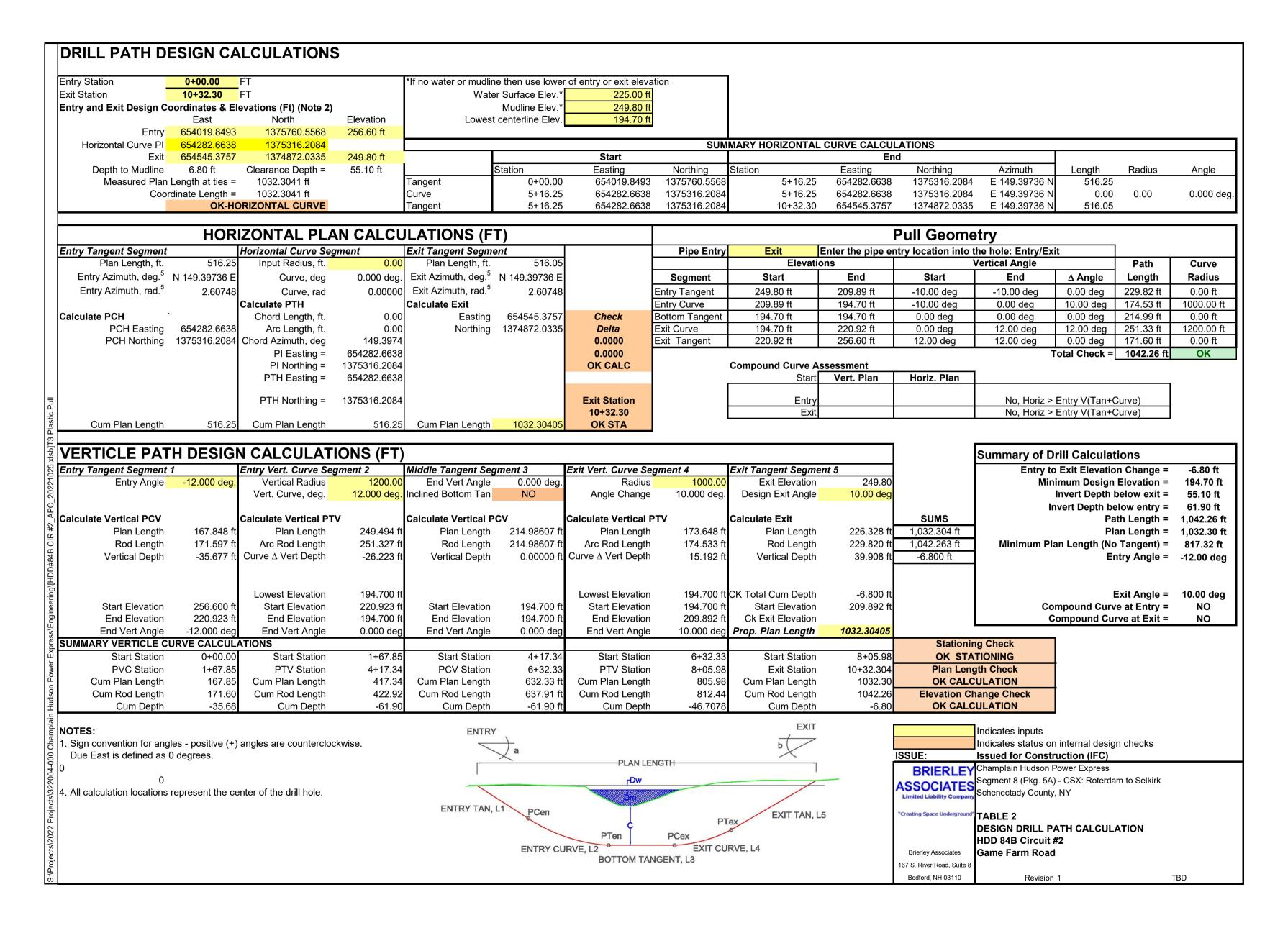
Game Farm Road

ISSUE: Design Submittal

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Leng	Lengths (Path) Angles		Radius, R			
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft	
L2 =	229.8 ft	α =	-10.0 °	-0.1745		
L3 =	174.5 ft				1,000.0 ft	
L4 =	215.0 ft	χ =	0.0 °	0.0000		
L5 =	251.3 ft				1,200.0 ft	
L6 =	171.6 ft	β =	12.0 °	0.2094		
LT =	1142.3 ft					

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

Material HDPE

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

L				•	
Safe Pull Max. Stress, σ_{PM}		1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam. 14.25		PIPE	PIPE/BUND	LE	
Materi	al Density, γ	59.28 pcf			
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bundle		
Pipe Dry W	'eight, W _P =	15.70 lb/ft	Pipe or Bun	dle	
Min. Wall T	hickness, t_{m}	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$		9	D _{OD} Stress	10.75	inches
Avg. Inside Diameter, D _{IA}		BUNDLE	Bundle Mult	iplier F _D	1.0000
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F	
Poisso	n Ratio, μ =	0.45			
Ovality Factor, f _o =		0.84	2%		
Buckling	Safety, N =	2.5			
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2		
Pressure Rating, PR _(80F) =		252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]
INPLIT	· Assumed	d Fluid Densi	ities/Flevatio	one	

pcf

INPUT: Assumed Fluid Densities/Elevations

Ballast Density	62.4
Drill Fluid Density	
Drill fluid elevation, H_F =	256.60 ft
Ballast Water El., H _W =	256.60 ft
Lowest Invert El., El _m =	194.70 ft

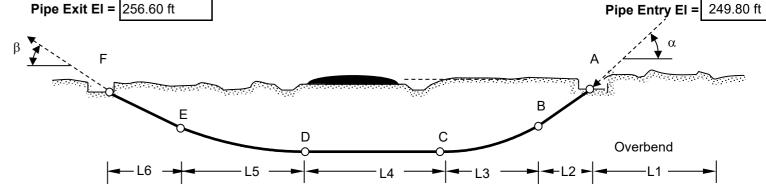
Estimated for pull

IPS

Calculated Pipe and Fluid Properties

o and riala rioperaco	
Pressure Pipe:	YES
OD Perimeter Length, P	44.77 in
Wall Section Area, A _W	37.70738915
Volume Outside, V_{DO}	0.630 cf/LF
Volume Inside, V_{DI}	0.368 cf/LF
$q_d =$	2.69 lb/ft

Drill Fluid (unit drag) 0.85 lb/ft ASTM EQ 18: Hydrokinetic, $\Delta T =$ Comparison Only @ 8psi


Calculated Buoyant Forces

-	Pipe	Air Filled	Ballasted
On Ground, $w_a/w_{af} =$		15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

Calculated Pull Force							ASS	ESS	
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	F _x < SPS	
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast	
Α	1,825 lb	128 psi	OK	1,825 lb	128 psi	OK	OK	OK	
В	3,618 lb	101 psi	OK	4,001 lb	112 psi	OK	OK	OK	
С	4,975 lb	177 psi	OK	4,697 lb	170 psi	OK	OK	OK	
D	5,157 lb	144 psi	OK	4,879 lb	136 psi	OK	OK	OK	
E	9,718 lb	303 psi	OK	7,274 lb	235 psi	OK	OK	OK	
F	13,078 lb	365 psi	OK	8,850 lb	247 psi	OK	OK	OK	
ASSESS P	ull Restricted B	uckling Capac	ity, P _{PA} > ΔP invert	$P_{PA} = P_A F_R =$	97.64 psi	Balla	sted	OK	

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

<u> </u>		
Safe Pull Strength, SPS =	,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.912727364	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.158632495	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	365 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	6.71	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP_U invert =	33.53	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

ASSOCIATES Limited Liability Company

BRIERLEY Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Undergroun

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 84B Circuit #2 Game Farm Road

Bedford, NH 03110

Brierley Associates 167 S. River Road, Suite 8

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 84B Circuit #2

Game Farm Road

BRIERLEY

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. ASTIVIDSSSO	and riasiic rip	ie momute r ut	Dications and as referenced			
Design Working Pressure, P _{WORK}	250 psi		Test Pressure, P _{TEST} 0 psig At high point			
Quantity of Pipes in Hole, Q =	1					
Pipe Material	4710 HDPE	INPUT RESI	NPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 10,000 hours			
Standard Dimension	10					
Pipe measurement standard	IPS	IPS "Iron Pipe	PS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9					
Outside Diameter, D_o =	10.750 in	Standard Mar	nufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Mar	nufacturer's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Mar	nufacturer's Data Sheets			
Wall Section Area, A _W =	35.85681985	$A_W = \pi^*((D_o/2))$	$(D_0-2t)/2$			
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D$	OD			
Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)$) ² /144			
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837				
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5				
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*I	DF			
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only			
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710			
Weight Dry, W =	15.70	Lb/LF				
Tensile Yield, Ty psi =		(-5. 5.	Minimum from ASTM D3350 determined by ASTM D63	38		
Load Duration		Long Term				
Duration Time	10 hours	50 yrs				
Design Temperature, °F	73 deg F	, J	Assumed			
Design Ovality, %	2%		See Sheets 4 of 5 for design ovality			
Factor of Safety, FS =	2.5		Industry Practice			
Modulus for given load duration, E =	65,000 psi		Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45		WL118: Use 0.35 if load duration is less than 12 hours			
Ovality factor f _o =	0.84		Reference 1: Based on Selected Design Ovality			
Temperature factor, f _t =	1.00	1.00	Source: WL Plastics WL118			

Project Fluids

uius							
	Pipe Internal	Expected	Heavy	Buoyant forces			
	Ballast	External Fluid	External Fluid	Dry Weight Pipe on ground, $W_P =$	15.70 lb/ft	From MFG. Data Sheet	
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, W _B =	22.99 lb/ft	$W_B = V_{Di}^* \gamma_{INT}$	
	γ_{INT}	γ_{EXT1}	γ_{EXT2}	Expected Displaced Fluid Weight, W _{D1} =	49.16 lb/ft	$W_{D1} = V_{Do}^* \gamma_{EXT1}$	
Density, γ =	62.4	78	80	Heavy Displaced Fluid Weight, W_{D2} =	50.42 lb/ft	$W_{D2} = V_{Do}^* \gamma_{EXT2}$	
Buoyant Unballasted Fluid 1, B _{B1} = -33.46 lb/ft		W _P -W _{D1}					
Buoyant Unballasted Fluid 2, B _{B2} = -34.72		-34.72 lb/ft	W _P -W _{D2}				
Ballasted on ground, B _G = 38.69 lb/ft		38.69 lb/ft	W_P+W_B				
Buoyant Ballasted in Fluid 1, BB _{B1} = -10.47 lb/ft		BG-W _{D1}					
Buoyant Ballasted in Fluid 2, B _{BB2} = -11.73 lb/ft		BG-W _{D2}					
		•					

Pg 2 of 3

HDPE PROPERTIES

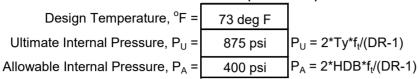
Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY


HDD 84B Circuit #2

Game Farm Road

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long renn	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2^* E/(1-v^2)]^* [(1/(DR-1))^3]$ Short Term | Long Term

	011011111111111111111111111111111111111	Long roim
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	82.3 psi
$P_a = P_{CR}/FS$	107.0 psi	32.9 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 61.90 ft

Ballast depth to invert, H_B 55.10 ft Drill Fluid depth to invert, H_{DF} 55.10 ft

> 30.09 psi 30.86 psi

Pipe Invert Internal Pressure, Pi

Pipe Invert External Pressure, PE Air Ballast, PA 0.00 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$

Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 24.07 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

24.07 psi Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = $(P_A + P_a) - P_W$

3	Short Term	Long Term	
1	76.89 psi	2.83 psi	
2	76.11 psi	2.06 psi	
1	100.96 psi	26.90 psi	
2	100.19 psi	26.13 psi	
/	106.97 psi	32.92 psi	
/	82.90 psi	8.84 psi	

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 84B Circuit #2

Game Farm Road

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1	
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 d	eg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7	
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 50,200 lb	
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = #######	
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi		
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb	

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91273	
$r = \sigma_i/2*(SSAS) =$	0.15863	Example from Table T5, $\sigma_i = 365 \text{ psi}$
P _{CRR} =	244.1 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	122.0 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = $(P_B + P_{ACRR}) - P_{DF1}$		116.03 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	115.26 psi Pull Back Condition - C OK as >0

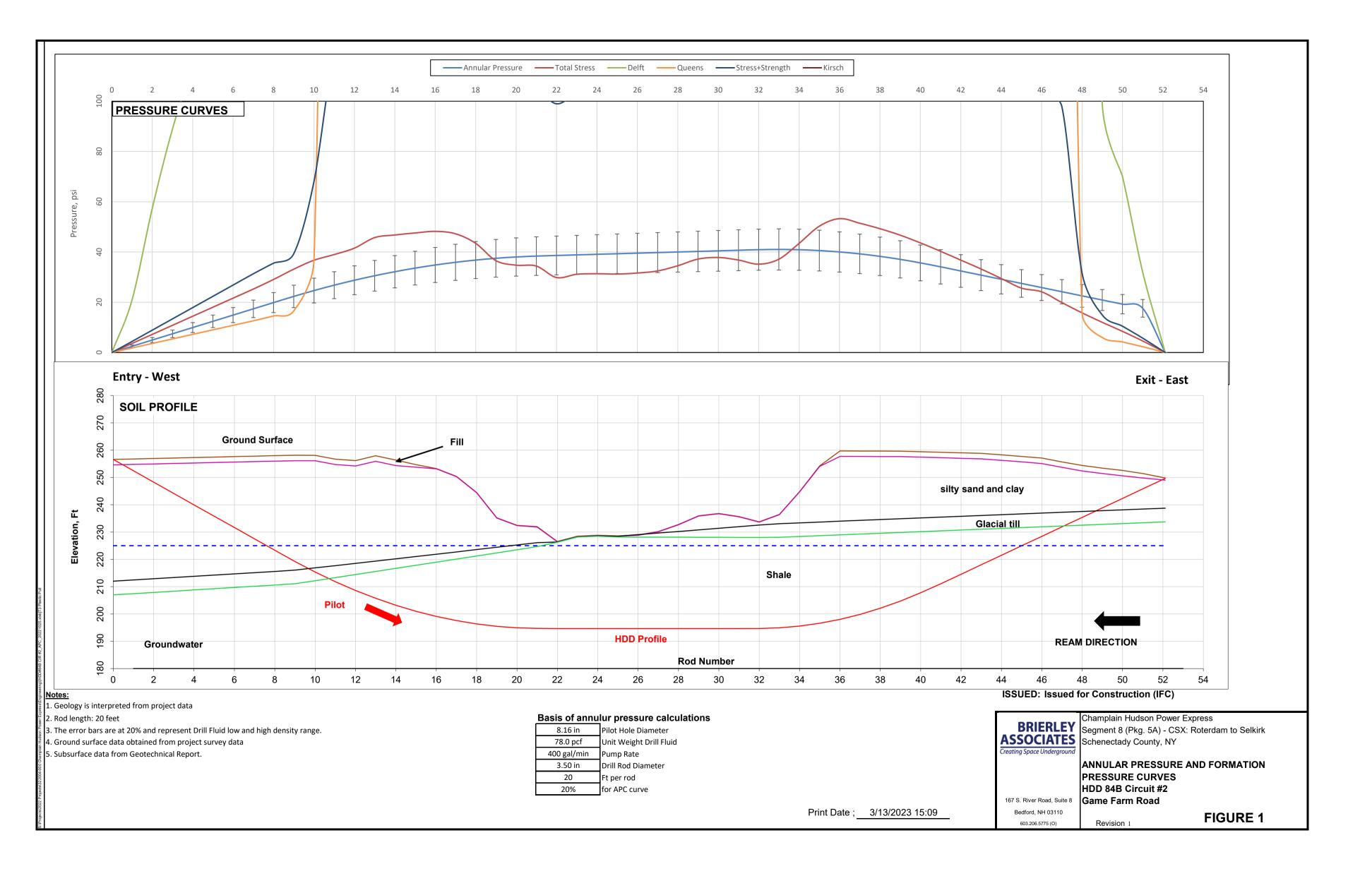
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f_T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S:\Projects\2022 Projects\322004-000 Champlain Hudson Power Ex

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 85 Conduit #1

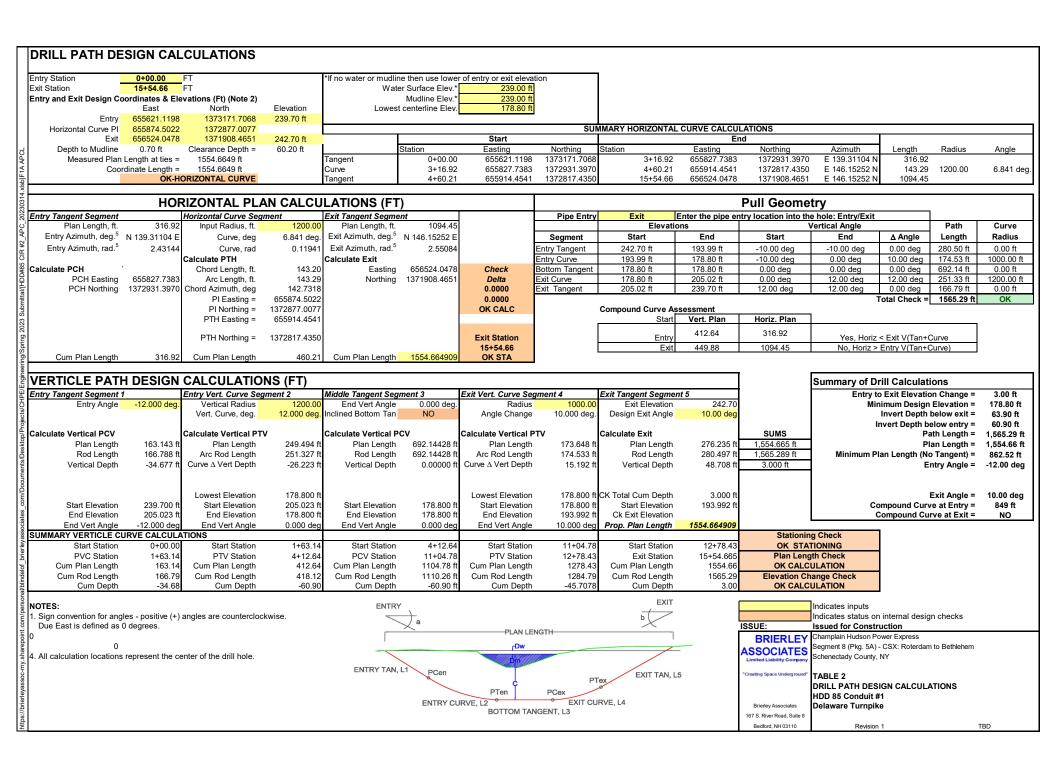
Delaware Turnpike

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	PLASTIC STRESS CALCULATIONS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 14-Mar-2023

DATE	REV	DESCRIPTION	
10/23/2022	0	Design Submittal	
3/14/2023	1	Issued for Construction (IFC)	

Lengths (Path)		Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 = :	280.5 ft	α =	-10.0 °	-0.1745	
L3 =	174.5 ft				1,000.0 ft
L4 =	692.1 ft	χ =	0.0 °	0.0000	
L5 = 2	251.3 ft				1,200.0 ft
L6 =	166.8 ft	β =	12.0 °	0.2094	
LT =	1665.3 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

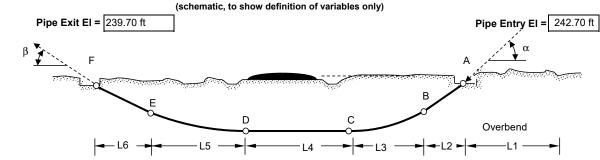
τ_f = 0.005 psi Drill Fluid Shear Stress

INPUT: Pipe Properties

Material	HDPE	IPS		
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F		
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUNDLE		
Material Density, γ	59.28 pcf			
Outside Diameter, D _{OD}	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bundle		
Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches		
Avg. Inside Diameter, D_{IA}	BUNDLE	Bundle Multiplier F _D 0.9042		
12 Hr Pullback Modulus, E _T =	65,000 psi	@T = 73 deg F		
Poisson Ratio, μ =	0.45			
Ovality Factor, f_o =	0.84	2%		
Buckling Safety, N =	2.5			
Hydrostatic Design Stress, HDS =	1,000 psi	HDB/2		
Pressure Rating, PR	250 nsi	PR = 2HDSF ₊ A ₌ /(DR-1) [F ₊ =1]		

INPUT: Assumed Fluid Densities/Elevations					
Ballast Density 62.4 pcf					
Drill Fluid Density	78	pcf Estimated for pull			
Drill fluid elevation, H _F =	239.70 ft				
Ballast Water El., H _W =	239.70 ft				
Lowest Invert El., El _m =	178.80 ft				

Calculated Pipe and Fluid Properties


atou i ipo ana i iaia i roportioo		
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ΔT =	0.56 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

-	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			42.80 Lb/LF
In Hole with Drill Fluid, w _b /w _{bf} =		-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

Exit

Calculated Pull Force						ASS	ASSESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Ballasted Pipe	Stress, σ_T	$\sigma_{T} < \sigma_{PM}$	Air	Ballast
Α	2,942 lb	203 psi	OK	2,942 lb	203 psi	OK	OK	OK
В	5,376 lb	136 psi	OK	5,862 lb	148 psi	OK	OK	OK
С	6,887 lb	212 psi	OK	6,644 lb	206 psi	OK	OK	OK
D	9,612 lb	242 psi	OK	9,369 lb	236 psi	OK	OK	OK
E	14,791 lb	405 psi	OK	12,156 lb	339 psi	OK	OK	OK
F	18,357 lb	463 psi	OK	13,802 lb	348 psi	OK	OK	OK
ASSESS F	Pull Restricted B	Buckling Capa	city, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	94.72 psi	Balla	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

•		
Safe Pull Strength, SPS =	-,	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P _A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.885474979	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.201316618	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	463 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	6.60	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP _U invert =	32.99	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

BRIERLEY ASSOCIATES Limited Liability Company "Creating Space Underground"

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 85 Conduit #1 Delaware Turnpike Brierley Associates

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 85 Conduit #1 Delaware Turnpike

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

cts/CHPE/Engineering/Spring 2023 Submittal/[HDD#85 CIR #2_APC_20230314.xlsb]F1A APCL

Pipe Material Properties

	Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced							
	Design Working Pr	Design Working Pressure, P _{WORK} 250 psi			Test Pressure, P _{TEST} 0 psig At high point			
	Quantity of Pipe	es in Hole, Q =	1					
Pipe Material			PE4710	INPUT RESI	N MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification			445574C	Design resin	with minimum PENT test of 10,000 hours			
	Standa	ard Dimension	3					
	Pipe measurer	ment standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iron Pipe Size"			
	DR = OD/I	Minimum Wall	9					
	Outside I	Diameter, D _o =	3.500 in	Standard Manufacturer's Data Sheets				
	Avg. Inside	Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets			
	Minim	um Wall, t _{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets			
	Wall Secti	ion Area, A _W =	3.80093926	$A_W = \pi^*((D_o/2))$	$(D_0-2t)/2$			
	Unit OD Surface Area	$_{\rm i}$, in ² /LF, $A_{\rm OD}$ =	131.95 in^2/LF	$A_{OD} = 12*\pi*[$	\mathcal{O}_{OD}			
	Unit Outside	Volume, V_{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =			0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =			1,600 psi	Based on PF	PI Publication TR-4/2015 and ASTM 2837			
	Design Factor	for HDB, DF =	0.63	Based on PF	PI PE Handbook 2nd ED Chapter 5			
1	Hydrostatic Design		1000 psi	HDS = HDB*				
Environmental Factor, Af _e =		1	Reference 2:	Use for pressure rating only				
		Density =	59.28 pcf		Average from WL Plastics WL122 for PE4710			
- 6		eight Dry, W =	1.66	Lb/LF				
		Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638			
		Load Duration		Long Term				
		Duration Time	10 hours	50 yrs				
		emperature, °F		73 deg F	Assumed			
		ign Ovality, % of Safety, FS =	2% 2.5	2% 2.5	See Sheets 4 of 5 for design ovality Industry Practice			
	Modulus for given load	•	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
	=	sson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours			
		ality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality			
	Tempera	ture factor, f _t =	1.00	1.00	Source: WL Plastics WL118			
	Project Fluids				•			
(_	Pipe Internal	Expected	Heavy	Buoyant forces			
		Ballast	External Fluid	External Fluid				
	Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2	Internal Ballast Weight, $W_B = \frac{2.44 \text{ lb/ft}}{2.44 \text{ lb/ft}} W_B = V_{Di}^* \gamma_{INT}$			

	Pipe Internal	Expected	Heavy
	Ballast	External Fluid	External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ _{EXT1}	γ _{EXT2}
Density, γ =	62.4	78	80
Buoya	-3.55 lb/ft		
Buoya	-3.69 lb/ft		
	4.10 lb/ft		
Buoyar	-1.11 lb/ft		
Buoya	-1.24 lb/ft		

 $\begin{array}{c} \text{Buoyant forces} \\ \text{Dry Weight Pipe on ground, W}_{P} = \\ \text{Internal Ballast Weight, W}_{B} = \\ \text{Expected Displaced Fluid Weight, W}_{D1} = \\ \text{Heavy Displaced Fluid Weight, W}_{D2} = \\ \hline W_{P}-W_{D1} \\ W_{P}+W_{D2} \\ W_{P}+W_{B} \\ \text{BG-W}_{D1} \end{array}$

 $BG-W_{D2}$

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 85 Conduit #1 Delaware Turnpike

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, Pu = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F Pressure Rating, PR = 250 psi Maximum Ocassional Surge, Pos = 500 psi

 $PR = 2*HDS*f_{t}*Af_{e}/(DR-1)$

 $P_{OS} = 2*PR$ Maximum Reoccuring Surge, PRS = 375 psi $P_{RS} = 1.5*PR$ ASSESSMENT PRESSURE RATING OK if PR \geq to P_{WORK} OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F $P_{CR} =$ 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 63.90 ft

Ballast depth to invert, H_B 60.90 ft Drill Fluid depth to invert, H_{DF}

60.90 ft

Pipe Invert Internal Pressure, PI

Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$

Pipe Invert External Pressure, PF Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 33.07 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$

33.91 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 26.45 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = $(P_B+P_a)-P_W$
Internal Air and External Water = (PA+Pa)-Pw

Short Term	Long Term	
73.91 psi	13.02 psi	Pull Back Condition - Option 1
73.06 psi	12.17 psi	Pull Back Condition - Option 2
100.36 psi	39.47 psi	Pull Back Condition - Option 3
99.51 psi	38.62 psi	Pull Back Condition - Option 4
106.97 psi	46.08 psi	Long Term Operating Conditions
80.52 psi	19.63 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 85 Conduit #1
Delaware Turnpike

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, f_T =	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

BRIERLEY

ASSOCIATES

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr		Pcr = 267.4 psi			
SAS =	1,400 psi	Design D	Depth in DF, H _{MDF} = 0.0 ft			
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumpt	tion as Maximum			
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.88547					
$r = \sigma_i/2*(SSAS) =$	0.20132	Example from Table T5, σ _i = 463 μ				
P _{CRR} =	236.8 psi					
FS =	2.0					
$P_{ACRR} = P_{CRR}/FS =$	118.4 psi	Allowable Reduc	ced Short Term Buckling pressure during	pull		
Internal Ballasted and External Fluid 1 = ($P_B + P_{ACRR} - P_{DF1}$	85.34 psi	Pull Back Condition - Option 3 OK as >	0		
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}$)- P_{DF2}	84.49 psi	Pull Back Condition - Option 4 OK as >	0		

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

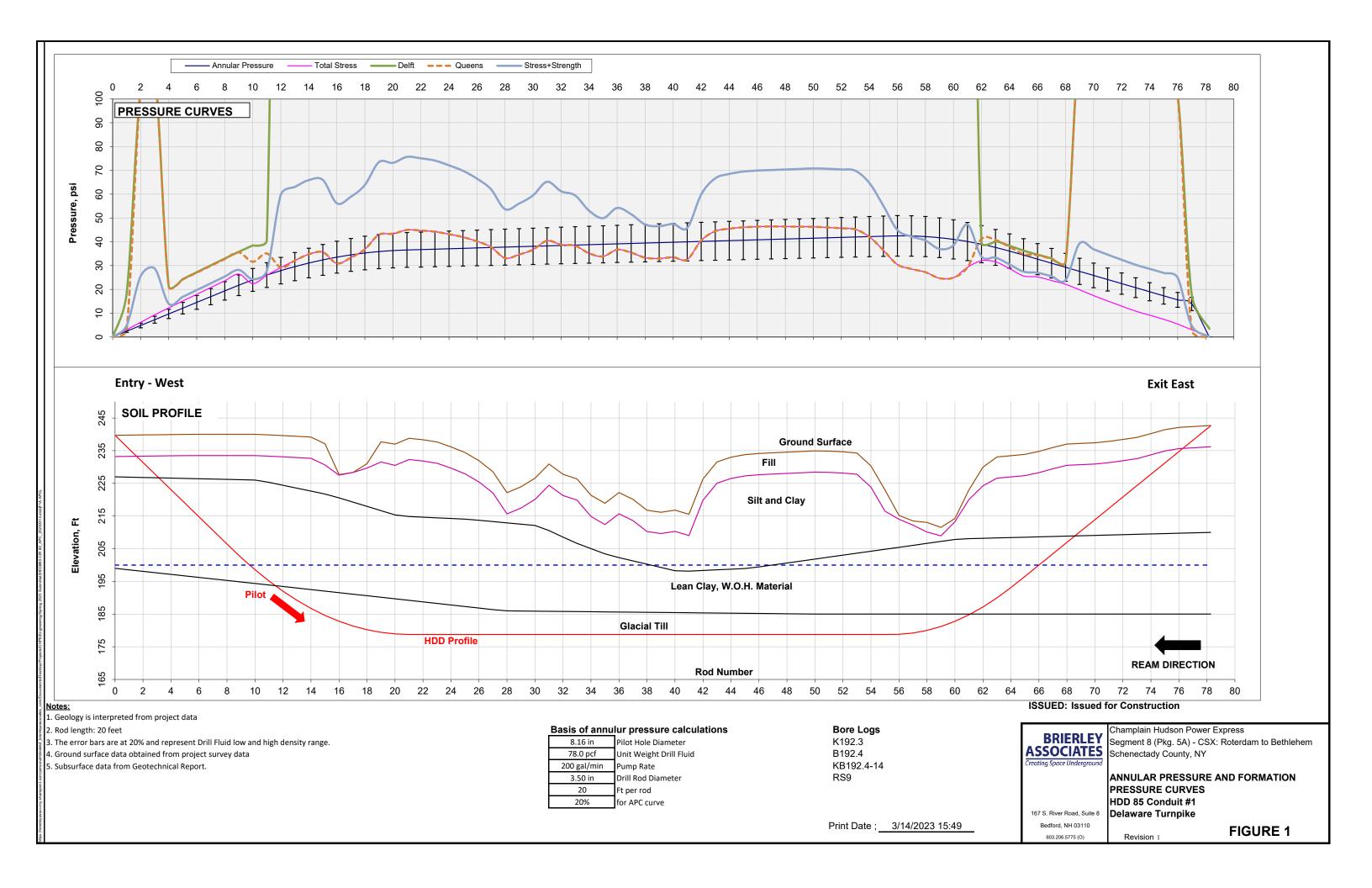
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

	f_T	Time factor for pull	
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
Ι	0.91	Up to 24 hours	24

https://brierlevassoc-mv.sharepoint.com/bersonal/blindelof_brierlevassociates_com/Docum

g/Spring 2023 Submittal/[HDD#85 CIR #2_APC_20230314.xlsb]F1A APCL

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 85 Conduit #2

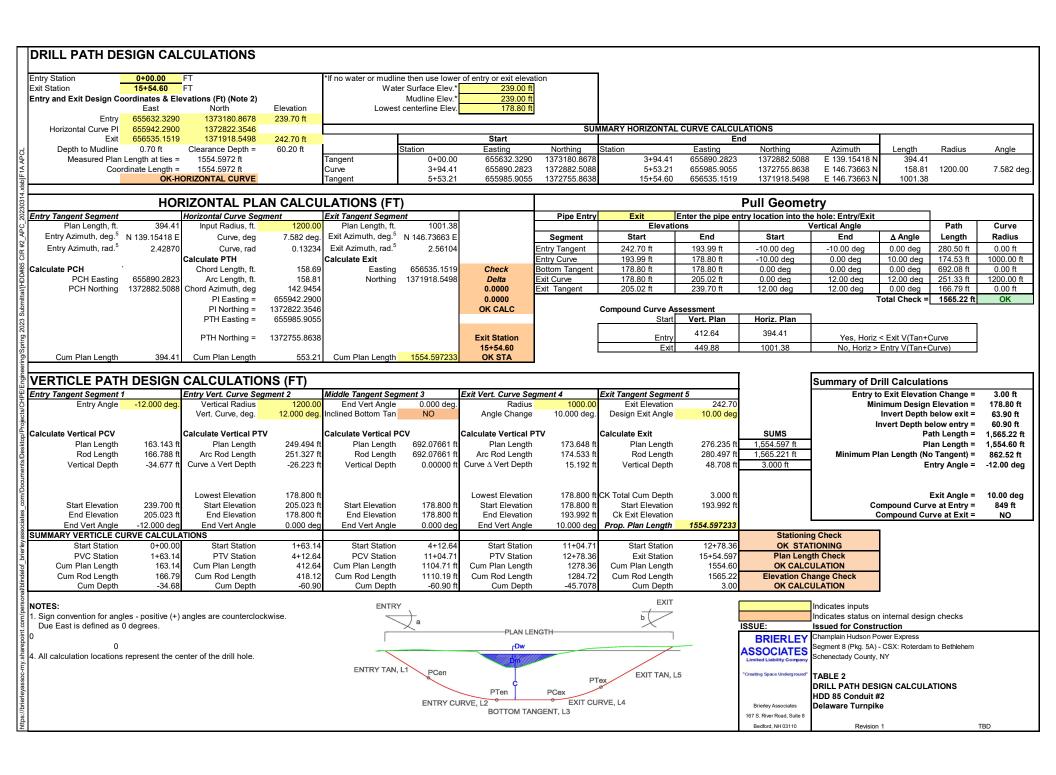
Delaware Turnpike

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	PLASTIC STRESS CALCULATIONS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 14-Mar-2023

DATE	REV	DESCRIPTION	
10/23/2022	0	Design Submittal	ABL
3/14/2023	1	sued for Construction (IFC)	

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	300.0 ft
L2 =	280.5 ft	α =	-10.0 °	-0.1745	
L3 =	174.5 ft				1,000.0 ft
L4 =	692.1 ft	χ =	0.0 °	0.0000	
L5 =	251.3 ft				1,200.0 ft
L6 =	166.8 ft	β =	12.0 °	0.2094	
LT =	1665.2 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
$\mu_c =$	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

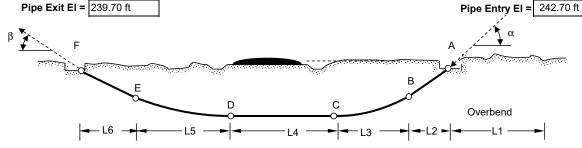
 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

Material	HDPE		IPS	
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam. 10.75	PIPE	PIPE/BUND	LE	
Material Density, γ	59.28 pcf			
Outside Diameter, D_{OD}	10.75	Pipe or Bun	dle	
Pipe Dry Weight, W_P =	15.70 lb/ft	Pipe or Bun	dle	
Min. Wall Thickness, t_m	1.194 in	For design i	nstallatio	on pull stress
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches
Avg. Inside Diameter, D_{IA}	BUNDLE	Bundle Mult	iplier F _D	1.0000
12 Hr Pullback Modulus, E_T =	65,000 psi	@T =	73 deg F	
Poisson Ratio, μ =	0.45		_	
Ovality Factor, f_o =	0.84	2%		
Buckling Safety, N =	2.5		•	
Hydrostatic Design Stress, HDS =	1,000 psi	HDB/2		
Pressure Rating, PR _(80F) =	250 psi	PR = 2HDS	$F_TA_F/(D$	R-1) [F _T =1]

INPUT: Assumed Fluid Densities/Elevations				
Ballast Density	62.4	pcf		
Drill Fluid Density	78	pcf Estimated for pull		
Drill fluid elevation, H _F =	239.70 ft			
Ballast Water El., H _W =	239.70 ft			
Lowest Invert El., El _m =	178.80 ft			

Calculated Pipe and Fluid Properties


Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V_{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, $\Delta T =$	0.42 lb/ft	Comparison Only @ 8psi

Calculated Buovant Forces

-	Pipe	Air Filled	Ballasted
	und, w _a /w _{af} =		38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force					ASSESS			
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ _T	$\sigma_{\text{T}} < \sigma_{\text{PM}}$	Air	Ballast
Α	2,660 lb	171 psi	OK	2,660 lb	171 psi	OK	OK	OK
В	4,968 lb	139 psi	OK	5,407 lb	151 psi	OK	OK	OK
С	6,266 lb	204 psi	OK	6,046 lb	198 psi	OK	OK	OK
D	8,730 lb	244 psi	OK	8,510 lb	237 psi	OK	OK	OK
E	13,308 lb	396 psi	OK	10,926 lb	329 psi	OK	OK	OK
F	16,464 lb	459 psi	OK	12,347 lb	344 psi	OK	OK	OK
ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 94.84$ psi Ballas					sted	OK		

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$ Safe Pull Strength, SPS = 41.235 lb Allowable Short Term Unconstrained Buckling, PA = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, $F_R = \frac{0.886529444}{0.886529444}$ $F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$ 0.199702042 r = $\sigma_{T}/2$ SPS Maximum applied pull Stress, σ_T = 459 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 6.60 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 32.99 psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

 D_0 <8" Use D_H = D_0 +4"; 8"< D_0 <24" Use D_H =1.5* D_0 ; D_0 >24" Use D_H = D_0 +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction

BRIERLEY ASSOCIATES "Creating Space Underground

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 85 Conduit #2 Delaware Turnpike Brierley Associates

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Pg 1 of 3

Schenectady County, NY

HDD 85 Conduit #2 Delaware Turnpike

BRIERLEY ASSOCIATES

"Creating Space Underground"

INPUTS

dop/Projects/CHPE/Engineering/Spring 2023 Submittal/[HDD#85 CIR #2_APC_20230314.xlsb]F1A APCL

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publ				plications and as referenced	
	Design Working Pressure, P_{WORk}	250 psi		Test Pressure, P _{TEST} 0 psig At high point	
	Quantity of Pipes in Hole, Q =	1			
Pipe Material PE4710 INF			INPUT RESIN	N MATERIAL: PE3408, PE3608, PE4710	
	ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 10,000 hours	
	Standard Dimension	10			
	Pipe measurement standard	IPS	IPS "Iron Pipe	e Size" of DIPS "Ductile Iron Pipe Size"	
	DR = OD/Minimum Wall	9			
	Outside Diameter, D _o =	10.750 in	Standard Mar	nufacturer's Data Sheets	
	Avg. Inside Diameter, D _i =	8.219 in	Standard Mar	nufacturer's Data Sheets	
7	Minimum Wall, t _{min} =	1.194 in	Standard Mar	nufacturer's Data Sheets	
1A AP(Wall Section Area, A _W =	35.85681985	$A_W = \pi^*((D_o/2))$	$((D_0-2t)/2)^2$	
.xlsb]F	Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D$	OD	
230314	Unit Outside Volume, V _{Do} =	0.630 cf/LF	$V_{Do} = \pi^*(D_o/2)$) ² /144	
ار 201	Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^*(D_i/2)^2$	² /144	
8#2_AI	HDB =	1,600 psi	Based on PP	Publication TR-4/2015 and ASTM 2837	
#85 CIF	Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5		
(모으	Hydrostatic Design Stress, HDS =		HDS = HDB*DF		
bmittal	Environmental Factor, Af _e =	1		Use for pressure rating only	
023 Su	Density =	59.28 pcf	ŭ	Average from WL Plastics WL122 for PE4710	
pring 2	Weight Dry, W =		Lb/LF		
ering/S	Tensile Yield, Ty psi =)	Minimum from ASTM D3350 determined by ASTM D638	
Engine	Load Duration Duration Time		Long Term 50 yrs		
CHPE	Design Temperature, °F			Assumed	
rojects	Design Ovality, %	2%		See Sheets 4 of 5 for design ovality	
sktop/P	Factor of Safety, FS =		2.5	Industry Practice	
nts/Des	Modulus for given load duration, E =		28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314	
ocnme	Poisson Ratio, υ =			WL118: Use 0.35 if load duration is less than 12 hours	
com/D	Ovality factor f _o =			Reference 1: Based on Selected Design Ovality	
ciates	Temperature factor, f _t =	1.00	1.00	Source: WL Plastics WL118	
leyassc	Project Fluids	1			
of_brier	Pipe Internal	Expected	Heavy	Buoyant forces	
blindek	Ballast Fluids Fresh Water	External Fluid Drill Fluid 1	External Fluid Drill Fluid 2	Dry Weight Pipe on ground, $W_P = 15.70 \text{ lb/ft}$ From MFG. Data Sheet Internal Ballast Weight, $W_B = 22.99 \text{ lb/ft}$ $W_B = V_{Di}^* \gamma_{INT}$	
ersonal,	YINT	γ _{EXT1}		Expected Displaced Fluid Weight, $W_{D1} = \frac{22.93 \text{ Jb/H}}{49.16 \text{ lb/ft}} W_{D1} = V_{D0}^* \gamma_{\text{EXT1}}$	
com/pe	Density, $\gamma = \frac{62.4}{62.4}$	78	80 80	Heavy Displaced Fluid Weight, $W_{D2} = 50.42 \text{ lb/ft}$ $W_{D2} = V_{Do}^* \gamma_{EXT2}$	
repoint	Buoyant Unballaste	d Fluid 1, B _{B1} =	-33.46 lb/ft	W _P -W _{D1}	
my.sha	Buoyant Unballaste	= :	-34.72 lb/ft	W _P -W _{D2}	
ŏ					

Ballasted on ground, B_G = 38.69 lb/ft

Buoyant Ballasted in Fluid 1, BB_{B1} = -10.47 lb/ft

Buoyant Ballasted in Fluid 2, B_{BB2} = -11.73 lb/ft

 $W_P + W_B$

BG-W_{D1}

 $BG-W_{D2}$

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 85 Conduit #2 Delaware Turnpike

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, $^{\circ}F = 73 \text{ deg } F$ Ultimate Internal Pressure, $P_U = 875 \text{ psi}$ Allowable Internal Pressure, $P_A = 400 \text{ psi}$ $P_A = 2^*\text{HDB*f}_{t'}(\text{DR-1})$

ASSESSMENT TEST PRESSURE

OK OK if P_A >= to P_{TEST}

Long Term Design for operating conditions

Design Temperature, ${}^{\circ}F = 73 \text{ deg } F$ Pressure Rating, PR = 250 psi

Maximum Ocassional Surge, Pos = 500 psi

Maximum Reoccuring Surge, PRS = 375 psi

PR = 2*HDS*f_t*Af_e/(DR-1)

Pos = 2*PR

Pos = 1.5*PR

ASSESSMENT PRESSURE RATING
OK OK if PR >= to P_{WORK}

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 63.90 ft

Ballast depth to invert, H_B 60.90 ft

Drill Fluid depth to invert, H_{DF} 60

Pipe Invert External Pressure, P_E

60.90 ft

Pipe Invert Internal Pressure, PI

Air Ballast, P_A 0.00 psi Full Ballast, $P_B=\gamma_{INT}^*(H_B+D_o/24)/144$ 26.58 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}^* (H_{MDF} + D_o/24)/144$ 33.23 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}^* (H_{MDF} + D_o/24)/144$ 34.08 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 26.58 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_2) - P_E \le 0$

Differential Pressures	S
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	
Internal Ballasted and External Fluid 1 = (P _B +P _a)-P _{DF1}	•
Internal Ballasted and External Fluid 2 = (P _B +P _a)-P _{DF2}	
Internal Ballasted and External Water = $(P_B + P_a) - P_W$	1
Internal Air and External Water = (P _A +P _a)-P _W	

Short Term	Long Term	
73.74 psi	12.85 psi	Pull Back Condition - Option 1
72.89 psi	12.00 psi	Pull Back Condition - Option 2
100.33 psi	39.44 psi	Pull Back Condition - Option 3
99.48 psi	38.58 psi	Pull Back Condition - Option 4
106.97 psi	46.08 psi	Long Term Operating Conditions
80.39 psi	19.50 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Page 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

HDD 85 Conduit #2 Delaware Turnpike

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Pg 3 of 3

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T * f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

BRIERLEY

ASSOCIATES

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, PcrR = Pcr*fr

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi				
SAS = 1,400 psi		Design Depth in DF, H _{MDF} = 0.0 ft				
Estimated Maximum Pull Stress, $\sigma_i = \frac{1,150 \text{ psi}}{1,150 \text{ psi}}$		Design Assumption as Maximum				
$fr = ((5.57-(r+1.09)^2)^5-1.09 =$	0.88653					
$r = \sigma_i/2*(SSAS) =$	0.19970	Example from Table T5, $\sigma_i = \begin{bmatrix} 459 \text{ psi} \end{bmatrix}$				
P _{CRR} =	237.1 psi					
FS =	2.0					
$P_{ACRR} = P_{CRR}/FS =$	118.5 psi	Allowable Reduced Short Term Buckling pressure during pu	II			
Internal Ballasted and External Fluid 1 = $(P_B+P_{ACRR})-P_{DF1}$		85.32 psi Pull Back Condition - Option 3 OK as >0				
Internal Ballasted and External Fluid 2 = ($P_B + P_{ACRR}$)- P_{DF2}	84.46 psi Pull Back Condition - Option 4 OK as >0				

ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

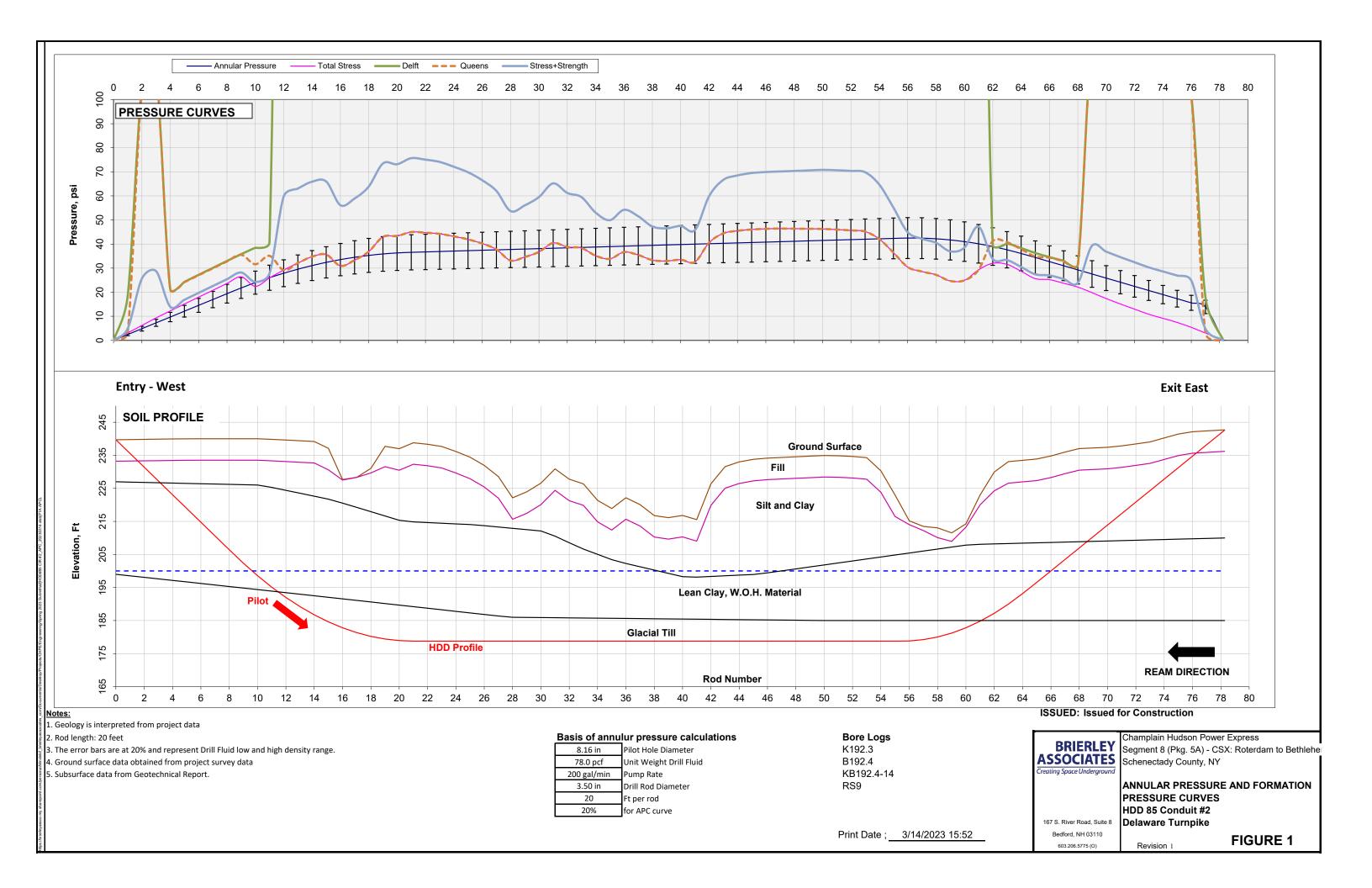
ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB

CHAPTER 6 - TABLE 1-2


REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	1.00 Up to 1 hour pull	
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

https://hrierlevascoc.my.charenoint.com/harconal/hlindelof.hrierl

g/Spring 2023 Submittal/[HDD#85 CIR #2_APC_20230314.xlsb]F1A APCL

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 87 Circuit #1

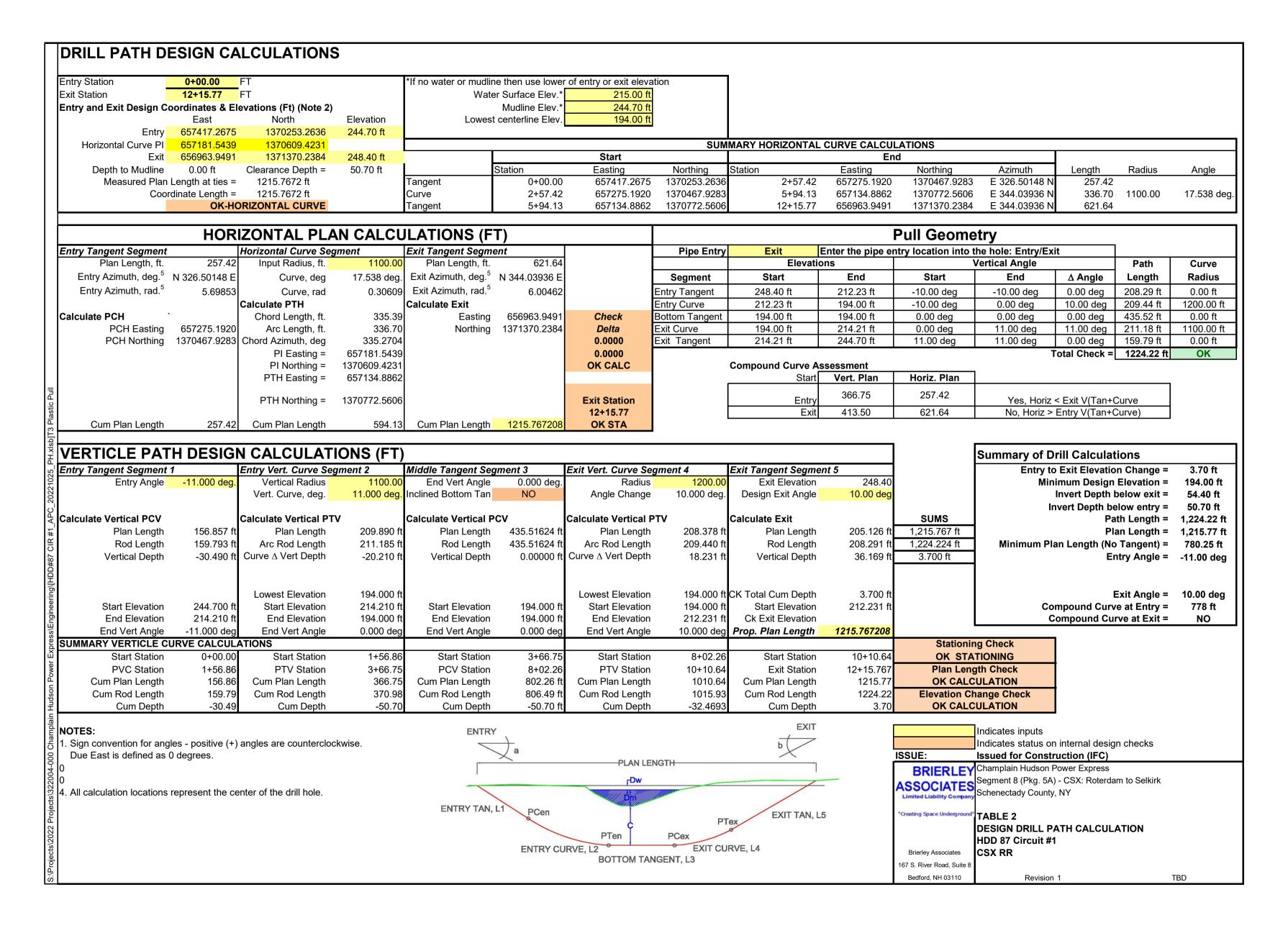
CSX RR

ISSUE: Design Submittal

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 17-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	esign Submittal	
3/17/2023	1	sued for Construction	

Pull Geometry

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	208.3 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	435.5 ft	χ =	0.0 °	0.0000	
L5 =	211.2 ft				1,100.0 ft
L6 =	159.8 ft	β =	11.0 °	0.1920	
LT =	1324.2 ft				

INPUT: Assumed Friction Factors

μ_G =	0	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

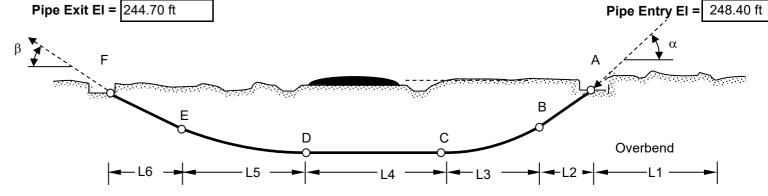
INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

IPS

Estimated for pull

INPUT: Pipe Properties Material HDPE


	Matchai	1101 -		IF O			
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F				
Pile/Bundle Diam. 14.25		BUNDLE	PIPE/BUNDLE				
Materi	al Density, γ	59.28 pcf					
Outside Dia	ameter, D _{OD}	14.25	Pipe or Bun	Pipe or Bundle			
Pipe Dry W	/eight, W _P =	17.36 lb/ft	Pipe or Bun	dle			
Min. Wall T	hickness, t_m	1.194 in	For design i	For design installation pull stress			
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches		
Avg. Inside Diameter, D _{IA}		BUNDLE	Bundle Multiplier F _D		0.9042		
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F			
Poisso	n Ratio, μ =	0.45					
Ovality	Factor, f _o =	0.84	2%				
Buckling	Safety, N =	2.5					
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2				
Pressure Ratin	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]		
INPUT	INPUT: Assumed Fluid Densities/Elevations						

Ballast Density	62.4
Drill Fluid Density	
Drill fluid elevation, H_F =	244.70 ft
Ballast Water El., H _W =	244.70 ft
Lowest Invert El., El _m =	194.00 ft

pcf

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force				ASS	ESS			
POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
FOINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	2,339 lb	136 psi	OK	2,339 lb	136 psi	OK	OK	OK
В	4,118 lb	104 psi	OK	4,463 lb	113 psi	OK	OK	OK
С	5,827 lb	179 psi	OK	5,287 lb	166 psi	OK	OK	OK
D	7,284 lb	184 psi	OK	6,743 lb	170 psi	OK	OK	OK
E	11,473 lb	324 psi	OK	8,963 lb	261 psi	OK	OK	OK
F	14,791 lb	373 psi	OK	10,509 lb	265 psi	OK	OK	OK
ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 97.40$ psi Ballas					sted	OK		

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	•	SSPS = $\sigma_{PM}\pi D_{OD}^2((1/DR)-(1/DR^2))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.910487945	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.162217227	r = σ _T /2SPS
Maximum applied pull Stress, σ_T =	373 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	5.49	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔPu invert =	27.46	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

Calculated Pipe and Fluid Properties

Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A _W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
EQ 18: Hydrokinetic, ΔT =	0.72 lb/ft	Comparison Only @ 8psi

ASTM EQ 18: Hydrokinetic, $\Delta T =$ 0.72 lb/ft

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
	und, $w_a/w_{af} =$		42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 87 Circuit #1 CSX RR

Brierley Associates 167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87 Circuit #1

CSX RR

At high point

"Creating Space Underground"

BRIERLEY

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced Design Working Pressure, Pwork Test Pressure, P_{TEST} 250 psi 0 psig Quantity of Pipes in Hole, Q =

INPUT RESIN MATERIAL: PE3408, PE3608, PE4710

445574C ASTM D3350 Cell Classification Design resin with minimum PENT test of 10,000 hours

Standard Dimension

Pipe Material

IPS IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"

Pipe measurement standard DR = OD/Minimum Wall

Outside Diameter, Do = 3.500 in Standard Manufacturer's Data Sheets

Avg. Inside Diameter, D_i = 2.680 in Standard Manufacturer's Data Sheets Standard Manufacturer's Data Sheets

Minimum Wall, t_{min} = 0.389 in $A_W = \pi^*((D_0/2)^2 - ((D_0-2t)/2)^2)$ Wall Section Area, A_W = 3.80093926

PE4710

9

Unit OD Surface Area, in LF, AoD = 131.95 in^2/LF $A_{OD} = 12*\pi*D_{OD}$

> $V_{Do} = \pi^* (D_o/2)^2 / 144$ Unit Outside Volume, V_{Do} = 0.067 cf/LF

Unit Inside Volume, V_{Di} = $V_{Di} = \pi^* (D_i/2)^2 / 144$ 0.039 cf/LF

> HDB = 1,600 psi Based on PPI Publication TR-4/2015 and ASTM 2837

Based on PPI PE Handbook 2nd ED Chapter 5 Design Factor for HDB, DF = 0.63

Hydrostatic Design Stress, HDS = 1008 psi HDS = HDB*DF

Environmental Factor, Af_e = Reference 2: Use for pressure rating only

> 1.410 g/cc Average from WL Plastics WL122 for PE4710 Density = 59.28 pcf

Weight Dry, W = 1.66 Lb/LF

<u>@</u>73°F Tensile Yield, Ty psi = 3,500 psi Minimum from ASTM D3350 determined by ASTM D638

Load Duration **Short Term Long Term** 10 hours **Duration Time** 50 yrs

73 deg F 73 deg F Assumed Design Temperature, °F Design Ovality, % See Sheets 4 of 5 for design ovality 2% 2%

Factor of Safety, FS = 2.5 2.5 **Industry Practice**

Modulus for given load duration, E = 28,000 psi 65,000 psi Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314

> Poisson Ratio, υ = 0.45 0.45 WL118: Use 0.35 if load duration is less than 12 hours Ovality factor f_o = 0.84 0.84 Reference 1: Based on Selected Design Ovality

Temperature factor, f_t = 1.00 1.00 Source: WL Plastics WL118

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ_{EXT1}	γ _{EXT2}
Density, γ =	62.4	78	80

	7 IIN I	/ LXII	ILXIZ	
nsity, γ =	62.4	78	80	
Buoya	ant Unballasted	d Fluid 1, B _{B1} =	-3.55 lb/ft	
Buoyant Unballasted Fluid 2, B _{B2} =			-3.69 lb/ft	
Ballasted on ground, B _G = 4.10 l				
_				

Buoyant Ballasted in Fluid 1, $BB_{B1} = \begin{bmatrix} -1.11 \text{ lb/ft} \end{bmatrix}$ Buoyant Ballasted in Fluid 2, $B_{BB2} =$ -1.24 lb/ft

Buoyant forces

Dry Weight Pipe on ground, W_P = 1.66 lb/ft From MFG. Data Sheet Internal Ballast Weight, W_B = 2.44 lb/ft $W_B = V_{Di}^* \gamma_{INT}$ Expected Displaced Fluid Weight, W_{D1} = 5.21 lb/ft $|W_{D1} = V_{Do} * \gamma_{EXT1}$ 5.35 lb/ft $|W_{D2} = V_{Do}^* \gamma_{EXT2}$

Heavy Displaced Fluid Weight, W_{D2} =

 W_P-W_{D1} $W_P - W_{D2}$ W_P+W_B BG-W_{D1}

BG-W_{D2}

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 87 Circuit #1

CSX RR

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P_A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long renn	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^* [2*E/(1-v^2)]^* [(1/(DR-1))^3]$

	Snort Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 50.70 ft

Ballast depth to invert, H_B 54.40 ft

Drill Fluid depth to invert, H_{DF}

Pipe Invert External Pressure, PE

50.70 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 22.03 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$

Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

27.54 psi 28.25 psi 22.03 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = (P _B +P _a)-P _W
Internal Air and External Water = $(P_A+P_a)-P_W$

S	Short Term	Long Term
1	79.43 psi	18.54 psi
2	78.73 psi	17.83 psi
1	101.47 psi	40.57 psi
2	100.76 psi	39.87 psi
Ν	106.97 psi	46.08 psi
Ν	84.94 psi	24.05 psi

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 87 Circuit #1

CSX RR

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

		<u></u>
Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	FE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, $Ty*f_{temp} =$	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

,		
Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91049	
$r = \sigma_i/2*(SSAS) =$	0.16222	Example from Table T5, $\sigma_i = \boxed{373 \text{ psi}}$
P _{CRR} =	243.5 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	121.7 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	116.24 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	115.53 psi Pull Back Condition - C OK as >0

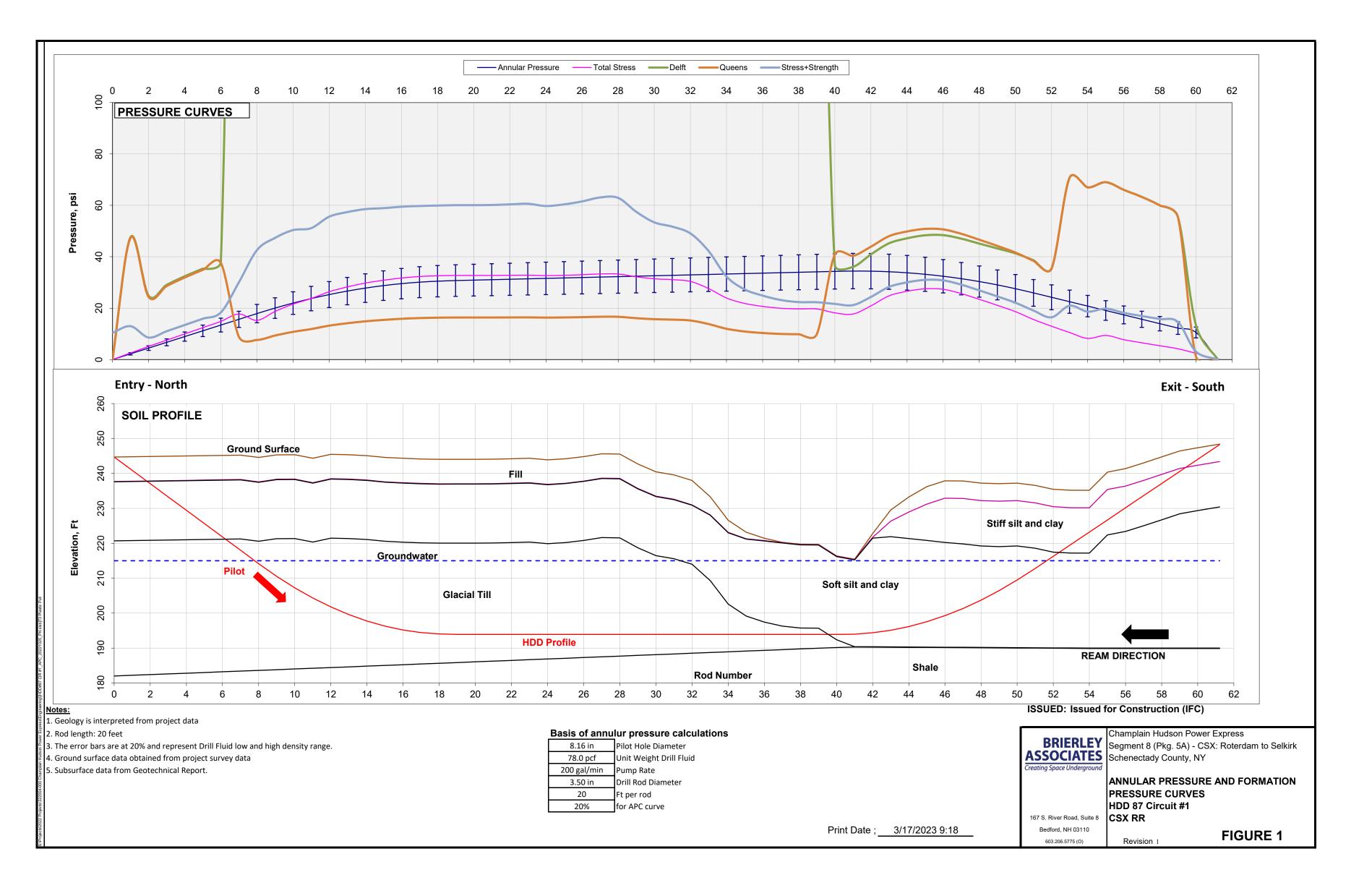
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

,	f _T		
	1.00	Up to 1 hour pull	1
	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

S:\Projects\2022 Projects\322004-000 Cha

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 87 Circuit #2

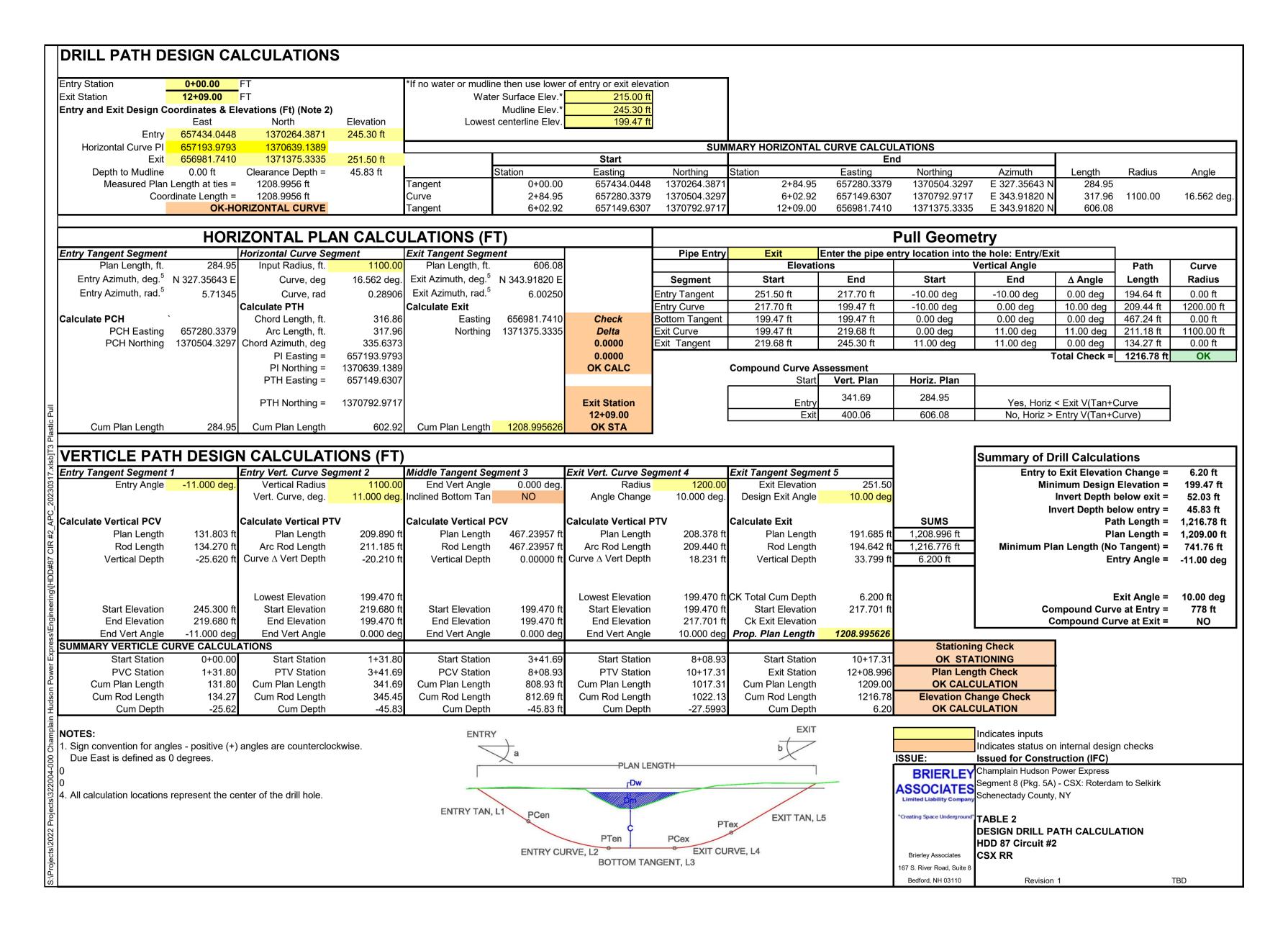
CSX RR

ISSUE: Design Submittal

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 17-Mar-2023

Revision	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/17/2023	1	Issued for Construction	KRF

Pull Geometry

Lengths (Path)			Radius, R		
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	194.6 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	467.2 ft	χ =	0.0 °	0.0000	
L5 =	211.2 ft				1,100.0 ft
L6 =	134.3 ft	β =	11.0 °	0.1920	
LT =	1316.8 ft				

INPUT: Assumed Friction Factors

μ_G =	0	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = 0.005 \text{ psi}$ Drill Fluid Shear Stress

IPS

INPUT: Pipe Properties Material HDPE

	Material	IIDFL		IFS			
Safe Pull Max.	Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F		
Pile/Bundle Diam.	14.25	Pipe	PIPE/BUND	LE			
Materia	al Density, γ	59.28 pcf					
Outside Dia	ameter, D _{OD}	10.75	Pipe or Bun	Pipe or Bundle			
Pipe Dry W	eight, W _P =	15.70 lb/ft	Pipe or Bun	dle			
Min. Wall T	hickness, t_m	1.194 in	For design installation pull stress				
DF	$R = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches		
Avg. Inside D	iameter, D _{IA}	8.22 in	Bundle Mult	iplier F _D	1.0000		
12 Hr Pullback Mo	odulus, E _T =	65,000 psi	@T =	73 deg F			
Poisso	n Ratio, μ =	0.45					
Ovality	Factor, f _o =	0.84	2%				
Buckling	Safety, N =	2.5					
Hydrostatic Design S	Stress, HDS =	1,008 psi	HDB/2				
Pressure Ratir	ng, PR _(80F) =	252 psi	PR = 2HDS	$F_TA_F/(D)$	R-1) [F _T =1]		
INPUT	INPUT: Assumed Fluid Densities/Elevations						

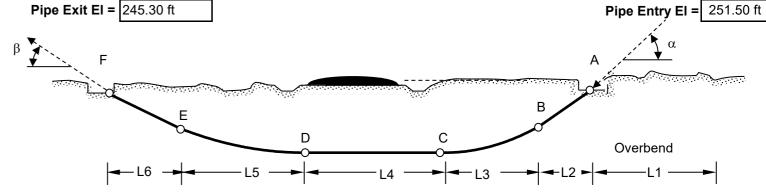
pcf

Ballast Density	62.4
Drill Fluid Density	78
Drill fluid elevation, $H_F =$	245.30 ft
Ballast Water El., H _W =	245.30 ft
Lowest Invert El., El _m =	199.47 ft

Estimated for pull

Calculated Pipe and Fluid Properties

<u> </u>		_
Pressure Pipe:	YES	
OD Perimeter Length, P	33.77 in	
Wall Section Area, A _W	37.70738915	
Volume Outside, V_{DO}	0.630 cf/LF	
Volume Inside, V_{DI}	0.368 cf/LF	
$q_d =$	2.03 lb/ft	Drill Fluid (unit d
FO 18: Hydrokinetic AT =	0.54 lb/ft	Comparison Onl


Calculated Buoyant Forces

-	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =		15.70 Lb/LF	38.69 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF

Pipe Entry Location - Drill

Exit

(schematic, to show definition of variables only)

	Calculated Pull Force						ASSESS		
	POINT	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
	FUINT	No Ballast	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
	Α	2,104 lb	117 psi	OK	2,104 lb	117 psi	OK	OK	OK
	В	3,627 lb	101 psi	OK	3,892 lb	109 psi	OK	OK	OK
	С	5,080 lb	166 psi	OK	4,543 lb	151 psi	OK	OK	OK
	D	6,590 lb	184 psi	OK	6,052 lb	169 psi	OK	OK	OK
	Е	10,288 lb	313 psi	OK	7,968 lb	249 psi	OK	OK	OK
	F	12,755 lb	356 psi	OK	9,089 lb	254 psi	OK	OK	OK
-	ASSESS Pull Restricted Buckling Capacity, $P_{PA} > \Delta P$ invert $P_{PA} = P_A F_R = 97.90$ psi Ballast						sted	OK	

Maximum tensile stress during pullback = σ_t = (F_T/ πt_m (D_{OD}- t_m))+E_TD_{OD}/2R

No Ballast PPI Ch 12 Eq 16 OK

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	*	$SSPS = \sigma_{PM} \pi D_{OD}^{2} ((1/DR) - (1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.915165074	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r =	0.154714033	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_{T} =	356 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP _B invert =	4.96	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔPu invert =	24.82	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D₀<8" Use D_H=D₀+4"; 8"<D₀<24" Use D_H=1.5*D₀; D₀>24" Use D_H=D₀+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

BRIERLEY Champlain Hudson Power Express Limited Liability Company Schenectady County, NY

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 87 Circuit #2

Bedford, NH 03110

CSX RR **Brierley Associates** 167 S. River Road, Suite 8

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87 Circuit #2

CSX RR

ASSOCIATES Limited Liability Company

BRIERLEY

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced				
Design Working Pressure, P_{WORK}	250 psi		Test Pressure, P _{TEST} 0	Opsig At high point
Quantity of Pipes in Hole, Q =	1			
Pipe Material	PE4710	INPUT RESI	N MATERIAL: PE3408, PE36	608, PE4710
ASTM D3350 Cell Classification	445574C	Design resin	with minimum PENT test of 1	10,000 hours
Standard Dimension	10			
Pipe measurement standard	IPS	IPS "Iron Pip	e Size" of DIPS "Ductile Iron I	Pipe Size"
DR = OD/Minimum Wall	9			
Outside Diameter, D_o =	10.750 in	Standard Ma	nufacturer's Data Sheets	
Avg. Inside Diameter, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets	
Minimum Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets	
Wall Section Area, A _W =	35.85681985	$A_W = \pi^* ((D_o/2)^2 - ((D_o-2t)/2)^2)$		
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D_{OD}$		
Unit Outside Volume, V_{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$		
Unit Inside Volume, V_{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$		
HDB =	1,600 psi	Based on PPI Publication TR-4/2015 and ASTM 2837		
Design Factor for HDB, DF =	0.63	Based on PPI PE Handbook 2nd ED Chapter 5		
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*DF		
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only	
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics W	/L122 for PE4710
Weight Dry, W =	15.70	Lb/LF		
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350	determined by ASTM D638
Load Duration		Long Term		
Duration Time	10 hours	50 yrs		
Design Temperature, °F	73 deg F	73 deg F	Assumed	

2%

2.5

28,000 psi

0.45

0.84

1.00

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γ_{INT}	γ_{EXT1}	γ_{EXT2}
Density, γ =	62.4	78	80
Buoya	-33.46 lb/ft		
Buoya	-34.72 lb/ft		
	38.69 lb/ft		
Buoyant Ballasted in Fluid 1, BB _{B1} =			-10.47 lb/ft
Buoya	-11.73 lb/ft		

2%

2.5

65,000 psi

0.45

0.84

1.00

Design Ovality, %

Poisson Ratio, v =

Ovality factor f_o =

Factor of Safety, FS =

Temperature factor, f_t =

Modulus for given load duration, E =

Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314

WL118: Use 0.35 if load duration is less than 12 hours

Reference 1: Based on Selected Design Ovality

See Sheets 4 of 5 for design ovality

Source: WL Plastics WL118

Industry Practice

Internal Ballast Weight, $W_{B} = \frac{15.70 \text{ lb/lt}}{22.99 \text{ lb/ft}}$ $W_{B} = V_{Di}^{*}\gamma_{INT}$ Expected Displaced Fluid Weight, $W_{D1} = \frac{49.16 \text{ lb/ft}}{49.16 \text{ lb/ft}}$ $W_{D2} = V_{Do}^{*}\gamma_{EXT1}$ $W_{D2} = V_{Do}^{*}\gamma_{EXT2}$

 W_P-W_{D1} W_P-W_{D2} W_P+W_B $BG-W_{D1}$

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 87 Circuit #2

CSX RR

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F =	73 deg F	
Ultimate Internal Pressure, P _U =	875 psi	$P_U = 2*Ty*f_t/(DR-1)$
Allowable Internal Pressure, P _A =	400 psi	$P_A = 2*HDB*f_t/(DR-1)$

ASSESSMENT TEST PRESSURE OK if $P_A >= to P_{TEST}$ OK

Long Term Design for operating conditions

	Long reini	Design for operating con-
Design Temperature, ⁰F =	73 deg F	
Pressure Rating, PR =	252 psi	$PR = 2*HDS*f_t*Af_e/(DR-1)$
Maximum Ocassional Surge, P _{OS} =	504 psi	P _{OS} = 2*PR
Maximum Reoccuring Surge, PRS =	378 psi	P _{RS} = 1.5*PR
·		-

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_o^*[2*E/(1-v^2)]^*[(1/(DR-1))^3]$

	Short Term	Long Term
Design Temperature, F =	73 deg F	73 deg F
P _{CR} =	267.4 psi	115.2 psi
$P_a = P_{CR}/FS$	107.0 psi	46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 45.83 ft

Ballast depth to invert, H_B 52.03 ft

Drill Fluid depth to invert, H_{DF}

Pipe Invert External Pressure, PE

25.07 psi 25.71 psi 45.83 ft

Pipe Invert Internal Pressure, Pi

Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 20.05 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$

20.05 psi Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$
Internal Ballasted and External Water = (P _B +P _a)-P _W
Internal Air and External Water = $(P_A + P_a) - P_W$

s	Short Term	Long Term
1	81.91 psi	21.01 psi
2	81.26 psi	20.37 psi
1	101.96 psi	41.07 psi
2	101.32 psi	40.43 psi
٧	106.97 psi	46.08 psi
N	86.92 psi	26.03 psi

Pull Back Condition - Option 1 Pull Back Condition - Option 2 Pull Back Condition - Option 3 Pull Back Condition - Option 4 Long Term Operating Conditions Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

ASSOCIATES

BRIERLEY

HDD 87 Circuit #2

CSX RR

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_0^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, $f_Y =$	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
, ,		rioxee Engineering Managination
Design Factor, DF = $f_T * f_Y$	0.4	FE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f _{temp} =	1	Ultimate Pull Strength, UPS = ########
,		minimum.
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Gaic Allowable Glicss, GAG -	1, 400 psi	
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb
		•

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.91517	
$r = \sigma_i/2*(SSAS) =$	0.15471	Example from Table T5, $\sigma_i = 356 \text{ psi}$
P _{CRR} =	244.7 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	122.4 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = $(P_B + P_{ACRR}) - P_{DF1}$		117.36 psi Pull Back Condition - C OK as >0
Internal Ballasted and External Fluid 2 = (I	$P_B + P_{ACRR}$)- P_{DF2}	116.72 psi Pull Back Condition - C OK as >0

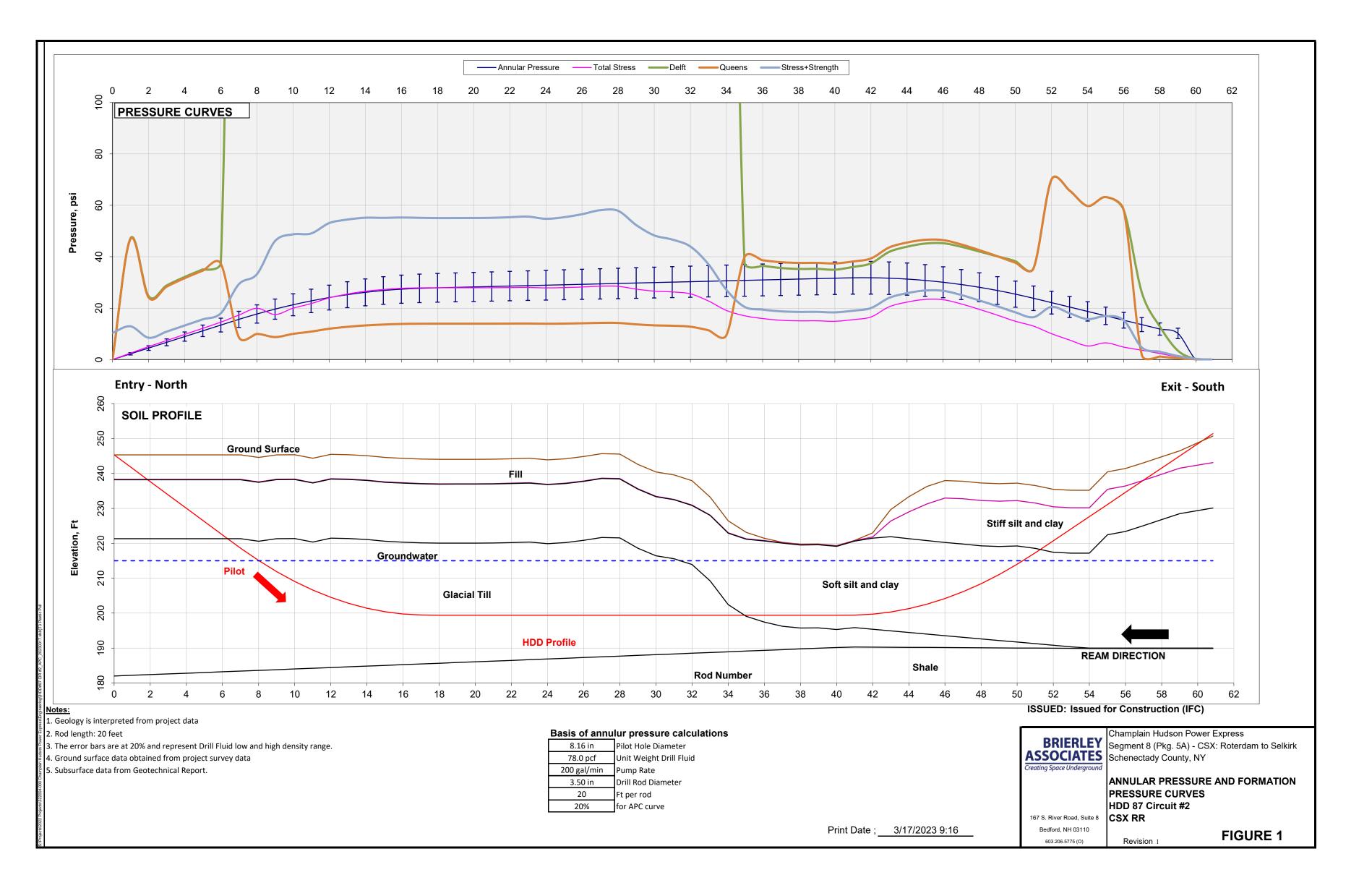
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

S.\Projects\2002 Projects\322004-000 Champlain Hud

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 87A Conduit #1

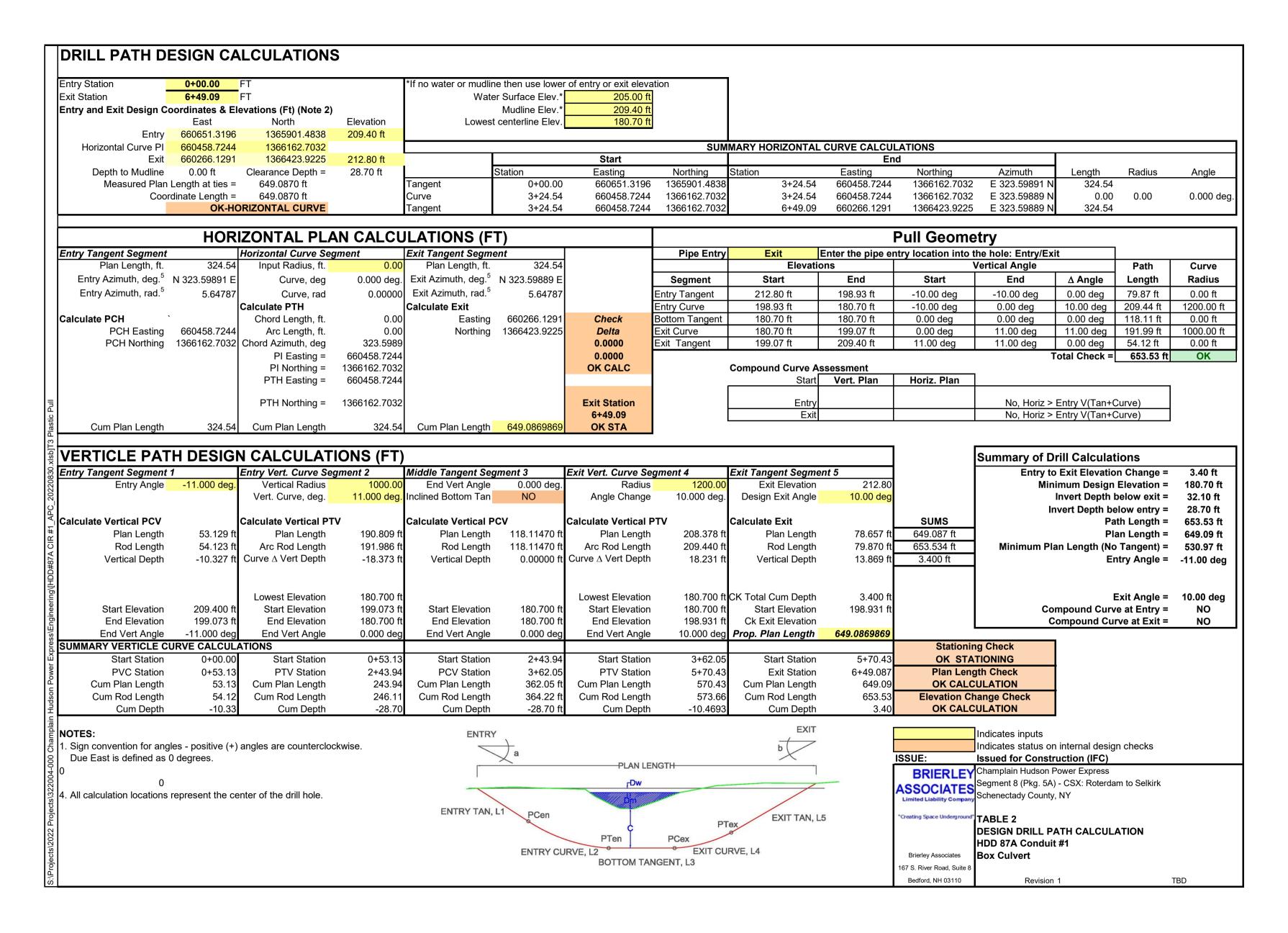
Box Culvert

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - CONDUIT BUNDLE
Table 4	LONG TERM PLASTIC STRESS - 3-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION			
10/23/2022	0	Design Submittal	ABL		
3/13/2023	1	Issued for Construction	KRF		

Pull Geometry

Lengt	hs (Path)	Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	79.9 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	118.1 ft	χ =	0.0 °	0.0000	
L5 =	192.0 ft				1,000.0 ft
L6 =	54.1 ft	β =	11.0 °	0.1920	
LT =	753.5 ft				

INPUT: Assumed Friction Factors

μ_G =	0.10	dry + rollers
μ_b =	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

		_
$\tau_f =$	0.005 psi	Drill Fluid Shear Stress

2%

 $PR = 2HDSF_{T}A_{F}/(DR-1)[F_{T}=1]$

Estimated for pull

HDB/2

INPUT: Pipe Properties

Material	HDPE		IPS	
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1	12hr @	73Deg F
Pile/Bundle Diam. 14.25	BUNDLE	PIPE/BUND	PIPE/BUNDLE	
Material Density, γ	59.28 pcf			
Outside Diameter, D _{OD}	14.25	Pipe or Bundle		
Pipe Dry Weight, W _P =	17.36 lb/ft	Pipe or Bundle		
Min. Wall Thickness, t_{m}	1.194 in	For design installation pull stress		
$DR = D_O/t_{min} =$	9	D _{OD} Stress	10.75	inches
Avg. Inside Diameter, D _{IA}	BUNDLE	Bundle Mult	tiplier F _D	0.9042
12 Hr Pullback Modulus, E _T =	65,000 psi	@T =	73 deg F	

200 psi INPLIT: Assumed Fluid Densities/Elevations

0.45

0.84

2.5

800 psi

INPUT: Assume	a Fiula Dens	ities/Ele
Ballast Density	62.4	pcf
Drill Fluid Density	78	pcf
Drill fluid elevation, H _F =	209.40 ft	
Ballast Water El., H _W =	209.40 ft	

Calculated Pipe and Fluid Properties

Lowest Invert El., El_m = 180.70 ft

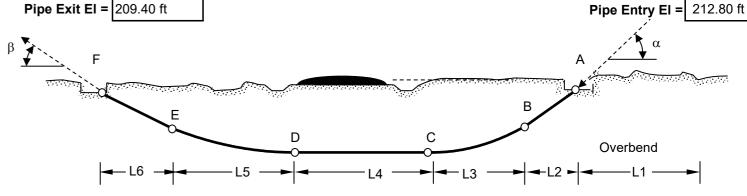
Poisson Ratio, μ =

Ovality Factor, f_o =

Buckling Safety, N =

Hydrostatic Design Stress, HDS =

Pressure Rating, PR_(80F)=


odiatod i ipo dila i idia i roportico		
Pressure Pipe:	YES	
OD Perimeter Length, P	44.77 in	
Wall Section Area, A_W	41.68747289	
Volume Outside, V_{DO}	0.697 cf/LF	
Volume Inside, V_{DI}	0.408 cf/LF	
$q_d =$	2.69 lb/ft	Drill Fluid (unit drag)
ASTM EQ 18: Hydrokinetic, ∆T =	1.35 lb/ft	Comparison Only @ 8psi

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted
On Ground, w _a /w _{af} =			42.80 Lb/LF
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-37.01 Lb/LF	-11.58 Lb/LF

Pipe Entry Location - Drill

(schematic, to show definition of variables only)

Exit

Calculated Pull Force						ASS	ESS	
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x <	SPS
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,331 lb	111 psi	OK	1,331 lb	111 psi	OK	OK	OK
В	1,967 lb	50 psi	OK	2,078 lb	52 psi	OK	OK	OK
С	3,580 lb	122 psi	OK	2,795 lb	103 psi	OK	OK	OK
D	3,586 lb	90 psi	OK	2,801 lb	71 psi	OK	OK	OK
E	7,245 lb	221 psi	OK	4,656 lb	156 psi	OK	OK	OK
F	8,369 lb	211 psi	OK	5,179 lb	131 psi	OK	OK	OK
ASSESS Po	ull Restricted Bu	ickling Capaci	ity, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	101.66 psi	Balla	sted	OK

Maximum tensile stress during pullback = σ_t = $(F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$

No Ballast PPI Ch 12 Eq 16

Calculated Material Design Limits For Designed Drill Path

Safe Pull Strength, SPS =	,	SSPS = $\sigma_{PM}\pi D_{OD}^{2}((1/DR)-(1/DR^{2}))$
Allowable Short Term Unconstrained Buckling, P_A =	106.97 psi	$P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_o/N)$
Maximum 12 hour Pull Stress Reduction, F_R =	0.950306925	$F_R = (5.57 - (r + 1.09)^2)^{1/2} - 1.09$
r=	0.096232545	$r = \sigma_T/2SPS$
Maximum applied pull Stress, σ_T =	221 psi	From Pull Force Calculations
Ballasted Max. Differential Pressure on Pipe, ΔP_B invert =	3.11	psi (-) indicates pipe is pressurized
Unballasted Max. Differential Pressure on Pipe, ΔP_U invert =	15.55	psi (-) indicates pipe is pressurized

Calculated Drill Hole Diameter Assumed for Calculations

D_O<8" Use D_H=D_O+4"; 8"<D_O<24" Use D_H=1.5*D_O; D_O>24" Use D_H=D_O+12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground"

TABLE 3 - PULL ASSESSMENT

ANTICIPATED PULLING FORCE - HDPE PULL

HDD 87A Conduit #1 **Box Culvert** Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110

Revision 1

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87A Conduit #1

Box Culvert

BRIERLEY
ASSOCIATES
Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources. AS TWI D3350	and Plastic Pip	e msiliule Pul	olications and as referenced			
Design Working Pressure, P_{WORK}	0 psi		Test Pressure, P _{TEST} 0 psig At high point			
Quantity of Pipes in Hole, Q =	1					
Pipe Material	PE4710	INPUT RESI	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710			
ASTM D3350 Cell Classification	445574C	Design resin	Design resin with minimum PENT test of 10,000 hours			
Standard Dimension	3					
Pipe measurement standard	IPS	IPS "Iron Pip	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"			
DR = OD/Minimum Wall	9					
Outside Diameter, D_o =	3.500 in	Standard Ma	nufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	2.680 in	Standard Ma	nufacturer's Data Sheets			
Minimum Wall, t_{min} =	0.389 in	Standard Ma	nufacturer's Data Sheets			
Wall Section Area, A _W =	3.80093926	$A_{W} = \pi^*((D_o/2$	$(2)^2 - ((D_0 - 2t)/2)^2$			
Unit OD Surface Area, in ² /LF, A _{OD} =	131.95 in^2/LF	A _{OD} = 12*π*Ε	$A_{OD} = 12*\pi*D_{OD}$			
Unit Outside Volume, V _{Do} =	0.067 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.039 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PP	Pl Publication TR-4/2015 and ASTM 2837			
Design Factor for HDB, DF =	0.50	Based on PP	PI PE Handbook 2nd ED Chapter 5			
Hydrostatic Design Stress, HDS =	800 psi	HDS = HDB*	DF			
Environmental Factor, Af _e =	1	Reference 2:	Use for pressure rating only			
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics WL122 for PE4710			
Weight Dry, W =	1.66	Lb/LF				
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350 determined by ASTM D638	8		
Load Duration		Long Term				
Duration Time	10 hours	50 yrs				
Design Temperature, °F	73 deg F	73 deg F	Assumed			
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design ovality			
Factor of Safety, FS =	2.5	2.5	Industry Practice			
Modulus for given load duration, E =	65,000 psi	28,000 psi	Based on PPI Handbook Ch. 3 and WL Plastics WL118-0314			
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hours			
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality			
Temperature factor, f _t =	1.00	1.00	Source: WL Plastics WL118			

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γιντ	γεχτ1	γ _{EXT2}
Density, γ =	62.4	78	80
Buoya	-3.55 lb/ft		
Buoya	-3.69 lb/ft		
	n ground, $B_G =$	4.10 lb/ft	
Buoyar	-1.11 lb/ft		
Buoya	-1.24 lb/ft		

 $\begin{array}{c} \text{Buoyant forces} \\ \text{Dry Weight Pipe on ground, W}_{P} = & 1.66 \text{ lb/ft} \\ \text{Internal Ballast Weight, W}_{B} = & 2.44 \text{ lb/ft} \\ \text{Expected Displaced Fluid Weight, W}_{D1} = & 5.21 \text{ lb/ft} \\ \text{Heavy Displaced Fluid Weight, W}_{D2} = & 5.35 \text{ lb/ft} \\ \text{W}_{P}\text{-W}_{D1} \\ \text{W}_{P}\text{-W}_{D2} \end{array}$

BG-W_{D1} BG-W_{D2}

 W_P + W_B

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87A Conduit #1

Box Culvert

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK OK if $P_A >= to P_{TEST}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ 200 psi Pressure Rating, PR = Maximum Ocassional Surge, Pos = 400 psi $P_{OS} = 2*PR$ 300 psi $P_{RS} = 1.5*PR$ Maximum Reoccuring Surge, PRS =

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

0.00 psi

Drill Fluid depth to invert, H_{DF} 28.70 ft Max. Depth to Invert 32.10 ft Ballast depth to invert, H_B 28.70 ft

> Pipe Invert Internal Pressure, P. Air Ballast, PA

Pipe Invert External Pressure, PE Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 15.62 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 16.03 psi

Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 12.50 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 12.50 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A + P_a) - P_{DF1}$	91.35 psi	30.46 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A + P_a) - P_{DF2}$	90.95 psi	30.06 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	103.85 psi	42.96 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B + P_a) - P_{DF2}$	103.45 psi	42.56 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A+P_a)-P_W$	94.48 psi	33.58 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

"Creating Space Underground"

BRIERLEY

HDD 87A Conduit #1
Box Culvert

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 5,321 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 13,303 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	5,321 lb	Useing SSAS = 4,371 lb

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

Pull Duration Time =	12 Hr	Pcr = 267.4 psi
SAS =	1,400 psi	Design Depth in DF, H _{MDF} = 0.0 ft
Estimated Maximum Pull Stress, σ_{i} =	1,150 psi	Design Assumption as Maximum
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.95031	
$r = \sigma_i/2*(SSAS) =$	0.09623	Example from Table T5, $\sigma_i = 221 \text{ psi}$
P _{CRR} =	254.1 psi	
FS =	2.0	
$P_{ACRR} = P_{CRR}/FS =$	127.1 psi	Allowable Reduced Short Term Buckling pressure during pull
Internal Ballasted and External Fluid 1 = (I	$P_B + P_{ACRR}) - P_{DF1}$	111.45 psi Pull Back Condition - Option 3 OK as >0
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	111.05 psi Pull Back Condition - Option 4 OK as >0

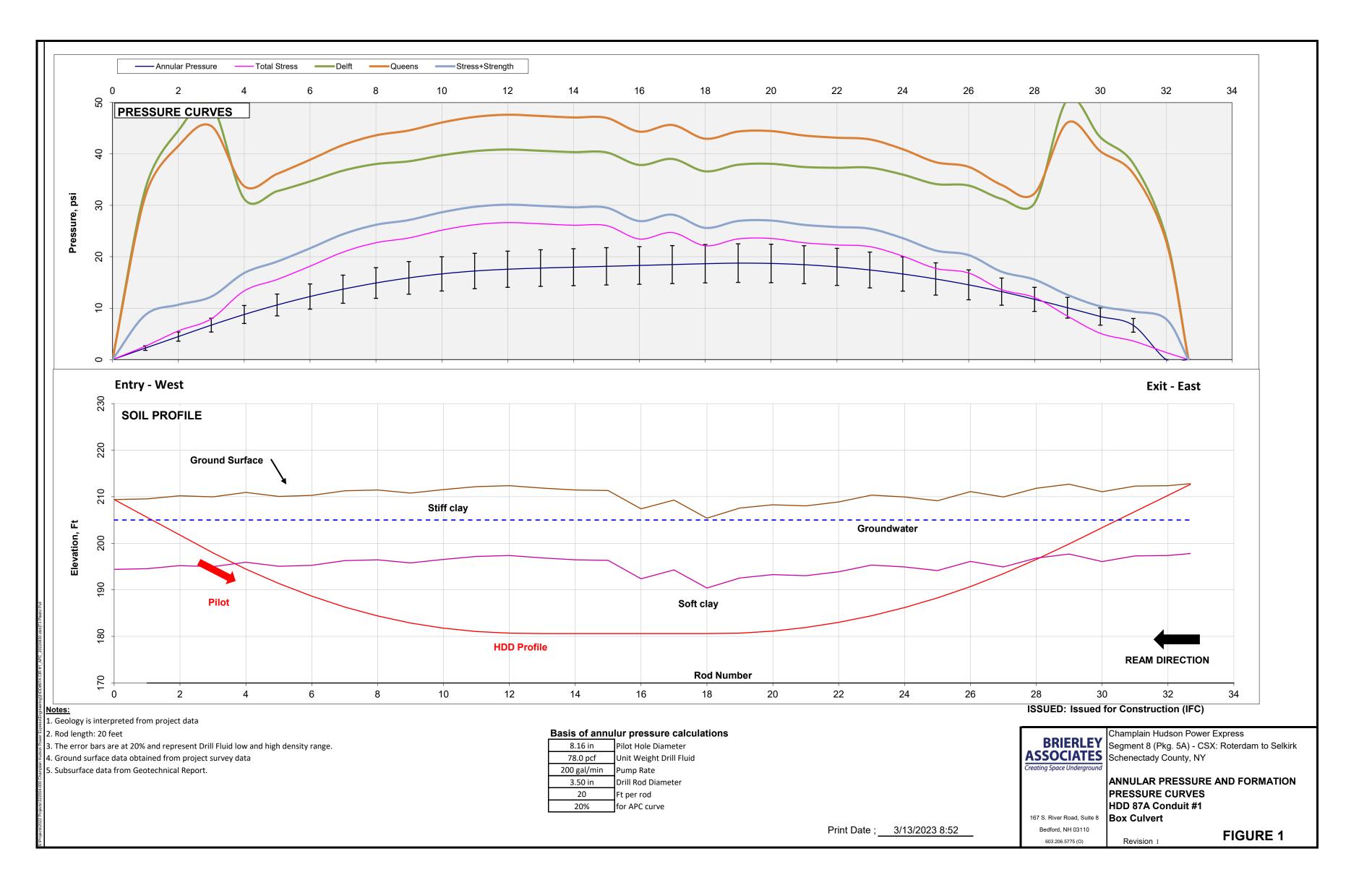
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

f _T	Time factor for pull	
1.00	Up to 1 hour pull	1
0.95	Up tp 12 hours pull	12
0.91	Up to 24 hours	24

22004-000 Champlain Hudson Power Express\Engineering\HDD#87A CIR #1_APC_20220830.xlsbJT3

HORIZONTAL DIRECTIONAL DRILL DESIGN

PROJECT: Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Bethlehem

Schenectady County, NY

CROSSING: HDD 87A Conduit #2

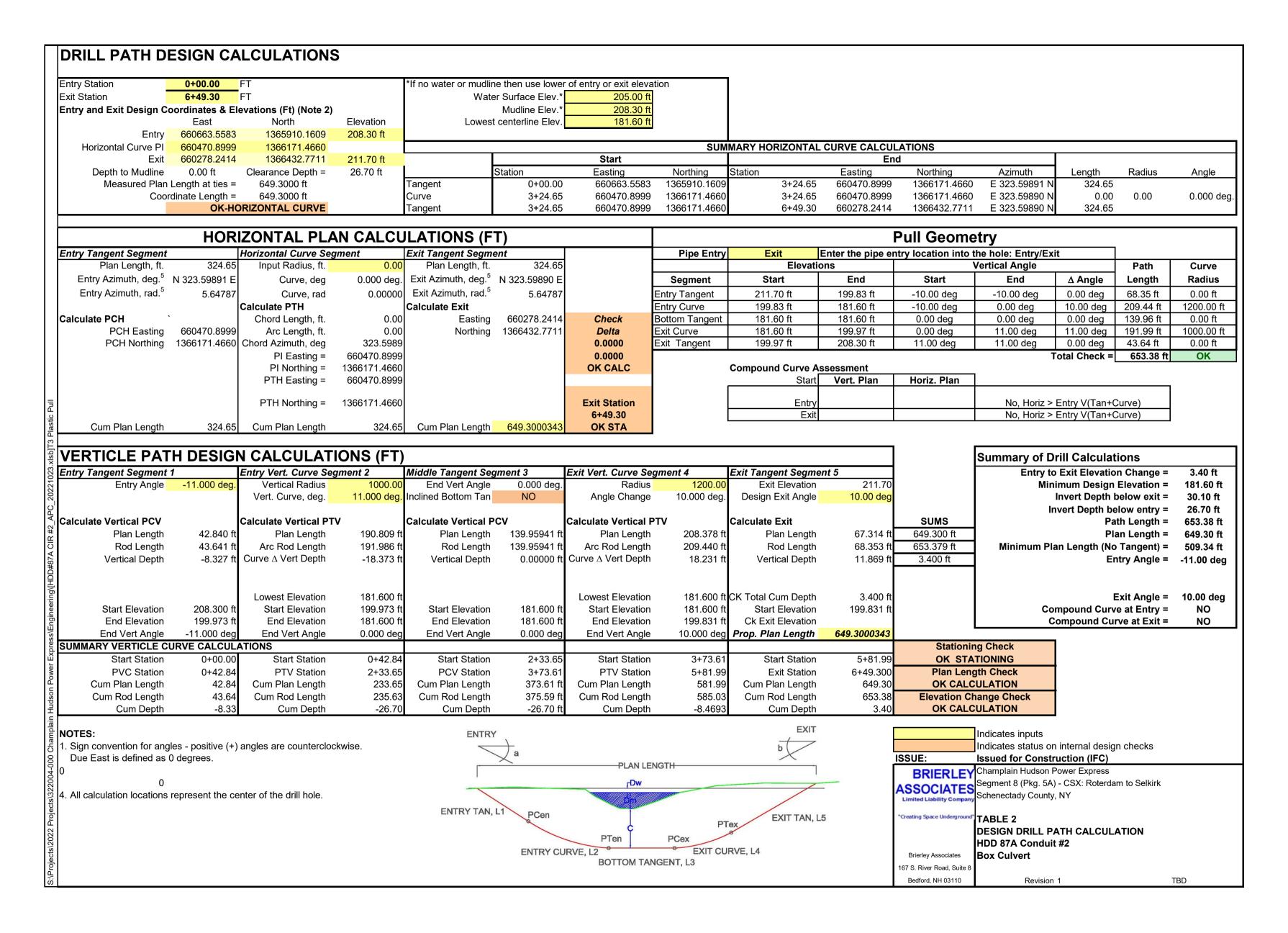
Box Culvert

ISSUE: Issued for Construction (IFC)

Contents:

Table 1	DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS
Table 2	DESIGN DRILL PATH CALCULATION
Table 3	ANTICIPATED PULLING FORCE - SINGLE CONDUIT
Table 4	LONG TERM PLASTIC STRESS - 10-inch CONDUIT
Figure 1	APC AND FPC CURVES AND ASSUMED GEOLOGIC SECTION

Prepared For: Kiewit


Prepared By: Brierley Associates

167 S. River Road, Suite 8

Bedford, NH 03110 603.206.5775 (O)

Project No: 322004-000 Print Date: 13-Mar-2023

Date	Rev	DESCRIPTION	BY
10/23/2022	0	Design Submittal	ABL
3/13/2023	1	Issued for Construction	KRF

Pull Geometry

Leng	ths (Path)	Angles			Radius, R
L1 =	100.0 ft	Overbend	deg	radian	500.0 ft
L2 =	68.4 ft	α =	-10.0 °	-0.1745	
L3 =	209.4 ft				1,200.0 ft
L4 =	140.0 ft	χ =	0.0 °	0.0000	
L5 =	192.0 ft				1,000.0 ft
L6 =	43.6 ft	β =	11.0 °	0.1920	
LT =	753.4 ft				

INPUT: Assumed Friction Factors

μ_G =	00	dry + rollers
$\mu_b =$	0.25	drill fluid in hole
μ_c =	0.30	in hole no fluid

INPUT: Assumed Hydrokinetic Drag

 $\tau_f = \frac{0.005 \text{ psi}}{0.005 \text{ psi}}$ Drill Fluid Shear Stress

INPUT: Pipe Properties

	p = : = =	
Material	HDPE	IPS
Safe Pull Max. Stress, σ_{PM}	1,150 psi	PPI Table 1 12hr @ 73Deg F
Pile/Bundle Diam. 14.25	PIPE	PIPE/BUNDLE
Material Density, γ	59.28 pcf	
Outside Diameter, D _{OD}	10.75	Pipe or Bundle
Pipe Dry Weight, W _P =	15.70 lb/ft	Pipe or Bundle
Min. Wall Thickness, $t_{\rm m}$	1.194 in	For design installation pull stress
$DR = D_O/t_{min} =$	9	D _{OD} Stress 10.75 inches
Avg. Inside Diameter, D _{IA}	8.22 in	Bundle Multiplier F _D 1.0000
12 Hr Pullback Modulus, E _T =	65,000 psi	@T = 73 deg F
Poisson Ratio, μ =	0.45	
Ovality Factor, f _o =	0.84	2%
Buckling Safety, N =	2.5	
Hydrostatic Design Stress, HDS =	1,008 psi	HDB/2

INPUT: Assumed Fluid Densities/Elevations			
Ballast Density	62.4	pcf	
Drill Fluid Density	78	pcf Estimated for pull	
Drill fluid elevation, H _F =	208.30 ft		
Ballast Water El., H _W =	208.30 ft		

Calculated Pipe and Fluid Properties

Lowest Invert El., El_m =

Pressure Rating, PR_(80F)

d Pipe and Fiuld Properties			
Pressure Pipe:	YES		
OD Perimeter Length, P	33.77 in		
Wall Section Area, A_W	37.70738915		
Volume Outside, V_{DO}	0.630 cf/LF		
Volume Inside, V_{DI}	0.368 cf/LF		
$q_d =$	2.03 lb/ft		

Drill Fluid (unit drag) 1.00 lb/ft Comparison Only @ 8psi ASTM EQ 18: Hydrokinetic, $\Delta T =$

 $PR = 2HDSF_TA_F/(DR-1)[F_T=1]$

Calculated Buoyant Forces

	Pipe	Air Filled	Ballasted	
	und, w _a /w _{af} =		38.69 Lb/LF	
In Hole with Drill F	Fluid, $w_b/w_{bf} =$	-33.46 Lb/LF	-10.47 Lb/LF	

Pipe Entry Location - Drill

(schematic, to show definition of variables only) Pipe Exit EI = 208.30 ft **Pipe Entry EI = 211.70 ft**

Overbend

Exit

Calculated Pull Force					ASS	ASSESS		
	Pull Force, F _D	Max Tensile	ASSESS	Pull Force, F _B	Max Tensile	ASSESS	F _x < SPS	
POINT	No Ballast	Stress, σ _T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Ballasted Pipe	Stress, σ_T	$\sigma_{\rm T} < \sigma_{\rm PM}$	Air	Ballast
Α	1,204 lb	92 psi	OK	1,204 lb	92 psi	OK	OK	OK
В	1,702 lb	47 psi	OK	1,784 lb	50 psi	OK	OK	OK
С	3,069 lb	110 psi	OK	2,340 lb	90 psi	OK	OK	OK
D	3,195 lb	89 psi	OK	2,466 lb	69 psi	OK	OK	OK
Е	6,420 lb	208 psi	OK	4,059 lb	142 psi	OK	OK	OK
F	7,222 lb	201 psi	OK	4,423 lb	123 psi	OK	OK	OK
ASSESS F	Pull Restricted Bu	ıckling Capaci	ity, P _{PA} > ∆P invert	$P_{PA} = P_A F_R =$	102.01 psi	Ballas	sted	OK
						No Ba	llast	OK

Calculated Material Design Limits For Designed Drill Path

 $SSPS = \sigma_{PM} \pi D_{OD}^2 ((1/DR) - (1/DR^2))$ Safe Pull Strength, SPS = 41,235 lb Allowable Short Term Unconstrained Buckling, P_A = $P_A = (2E_T/(1-\mu^2))(1/(DR-1))^3(f_0/N)$ 106.97 psi Maximum 12 hour Pull Stress Reduction, $F_R =$ 0.953610178 F_R = $(5.57-(r+1.09)^2)^{1/2}-1.09$ 0.090532694 r = $\sigma_T/2SPS$ Maximum applied pull Stress, σ_T = 208 psi From Pull Force Calculations Ballasted Max. Differential Pressure on Pipe, ΔP_B invert = 2.89 psi (-) indicates pipe is pressurized Unballasted Max. Differential Pressure on Pipe, ΔP_{II} invert = 14.46 psi (-) indicates pipe is pressurized

Maximum tensile stress during pullback = $\sigma_t = (F_T/\pi t_m(D_{OD}-t_m))+E_TD_{OD}/2R$ PPI Ch 12 Eq 16

Calculated Drill Hole Diameter Assumed for Calculations

 D_O <8" Use D_H = D_O +4"; 8"< D_O <24" Use D_H =1.5* D_O ; D_O >24" Use D_H = D_O +12"

NOTES: 1 - Calculations were done in general accordance with ASTMF-1962 as modified to account for invert tangent section, independent vertical curves, and fluid drag. ASTM applies hydrokinetic pressure as shear per unit pipe length requiring a back calculation to determine actual pull force based on average pipe area.

ISSUE: Issued for Construction (IFC)

Limited Liability Company Schenectady County, NY

BRIERLEY Champlain Hudson Power Express

ASSOCIATES Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

"Creating Space Underground

TABLE 3 - PULL ASSESSMENT ANTICIPATED PULLING FORCE - HDPE PULL

HDD 87A Conduit #2 **Box Culvert Brierley Associates**

167 S. River Road, Suite 8 Bedford, NH 03110

Revision 1

TBD

Pg 1 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87A Conduit #2

Box Culvert

BRIERLEY ASSOCIATES Limited Liability Company

"Creating Space Underground"

INPUTS

Pipe Material Properties

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced

Sources: ASTM D3350 and Plastic Pipe Institute Publications and as referenced						
Design Working Pressure, P_{WORK}	0 psi		Test Pressure, P _{TEST}	<mark>0 psig</mark> At high point		
Quantity of Pipes in Hole, Q =	1					
Pipe Material	PE4710	INPUT RESIN MATERIAL: PE3408, PE3608, PE4710				
ASTM D3350 Cell Classification	445574C	Design resin with minimum PENT test of 10,000 hours				
Standard Dimension	10					
Pipe measurement standard	IPS	IPS "Iron Pipe Size" of DIPS "Ductile Iron Pipe Size"				
DR = OD/Minimum Wall	9					
Outside Diameter, D _o =	10.750 in	Standard Ma	Standard Manufacturer's Data Sheets			
Avg. Inside Diameter, D _i =	8.219 in	Standard Ma	nufacturer's Data Sheets			
Minimum Wall, t _{min} =	1.194 in	Standard Ma	nufacturer's Data Sheets			
Wall Section Area, A _W =	35.85681985	$A_W = \pi^*((D_o/2))$	$(2)^2 - ((D_0 - 2t)/2)^2)$			
Unit OD Surface Area, in ² /LF, A _{OD} =	405.27 in^2/LF	$A_{OD} = 12*\pi*D$	O _{OD}			
Unit Outside Volume, V_{Do} =	0.630 cf/LF	$V_{Do} = \pi^* (D_o/2)^2 / 144$				
Unit Inside Volume, V _{Di} =	0.368 cf/LF	$V_{Di} = \pi^* (D_i/2)^2 / 144$				
HDB =	1,600 psi	Based on PP	PI Publication TR-4/2015 and	ASTM 2837		
Design Factor for HDB, DF =	0.63	Based on PP	PI PE Handbook 2nd ED Cha	pter 5		
Hydrostatic Design Stress, HDS =	1008 psi	HDS = HDB*	DF			
Environmental Factor, Af _e =	1	Reference 2: Use for pressure rating only				
Density =	59.28 pcf	1.410 g/cc	Average from WL Plastics W	VL122 for PE4710		
Weight Dry, W =	15.68	Lb/LF				
Tensile Yield, Ty psi =	3,500 psi	@73°F	Minimum from ASTM D3350	determined by ASTM D638		
Load Duration		Long Term				
Duration Time	10 hours	50 yrs				
Design Temperature, °F	73 deg F	73 deg F	Assumed			
Design Ovality, %	2%	2%	See Sheets 4 of 5 for design	n ovality		
Factor of Safety, FS =	2.5	2.5	Industry Practice			
Modulus for given load duration, E =	65,000 psi		Based on PPI Handbook Ch. 3 a	and WL Plastics WL118-0314		
Poisson Ratio, υ =	0.45	0.45	WL118: Use 0.35 if load duration is less than 12 hour			
Ovality factor f _o =	0.84	0.84	Reference 1: Based on Selected Design Ovality			
Temperature factor, f_t =	1.00	1.00	Source: WL Plastics WL118			

Project Fluids

	Pipe Internal Ballast	Expected External Fluid	Heavy External Fluid
Fluids	Fresh Water	Drill Fluid 1	Drill Fluid 2
	γιντ	γ _{EXT1}	γ _{EXT2}
Density, γ =	Density, $\gamma = \frac{62.4}{78}$		80
Buoya	-33.48 lb/ft		
Buoya	-34.74 lb/ft		
	38.67 lb/ft		
Buoyar	-10.49 lb/ft		
Buoya	-11.75 lb/ft		

BG-W_{D1} BG-W_{D2}

 W_P + W_B

ering\[HDD#87A CIR #2_APC_20221023.xlsb]T3 Plastic Pull

Pg 2 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87A Conduit #2

Box Culvert

1. ASSESS PIPE PRESSURE RATING

Failure mode: Short term = burst; Long term = slow crack growth

Short Term (<10 hours)

Design Temperature, °F = 73 deg F Ultimate Internal Pressure, P_U = 875 psi $P_U = 2*Ty*f_t/(DR-1)$ $P_A = 2*HDB*f_t/(DR-1)$ Allowable Internal Pressure, PA = 400 psi

ASSESSMENT TEST PRESSURE OK OK if $P_A >= to P_{TEST}$

BRIERLEY

"Creating Space Underground"

Long Term Design for operating conditions

Design Temperature, °F = 73 deg F $PR = 2*HDS*f_t*Af_e/(DR-1)$ Pressure Rating, PR = 252 psi Maximum Ocassional Surge, Pos = 504 psi $P_{OS} = 2*PR$ 378 psi $P_{RS} = 1.5*PR$ Maximum Reoccuring Surge, PRS =

ASSESSMENT PRESSURE RATING OK if PR >= to Pwork OK

2. ASSESS PIPE UNCONSTRAINED BUCKLING CAPACITY FOR CONSTRUCTION PRESSURES

CALCULATE: Unconstrained Buckling Capacity of pipe

Unconstrained buckling ASTM F1962 EQ 5

Critical Pressure, $P_{CR} = f_0 * [2*E/(1-v^2)]*[(1/(DR-1))^3]$

Short Term Long Term Design Temperature, F = 73 deg F 73 deg F P_{CR} = 267.4 psi 115.2 psi $P_a = P_{CR}/FS$ 107.0 psi 46.1 psi

CALCULATE: internal and external pressure for deepest pipe invert depth and construction conditions

Critical unconstrained buckling pressure is at the pipe invert

Max. Depth to Invert 30.10 ft Ballast depth to invert, H_B 26.70 ft

Pipe Invert External Pressure, PE

Drill Fluid depth to invert, H_{DF} 26.70 ft

Pipe Invert Internal Pressure, P.

Air Ballast, PA 0.00 psi Full Ballast, $P_B = \gamma_{INT}^* (H_B + D_o/24)/144$ 11.76 psi Drill Fluid 1, $P_{DF1} = \gamma_{EXT1}*(H_{MDF}+D_o/24)/144$ 14.71 psi Drill Fluid 2, $P_{DF2} = \gamma_{EXT2}*(H_{MDF}+D_o/24)/144$ 15.08 psi Water, $P_W = \gamma_{INT}^* (H_{DF} + D_o/24)/144$ 11.76 psi

Unconstrained buckling occurs when DIFFERENTIAL PRESSURE between the inside pressure plus pipe capacity is less than the outside pressure. $(P_1 + P_a) - P_E \le 0$

Differential Pressures	Short Term	Long Term	
Internal Air and External Fluid 1 = $(P_A+P_a)-P_{DF1}$	92.27 psi	31.38 psi	Pull Back Condition - Option 1
Internal Air and External Fluid 2 = $(P_A+P_a)-P_{DF2}$	91.89 psi	31.00 psi	Pull Back Condition - Option 2
Internal Ballasted and External Fluid 1 = $(P_B+P_a)-P_{DF1}$	104.03 psi	43.14 psi	Pull Back Condition - Option 3
Internal Ballasted and External Fluid 2 = $(P_B+P_a)-P_{DF2}$	103.66 psi	42.76 psi	Pull Back Condition - Option 4
Internal Ballasted and External Water = $(P_B+P_a)-P_W$	106.97 psi	46.08 psi	Long Term Operating Conditions
Internal Air and External Water = $(P_A + P_a)-P_W$	95.21 psi	34.32 psi	Operational Dewatering NO SOIL LOADS

ASSESSMENT UNCONSTRAINED BUCKLING ALONG DRILL PATH BY DIFFERENTIAL PRESSURE

Pipe installation pressure differential does not require ballasting the pipe during pull-back

Pipe may be fully dewatered for operational conditions providing there is no soil loading. Soil loads not assessed.

Engineer to assess any dewatering of the pipe in the future for stability based on actual project conditions and time duration.

Pg 3 of 3

HDPE PROPERTIES

Champlain Hudson Power Express

Segment 8 (Pkg. 5A) - CSX: Roterdam to Selkirk

Schenectady County, NY

HDD 87A Conduit #2

Box Culvert

3. ASSESS ULTIMATE PULL STRENGTH (UPS) AND SAFE PULL STRENGTH (SPS)

Source PPI PE Handbook Ch 12 Formula 17 SPS = $\pi^*DF^*(Ty)^*D_o^{2*}((1/DR)-(1/DR^2))$

Designed Pull Duration Time =	12 hr	Quantity of pipes, Q = 1
Yield Strength Factor, f _Y =	0.4	Recommended (FS = 2.5) Pull Temperature, F = 73 deg.
Pull Time factor, $f_T =$	1	Plexco Engineering Manual Table 3.7
Design Factor, DF = $f_T^*f_Y$	0.4	SAFE PULL STRENTH, SPS = 50,200 lb
Temperature factor, f_{temp} =	1	Ultimate Pull Strength, UPS = 125,499 lb
Temp Corr Tensile Yield, Ty*f _{temp} =	3,500 psi	
Safe Allowable Stress, SAS =	1,400 psi	SAS = Ty*f _{temp} *DF Suggested SSAS = 1,150 psi
Safe Pull Strength, SPS Pipe =	50,200 lb	Useing SSAS = 41,235 lb

BRIERLEY

"Creating Space Underground"

Short Term Critical Unconstrained Buckling Pcr reduced for pull tension, $P_{CRR} = P_{CR} * f_r$

(ASTM F-1962 EQ. 22)

,			
Pull Duration Time =	12 Hr	Pcr = 267.4 psi	
SAS =	1,400 psi	Design Depth in DF, $H_{MDF} = 0.0 \text{ ft}$	
Estimated Maximum Pull Stress, σ_i =	1,150 psi	Design Assumption as Maximum	
fr = ((5.57-(r+1.09)^2)^.5)-1.09 =	0.95361		_
$r = \sigma_i/2*(SSAS) =$	0.09053	Example from Table T5, σ_i = 208 psi	
P _{CRR} =	255.0 psi		
FS =	2.0		
$P_{ACRR} = P_{CRR}/FS =$	127.5 psi	Allowable Reduced Short Term Buckling pressure during pul	II
Internal Ballasted and External Fluid 1 = (I	P _B +P _{ACRR})-P _{DF1}	112.81 psi Pull Back Condition - Option 3 OK as >0	
Internal Ballasted and External Fluid 2 = (I	P _B +P _{ACRR})-P _{DF2}	112.43 psi Pull Back Condition - Option 4 OK as >0	

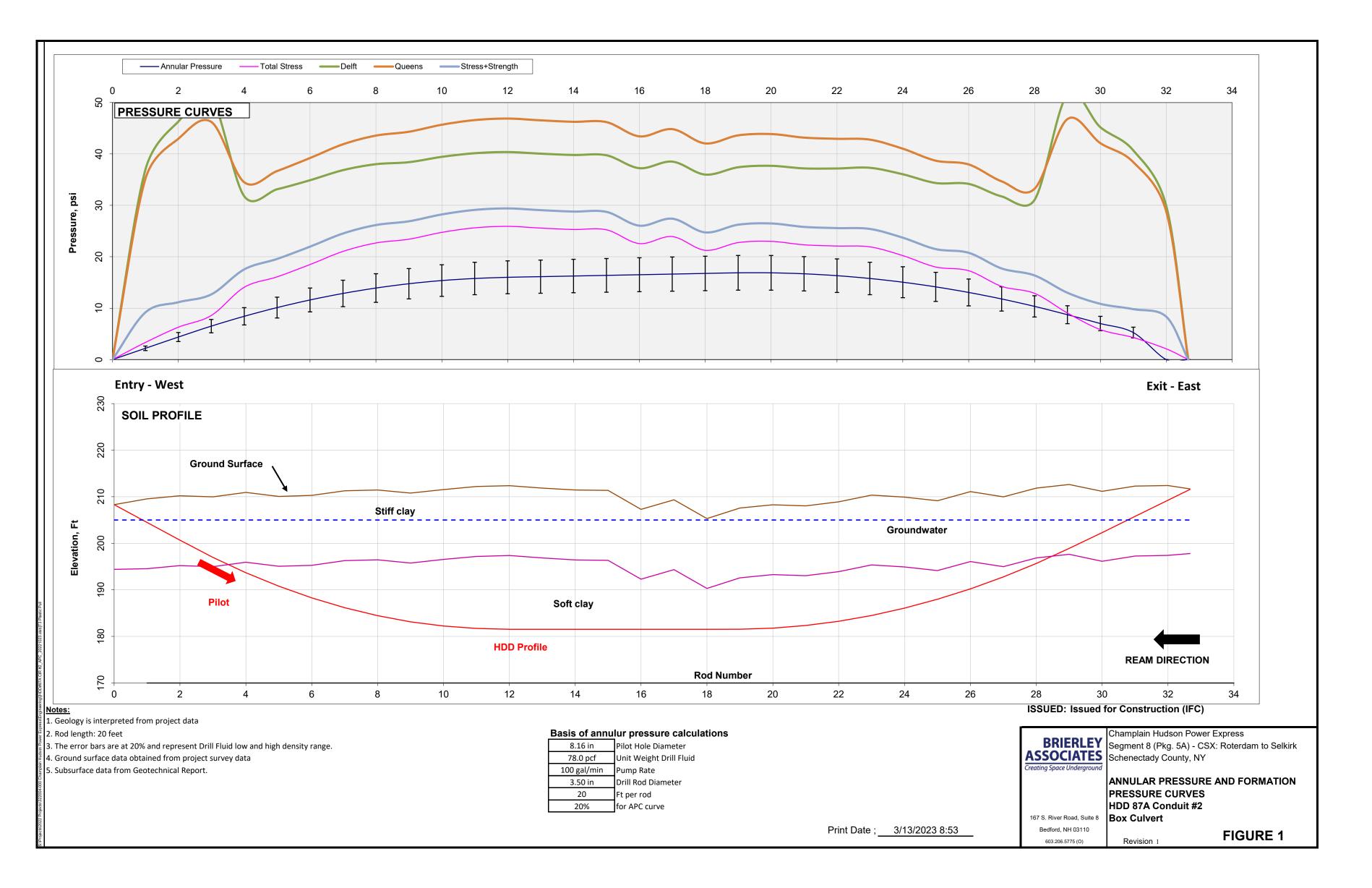
ASSESSMENT OF SAFE PULL STRENGTH ON TENSION REDUCED BUCKLING CAPACITY

ACCEPTIBLE Acceptible if differential pressures > 0 for reduced buckling capacity

REFERENCE 1 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

REFERENCE 2 - Plastic Pipe Institute - Handbook of PE Pipe 2nd Edition

Design Factor (fe) to apply to HDB


CHAPTER 6 - TABLE 1-2

REFERENCE 3 - Plexco Engineering Manual Book 3 Ch 3 Table 3.7

Time factor for pull duration, f_T

5	f _T	Time factor for pull	
ices id	1.00	Up to 1 hour pull	1
) io	0.95	Up tp 12 hours pull	12
	0.91	Up to 24 hours	24

si2022 Projectsi322004-000 Champlain Hudson Power ExpressiEngineering(HDD#87A CIR #2_APC_20221023.xisbj13 Plastic Pull

