

BORING LOG NO. KB-132.1A

	BORING LUG	NO. N	D -	.13	2.				F	Page 1 of 3	3
	OJECT: CHPE - Additional HDD Borings - Phase 3	CLIENT	K Lo	iew one	it E Tro	ngi ee, (neering (NY) Co CO	orp			
SIT	E: Fort Ann to Coxsackie Fort Ann, NY										
GRAPHIC LOG	LOCATION See Exploration Plan Approximate Latitude: 43.2994° Longitude: -73.5521° DEPTH ELEVATI	ION (Ft.)		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	0.2 <u>TOPSOIL</u> <u>FILL - SILTY SAND (SM)</u> , gravel noted, orange and brown 2.5	/148.4	_	ć	X	8	5-5-4-4 N=9				
	LEAN CLAY (CL), varved silt and clay, brown, very soft to stiff		-		Å	14	3-4-5-6 N=9				
		5			$\left\langle \right\rangle$	10	4-4-4-5 N=8				
	grades gray				$\left\langle \right\rangle$	20	N=7 5-5-7-7				
		10)		$\left\langle \right\rangle$	24	N=12 3-4-5-6				
			-	l	Å	24	N=9				
		1	-								
		15			X	24	4-4-4-5 N=8				
			4	Ś							
		20)' 		\setminus	24	2-2-3-4 N=5				
			_	ć							
		25	5		$\left \right $	24	WH-WH-3-3 N=3				
			_								
	Stratification lines are approximate. In-situ, the transition may be gradual.				ł	lamm	er Type: Automatic				
Muc	Advancement Method: See Exploration and description of field ar used and additional of See Supporting Infor Abandonment Method: Set Support and abbrevi			res	Lo Hi Ei	amme nergy	by AB r Efficiency Summary: Transfer Ratio: 78.6% + r Efficiency Correction (⊦/-2.9% (CE): 1.3	31		
Bori	Boring backfilled with bentonite grout upon completion										
	WATER LEVEL OBSERVATIONS No free water observed	acc				-	arted: 08-23-2022			oleted: 08-24-2	2022
	30 Corporat	te Cir Ste 201 ny, NY					Diedrich D-50 o.: JB215256G	Drille	r: C. Jo	hnston	
	Alba				1.10	,		1			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215256G CHPE - ADDITIONAL. GPJ TERRACON_DATEMPLATE. GDT 8/26/22

BORING LOG NO. KB-132.1A

	BURING LUG NU. KB-132.1A Page 2 of 3						3			
		ECT: CHPE - Additional HDD Borings - Phase 3 Lone Tree, CO				orp				
SI	IE: Fort Ann to Coxsackie Fort Ann, NY									
g	LOCATION See Exploration Plan			NS	ЪЕ	In.)		()	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 43.2994° Longitude: -73.5521°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	DEPTH LEAN CLAY (CL), varved silt and clay, brown, v	ELEVATION	N (Ft.)		0,	-				ш.
1 8/20/22	(continued)	,	30-				wн-wн-wн-wн			
	37.0 WEATHERED SHALE, black	A	35-		X	, ,	WH-WH-WH-WH			
	40.0 <u>SHALE</u> , slightly weathered, very close to mode good RQD, black	erate fractured,	40-	· · · · · · · · · · · · · · · · · · ·						
	45.0 <u>SHALE, slightly weathered, close to moderate</u>	fractured	45				REC = 91% RQD = 83%			
G-NO WELL	good RQD, black			S			REC = 91% RQD = 84%			
Inits Boking Log IS NOT VALUIT SEPARATED FROM OKIGINAL REPORT. GEO SMART LO Data Marking Log IS Not VALUIT SEPARATED FROM OKIGINAL REPORT. GEO SMART LO	50.0 <u>SHALE</u> , slightly weathered, very close to mode good RQD, black	erate fractured,					REC = 100% RQD = 85%			
	55.0		55-							
			55							
	Stratification lines are approximate. In-situ, the transition may	be gradual.		1	 -	lamm	er Type: Automatic			
Advar Mud Advar Mud Abanc Bor	d Rotary d	See Exploration and Testin lescription of field and lab used and additional data (I See Supporting Information ymbols and abbreviations	ooratory proced If any). In for explanat	dures	La H E	amme nergy	by AB r Efficiency Summary: Transfer Ratio: 78.6% + r Efficiency Correction (
	WATER LEVEL OBSERVATIONS					ulus c. C.				0000
JAING	No free water observed	llerra				-	tarted: 08-23-2022	_	pleted: 08-24-	2022
		30 Corporate C	Cir Ste 201				Diedrich D-50 lo.: JB215256G	Driller: C. Jo	onnston	
-		Albany,	INT		1,610	JECLIN	IO JD2 10200G			

BORING LOG NO. KB-132.1A

Page 3 of 3

-				1.0	:				Fage 5 01	<u> </u>
PR	OJECT: CHPE - Additional HDD Borings - Phase 3	CLIENT	: K L	iew one	IT E	ngir æ, C	neering (NY) Co CO	orp		
SIT	E: Fort Ann to Coxsackie Fort Ann, NY									
ЮG	LOCATION See Exploration Plan		. 1	NS	ЪЕ	(In.)	F	(%)	ATTERBERG LIMITS	E S I
GRAPHIC LOG	Latitude: 43.2994° Longitude: -73.5521°	DEPTH (Ft.)		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	WATER CONTENT (%)		PERCENT FINES
RAPI		DEPT		SER	MPL	COV	RESI	NUT	LL-PL-PI	SCEN
U	DEPTH ELEVATI		, 	<u>≥</u> 8	SA	R		Ŭ		Ш Ц
	SHALE, slightly weathered, very close to moderate fractured, good RQD, black (continued)		_							
							REC = 100% RQD = 89%			
	60.0	60		<u>_</u>	Ц					
	Boring Terminated at 60 Feet Image: Comparison of the c	sting Procedur	res for	Dra	N	otes:	er Type: Automatic			
		laboratory proc a (If any).	cedur	es	Lo Ha Er	ogged ammei nergy	r Efficiency Summary: Transfer Ratio: 78.6% +/	/-2.9%		
	bandonment Method: symbols and abbrevia Boring backfilled with bentonite grout upon completion				Ha	ammei	r Efficiency Correction (UE): 1.31		
	WATER LEVEL OBSERVATIONS				Bor	ing Sta	arted: 08-23-2022	Boring Cor	npleted: 08-24-	-2022
	No free water observed				Dril	I Rig: I	Diedrich D-50	Driller: C.	Johnston	
	30 Corpo All				Pro	iect No	o.: JB215256G			

BORING LOG NO. KB-132.3A

PROJECT: CHPE - Additional HDD Borings - Phase 3 CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO						Page 1 of	3				
SI	TE: Fort Ann to Coxsackie Fort Ann, NY		_	L	one.	e Tr	ee, (:0			
GRAPHIC LOG	LOCATION See Exploration Plan Approximate Latitude: 43.2976° Longitude: -73.5544°	ELEVATI		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	0.3.∧ <u>TOPSOIL</u> FILL - SILT, gravel and sand noted, dark brow		/147.8	_		X	18	12-31-14-7 N=45			
				_			14	5-8-10-7 N=18			
	6.0	with grov		5-		X	8	5-7-7-7 N=14			
	LEAN CLAY (CL), varved silt and clay, brown v mottling, very soft to very stiff	with gray				X	20	2-4-4-6 N=8			
				_ 10—		X	24	5-7-9-9 N=16			
		7 \		-		X	24	4-5-6-8 N=11			
			1	_							
		Y		15—		X	18	4-3-4-4 N=7			
				A							
			-	20—		\bigvee	24	3-4-4-5			
GEO CIMU				_				N=8			
	grades gray			_ 25—							
	grados gray			_		X	\$	WH-4-3-5 N=7			
	Stratification lines are approximate. In-situ, the transition may	be gradual.				ŀ	lammo	er Type: Automatic			
Advar	d Rotary	See Exploration and Te description of field and used and additional data	laboratory p	<mark>dures</mark> f rocedu	or a ures	L	lotes: ogged lamme	by AB r Efficiency Summary:			
Abano Bor	bandonment Method: Boring backfilled with bentonite grout upon completion			anatio	n of	E	nergy	Transfer Ratio: 78.6% +, r Efficiency Correction (
	WATER LEVEL OBSERVATIONS					Во	ring St	arted: 08-24-2022	Boring Cor	npleted: 08-25-	2022
	No free water observed	llerr	90			Dri	ll Rig:	Diedrich D-50	Driller: C.	Johnston	
2		30 Corporat Albar	te Cir Ste 20 ny, NY	1		Pro	oject N	o.: JB215256G			

BORING LOG NO. KB-132.3A

	20:		Page 2 of 3								3	
	OJECT: CHPE - Additional HDD Boring	s - Phase 3	CLIE	NT: H	Kiew _one	vit E Ə Tro	ingi ee, (neering (NY) C CO	orp			
SIT	E: Fort Ann to Coxsackie Fort Ann, NY				-							
gg	LOCATION See Exploration Plan			(EL	PE	ln.)	F		%)	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 43.2976° Longitude: -73.5544°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)		PERCENT FINES
RAPH				EPTI	TER	APLE	OVE	SESU		WAT	LL-PL-PI	CEN
ß	DEPTH	ELEVATIO	ON (Ft.)		N 0BS	SAI	REC			ö		PER
	LEAN CLAY (CL), varved silt and clay, brown	with gray	511 (1 1.)									
	mottling, very soft to very stiff (continued)											
				30—								
	<i>.</i>			_	-	X		WH-WH-WH-WH				
				-		\vdash						
				_								
				-								
				35—								
		*				\mathbb{N}		WH-WH-WH-WH 3" Split Spoon				
		A .				$\langle \rangle$		With Ring Samplers				
					1							
				40—	1							
				_		X		WH-WH-WH-WH				
			7	_								
			7	_								
				-	à.							
	45.5			45-								
\bigvee	46.5 WEATHERED SHALE, black, very dense			Æ		X		WH-50/1"				
	SHALE, slightly weathered, close to moderate	e fractured,	1	\wedge	6							
	excellent RQD, black							÷				
				_				REC = 100%				
				50-				RQD = 93%				
				50			1					
	51.5 SHALE, slightly weathered, close to wide frac	tured excellent					Ø	r .				
	RQD, black			_]		1					
					1			REC = 100%				
				_				RQD = 97%				
				55-								
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.				F	lamm	er Type: Automatic				
	cement Method:	See Exploration and Te	sting Pro	cedures	for a	N	otes:					
IVIUC	Advancement Method: See Exploration and T Mud Rotary description of field and used and additional da		aboratory a (If any).	procedu	ures	Lo	ogged	by AB er Efficiency Summary:				
Ahand	onment Method:	See Supporting Informa symbols and abbreviation	tion for e	kplanatio	on of	E H	nergy amme	er Éfficiency Summary: Transfer Ratio: 78.6% er Efficiency Correction	+/-2.9% (CE): 1.	.31		
	Boring backfilled with bentonite grout upon completion							÷				
	WATER LEVEL OBSERVATIONS					Bo	ing S	tarted: 08-24-2022	Borin	na Com	oleted: 08-25-2	2022
	No free water observed	lerr							-			2022
		30 Corporate						Diedrich D-50	Drille	er: C. Jo	onnston	
			iy, NY			Pro	ject N	lo.: JB215256G				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB2152566 CHPE - ADDITIONAL. GPJ TERRACON_DATATEMPLATE. GDT 8/26/22

BORING LOG NO. KB-132.3A

								Page 3 of 3	3	
	OJECT: CHPE - Additional HDD Borings - Phase 3	CLIE	NT: H	Kiew Lone	it E Tro	ngiı ee, (neering (NY) Co CO	orp		
SIT	E: Fort Ann to Coxsackie Fort Ann, NY									
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 43.2976° Longitude: -73.5544°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	WATER CONTENT (%)	LIMITS	PERCENT FINES
	DEPTH ELI 56.5	EVATION (Ft.)								
	Boring Terminated at 56.5 Feet									
	Stratification lines are approximate. In-situ, the transition may be gradual.				F	lamm	er Type: Automatic			
Advancement Method: See Exploration and T Mud Rotary description of field and used and additional da See Supporting Inform Abandonment Method: symbols and abbrevia Boring backfilled with bentonite grout upon completion symbols and abbrevia					Lo Hi Ei	amme nergy	by AB r Efficiency Summary: Transfer Ratio: 78.6% + r Efficiency Correction (-/-2.9% CE): 1.31		
	WATER LEVEL OBSERVATIONS				Bor	ing St	arted: 08-24-2022	Boring Con	pleted: 08-25-	2022
	No free water observed		0	Drill Rig: Diedrich D-50 Driller: C. Johnston				ohnston		
		orporate Cir Ste Albany, NY			\vdash		o.: JB215256G			

BORING LOG NO. KB-132.5A

	BORING LOG NO. KB-132.5A Page 1 of 3										
	OJECT: CHPE - Additional HDD Borings - Phase 3	CLIE	NT: F	Kiew Lone	it E Tre	ngiı ee, C	neering (NY) C CO	orp			
SIT	E: Fort Ann to Coxsackie Fort Ann, NY										
GRAPHIC LOG	LOCATION See Exploration Plan Approximate Latitude: 43.2950° Longitude: -73.5570° DEPTH ELEVATI	ON (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	FILL - SILTY SAND WITH GRAVEL, brown and gray	148.7	_		X	20 20	9-17-15-18 N=32 17-9-7-5 N=16				
	6.0 <u>LEAN CLAY (CL)</u> , varved silt and clay, rootlets noted, brown and gray, stiff		5-		$\left\langle \right\rangle$	15	6-6-8-10 N=14 4-4-7-6				
	10.0		_		$\left \right\rangle$	24	N=11 8-6-8-8 N=14				
	POORLY GRADED SAND (SP) , fine grained, gray, loose to medium dense		10-		X	18	2-2-1-1 N=3				
	20.0	1	- 15- - - - -			0	6-5-7-4 N=12				
	LEAN CLAY (CL), varved silt and clay, gray, very soft to medium stiff		 25			24	3-4-5-5 N=9 WH-4-4-5 N=9				
			_								
	Stratification lines are approximate. In-situ, the transition may be gradual.				F	lamme	er Type: Automatic				
Advancement Method: See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes: Logged by AB Hammer Efficiency Summary: Abandonment Method: See Supporting Information for explanation of symbols and abbreviations. Notes: Logged by AB Hammer Efficiency Summary: Boring backfilled with bentonite grout upon completion See Supporting Information. Notes: Notes:											
WATER LEVEL OBSERVATIONS No free water observed			0 201	Π	Dril	l Rig:	arted: 02-25-2022 Diedrich D-50 o.: JB215256G	_	ng Comp er: C. Jo	oleted: 08-26-2	2022

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB2152566 CHPE - ADDITIONAL. GPJ TERRACON_DATATEMPLATE. GDT 8/31/22

BORING LOG NO. KB-132.5A

	BORIN	G LOG	Page 2 of 3								3	
PR	OJECT: CHPE - Additional HDD Borings - F	hase 3	CLIE	NT: K	(iew .one	it E Tre	ingiı ee, C	neering (NY) C CO	Corp			
SIT	E: Fort Ann to Coxsackie Fort Ann, NY											
g	LOCATION See Exploration Plan			(EL NS	ΡE	ln.)	L		(%	ATTERBERG LIMITS	IES
GRAPHIC LOG	Latitude: 43.2950° Longitude: -73.5570°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		WATER CONTENT (%)		PERCENT FINES
GRAP				DEP	NATE	SAMPI	reco/	FIELI		CONT	LL-PL-PI	ERCE
	DEPTH LEAN CLAY (CL), varved silt and clay, gray, very s	ELEVATIO	ON (Ft.)		-0	0)	Ľ.					
	medium stiff (continued)											
				30—								
						\bigvee	24	WH-WH-WH-4				
	▲					\wedge	27	VVI I-VVI I-VVI I				
				35—								
				_		X	24	WH-WH-WH-WH				
				_		$\langle - \rangle$						
				-								
				-								
	· · · · ·			40-								
				_		X	24	wн-wн-wн-wн				
			7	_		\square						
		$\mathbf{V}\mathbf{V}$										
				45-								
				49-	\land	\bigvee						
				(\neg)		\wedge	24	WH-WH-WH-WH				
				<u> </u>	Υ.							
				_								
				_								
				50-				\sim				
	×			_		Х	24	WR-WR-WR-WR				
				_			7					
				_								
				_								
				55-		\times	2					
	55.2 WEATHERED ROCK, gray, very dense Boring Terminated at 55.2 Feet	/					2					
	Stratification lines are approximate. In-situ, the transition may be gr	adual.				F	lamme	er Type: Automatic				
	cement Method: See E I Rotary descri	xploration and Tes ption of field and la	sting Proc	edures procedu	for a ures		otes:					
	used a	and additional data	ı (If any).				amme	by AB r Efficiency Summary: Transfer Ratio: 78.6%	: +/_2 0%			
	onment Method: symbo	upporting Informat		planatio	n of	H H	amme	r Efficiency Correctior /eight of hammer	n (CE): 1	, .31		
Bori	ng backfilled with bentonite grout upon completion							eight of rod				
	WATER LEVEL OBSERVATIONS				_	Bor	ing St	arted: 02-25-2022	Borir	ng Com	pleted: 08-26-2	2022
	No free water observed		ЭC							Driller: C. Johnston		
	30		porate Cir Ste 201									
				Project No.: JB215256G								

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB2152566 CHPE - ADDITIONAL. GPJ TERRACON_DATATEMPLATE. GDT 8/31/22

GEOPHYSICAL SERVICES REPORT

Champlain Hudson Power Express Upland Cable Installation Project Wetland Crossing, Near Hudson Falls (HDD21) Whitehall, Washington County, New York

Schnabel Reference # 21C25020.040 June 14, 2022

June 14, 2022

Mr. Jaren Knighton, PE Kiewit Engineering Group, Inc. (Kiewit Engineering (NY) Corp.) 8880 Penrose Ln. Lenexa, KS 66219

Subject: Geophysical Services Report – Champlain Hudson Power Express Upland Cable Installation Project (HDD21); Wetland Crossing, near Hudson Falls, Whitehall, Washington County, New York (Schnabel Reference 21C25020.040)

Dear Mr. Knighton:

SCHNABEL ENGINEERING OF NEW YORK is pleased to submit our geophysical report for this project. This study was performed in accordance with our proposal dated April 29, 2022, and revised May 5, 2022; and by Kiewit Task Assignment Order No. 04 (effective date May 6, 2022) of our Master Service Agreement KEG_MSA_Schnabel_2017 (December 11, 2017, Amended May 21, 2020).

EXECUTIVE SUMMARY

This report presents the results of our geophysical survey performed along the Canadian Pacific Railway south of Whitehall, New York, for Kiewit Engineering (NY) Corp. as part of the Champlain Hudson Power Express project.

Schnabel collected 1,800 linear feet of seismic data between about 200 ft southwest of Borehole K-132.4 and about 100 ft northeast of Borehole K-132.1; refer to Figure A-1 of this report. The data was processed using both multi-channel analysis of surface waves (MASW) and seismic refraction tomography (SRT) methods. The MASW method was unable to produce reliable results, most likely due to the subsurface conditions and geologic setting. The SRT method proved more effective and provided results that show the depth to rock varies between about 25 to 45 ft below the ground surface along the alignment.

We are providing this Executive Summary solely for purposes of overview. Any party that relies on this report must read the full report. This Executive Summary omits several details, any one of which could be important to the proper application of the report.

PROJECT DESCRIPTION

Site Description

The site of this geophysical survey is located along the Canadian Pacific (CP) Railway, about 2 miles east of Hudson Falls, Washington County, New York. A Site Vicinity Map is included as Figure 1.

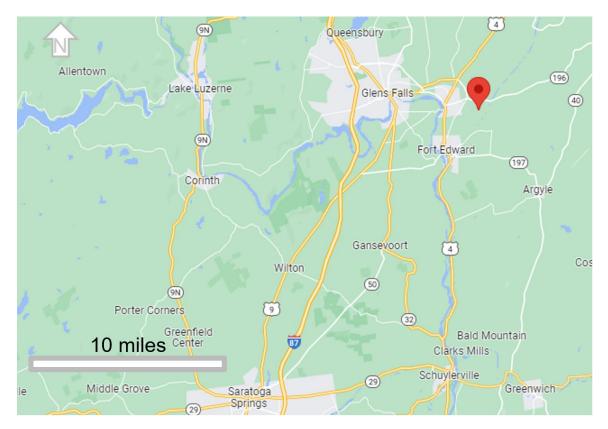


Figure 1: Site Vicinity Map (Site Represented by Red Symbol)

The seismic survey was conducted generally about 10 ft northwest of and parallel to the railroad line, starting about 200 ft southwest of Borehole K-132.4 and extending about 100 ft northeast of Borehole K-132.1. Three existing test borings were located along the seismic line. From the boring logs and data provided by Kiewit, two of the three boreholes were located directly along the line, while one (K-132.4) was about 65 ft to the southeast of the seismic data line. Figure 2 shows the site layout. Photographs 1, 2, and 3 show the site conditions at the time of data collection. Topography was generally flat with little variation. The ground surface was generally comprised of gravel (ballast) and provided effective ground coupling using geophones with 3-inch spikes.

Photographs 1,2, and 3: Site Conditions During Data Collection

SURVEY OBJECTIVE AND SCOPE

The objective of this study was to estimate the depth to bedrock between the test borings that were drilled along the proposed HDD21 alignment, and in particular to identify zones where bedrock is shallower than about 40 to 50 ft deep.

Given the available data and expected subsurface conditions, we recommended an MASW survey that would be collected in a manner that P-wave seismic refraction data could also be analyzed from the same data set. MASW measures how surface waves propagate and disperse through the soil, thereby inferring shear-wave velocities in those areas. Shear-wave velocities directly correlate to the stiffness of soil and will, therefore, be used to locate soft soil areas in contrast with stiff materials such as bedrock. Seismic refraction measures the time it takes for a P-wave, or compressional wave, to travel from the source at the ground surface to the soil/bedrock interface and back to geophones placed along the surface. With analysis, the travel times can be calculated to provide estimates of depths to the interface.

We collected 1,800 linear feet of seismic data between about 200 ft southwest of Borehole K-132.4 and about 100 ft northeast of Borehole K-132.1. The data was processed using both MASW and SRT methods. The MASW method was unable to produce reliable results, most likely due to the subsurface conditions and geologic setting; however, the SRT method proved more effective and will be the focus of this report.

Geophysical Methods

Schnabel personnel collected seismic data using two Geometrics, Inc., Geode, 24-channel seismographs and 48 geophones along a linear array on May 17, 2022. The geophones were spaced 10 ft along the array. We collected shot records starting 30 ft off the end of the line and every 30 ft down the line. The energy source was a 16-pound sledgehammer striking a polypropylene plate on the ground surface. Once shot points were collected along the first half of the initial 48-channel (470 ft) spread, the first 24 geophones were picked up and moved to the end of the line, and shot points continued to move up the line. This roll-along method was continued until data was collected for the full 1,800-ft line, at which time the shot points continued through the final spread. The seismic data were recorded digitally directly onto a laptop computer that controlled the seismograph. Sub-meter GPS data was collected along the full

seismic line using a Trimble Geo 7x. The GPS data were used to both located the horizontal location of the geophysical data collected and to generate a topographic surface for data processing and displaying the results.

Multi-Channel Analysis of Surface Waves (MASW)

Schnabel performed analysis on the seismic data using a surface wave recognition and modeling program (SurfSeis Version 6, Kansas Geological Survey). The data for each array location were processed and then modeled using an inversion method to estimate the subsurface shear wave velocities. The inversion models from each source/receiver array location were combined to form a two-dimensional cross-section model of the subsurface shear wave velocity for each MASW traverse; however, the dispersive energy for this dataset was inconsistent and not conducive to reliable modeling. This variability in data quality can be caused by subsurface geologic conditions or high levels of vibrational noise at the site. In this case, the noise levels were not abnormally high, so the geological conditions are expected to be the cause of the ineffectiveness of the MASW method.

Seismic Refraction Tomography (SRT)

Seismic data processing was conducted using Rayfract Version 4, from Intelligent Resources. The processing involved Schnabel personnel manually picking first-arrival times of seismic energy, incorporating elevations into the data, and generating a model that matches the first arrivals. Gradational velocity changes are common in geologic environments with thicker zones of weathered and fractured bedrock, such as at this site; therefore, we performed a tomographic inversion to estimate these gradational changes in the P-wave velocities.

Results and Interpretations

As discussed above, the MASW method did not produce reliable results; therefore, the results from the SRT method, which did produce reliable results that met the project objectives, are discussed below.

The SRT results are shown in Figure A-1, located in Appendix A. The figure shows the P-wave velocity model using a 10:1 vertical to horizontal scaling to enhance the variation on the velocity structure in the top 50 ft below ground surface (bgs). On the bottom left corner of the figure is a Location Plan that shows where the results are, with distances on the base map corresponding to the horizontal axis of the P-wave velocity model. The base map is also color coded to represent ranges of estimated depth to rock, as described below.

The three existing boreholes that were located along the seismic line are represented on the velocity model. Bedrock was not encountered in Boreholes K-132.4 and K-132.1, so we know that rock is deeper than the bottom of those boreholes at those locations. Borehole K-132.2 encountered apparent bedrock at a depth of 30 ft, and this depth is represented by a solid black line perpendicular to the boring stick.

Based on correlation with the limited borehole information and our experience in similar geologic settings, we chose the 7,500 ft/s contour line to represent the top of bedrock. This is shown as a dashed black line on the seismic refraction velocity model on Figure A-1. The black lines on either side represent the zone within 10% of the depth to the 7,500 ft/s contour line. A depth range of $\pm 10\%$ is the typical expected resolution for the seismic refraction method. Additionally, the Location Plan on Figure A-1 shows where

depth to top of bedrock, as indicated by the 7,500 ft/s contour line, is less than 30 ft, between 30 ft and 40 ft, or greater than 40 ft.

Based on these results, the depth to bedrock is shallower than 50 ft for a portion of the 1,800-ft alignment. For the southern 500 ft of the line, the depth to bedrock varies between elevations of 94 and 100 ft, or 35 and 45 ft bgs. From a distance of 420 ft to about 1,220 ft, the bedrock slopes upward from about an elevation of 94 ft (45 ft bgs) to an elevation of 115 ft (25 ft bgs). From 1,220 ft to a distance of about 1,600 ft, the bedrock drops back down to about an elevation of 100 ft (40 ft bgs).

LIMITATIONS

The seismic refraction method is based on subsurface interfaces (boundaries) that refract the seismic waves. The seismic wave energy refracts through interfaces where there is a lower velocity layer above a higher velocity layer. It is not capable of detecting a lower velocity layer beneath a higher velocity layer. Based on the observed soft clay material in the borehole logs and Boring K-132.2 indicating bedrock below the clay, we infer the transition from clay to bedrock is similar below Borings K-132.4 and K-132.1 in comparison to Boring K-132.2; however, this limitation (e.g., a lower velocity layer beneath a higher velocity layer) could affect the results for this project for conditions where lower velocity material underlies higher velocity material along the line of study.

Schnabel based the analyses and recommendations submitted in this report on the information provided by Kiewit and the information revealed by our geophysical exploration. We attempted to provide for normal contingencies, but the possibility remains that unexpected conditions may be encountered during construction.

Geophysical data depict a broad estimate of actual subsurface conditions. Correlation of this data with intrusive method data will indicate some variance due to the nature of measured geophysical properties. Also, the resolution of the geophysical methods may be such as to not detect potentially significant smaller features that may appear significant in HDD drilling results or excavations at a particular location. As such, some amount of variation in the actual field conditions should be expected, including possible natural wood/tree material, boulders, and a variable/jagged bedrock surface. Annotations on the results represent our interpretation of the data.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report or other instrument of service.

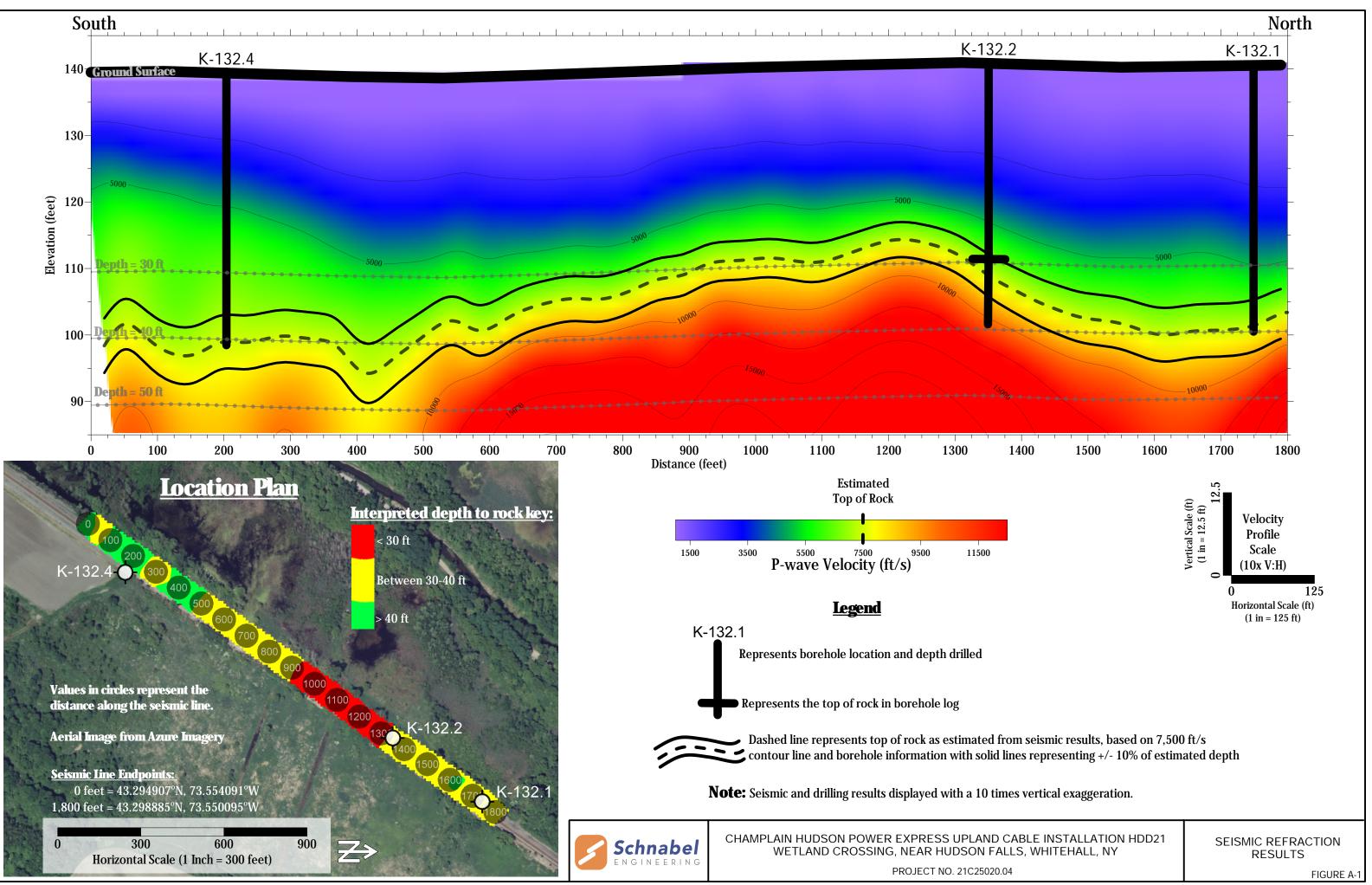
We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,

SCHNABEL ENGINEERING OF NEW YORK

hahm $\left(\right)$ acah

Jacob Sheehan, PGp Senior Scientist


Mia A. Painter, PG-NY Associate

JRS:CMM:MAP:MPT:vm

Appendix A: Seismic Refraction Results

APPENDIX A

SEISMIC REFRACTION TOMOGRAPHY RESULTS

Appendix D

BoreAid HDD Simulation Output

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	HDD #9 - Conduit 1
	Start Date: 02-28-2022
	End Date: 02-28-2022

Project Owner:	TDI
Project Contractor:	KIEWIT
Project Consultant:	CHA
Designer:	MCS
	CHA

Description:

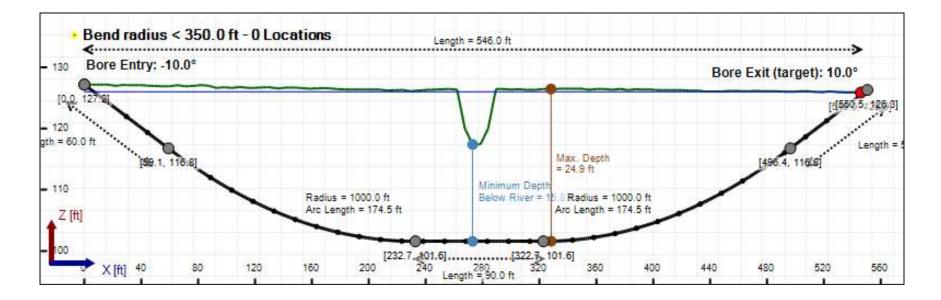
Input Summary

(0.00, 0.00, 127.18) ft
(546.00, 0.00, 125.88) ft
546.00 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

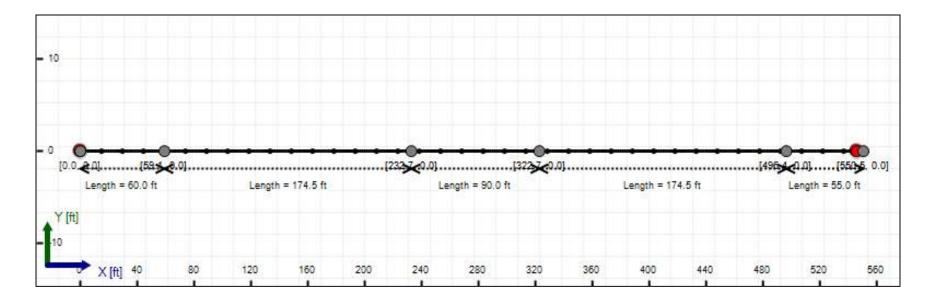
Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM Depth: 2.00 ft Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Sand (S), SW Depth: 6.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH Depth: 2.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]


Soil Layer #4 USCS, Sand (S), SC Depth: 11.00 ft Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CH Depth: 12.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 555.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.7	9.3
Water Pressure	10.6	10.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.3	19.9
Deflection		
Earth Load Deflection	0.768	2.536
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	0.900	2.668
Compressive Stress [psi]		
Compressive Wall Stress	59.9	89.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	9347.8	9347.8
Pullback Stress [psi]	260.7	260.7
Pullback Strain	4.534E-3	4.534E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	260.7	285.5
Tensile Strain	4.534E-3	5.414E-3

Net External Pressure = 16.8 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.900	7.5	8.3	OK
Unconstrained Collapse [psi]	16.7	127.7	7.7	OK
Compressive Wall Stress [psi]	59.9	1150.0	19.2	OK

Installation Analysis

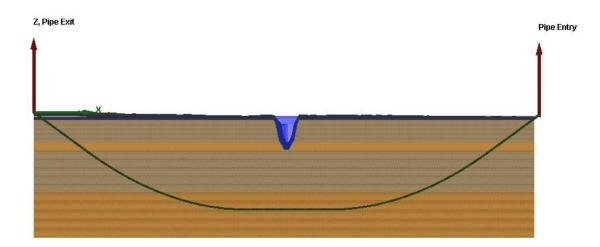
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	26.6	240.0	9.0	OK
Tensile Stress [psi]	285.5	1200.0	4.2	OK

Maximum Allowable Bore Pressure Summary

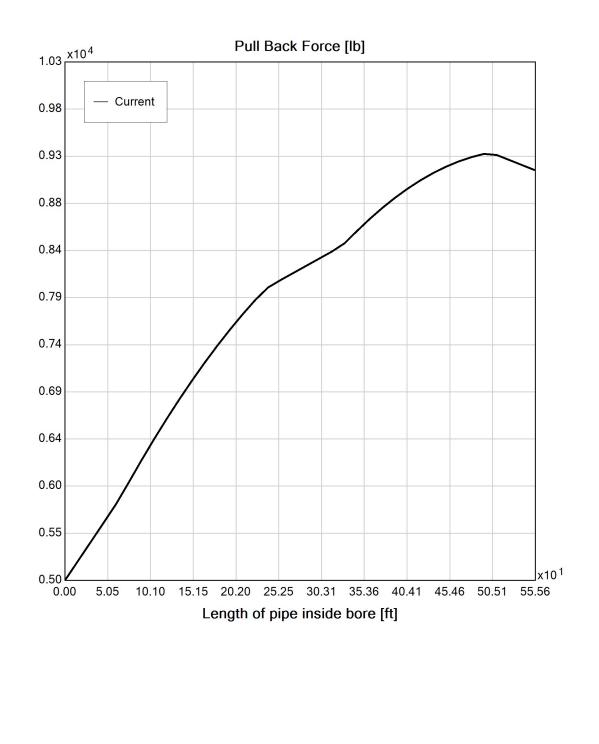
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	59.150 psi	52.714 psi
1	8.00 in	12.00 in	58.547 psi	52.184 psi
2	12.00 in	16.13 in	57.787 psi	51.457 psi

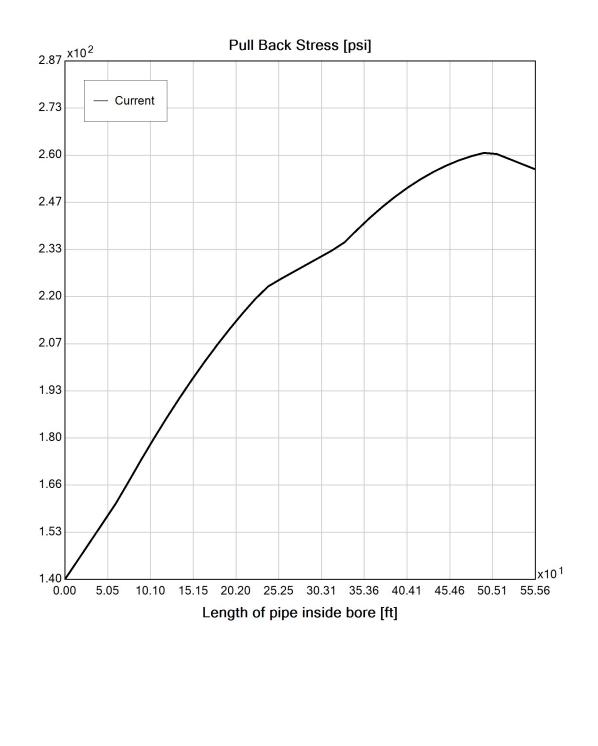
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

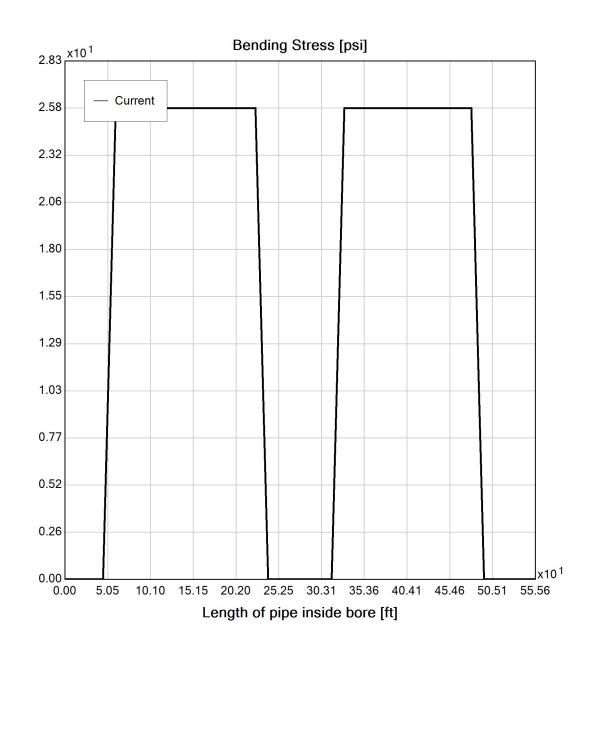
Estimated Circulating Pressure Summary

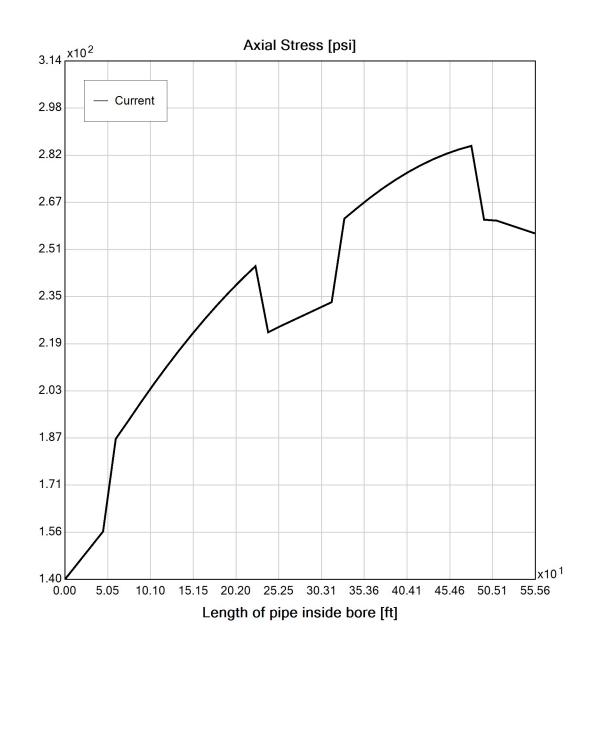

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

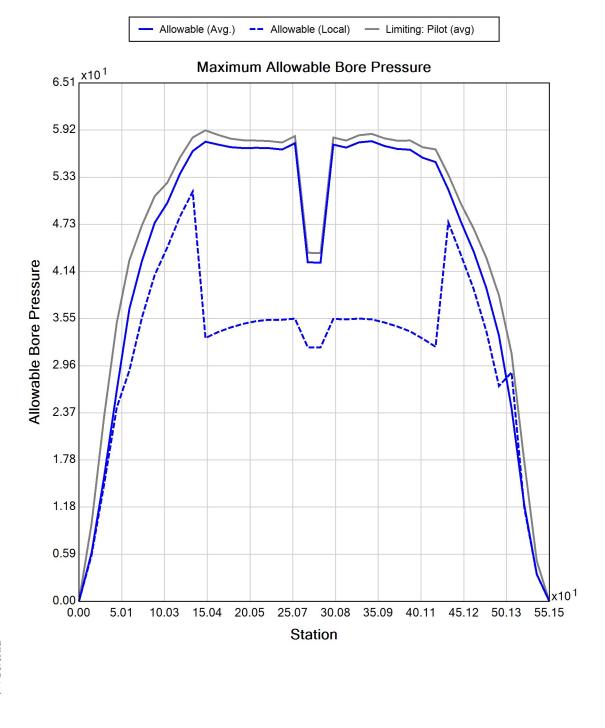
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

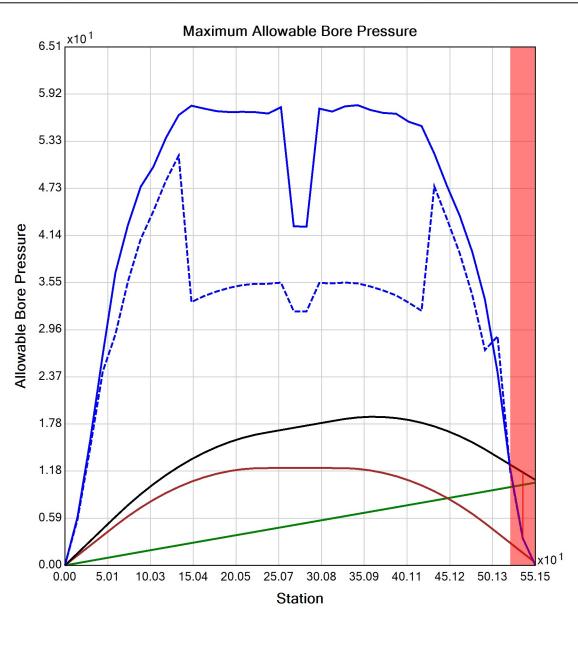

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Powered by

Powered by 💘 | BOreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 127.18) ft
End Coordinate	(546.00, 0.00, 125.88) ft
Project Length	546.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 555.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.1	9.3
Water Pressure	10.6	10.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.7	19.9
Deflection		
Earth Load Deflection	0.385	2.536
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.414	2.565
Compressive Stress [psi]		
Compressive Wall Stress	52.7	89.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	565.9	565.9
Pullback Stress [psi]	323.3	323.3
Pullback Strain	5.623E-3	5.623E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	323.3	328.1
Tensile Strain	5.623E-3	5.805E-3

Net External Pressure = 16.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.414	7.5	18.1	OK
Unconstrained Collapse [psi]	16.7	134.1	8.0	OK
Compressive Wall Stress [psi]	52.7	1150.0	21.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	26.6	238.4	9.0	OK
Tensile Stress [psi]	328.1	1200.0	3.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	HDD #9 - Conduit 2	
	Start Date: 02-28-2022	
	End Date: 02-28-2022	
Project Owner:	TDI	
Project Contractor:	KIEWIT	
Project Consultant:	СНА	
Designer:	MCS	
	СНА	

Description:

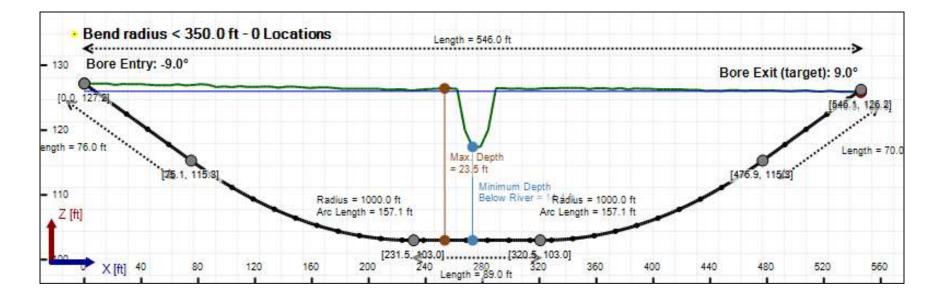
Input Summary

(0.00, 0.00, 127.18) ft
(546.00, 0.00, 125.88) ft
546.00 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

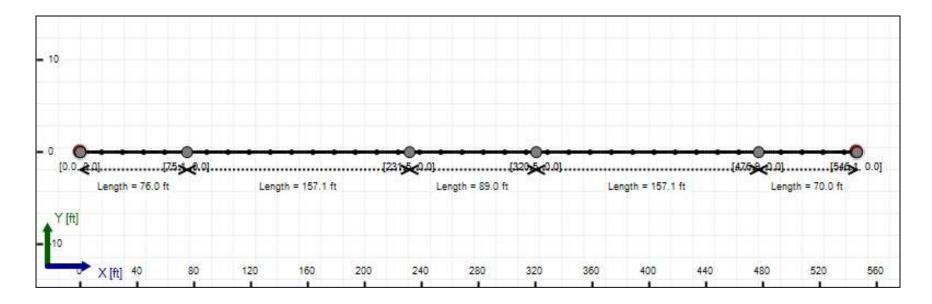
Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM Depth: 2.00 ft Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Sand (S), SW Depth: 6.00 ft Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH Depth: 2.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]


Soil Layer #4 USCS, Sand (S), SC Depth: 11.00 ft Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CH Depth: 12.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 555.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.7	8.9
Water Pressure	10.0	10.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.7	18.9
Deflection		
Earth Load Deflection	0.771	2.435
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	0.903	2.567
Compressive Stress [psi]		
Compressive Wall Stress	57.2	85.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	9230.1	9230.1
Pullback Stress [psi]	257.4	257.4
Pullback Strain	4.477E-3	4.477E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	257.4	281.9
Tensile Strain	4.477E-3	5.351E-3

Net External Pressure = 17.6 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.903	7.5	8.3	OK
Unconstrained Collapse [psi]	15.7	127.7	8.1	OK
Compressive Wall Stress [psi]	57.2	1150.0	20.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	25.7	240.1	9.3	OK
Tensile Stress [psi]	281.9	1200.0	4.3	OK

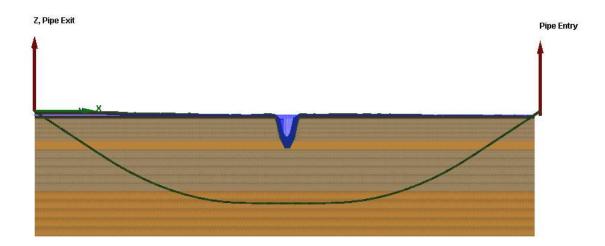
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	58.682 psi	53.027 psi
1	8.00 in	12.00 in	57.961 psi	52.504 psi
2	12.00 in	16.13 in	57.305 psi	51.788 psi

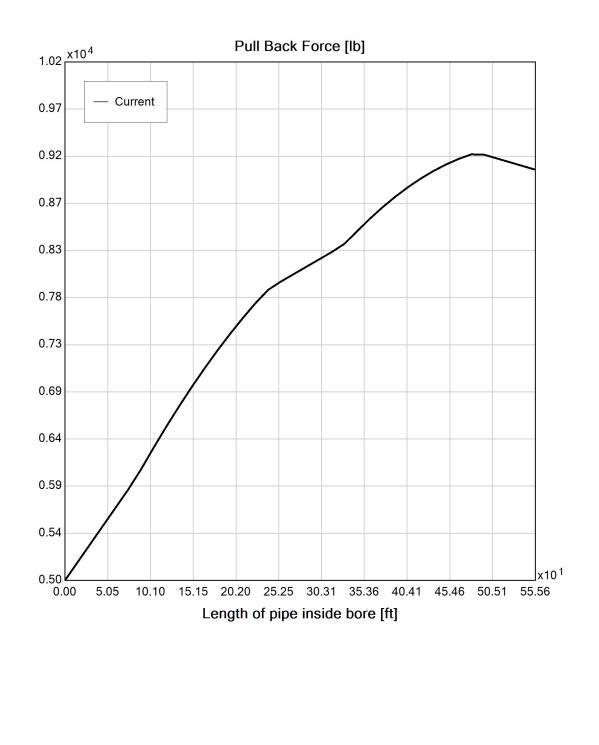
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

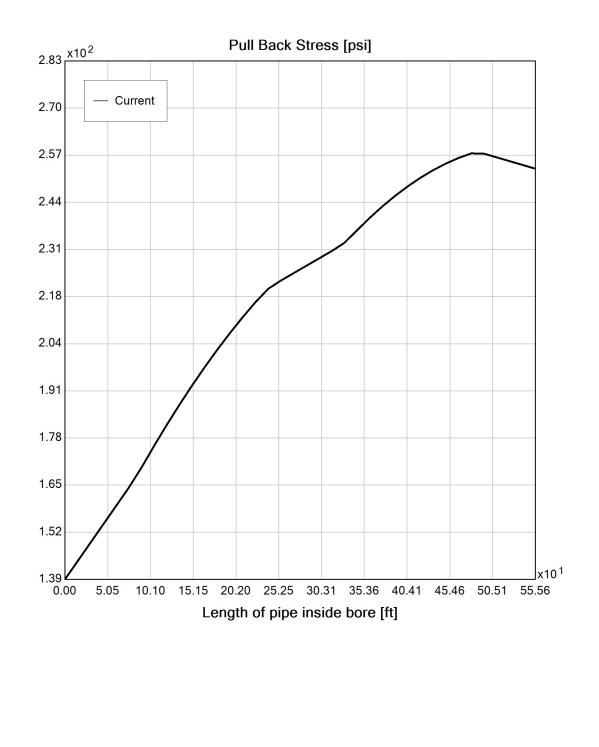
Estimated Circulating Pressure Summary

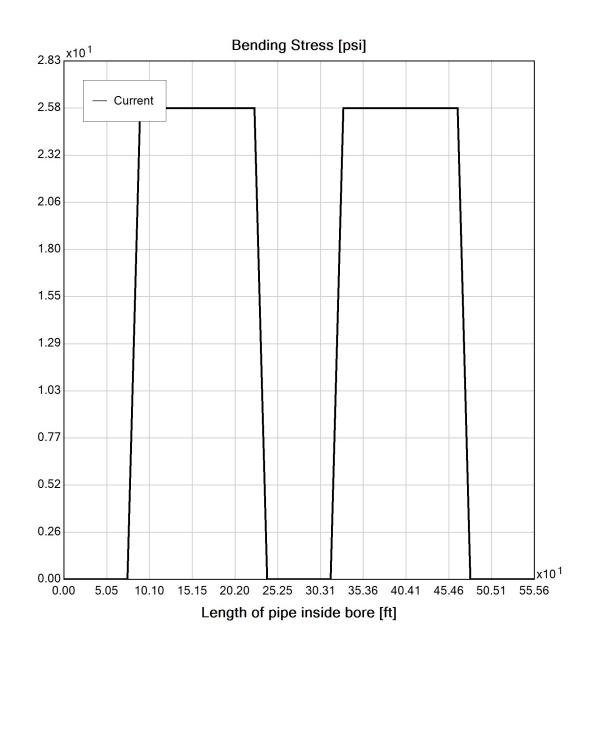
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15


Flow Rate (Q): 40.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

Fluid Consistency Index (K): 63.17


Power Law Exponent (n): 0.14


Effective Viscosity (cP): 859.3


Virtual Site

