

Boring Location Plans Page 5 of 12	Drawn by:		Scale:	Project No.:		Date:
	ADW		Not to scale	CD10279		March 2022
Champlain Hudson Power Express Design Package 2 Whitehall to Glens Falls, New York	Albany, NY Poughkeepsie, NY	ATLAN Binghamto NY Syracuse, I	on, Canto	•	DRIES, Li i ira, NY a, NY	mited Plattsburgh, NY Watertown, NY

Subsurface Investigation

Client: Project:		iewit Eng	gineering	g (NY) C	orp.									lan	
Project:	9									Boring Location: See Boring Location Plan				_	
		ubsurfac	e Invest	igation											_
	C	hamplain	Hudson	n Powe	Ехр	ress,	Desi	ign P	ackage 2						_
	_Va	arious Lo	cations	, New Y	ork						Start Date:	1/13/2022	Finish Date:	1/13/2022	
Boring N	lo :	K-123 (2		Shor	ət	1	of	2				er Observations		
boning iv	··· _	N-123.	<u> </u>		SHE	^{≠ι} —	<u> </u>	OI _			Date	Time	Depth	Casing	
	Coordi	nates				San	npler	Hamr	mer		1/13/2022	PM	<u>*6.2'</u>	14.0'	-
Northing	<u>7615</u>	<u> 28.799</u>			Wei	ght:	1	40	lbs.		1/13/2022	PM	*9.3'	14.0'	-
Easting	<u>16701</u>	<u>196.072</u>					;	30	in.						-
				Hamm	er Ty _l	pe:	Auto	mati	<u>c</u>						_
Ground E	Elev.:	13	5.342	_		Borin	ıg Ad	vance	By:		*May be af	fected by water	utilized to advan	ce the	_
				HV	V (4") Cas	ing/3	7/8"	Wet Rota	ary	borehole.				-
					1						CL ACC	FICATION (DE MATERIAL	1	T
	8			۳					გ照		CLASS	FICATION	JE WAI ERIAI	_	≥
된	PLE			₩P		PE	R 6"	-	PTH ANA					and - 35-50%	Recovery
AD AD	ΑA			່ຊ				2	필ㅎ	f - fine m - medium				some - 20-35% little - 10-20%	&
		From	То							c - coarse				trace - 0-10%	ㄴ
	1	0.0	2.0	SS	44	19	11	8	0.5	_					1
ŝ				\ \ \								ce SILT; trace f (SRAVEL (moist, no	on-plastic)	
I N	2	2.0	4.0	ss	11	15	11	6				ne mf GRAVEL;	trace SILT (moist,		1
G				'					4.0	non-pla	astic) SW Po	ssible FILL	•		
	3	4.0	6.0	SS	5	4	2	1				SAND; trace CL	AY (wet, very sligh	tly plastic)	
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					6.0	ML w	= 22.3%				
	4	6.0	8.0	SS	1	1	2	1				e SILT (saturated	l, non-plastic) SM		1
				1						w = 31	.3%				
	5	8.0	10.0	SS	3	1	1	1		Greyisl	h-Brown mf S	AND; some SILT	; trace CLAY (wet,	very	
				1					10.0	slightly	plastic) SM				
	6	10.0	12.0	SS	3	3	3	4		-		T; trace f SAND	lenses throughout	sample	1
				1							,	DI - 20 DI - 20			
									13.0		, -,	-,			
										• • • • • • • • • • • • • • • • • • • •				•••••	Т
WET	7	14.0	16.0	ss	WH	1/12"	2	2		Grey f	SAND; little S	ILT; little CLAY (wet, slightly plastic	SM-SC	2
0											ū	•	,	/8" tri-cone	
T A									17.0	roller b	it wet rotary o	pen hole within th	ne borehole.		
R										• • • • • • • • • • • • • • • • • • • •					T
	8	19.0	21.0	SS	2	1	1	1		Grey c	-m+f SAND; to	race SILT (satura	ited, non-plastic) S	SP-SM	2
										w = 29	.8% % Fines	= 10.0%			\vdash
					T										
	9	24.0	26.0	SS	6	5	4	5		Similar	Soil (wet, no	n-plastic) SP-SM	1		Г
	Northing Easting Ground I C	Coordii Northing 7615 Easting 16701 Ground Elev.: The string 16701 Ground Elev.: The string 16701 The string 16701	Coordinates Northing 761528.799 Easting 1670196.072 Ground Elev.: 13 Hard Done 13 Hard Done 14 Hard Done 15 Hard Done 16 Hard Done 16	Coordinates Northing 761528.799 Easting 1670196.072 Ground Elev.: 135.342	Coordinates Northing 761528.799 Easting 1670196.072 Hamm Ground Elev.: 135.342 HV SAMPLE Trom To To To To To To To	Coordinates	Coordinates	Coordinates	Coordinates	Sheet 1 of 2	Sering No.: K-123.2 Sheet 1 of 2	Coordinates	Boring No.: K-123.2 Sheet 1 of 2 Date Time T	Boring No. K-123.2 Sheet 1 of 2 Date Time Depth Time Time Depth Time Time Depth Time Time Depth Time Ti	Sheet 1

Subsurface Investigation

Boring No.: K-123.2 Report No.: CD10279D-01-03-22 Sheet 2 of 2 **CLASSIFICATION OF MATERIAL** METHOD OF ADVANCE RECOVERY (inches) SAMPLE NO. **BLOWS ON** DEPTH OF CHANGE DEPTH SAMPLE TYPE SAMPLER OF **PER 6"** SAMPLE 2" O.D. f - fine some 20-35% SAMPLER m - medium c - course - 10-20% - 0-10% little From То 26 27.0 28 10 28.0 30.0 SS 24 WH/12" 3 (3" Brass Lined Split Spoon) Grey CLAY; little SILT; trace f SAND 29 (wet, plastic) CH w = 65.5%, LL = 67, PL = 21, PI = 46 % Fines = 97.0% 30 ST-1 SH SHELBY TUBE 22 30.0 32.0 Similar Soil (wet, plastic) CH 31 32 33.0 33 34 11 34.0 36.0 SS 3 3 5 3 Grey SILT; little CLAY; trace f SAND (wet, slightly plastic) ML 35 36.0 36 37 Boring terminated at 36.0 feet. 38 Notes: 39 1. Borehole backfilled with cement-bentonite grout. 40 -2. Soil classifications based on ATL Field Engineer's field classifications. 41 3. Borehole was advanced with ATL's CME 45 Trailer (Rig Unit 42 No. CDGV429) drill rig. 43 44 -45 -46 -48 -49 50 -51 52 54 -55 -56 -57 -58 59 60 61

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ ATL4-08.GDT 4/12/22

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	its	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-12	39.0 - 41.0	Black c-m+f SAND; trace SILT; trace f GRAVEL	4.8	17.8											
	S-15	54.0 - 56.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	9.4	27.2	NP	NP	NP								
	S-5	8.0 - 10.0	Brown SILT; and mf- SAND	57.0	24.8	NP	NP	NP		-		-				
	S-9	29.0 - 31.0	Grey mf+ SAND; trace SILT		17.5											
K-122.4	S-13	49.0 - 51.0	Greyish-Black c-mf SAND; little SILT; trace mf GRAVEL	19.0	21.7											
	S-16	58.0 - 60.0	Greyish-Black cm+f SAND; trace SILT	1.7	9.9											
	S-3	4.0 - 6.0	Brown SILT; little mf SAND; trace CLAY		22.3			-		-		-				
	S-4	6.0 - 8.0	Brown f SAND; some SILT		31.3			-								
K-123.2	S-6	10.0 - 12.0	Grey CLAY; little SILT; trace f SAND		28.4	48	20	28								
K-123.2	S-8	19.0 - 21.0	Grey c-m+f SAND; trace SILT	10.0	29.8											
	S-10	28.0 - 30.0	Grey CLAY; little SILT; trace f SAND	97.0	65.5	67	21	46								
	ST-1	30.0 - 32.0	Grey CLAY; little SILT; trace f SAND							1,400	15	8.24	5,418			
	S-3	4.0 - 6.0	Mottled Blackish-Grey CLAY; trace SILT; trace f SAND; trace ORGANIC MATERIAL (roots)		41.4				7.5							
K-123.7	S-6	14.0 - 16.0	Mottled Orangish-Grey CLAY; trace SILT	100.0	25.9	79	23	56								
	S-9	28.0 - 30.0	Grey CLAY; trace SILT	100.0	48.4	73	20	53		-		-				
	S-11	40.0 - 42.0	Grey CLAY; trace SILT		37.3											
	S-3	4.0 - 6.0	Orangish-Brown cmf+ SAND; little SILT	16.0	18.1			-		-		-				
K-123.8	S-6	14.0 - 16.0	Blackish-Grey CLAY; little SILT; trace f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)		66.5	54	23	31	6.9							
	S-9	28.0 - 30.0	Mottled Orangish-Greyish- Brown CLAY; trace SILT	100.0	37.2	67	18	49								
	S-11	40.0 - 42.0	Bluish-Grey CLAY; trace SILT		33.5											
	S-3	4.0 - 6.0	Orangish-Brown SILT; trace f SAND		21.4	NP	NP	NP								
	S-5	8.0 - 10.0	Grey CLAY; trace SILT		27.5			-								
K-125.5	S-6	14.0 - 16.0	Greyish-Black mf+ SAND; trace SILT	7.7				-		-		-				
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		51.5											
	S-9	28.0 - 30.0	Grey CLAY; trace SILT; trace mf SAND	94.0	38.0	70	21	49								

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS **ASTM D 2216**

Page 1 of 2

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22 Report Date:

January 31, 2022

Date Received:

January 25, 2022

TEST DATA

(ES) DATA										
Boring	Sample	Depth	Moisture							
No.	No.	(ft)	Content (%)							
K-122.35	S-3	4-6	23.5							
	S-8	24-26	23.8							
	S-12	39-41	17.8							
	S-15	54-56	27.2							
K-123.2	S-3 ¹	4-6	22.3							
	S-4	6-8	31.3							
	S-6	10-12	28.4							
	S-8	19-21	29.8							
	S-10	28-30	65.5							
K-123.7	S-3	4-6	41.4							
	S-6	14-16	25.9							
	S- 9	28-30	48.4							
	S-11	40-42	37.3							
K-123.8	S-3	4-6	18.1							
	S-6	14-16	66.5							
	5-9	28-30	37.2							
	S-11	40-42	33.5							

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

ATL Report No.: CD10279E-01-01-22

Date: January 31, 2022 Page 2 of 2

TEST DATA (continued)

Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
		•	
K-125.5	S-3	4-6	21.4
	S-5	8-10	27.5
	S-7	19-21	51.5
	S-9	28-30	38.0
K-127.0	S-3	4-6	32.8
	S-4	6-8	31.2
	S-6	14-16	22.8
	S-9	30-32	81.7
	S-11	39-41	63.9
K-127.1	S-3	4-6	30.7
	S-7	19-21	71.7
	S-9	30-32	58.0

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:

Date: 01/31/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-01-01-22

Client: Kiewit Intrastructure Co. Date: 01/31/22

Sample No: K-123.2, S-8 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 19-21'

			G	RAIN SIZE	mm.			
	% G:	ravel		% San	d	% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	2	67	21	10		

SIEVE	PERCENT	SPEC.*	OUT OF
ł			Į
SIZE	FINER	PERCENT	SPEC. (X)
1/2"	100		
#4	100		i
#10	98		
#40	31		
#200	10.0		
ļ			
	Į		
		}	
1			

	ĺ		
!			
1			

	Soil Description	
Grey c-m+f SA	ND; trace SILT	
PL=	Atterberg Limits LL=	P!=
D ₈₅ = 1.3334 D ₃₀ = 0.3800 C _u = 10.48	Coefficients D60= 0.7878 D15= 0.1127 C _C = 2.44	D ₅₀ = 0.6459 D ₁₀ = 0.0752
USCS=	Classification AASHTO)=
Moisture Conte	<u>Remarks</u> nt= 29.8%	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Date: _____01/31/22

Figure

Reviewed by: K

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project: Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Test Date:

January 25, 2022

Various Locations, New York

Performed By:

R. Parrow

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	initial Dry Weight (g)	% Finer than #200
K-123.2	S-10	28-30	А	10	107.62	97
K-123.7	S-6	14-16	Α	10	78.62	100
K-123.7	S-9	28-30	Α	10	120.67	100
K-123.8	5-9	28-30	A	10	219.15	100
K-125.5	S-9	28-30	A	10	219.28	94
K-127.0	S-9	30-32	Α	10	119.17	96
K-127.1	S-9	30-32	Α	10	124.57	100

Reviewed By:	K	
,		<u> </u>

Date: January 31, 2022

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22

Report Date: Date Received: January 31, 2022 January 25, 2022

TEST DATA

IEST DATA										
Boring No.	Sample No.	ĹĽ	PL	Pl						
K-122.35	S-3	NP	NP	NP						
K-122.35	S-15	NP	NP	NP						
K-123.2	S-6	48	20	28						
K-123.2	S-10	67	21	46						
K-123.7	S-6	79	23	56						
K-123.7	S-9	73	20	53						
K-123.8	S-6	54	23	31						
K-123.8	59	67	18	49						
K-125.5	S-3	NP	NP	NP						
K-125.5	S-9	70	21	49						
K-127.0	5-4	51	22	29						
K-127.0	S-9	72	20	52						
K-127.1	S-3	34	22	12						
K-127.1	S-9	68	19	49						

SAMPLE INFORMATION

JAN L WOMENION									
		Maximum	Estimated Amount of Sample	As Received Moisture					
		Grain Sìze	Retained on No. 40 Sieve	Content					
Boring No.	Sample No.	(mm)	(%)	(%)					
K-122.35	S-3	2	5	23.5					
K-122.35	S-15	4.76	52	27.2					
K-123.2	S-6	2	1	28.4					
K-123.2	S-10	6.35	1	65.5					
K-123.7	S-6	0.297	0	25.9					
K-123.7	S-9	0.297	0	48.4					
K-123.8	S-6	2	7	66.5					
K-123.8	S-9	0.297	0	37.2					
K-125.5	S-3	2	5	21.4					
K-125.5	S-9	9.51	2	38.0					
K-127.0	S-4	2	2	31.2					
K-127.0	S-9	9.51	2	81.7					
K-127.1	S-3	6.35	24	30.7					
K-127.1	S-9	2	1	58.0					

Client: Project: Kiewit Instrastructure Co.

744474 71123

Champlain Hudson Power Express

ATL Report No.

CD10279E-01-01-22

Date:

January 31, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-122.35	S-3	Air Dry	Pulverizing and Screening
K-122.35	S-15	Air Dry	Pulverizing and Screening
K-123.2	S-6	Air Dry	Pulverizing and Screening
K-123.2	S-10	Air Dry	Pulverizing and Screening
K-123.7	S-6	Air Dry	Not Necessary
K-123.7	S-9	Air Dry	Not Necessary
K-123.8	S-6	Air Dry	Pulverizing and Screening
K-123.8	S-9	Air Dry	Not Necessary
K-125.5	S-3	Air Dry	Pulverizing and Screening
K-125.5	S-9	Air Dry	Pulverizing and Screening
K-127.0	S-4	Air Dry	Pulverizing and Screening
K-127.0	S-9	Air Dry	Pulverizing and Screening
K-127.1	S-3	Air Dry	Pulverizing and Screening
K-127.1	S-9	Air Dry	Pulverizing and Screening

	EQUIPIVIENT	INFORMATION		
Liquid Limit Procedure: Multip	oint - Method A	Х	Single Point - Method B	
Liquid Limit Apparatus:	Manual	X	Motor Driven	
Liquid Limit Grooving Tool Materi	al: Plastic	X	Metal	
Liquid Limit Grooving Tool Shape:	Flat	X	Curved (AASHTO Only)	
Plastic Limit:	Hand Rolled	Х	Mechanical Rolling Device	9

Reviewed By:	m	7/	 Date:	01/31/22	
	······	V	 		

Page 1 of 1

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - HDD Crossing 14.A - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 14.A is STA 20331+00 (43.405228° N, 73.485808° W).

The geotechnical data at this HDD crossing is attached. The available data is from the recent investigation by Atlantic Testing Laboratories, referenced below.

• Atlantic Testing Laboratories, Geotechnical Data Report, Champlain Hudson Power Express, dated April 12, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480

HDD 14.A Borings K-123.7, K123.8 Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface		
Firm	Boring	(feet)	(feet)	Elevation (feet)		
	B122.4-1	1673988.1	762589.1	134.0		
	B123.1-1	1670533.1	761581.7	134.0		
TRC*	B127.6-1	1650236.9	759369.7	143.0		
	B130.8-1	1633732.2	749229.1	144.0		
	B131.5-1	1630565.5	746543.8	148.0		
	WFE-2	1693039.7	776227.9	125.9		
	WFE-6	1683884.0	771830.6	128.7		
	WFE-6A	1683645.5	771707.7	129.0		
	WFE-7	1683295.0	771591.2	128.7		
	WFE-9	1677994.3	769427.4	133.9		
	WFE-9A	1678043.5	769246.8	140.2		
AECOM**	WFE-9B	1676842.4	767745.7	141.7		
	WFE-12	1657680.6	760822.6	135.3		
	WFE-16	1645866.1	757602.8	145.2		
	WFE-18	1637293.5	752138.0	143.6		
	WFE-18A	1630756.2	746790.9	144.9		
	WFE-19	1628651.1	745226.2	139.1		
	WFE-19A	1625848.4	743218.4	139.0		

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Boring Location Plans Page 6 of 12	Drawn by: ADW	Scale: to scale	Project No.: CD10279	Date: March 2022
Champlain Hudson Power Express Design Package 2 Whitehall to Glens Falls, New York	Albany, NY Poughkeepsie, NY		,	mited Plattsburgh, NY Watertown, NY

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:		Kiewit Eng	gineerin	g (NY) (Corp					Bor	ring Locati	on: See B	oring Location P	lan	_
	Project:	:	Subsurfac	e Inves	tigation											_
			Champlair	Hudso	n Powe	r Ex	press	s, Des	sign P	ackage 2	_					_
			Various Lo	cations	s, New Y	ork/					Sta	art Date:	1/20/2022	Finish Date:	1/20/2022	
													Groundwate	er Observations		
	Boring N	No.:	K-123.	7		She	eet _	_1_	_ of _			Date	Time	Depth	Casing	
		Coord	dinates				Sa	mpler	· Ham	ner	1/2	20/2022	AM	DRY	OPEN	_
	Northing		644.556			We	ight:	•	140	lbs.	1/2	20/2022	AM	3.5'	9.0'	
	Easting	166	7254.963				Fall:		30	in.	1/2	20/2022	AM	*13.0'	9.0'	
	J				Hamm	ner Ty	уре:	Aut	omat	-		20/2022	AM	*14.4'	9.0'	_
	Ground	Elev ·	13	5.778			Rori		dvanc	_				utilized to advar		-
	Ground	LICV		0.770	— н	W (4		-		Wet Rotary		orehole.	ected by water	utilized to advar	ice trie	-
							, 54	on ig/		,		010110101				_
)F E	0.					DI O	ws c	NI.	ш	C	CLASSII	FICATION C	F MATERIA	L	
	METHOD OF ADVANCE	SAMPLE NO.		PTH)F	SAMPLE		SAN	IPLE	R	DEPTH OF CHANGE						
i	H X	/PL		IPLE	₹			"R 6 O.D.		EA					and - 35-50%	- 1
	ME	SAI			_ o			/IPLE			medium				some - 20-35% little - 10-20%	1
	l	1	9.0	To 2.0	ss	8	4	5	4		coarse	II & OPC	ANIC MATERIAL		trace - 0-10%	╪
	C	'	0.0	2.0	33	Ů	4	5	4	-0.8 \				frozen, non-plasti	c) SM /	\downarrow
	S	2	1 20	40	00		-	-	F	1.0	FILL	2.46K IIII O	, mao oil i	52011, 11011 pidoti	·, s //_	\downarrow
	Ň	2	2.0	4.0	SS	6	6	5	5	1 11	Black DEBI	RIS (cinde	ers) FILL		//	ļ
	G									—— <u>—</u> \	Brown f GR	RAVEL; an	d cmf SAND; tra	ce SILT (wet, non	-plastic)	1
		3	4.0	6.0	SS	2	1	2	2	//	GP Possib	le FILL				L
						1				1 1	J		SAND; and SILT	(wet, non-plastic)	SM	Ī
		4	6.0	8.0	SS	3	6	4	5		Possible FI					ſ
						1					•		T (wet, plastic)	CH LT; trace f SAND;		T
		5	8.0	10.0	SS	1	4	5	7				L (roots) (satural		u ace	T
	WET					•					w = 41.4%,			, ,		t
	R					1								ted, plastic) CH		t
	T				+	+						-		ILT (saturated, plant In advancing 3 7/8		t
	R				+	+						U	en hole within th	Ü	o ui-cone	H
	Y				+	+						, ,				ŀ
		6	14.0	16.0	SS	3	3	4	5		Mottled Ora	angish-Gre	ev CL AV: trace S	ILT (saturated, pla	astic)	ŀ
			17.0	10.0	+	Ŭ		- -				-		= 56 % Fines = 1		H
			-		+	1										+
						_										ļ
			1		1	\perp										L
																L
		7	19.0	21.0	SS	1	2	4	4		Grey Simila	ar Soil (sat	urated, plastic)	CH		
																Γ
																T
					1											t
		8	24.0	26.0	SS	2	2	4	4		Mottled Ora	angish-Bro	wnish-Grey CLA	AY; trace SILT (sat	turated,	
_		<u> </u>	1		1	1				I						_
_	99 C-III	Snoor C	ample													_
	NX Rock	Spoon Sa Core								Drille				John Trathen		
			ample (Shelby T undwater	ube)						Insp	ector:	Tom	Hunter (ATL); 1	om Kimmins (Ki	ewit)	

Subsurface Investigation

	Boring I	No.:	K-123.	7			Repo	rt No.:	_		С	Sheet 2 of 2	
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.	c	PTH DF MPLE	SAMPLE		SAMI PEF 2" (DEPTH OF CHANGE	m	classification of Material and - 35-51 some - 20-31 medium course trace - 0-11	REC %
		<u> </u>	110111	10					$^{+}$			plastic) CH	
26 —									\dashv				-
27 —									+				
28 —		9	28.0	30.0	SS	4	5	6 8	_			(3" Brass Lined Split Spoon) Grey CLAY; trace SILT (saturated,	24
29 —									\dashv			plastic) CH	
30 —									\dashv			w = 48.4%, LL = 73, PL = 20, PI = 53 % Fines = 100.0%	
31 —									\dashv				
32 —									\dashv				
33 —									\dashv				
34 —		10	34.0	36.0	SS	2	3	3 5	_			Grey CLAY; trace SILT (saturated, plastic) CH	24
35 —									\dashv				
36 —									\dashv				
37 —									\dashv				
38 —									\dashv				
39 —									\dashv				
40 —		11	40.0	42.0	SS	WH	1/12"	2 4	_			Similar Soil (saturated, plastic) CH w = 37.3%	24
41 —									\dashv	42.0			-
42 —						1			+	.42.0	۱		-
43 —									\dashv			Boring terminated at 42.0 feet.	
44 —									\dashv			Notes:	
45 —									\dashv			Borehole backfilled with cement-bentonite grout.	
46 —									\dashv			2. Soil classifications based on ATL Field Engineer's field	
47 —									\dashv			classifications. 3. Borehole was advanced with ATL's CME 45 Trailer (Rig Unit	
48 —									\dashv			No. CDGV429) drill rig.	
49 —			+			t			\dashv				
50 —	1		1		1	+			\dashv				
51 —						t			\dashv				
52 —			+		+	T			\dashv				
53 —	1				+				\dashv				
54 —			+		+	T			\dashv				
55 —					\vdash	\vdash			\dashv				
56 —	1		†		†				\dashv				
57 —			 		\vdash	T			\dashv				
58 —			†		t	T			\dashv				
59 —					1				\dashv				
60 —	1		+		1				\dashv				
61 —			†		+	T			\dashv				
62 —	+		+		+	+			\dashv				
1													

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2), GPJ ATL4-08.GDT 4/12/22

Subsurface Investigation

										Report No.: CD10279D-01-03-22				
Clien	t: <u>K</u>	iewit Eng	gineering	g (NY) C	Corp.					Boring Loca	tion: See B	oring Location P	lan	
Proje	ct: <u>S</u>	ubsurfac	e Invest	igation										
		hamplain	Hudsor	n Powe	r Exp	ress	, Des	ign P	ackage 2					
	_ <u>v</u>	arious Lo	cations	, New Y	ork/					Start Date:	1/20/2022	Finish Date:	1/20/2022	
Borin	g No.:	K-123.	<u> </u>		She	et _	1	of _	2	Date	Groundwat Time	er Observations Depth	Casing	
	Coord	inates				Sai	mpler	Hamı	mer	1/20/2022	PM	DRY	OPEN	
North	ning <u>761</u>				Wei		•	140	lbs.	1/20/2022	PM	7.3'	9.0'	
Easti	ng <u>1666</u>	<u>853.935</u>			ı	Fall:		30	in.	1/20/2022	PM	*8.9'	9.0'	
				Hamm	er Ty	pe:	Aut	omati	<u>c</u>	1/20/2022	PM	<u>*13.1'</u>	9.0'	
Grou	nd Elev.:	13	5.861	_		Bori	ng Ad	lvance	By:	*May be a	ffected by water	utilized to advan	nce the	
				H\	W <u>(4'</u>	') Cas	sing/3	3 7/8"	Wet Rota	ry borehole.				
METHOD OF	SAMPLE NO.	c	PTH OF IPLE	SAMPLE		SAN PE	WS O IPLEI		DEPTH OF CHANGE	CLASS	IFICATION (OF MATERIA	L and - 35-50%	Recovery
	SAMI			SA T			O.D. IPLEI	R	B문	f - fine m - medium c - coarse			some - 20-35% little - 10-20% trace - 0-10%	Rec
C	1	From 0.0	To 2.0	SS	15	8	2	1	0.2	2" TOPSOIL & ORG	SANIC MATERIAL	-	11ace 1 0-107/	1′
S									2.0	Brownish-Black cmf			BRIS	
	2	2.0	4.0	SS	3	1	1	1	2.0	(cinders); trace SILT				1
N G				 						Orangish-Brown f S	AND; trace SILT	(saturated, non-pla	astic) SP	
	3	4.0	6.0	ss	1	1	2	2		Orangish-Brown cm	f+ SAND; little SI	LT (saturated, non	n-plastic)	7
										SM w = 18.1% % F	Fines = 16.0%		Ī	
	4	6.0	8.0	SS	10	6	2	1		Orangish-Brown cm	f+ SAND; little SI	LT (saturated, non	n-plastic)	6
					1				7.4 8.0	SM	CAND, some one	f ODAV/EL : trace C		
WE	5	8.0	10.0	SS	1	1	2	1		Blackish-Brown cmf (saturated, non-plas				10
R				<u> </u>						Orangish-Greyish-B	rown CLAY; trace	e SILT (saturated,	plastic)	
<u> </u>					_					CH				
A					_					Advanced casing to roller bit wet rotary of	_	-	B" tri-cone	
<u> </u>				<u> </u>	_					ronor bit wot rotally o	por noio maiir a	io poronoio.		
	6	14.0	16.0	SS	\//\	- 1/18"		1		Blackish-Grey CLA	/· little SII T: trace	af SΔND: trace ΩE	RCANIC	17
	- 0	14.0	10.0	33	۷۷۱	1/10		'		MATERIAL (root hai				
+				<u> </u>	1					CH w = 66.5%, LL		, ,	·	
					+								-	
				_	+								-	
	7	19.0	21.0	SS	1	3	4	5		Mottled Orangish-G	revish-Brown CL	ΔV: trace SILT (eat	turated	2:
+	+ '	19.0	21.0	33	Ľ	<u> </u>	-	<u> </u>		plastic) CH	i Cyron PDIOWIT CL	ti, iia∪e ∪iLi (Sal	uraiou,	
					1					-			-	—
- 1				-	+								}	
				1	1]					
-				+	+								Ť	
	8	24.0	26.0	SS	1	3	3	4		Similar Soil (saturate	ad plactic) CL			24

Subsurface Investigation

	Boring I	No.:	K-123.	8			Repo	ort No	D.:		CD10279D-01-03-22 Sheet 2 of 2	_
DEPTH	METHOD OF ADVANCE	SAMPLE NO.		PTH OF MPLE	SAMPLE		SAN PE 2"	WS C IPLE R 6" O.D. IPLE	R	DEPTH OF CHANGE	classification of Material and - 35-50% f - fine m - medium c - course little - 10-20% trace - 0-10%	REC
		<u> </u>	110111	10	1							
26 —					 					1		
7—										1		
8		9	28.0	30.0	SS	4	5	7	8	1	(3" Brass Lined Split Spoon) Similar Soil (saturated, plastic)	24
9 —										1	CH w = 37.2%, LL = 67, PL = 18, PI = 49 % Fines = 100.0%	
						1				1		
_						+				1		
						+				1		
_						\vdash				1		-
_		10	34.0	36.0	SS	1	3	3	5	1	Bluish-Grey CLAY; trace SILT (saturated, plastic) CH	24
·—		10	34.0	30.0	33	'		<u> </u>	<u> </u>	1	Bidistroley CEAT, trace SIET (Saturated, plastic) Off	24
_					<u> </u>	—				1		
_										1		
_										1		
										1		
) —												
_		11	40.0	42.0	SS	1	1	3	3		Similar Soil (saturated, plastic) CH w = 33.5%	24
					\					42.0		
· 											D :	
										1	Boring terminated at 42.0 feet.	
_										1	Notes:	
_										1	Borehole backfilled with cement-bentonite grout.	
_										1	Soil classifications based on ATL Field Engineer's field classifications.	
_										1	3. Borehole was advanced with ATL's CME 45 Trailer (Rig Unit	
_										1	No. CDGV429) drill rig.	
_										1		
										1		
_						\vdash				1		
										1		
						+				1		-
١	-				+	+				+		
5—						+				1		
6 —					-	+				1		
7—						_				-		
-						_				1		
						_				1		
) —										_		
_]		
2 —				I								

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

	Sample			Percent	Moisture	At	terburg Lim	its	Organic	Water- Soluble	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-12	39.0 - 41.0	Black c-m+f SAND; trace SILT; trace f GRAVEL	4.8	17.8											
	S-15	54.0 - 56.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	9.4	27.2	NP	NP	NP								
	S-5	8.0 - 10.0	Brown SILT; and mf- SAND	57.0	24.8	NP	NP	NP		-		-				
	S-9	29.0 - 31.0	Grey mf+ SAND; trace SILT		17.5											
K-122.4	S-13	49.0 - 51.0	Greyish-Black c-mf SAND; little SILT; trace mf GRAVEL	19.0	21.7											
	S-16	58.0 - 60.0	Greyish-Black cm+f SAND; trace SILT	1.7	9.9											
	S-3	4.0 - 6.0	Brown SILT; little mf SAND; trace CLAY		22.3			-		-		-				
	S-4	6.0 - 8.0	Brown f SAND; some SILT		31.3			-								
K-123.2	S-6	10.0 - 12.0	Grey CLAY; little SILT; trace f SAND		28.4	48	20	28								
K-123.2	S-8	19.0 - 21.0	Grey c-m+f SAND; trace SILT	10.0	29.8											
	S-10	28.0 - 30.0	Grey CLAY; little SILT; trace f SAND	97.0	65.5	67	21	46								
	ST-1	30.0 - 32.0	Grey CLAY; little SILT; trace f SAND							1,400	15	8.24	5,418			
	S-3	4.0 - 6.0	Mottled Blackish-Grey CLAY; trace SILT; trace f SAND; trace ORGANIC MATERIAL (roots)		41.4				7.5							
K-123.7	S-6	14.0 - 16.0	Mottled Orangish-Grey CLAY; trace SILT	100.0	25.9	79	23	56								
	S-9	28.0 - 30.0	Grey CLAY; trace SILT	100.0	48.4	73	20	53		-		-				
	S-11	40.0 - 42.0	Grey CLAY; trace SILT		37.3											
	S-3	4.0 - 6.0	Orangish-Brown cmf+ SAND; little SILT	16.0	18.1			-		-		-				
K-123.8	S-6	14.0 - 16.0	Blackish-Grey CLAY; little SILT; trace f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)		66.5	54	23	31	6.9							
	S-9	28.0 - 30.0	Mottled Orangish-Greyish- Brown CLAY; trace SILT	100.0	37.2	67	18	49								
	S-11	40.0 - 42.0	Bluish-Grey CLAY; trace SILT		33.5											
	S-3	4.0 - 6.0	Orangish-Brown SILT; trace f SAND		21.4	NP	NP	NP								
	S-5	8.0 - 10.0	Grey CLAY; trace SILT		27.5			-								
K-125.5	S-6	14.0 - 16.0	Greyish-Black mf+ SAND; trace SILT	7.7				-		-		-				
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		51.5											
	S-9	28.0 - 30.0	Grey CLAY; trace SILT; trace mf SAND	94.0	38.0	70	21	49								

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS **ASTM D 2216**

Page 1 of 2

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22 Report Date:

January 31, 2022

Date Received:

January 25, 2022

TEST DATA

	(ES) D	,	
Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
K-122.35	S-3	4-6	23.5
	S-8	24-26	23.8
	S-12	39-41	17.8
	S-15	54-56	27.2
K-123.2	S-3 ¹	4-6	22.3
	S-4	6-8	31.3
	S-6	10-12	28.4
	S-8	19-21	29.8
	S-10	28-30	65.5
K-123.7	S-3	4-6	41.4
	S-6	14-16	25.9
	S- 9	28-30	48.4
	S-11	40-42	37.3
K-123.8	S-3	4-6	18.1
	S-6	14-16	66.5
	5-9	28-30	37.2
	S-11	40-42	33.5

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

ATL Report No.: CD10279E-01-01-22

Date: January 31, 2022 Page 2 of 2

TEST DATA (continued)

Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
		•	
K-125.5	S-3	4-6	21.4
	S-5	8-10	27.5
	S-7	19-21	51.5
	S-9	28-30	38.0
K-127.0	S-3	4-6	32.8
	S-4	6-8	31.2
	S-6	14-16	22.8
	S-9	30-32	81.7
	S-11	39-41	63.9
K-127.1	S-3	4-6	30.7
	S-7	19-21	71.7
	S-9	30-32	58.0

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:

Date: 01/31/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-01-01-22

Client: Kiewit Intrastructure Co. Date: 01/31/22

Sample No: K-123.8, S-3 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 4-6'

1				G	<u> IRAIN SIZE -</u>	- mm			
-			ravel		% Sand		% Fines		
*	% +3"	Coarse	Fine	Coarse	Medium	Fine	Sitt	Clay	
-	0	0	0)	2	81	16		

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
1/2"	100		
#4	100		}
#10	99	}	
#40	97		
#200	16		
ļ			
1			
		ł	
į			
•			
ŧ	l .	I	

Orangish Brow	Soil Description n cmf+ SAND; little S	SILT					
PL=	Atterberg Limits	Pl≖					
D ₈₅ = 0.2819 D ₃₀ = 0.0951 C _u =	Coefficients D60= 0.1622 D15= Cc=	D ₅₀ = 0.1347 D ₁₀ =					
USCS=	Classification AASHT	0=					
Remarks Moisture Content= 18.1%							

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: _____01/31/22

Figure

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project: Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Test Date:

January 25, 2022

Various Locations, New York

Performed By:

R. Parrow

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initíal Dry Weight (g)	% Finer than #200
K-123.2	S-10	28-30	А	10	107.62	97
K-123.7	S-6	14-16	А	10	78.62	100
K-123.7	S-9	28-30	А	10	120.67	100
K-123.8	5-9	28-30	A	10	219.15	100
K-125.5	S-9	28-30	A	10	219.28	94
K-127.0	S-9	30-32	A	10	119.17	96
K-127.1	S-9	30-32	А	10	124.57	100

Reviewed By: ______

Date: January 31, 2022

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22

Report Date: Date Received: January 31, 2022 January 25, 2022

TEST DATA

TEST DATA										
Boring No.	Sample No.	ĹĽ	PL	Pl						
K-122.35	S-3	NP	NP	NP						
K-122.35	S-15	NP	NP	NP						
K-123.2	S-6	48	20	28						
K-123.2	S-10	67	21	46						
K-123.7	S-6	79	23	56						
K-123.7	S-9	73	20	53						
K-123.8	S-6	54	23	31						
K-123.8	59	67	18	49						
K-125.5	S-3	NP	NP	NP						
K-125.5	S-9	70	21	49						
K-127.0	5-4	51	22	29						
K-127.0	S-9	72	20	52						
K-127.1	S-3	34	22	12						
K-127.1	S-9	68	19	49						

SAMPLE INFORMATION

			ILL HILOMESTION	
		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Sìze	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-122.35	S-3	2	5	23.5
K-122.35	S-15	4.76	52	27.2
K-123.2	S-6	2	1	28.4
K-123.2	S-10	6.35	1	65.5
K-123.7	S-6	0.297	0	25.9
K-123.7	S-9	0.297	0	48.4
K-123.8	S-6	2	7	66.5
K-123.8	S-9	0.297	0	37.2
K-125.5	S-3	2	5	21.4
K-125.5	S-9	9.51	2	38.0
K-127.0	S-4	2	2	31.2
K-127.0	S-9	9.51	2	81.7
K-127.1	S-3	6.35	24	30.7
K-127.1	S-9	2	1	58.0

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.

CD10279E-01-01-22

Date:

January 31, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-122.35	S-3	Air Dry	Pulverizing and Screening
K-122.35	S-15	Air Dry	Pulverizing and Screening
K-123.2	S-6	Air Dry	Pulverizing and Screening
K-123.2	S-10	Air Dry	Pulverizing and Screening
K-123.7	S-6	Air Dry	Not Necessary
K-123.7	S-9	Air Dry	Not Necessary
K-123.8	S-6	Air Dry	Pulverizing and Screening
K-123.8	S-9	Air Dry	Not Necessary
K-125.5	S-3	Air Dry	Pulverizing and Screening
K-125.5	S-9	Air Dry	Pulverizing and Screening
K-127.0	S-4	Air Dry	Pulverizing and Screening
K-127.0	S-9	Air Dry	Pulverizing and Screening
K-127.1	S-3	Air Dry	Pulverizing and Screening
K-127.1	S-9	Air Dry	Pulverizing and Screening

	EQUIPMENT IN	FORMATION		
Liquid Limit Procedure: Multipoint	- Method A	Х	Single Point - Method B	
Liquid Limit Apparatus:	Manual	X	Motor Driven	
Liquid Limit Grooving Tool Material:	Plastic	X	Metal	
Liquid Limit Grooving Tool Shape:	Flat	X	Curved (AASHTO Only)	
Plastic Limit:	Hand Rolled	Х	Mechanical Rolling Device	

Reviewed By:	Date:	01/31/22	
	and a lateral latera and a share lateral late	1-1-4-1-1	

WBE certified company

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project:

Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Date Received:

January 25, 2022

Various Locations, New York

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT ASTM D 2974

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-122.35	S-4	4.5	95.5	22.8	А	440
K-123.7	S-3	7.5	92.5	41.4	Α	440
K-123.8	S-6	6.9	93.1	66.5	Α	440
K-127.1	S-3	4.5	95.5	30.7	А	440

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 15 - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 15 is STA 20418+00 (43.380563° N, 73.489523° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and the recent investigation by Atlantic Testing Laboratories, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 14B Borings WFE-12, K-125.5, K-125.6 Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

Champlain Hudson Power Express Project

Champlain Hudson Power Express Inc.

BORING LOCATION PLAN
Whitehall to Fort Edward
Figure A-3

Sheet 11 of 16

Prepared by: **AECOM**

5/19/2021

	BORING CO	NTRACTOR:												SHEET 1 OF 1
ADT							A = CO 1 1							PROJECT NAME: CHPE -
	DRILLER:				AECOM									PROJECT NO.: 60323056
	Chris Chaillou	ı											HOLE NO.: WFE-12	
	SOILS ENGI	NEER/GEOLOGIST:												START DATE: 1/7/21
	Chris French							BORIN	G LOG					FINISH DATE: 1/7/21
	LOCATION:	MP - 125.6 (CP Rai	l)											OFFSET: N/A
GRO	UND WATER	OBSERVATIONS				CAS	SING	SAM	PLER	DRIL	L BIT	CORE	BARREL	DRILL RIG: Geoprobe 7822DT
	Water at 11' ((inferred)		TYPE		Flush J	oint Steel		ornia dified		one er Bit			BORING TYPE: SPT
	,	,		SIZE I.D).		4"		.5"					BORING O.D.: 4.5"
				SIZE O.	D.	4	.5"	3	3"	3	7/8"			SURFACE ELEV.:
				HAMME	R WT.	140	0 lbs	140) lbs					LONGITUDE:
D	CORING	SAMPLE		HAMME		3	80"	3	0"		T			LATITUDE:
E P	RATE MIN/FT	DEPTHS FROM - TO	TYPE AND	PEN. in	REC.	BI OW	'S PER 6 i	n ON SA	MPI FR	N Corr. ⁽²⁾	USCS CLASS.	STRAT. CHNG.		FIELD IDENTIFICATION OF SOILS
т	IVIII V/I	(FEET)	NO.	"'	""		QUALITY			COII.	CLASS.	DEPTH		FIELD IDENTIFICATION OF SOILS
Н														
1.0		0'-5'					Hand (Cleared		=			0'-0.5'; I silt; loos	Brown fine-coarse SAND, some angular gravel, little se, moist
1.0											SW		0.5'-5.0'	; Brown fine-medium SAND, little coarse sand, trace
2.0													silt	
										=		SAND		
3.0		3'-5'	S-1									S	TR-1; (3	3.0'-5.0')
4.0		0 0	0.											
5.0		5'-7'	S-2	24"	8"	4	4	5	7	6	ML		Brown o	elayey SILT; medium stiff, moist
6.0		3-1	0-2	24	0	_	-	3	,		IVIL			
7.0		7'-9'	S-3	24"	24"	8	9	10	8	7	ML/SM	SILT	Brown a	and Gray SILT, little clay, little fine sand; stiff, moist
8.0		7-9	3-3	24	24	0	9	10	0	,	IVIL/SIVI		J. 0	and oray orall, made day, made and darra, early, model
												CLAYEY	TR-2; (8	3.0'-8.5')
9.0													SAA	
10.0		9'-11'	S-4	24"	24"	10	9	10	23	12	ML/SM		OAA	
11.0								_			SP/SM			.0'; Brown fine SAND, little silt, medium dense; moist nedium SAND, little fine sand, trace silt; loose,
12.0		11'-13'	S-5	24"	16"	11	9	7	7	10	SP		saturate	
													TR-3; (1	2.0'-12.5')
13.0													SAA	
14.0		13'-15'	S-6	24"	18"	6	7	7	8	9	SP	SAND	SAA	
14.0										-		8/		
15.0														E CAMP EN 5
16.0		15'-17'	S-7	24"	18"	3	8	8	10	10	SP		saturate	edium SAND, little fine sand, trace silt; very loose, id
10.0													TR-4; (1	6.0'-16.5')
17.0														
40.0													WFE-12	2 terminated at 17' then grouted to surface.
18.0														
19.0														
20.0														
20.0	NOTES:												The info	rmation contained on this log is not warranted
	(1) Thick-wall ri	ng lined drive sampler (T samples.	Rings dime	ensions = 2	-1/2" O.D. I	by 2-7/16" I	.D. by 6" le	ngth.		the actual subsurface condition. The contractor
	(2) Correction fa	actor: Ncorr=N*(2.0 ² -1.3	375²)in./(3.	0 ² -2.4 ²)in. =	= N*0.65.								-	that he will make no claims against AECOM
														ds that the actual conditions do not conform indicated by this log.
	Soil description	on represents a field	identifica	ition after	D.M. Bur	mister un	less other	wise note	d.					
	LE TYPE:			T SPOON	I		BY TUBE		R=ROCk					
PKOP	ORTIONS:		TRACE=	-1-10%		LITTLE=	:10-20%		SOME=2	20-35%		AND=3	5-50%	

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH	IDENTIFICATION TESTS							REMARKS	
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT	
							(1)	NO. 200	2 μm	(burnoff)	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)	
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39		
WFE-1A	S-5	11-13	43.0	68	23	45	CH	99.8	84		
WFE-1C	S-3	7-9	44.5				CH	99.3	86		
WFE-1C	S-7	15-17	44.5	78	27	51	CH	100	94		
WFE-1C	S-10	30-32	45.7	61	23	38	CH	100	87		
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3		
WFE-2	S-7	15-17	26.0				SC	28.5	13		
WFE-2	S-9	25-27	66.0	71	26	45	CH	100	90		
WFE-4	S-2	5-7	18.0				SC	34	13		
WFE-4	S-4	9-11	18.3				SM	17	5		
WFE-5	S-2	5-7	19.9				SM	19	3		
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28		
WFE-6A	S-2	5-7	13.6				SP-SC	9	3		
WFE-6A	S-4	9-11	17.4				SP-SM	7	2		
WFE-8	S-3	6-8	24.9				SC	48.5	12		
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43		
WFE-10	S-2	5-7	38.0	71	24	47	CH	94	76		
WFE-10	S-4	9-11	22.5				CL	83.9	32		
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35		
WFE-12	S-4	9-11	28.3				CL	95.8	37		
WFE-14	S-3	7-9	25.7				CL	75.7	44		
WFE-14	S-5	13-15	22.5				ML	53.9	17		
WFE-16	S-3	7-9	36.7	75	25	50	CH	100	90		
WFE-16	S-9	25-27	37.1	73	24	49	CH	100	80		
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1	
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26		
WFE-18	S-10	30-32	64.3	56	21	35	CH	100	87		
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29		
WFE-18A	S-7	15-17	18.9				SM	14.3	1		
WFE-18A	S-10	30-32	62.9	62	22	40	CH	99	86		
WFE-19A	S-3	7-9	38.1				SP-SM	8	3		
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2		
WFE-19A	S-10	30-32	17.6				SW-SM	8	1		
							1.0:				

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 4/30/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21003 File: Indx1.xlsx Page 1 of 1

Boring Location Plans Page 7 of 12	Drawn by ADW		Scale: Not to scale		oject No.: CD10279	Date: March 2022	
Champlain Hudson Power Express	Albany, NY	Binghamto			PRATORIES, Lir Elmira, NY	nited Plattsburgh, NY	
Design Package 2 Whitehall to Glens Falls, New York	Poughkeepsie, NY	NY Syracuse,		,	Utica, NY	Watertown, NY	

Subsurface Investigation

													Report No.:		CD10279D-01-	03-22	_
		Client:	_K	iewit Enç	gineering	g (NY) C	Corp.						Boring Locati	on: See B	oring Location P	lan	
		Project:	_s	ubsurfac	e Invest	igation						-					
			_ <u>c</u>	hamplair	<u>Hudsor</u>	n Powe	r Exp	ress	, Des	ign P	ackage 2	?					
				arious Lo	ocations	, New Y	ork/						Start Date:	1/21/2022	Finish Date:	1/21/2022	
		Boring N	vlo :	K-125.	E		Sho	ot	4	of	2			Groundwate	er Observations		
		Boiling i	NO	K-125.	<u>. </u>		SHE	eı _		- 01 -			Date	Time	Depth	Casing	
			Coordi	nates				Sa	mpler	Ham	mer		1/21/2022	AM	DRY	<u>OPEN</u>	
		Northing	<u>7607</u>	<u>54.315</u>			Wei	ght:		140	lbs.		1/21/2022	AM	<u>*13.3'</u>	9.0'	
		Easting	16582	<u>219.899</u>				Fall:		30	in.		1/21/2022	PM	<u>*17.8'</u>	9.0'	•
						Hamm	ner Ty	pe:	Aut	omati	<u>c</u>						-
		Ground	Elev.:	13	7.002	_		Bori	ng Ac	dvance	e By:		*May be aff	ected by water	utilized to advar	nce the	-
						H	W <u>(4"</u>	') Ca	sing/	3 7/8"	Wet Rot	ary	borehole.				•
F		_				1	1				1		01.4001	TIO ATION 6	E MATERIA		
1 :	I	METHOD OF ADVANCE	SAMPLE NO.		PTH	Щ			WS C		ይ ሥ		CLASSII	FICATION C	F MATERIA	L	S (2
	DEPTH	HOL	PLE)F 1PLE	SAMPLE		PE	R 6"		T A					and - 35-50%	Recovery (Inches)
'		MET AD	NA.			\ & L			O.D. IPLE		DEPTH OF CHANGE	f - fine m - medium				some - 20-35% little - 10-20%	\$ E
			0,	From	То	<u> </u>						c - coarse				trace - 0-10%	
	1 —	C	1	0.0	2.0	SS	17	4	4	3	0.2			ANIC MATERIAL			9
	· 2 —	S				<u>'</u>							h-Black cmf S <i>l</i> ı, non-plastic)		RIS (cinders); trac	ce SILT	
7/7	- -	l N	2	2.0	4.0	SS	4	7	7	6		١ ١	, ,		rs); trace m GRA\	√EL; trace	8
<u> </u>	1 —	G				<u> </u>					4.0	SILT (wet, non-plastic	c) SW FILL	· 		
98.6	· 		3	4.0	6.0	SS	5	4	4	4					saturated, non-pla	astic)	10
<u>-</u>	; —					'					6.0	ML w	= 21.4%, LL =	NP, PL = NP, P	= NP		
7	7 —		4	6.0	8.0	SS	3	2	4	4		NO RE	ECOVERY				0
). (7	3 —					'					8.0						
₹ S			5	8.0	10.0	SS	1	2	2	2		Grey C	CLAY; trace SIL	T (wet, plastic)	CH w = 27.5%		16
₹	9 —	WET R				<u> </u>											
10		0									11.0						
≧ 11		T A											•••••	•••••			
12 20 12		R Y											•	•	n advancing 3 7/8	8" tri-cone	
							Ι					roller b	oit wet rotary op	en hole within th	e borehole.		
14 14			6	14.0	16.0	SS	4	9	14	12	1				(saturated, non-p	lastic)	12
15							\				1	SP-SM	1 % Fines = 7.	7%			
16											17.0						
17											1		•••••	***************************************	••••••	•••••	
75 18 ≸											1						
19			7	19.0	21.0	ss	WF	R W	/H/18	3"	1	Grey C	CLAY; trace SIL	.T (saturated, pla	stic) CH w = 51.	.5%	24
20 <u> </u>											1						
2	1 —						1				†						
22	2—						1				1						
23 #	3—					t	+				†						
24	1 —		8	24.0	26.0	SS	WF	R/12"	WI	H/12"	†	Simila	r Soil (saturate	d, plastic) CH			20

Split Spoon Sample Rock Core Undisturbed Sample (Shelby Tube) Estimated Groundwater

Drillers:

Mark Childs; John Trathen

Inspector:

Tom Hunter (ATL); Tom Kimmins (Kiewit)

Subsurface Investigation

DEPIH	ADVANO ADVANO SAMPLE SAMPLE SA		BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	### CLASSIFICATION OF MATERIAL and - 35-50% f - fine			
			From	То	1		<u> </u>	c - course trace - 0-10%
6 — 7 — 8 — 9 — 0 — 1 — 2 — 3 — 3 — 9		9	28.0	30.0	SS	1 1 2 2	-	(3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trace mf SAND (saturated, plastic) CH w = 38.0%, LL = 70, PL = 21, PI = 49 % Fines = 94.0%
; — ; — ; — ; — ; — ; — ; — ; — ; — ; —		10	34.0	36.0	SS	WR WH/18"	37.0	Grey CLAY; trace SILT (saturated, plastic) CH
		11	39.0	41.0	SS	WH/24"	41.0	Orangish-Brown SILT; trace f SAND; trace ORGANIC MATERIAL (roots) (saturated, non-plastic) ML Boring terminated at 41.0 feet.
							-	Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classifications. 3. Borehole was advanced with ATL's CME 45 Trailer (Rig Unit No. CDGV429) drill rig.

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	K	Ciewit Eng	ineering	g (NY) C	orp.					Boring Location: See Boring Location Plan							
	Project:	_ <u>s</u>	Subsurface	e Invest	igation													
			Champlain	Hudson	n Powei	r Exp	ress	, Des	ign P	ackage 2								
			/arious Lo	cations	, New Y	ork					Start Date: <u>1/24/2022</u> Finish Date: <u>1/25/2022</u>							
	D N		I/ 40E (01	-4	_	ء.	•	Groundwater Observations							
	Boring N	iO	K-125.6	<u> </u>		SHE	eı _		. ^{OI} -		Date Time Depth Casing							
		Coord	linates				Sar	npler	Hamı	mer	<u>1/25/2022</u> PM *7.9' 10.0'							
	Northing	7607	776.207			Wei	ght:	1	40	lbs.								
	Easting	1657	<u>7836.86</u>			F	Fall:		30	in.								
					Hamm	er Ty	pe:	Auto	omati	ic_								
	Ground I	Elev.:	136	5.928	_		Borir	ng Ad	vance	e By:	*May be affected by water utilized to advance the							
					HV	<u>N (4"</u>) Cas	sing/3	3 7/8"	Wet Rota	ry <u>borehole.</u>							
				CLASSIFICATION OF MATERIAL														
DEPTH	H	₽L	SAM		₽₽₽			R 6" O.D.		HAN	and - 35-50%							
٦	A A	SAI			Ŋ			PLE	₹	밀	f - fine some - 20-35% m - medium little - 10-20%							
			From	То	00	7					c - coarse trace - 0-10%							
1 —	C	1	0.0	2.0	SS	7	8	4	9		Whitish-Grey cmf SAND; trace f GRAVEL; trace SILT (moist, non-plastic) SW FILL							
<u>-</u>	S			4.0	00													
	N	2	2.0	4.0	SS	5	8	8	9		Brownish-Black mf SAND; trace SILT (moist, non-plastic) SP FILL							
	G				\	_				4.0								
5—		3	4.0	6.0	SS	6	8	8	5]	Brown mf+ SAND; and SILT (moist, non-plastic) SM w = 17.8% % Fines = 48.0%							
, 					<u> </u>					6.0								
		4	6.0	8.0	SS	9	6	5	4		Greyish-Brown f SAND; little SILT; little CLAY (wet, slightly plastic) SM-SC							
					<u> </u>					8.0								
, -		5	8.0	10.0	SS	5	5	6	9		Brownish-Grey CLAY; trace mf SAND; trace SILT (moist, plastic) CL w = 24.7%, LL = 50, PL = 22, PI = 28							
	\\\				<u> </u>	\]	OL W - 27.1 /0, LL - 50, FL - 22, FT - 20							
í —	WET R									11.0								
· 	O T																	
3—	Å					_]	Advanced casing to 10.0 feet and began advancing 3 7/8" tri-cone roller bit wet rotary open hole within the borehole.							
-	R Y										, .							
		6	14.0	16.0	SS	8	7	6	8		Grey mf SAND; trace SILT (wet, non-plastic) SP							
<u>.</u>					\													
										17.0								
		7	19.0	21.0	SS	WH	1/24"]	Grey CLAY; little SILT; trace mf SAND (wet, plastic) CH							
											w = 49.2%							
										1								
										1	Ţ							
										1	Ţ							
		8	24.0	26.0	SS	WH	1/24"			1	Grey CLAY; little SILT (saturated, plastic) CH							
			1			•					1							
	SS Split S	Spoon Sar	mple								Orillers: Jeffrey Donovan; John Trathen							
	NX Rock	Core	' Imple (Shelby Tu	ihe)							nspector: James LaMarco (ATL)							

Subsurface Investigation

	Boring	No.: _	K-125.	6		Report No.:		CD10279D-01-03-22	Sheet <u>2</u> of <u>2</u>	_
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	c	PTH DF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	f - fine m - medium c - course	OF MATERIAL and - 35-50% some - 20-35% little - 10-20% trace - 0-10%	RECOVERY (inches)
26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 -		ST-1	28.0	30.0	SS	WH/24" WH/24"		(3" Brass Lined Split Spoon) Similar CH w = 49.4%, LL = 60, PL = 20, P		24
36 - 37 - 38 - 39 - 40 - 41 -		10	38.0	40.0	SS	WH/24"	40.0	Similar Soil (saturated, plastic) CH Boring terminated at 40.0 feet.		24
43 - 44 - 45 - 46 - 47 - 48 -								Notes: 1. Borehole backfilled with cement-b 2. Soil classifications based on ATL classifications. 3. Borehole was advanced with ATL Unit No. CDGV706) drill rig.	Field Engineer's field	
49 - 50 - 51 - 52 - 53 - 54 -										
55 - 56 - 57 - 58 - 59 - 60 -										
61 -										

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	its	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-12	39.0 - 41.0	Black c-m+f SAND; trace SILT; trace f GRAVEL	4.8	17.8											
	S-15	54.0 - 56.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	9.4	27.2	NP	NP	NP								
	S-5	8.0 - 10.0	Brown SILT; and mf- SAND	57.0	24.8	NP	NP	NP		-		-				
	S-9	29.0 - 31.0	Grey mf+ SAND; trace SILT		17.5											
K-122.4	S-13	49.0 - 51.0	Greyish-Black c-mf SAND; little SILT; trace mf GRAVEL	19.0	21.7											
	S-16	58.0 - 60.0	Greyish-Black cm+f SAND; trace SILT	1.7	9.9											
	S-3	4.0 - 6.0	Brown SILT; little mf SAND; trace CLAY		22.3			-		-		-				
	S-4	6.0 - 8.0	Brown f SAND; some SILT		31.3			-								
V 122.2	S-6	10.0 - 12.0	Grey CLAY; little SILT; trace f SAND		28.4	48	20	28								
K-123.2	S-8	19.0 - 21.0	Grey c-m+f SAND; trace SILT	10.0	29.8											
	S-10	28.0 - 30.0	Grey CLAY; little SILT; trace f SAND	97.0	65.5	67	21	46								
	ST-1	30.0 - 32.0	Grey CLAY; little SILT; trace f SAND							1,400	15	8.24	5,418			
	S-3	4.0 - 6.0	Mottled Blackish-Grey CLAY; trace SILT; trace f SAND; trace ORGANIC MATERIAL (roots)		41.4				7.5							
K-123.7	S-6	14.0 - 16.0	Mottled Orangish-Grey CLAY; trace SILT	100.0	25.9	79	23	56								
	S-9	28.0 - 30.0	Grey CLAY; trace SILT	100.0	48.4	73	20	53		-		-				
	S-11	40.0 - 42.0	Grey CLAY; trace SILT		37.3											
	S-3	4.0 - 6.0	Orangish-Brown cmf+ SAND; little SILT	16.0	18.1			-		-		-				
K-123.8	S-6	14.0 - 16.0	Blackish-Grey CLAY; little SILT; trace f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)		66.5	54	23	31	6.9							
	S-9	28.0 - 30.0	Mottled Orangish-Greyish- Brown CLAY; trace SILT	100.0	37.2	67	18	49								
	S-11	40.0 - 42.0	Bluish-Grey CLAY; trace SILT		33.5											
	S-3	4.0 - 6.0	Orangish-Brown SILT; trace f SAND		21.4	NP	NP	NP								
	S-5	8.0 - 10.0	Grey CLAY; trace SILT		27.5			-								
K-125.5	S-6	14.0 - 16.0	Greyish-Black mf+ SAND; trace SILT	7.7				-		-		-				
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		51.5											
	S-9	28.0 - 30.0	Grey CLAY; trace SILT; trace mf SAND	94.0	38.0	70	21	49								

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-3	4.0 - 6.0	Brown mf+ SAND; and SILT	48.0	17.8											
K-125.6	S-5	8.0 - 10.0	Brownish-Grey CLAY; trace mf SAND; trace SILT		24.7	50	22	28								
K-125.0	S-7	19.0 - 21.0	Grey CLAY; little SILT; trace mf SAND		49.2											
	ST-1	28.0 - 30.0	Grey CLAY; little SILT	100.0	49.4	60	20	40								
	S-3	4.0 - 6.0	Brown CLAY; and SILT; trace f SAND		32.8											
	S-4	6.0 - 8.0	Brown CLAY; and SILT; trace f SAND		31.3	51	22	29								
K-127.0	S-6	14.0 - 16.0	Brown mf+ SAND; some SILT	25.0	22.8											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT; trace mf SAND	96.0	81.7	72	20	52								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT; trace mf SAND							7,100	35	8.75	1,548			
	S-11	39.0 - 41.0	Grey CLAY; trace SILT; trace mf SAND		63.9											
K-127.1	S-3	4.0 - 6.0	Blackish-Brown SILT; some CLAY; some mf SAND; trace DEBRIS (cinders); trace ORGANIC MATERIAL (root hairs)		30.7	34	22	12	4.5							
1 22712	S-6	14.0 - 16.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	4.4												
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		71.7											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT	100.0	58.0	68	19	49								
	S-3	4.0 - 6.0	Brownish-Grey CLAY; little SILT; trace f SAND							300	65	7.93	1,170			
	S-4	6.0 - 8.0	Brownish-Grey CLAY; little SILT; trace f SAND	95.0	30.0	70	25	45								
K-127.9	S-6	14.0 - 16.0	Greyish-Brown CLAY; trace f SAND; trace SILT		32.4											
	S-8	24.0 - 26.0	Greyish-Brown CLAY; trace SILT		28.8											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	30.0	30	17	13								
	S-5	8.0 - 10.0	Brownish-Grey CLAY; some mf SAND; trace SILT		28.0											
K-128.0	S-7	19.0 - 21.0	Grey CLAY; trace SILT	100.0	39.2	78	23	55								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		30.3											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	51.2	43	18	25								
	S-5	8.0 - 10.0	Brown SILT; some mf SAND; little ORGANIC MATERIAL (root hairs)	24.0	134.2	NP	NP	NP	16.8							
K-129.9A	S-8	24.0 - 26.0	Grey c-mf+ SAND; little SILT	20.0	31.1											
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		52.6											
	ST-1	41.0 - 43.0	Grey CLAY; trace SILT	100.0	40.5	44	20	24								

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS **ASTM D 2216**

Page 1 of 2

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22 Report Date:

January 31, 2022

Date Received:

January 25, 2022

TEST DATA

	(ES) D	,	
Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
K-122.35	S-3	4-6	23.5
	S-8	24-26	23.8
	S-12	39-41	17.8
	S-15	54-56	27.2
K-123.2	S-3 ¹	4-6	22.3
	S-4	6-8	31.3
	S-6	10-12	28.4
	S-8	19-21	29.8
	S-10	28-30	65.5
K-123.7	S-3	4-6	41.4
	S-6	14-16	25.9
	S- 9	28-30	48.4
	S-11	40-42	37.3
K-123.8	S-3	4-6	18.1
	S-6	14-16	66.5
	5-9	28-30	37.2
	S-11	40-42	33.5

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

ATL Report No.: CD10279E-01-01-22

Date: January 31, 2022 Page 2 of 2

TEST DATA (continued)

Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
		•	
K-125.5	S-3	4-6	21.4
	S-5	8-10	27.5
	S-7	19-21	51.5
	S-9	28-30	38.0
K-127.0	S-3	4-6	32.8
	S-4	6-8	31.2
	S-6	14-16	22.8
	S-9	30-32	81.7
	S-11	39-41	63.9
K-127.1	S-3	4-6	30.7
	S-7	19-21	71.7
	S-9	30-32	58.0

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:

Date: 01/31/22

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS **ASTM D 2216**

PROJECT INFORMATION

Page 1 of 2

Client: Kiewit Intrastructure Co.

ATL Report No.: CD10279E-02-02-22

Project: Champlain Hudson Power Express Report Date:

February 7, 2022

United Cable Installation

Date Received:

February 1, 2022

Various Locations, New York

TEST DATA

	IESI DA		
Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
K-117.6-1.6A	S-3	6-8	6.8
	S-6 ¹	19-21	25.3
	S-8	28-30	33.3
K-122.4	S-5	8-10	24.8
	S-9 ¹	29-31	17.5
	S-13 ¹	49-51	21.7
	S-16	58-60	9.9
K-125.6	S-3	4-6	17.8
	S-5	8-10	24.7
	S-7	19-21	49.2
	ST-1	28-30	49.4
K-127.9	S-4	6-8	30.0
	S-6	14-16	32.4
	S-8	24-26	28.8
	ST-1	38-40	. 30.0
K-128.0	S-5	8-10	28.0
	S-7	19-21	39.2
	5-9	29-31	30.3
	ST-1	38-40	51.2

Client: Kiewit Intrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.: CD10279E-02-02-22

Date: February 7, 2022

Page 2 of 2

TEST DATA (continued)

Boring No.	Sample No.	Depth (ft)	Moisture Content (%)
K-129.9A	S-5	8-10	134.2
	S-8	24-26	31.1
	S-10	34-36	52.6
	ST-1	41-43	40.5
K-129.9B	S-6	14-16	88.0
	S-8	24-26	18.3
	ST-1	27-29	51.2
	S-10	34-36	50.8

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-01-01-22

Client: Kiewit Intrastructure Co. Date: 01/31/22

Sample No: K-125.5, S-6 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 14-16'

GRAIN SIZE - mm. % Fines % Gravel % Sand % +3" Silt Clay Coarse Coarse Medium Fine Fine 27 65 8 0 0 0

	SIEVE	PERCENT	SPEC.*	OUT OF
	SIZE	FINER	PERCENT	SPEC. (X)
	#4	100		
	#10	100		
	#40	73		
	#200	7.7		
	[
į	•			
i				
i				
į				
į				

	Soil Description	p
Greyish Black r	nf+ SAND; trace SIL1	
	Atterberg Limits	
PL=	LL=	PI=
	Coefficients	
D ₈₅ = 0.6869	$D_{60} = 0.2840$	$D_{50} = 0.2147$
$D_{30} = 0.1286$ $C_{0} = 3.58$	$D_{15} = 0.0894$ $C_{c} = 0.73$	$D_{10} = 0.0793$
Cu- 3.36	•	
11000	Classification AASHT	`
USCS≔	AASHIK)
	Remarks	

* (no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Date: _____01/31/22

Figure

Reviewed by:

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-02-02-22

Client: Kiewit Intrastructure Co. Date: 02/07/22

Sample No: K-125.6, S-3 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 4-6'

GRAIN SIZE - mm. % Fines % Gravel % Sand % Cobbles Coarse Coarse Medium Fine Silt Fine Clay () () 0 51 48

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#4	100		
#10	100		
#40	99		<u> </u>
#200	48		
			[

E .	4	:	i

	Soil Description	
Brown mf+ SAN	ID; and SILT	
	Atterberg Limits	
PL=	LL=	Pl=
	Coefficients	
D ₈₅ = 0.2168	D ₆₀ = 0.1026	D ₅₀ = 0.0785
D30= Cu=	D ₁₅ = C _c =	D ₁₀ =
	Classification	
USCS=	AASHT	·O=
	Remarks	
Moisture Confer	t= 17.8%	

·		

* (no specification provided) Figure
ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: 02/07/22

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project: Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Test Date:

January 25, 2022

Various Locations, New York

Performed By:

R. Parrow

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initíal Dry Weight (g)	% Finer than #200
K-123.2	S-10	28-30	А	10	107.62	97
K-123.7	S-6	14-16	А	10	78.62	100
K-123.7	S-9	28-30	А	10	120.67	100
K-123.8	5-9	28-30	A	10	219.15	100
K-125.5	S-9	28-30	A	10	219.28	94
K-127.0	S-9	30-32	A	10	119.17	96
K-127.1	S-9	30-32	А	10	124.57	100

Reviewed By: ______

Date: January 31, 2022

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-02-02-22

Report Date: Test Date:

February 7, 2022 February 3, 2022

Performed By:

M. White

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-117.6-1.6A	S-8	28-30	Α	10	672.08	70
K-122.4	\$-5	8-10	А	10	339.75	57
K-125.6	ST-1	28-30	А	10	257.41	100
K-127.9	S-4	6-8	А	10	164.08	95
K-127.9	ST-1	38-40	А	10	392.67	100
K-128.0	S-7	19-21	Α	10	163.31	100
K-128.0	ST-1	38-40	Α	10	216.36	100
K-129.9A	S-5	8-10	А	10	136.68	24
K-129.9A	\$T-1	41-43	А	10	240.79	100
K-129.98	ST-1	27-29	Α	10	186.13	100

Reviewed By:

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22

Report Date: Date Received: January 31, 2022 January 25, 2022

TEST DATA

TEST DATA					
Boring No.	Sample No.	ĹĽ	PL	Pl	
K-122.35	S-3	NP	NP	NP	
K-122.35	S-15	NP	NP	NP	
K-123.2	S-6	48	20	28	
K-123.2	S-10	67	21	46	
K-123.7	S-6	79	23	56	
K-123.7	S-9	73	20	53	
K-123.8	S-6	54	23	31	
K-123.8	59	67	18	49	
K-125.5	S-3	NP	NP	NP	
K-125.5	S-9	70	21	49	
K-127.0	5-4	51	22	29	
K-127.0	S-9	72	20	52	
K-127.1	S-3	34	22	12	
K-127.1	S-9	68	19	49	

SAMPLE INFORMATION

JAN L WOMENION						
		Maximum	Estimated Amount of Sample	As Received Moisture		
		Grain Sìze	Retained on No. 40 Sieve	Content		
Boring No.	Sample No.	(mm)	(%)	(%)		
K-122.35	S-3	2	5	23.5		
K-122.35	S-15	4.76	52	27.2		
K-123.2	S-6	2	1	28.4		
K-123.2	S-10	6.35	1	65.5		
K-123.7	S-6	0.297	0	25.9		
K-123.7	S-9	0.297	0	48.4		
K-123.8	S-6	2	7	66.5		
K-123.8	S-9	0.297	0	37.2		
K-125.5	S-3	2	5	21.4		
K-125.5	S-9	9.51	2	38.0		
K-127.0	S-4	2	2	31.2		
K-127.0	S-9	9.51	2	81.7		
K-127.1	S-3	6.35	24	30.7		
K-127.1	S-9	2	1	58.0		

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.

CD10279E-01-01-22

Date:

January 31, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-122.35	S-3	Air Dry	Pulverizing and Screening
K-122.35	S-15	Air Dry	Pulverizing and Screening
K-123.2	S-6	Air Dry	Pulverizing and Screening
K-123.2	S-10	Air Dry	Pulverizing and Screening
K-123.7	S-6	Air Dry	Not Necessary
K-123.7	S-9	Air Dry	Not Necessary
K-123.8	S-6	Air Dry	Pulverizing and Screening
K-123.8	S-9	Air Dry	Not Necessary
K-125.5	S-3	Air Dry	Pulverizing and Screening
K-125.5	S-9	Air Dry	Pulverizing and Screening
K-127.0	S-4	Air Dry	Pulverizing and Screening
K-127.0	S-9	Air Dry	Pulverizing and Screening
K-127.1	S-3	Air Dry	Pulverizing and Screening
K-127.1	S-9	Air Dry	Pulverizing and Screening

	EQUIPMENT IN	FORMATION		
Liquid Limit Procedure: Multipoint	- Method A	Х	Single Point - Method B	
Liquid Limit Apparatus:	Manual	X	Motor Driven	
Liquid Limit Grooving Tool Material:	Plastic	X	Metal	
Liquid Limit Grooving Tool Shape:	Flat	X	Curved (AASHTO Only)	
Plastic Limit:	Hand Rolled	Х	Mechanical Rolling Device	

Reviewed By:	Date:	01/31/22	
	and a lateral latera and a share lateral late	1-1-4-1-1	

Page 1 of 2

WBE certified company

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-02-02-22

Report Date:

February 7, 2022

Date Received:

February 1, 2022

TEST DATA

, 201 51111				
Boring No.	Sample No.	LL	PL	PI
K-117.6-1.6A	S-6	46	20	26
K-117.6-1.6A	S-8	47	19	28
K-122.4	S-5	NP	NP	NP
K-125.6	S-5	50	22	28
K-125.6	\$T-1	60	20	40
K-127.9	S-4	70	25	45
K-127.9	ST-1	30	17	13
K-128.0	S-7	78	23	55
K-128.0	ST-1	43	18	25
K-129,9A	S-5	NP	NP	NP
K-129.9A	ST-1	44	20	24
K-129.9B	S-6	96	49	47
K-129.98	ST-1	55	20	35

SAMPLE INFORMATION

		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-117.6-1.6A	S-6	4.76	19	25.3
K-117.6-1.6A	S-8	6.35	28	33.3
K-122.4	5-5	2	5	24.8
K-125.6	S-5	0.42	2	24.7
K-125.6	ST-1	0.177	0	49.4
K-127.9	S-4	2	13	30.0
K-127.9	\$T-1	0.177	0	30.0
K-128.0	S-7	0.149	0	39.2
K-128.0	ST-1	0.177	0	51.2
K-129.9A	S-5	2	25	134.2
K-129.9A	ST-1	0.177	0	40.5
K-129.98	S-6	0.841	9	88.0
K-129.98	ST-1	0.177	0	51.2

Client: Project: Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-02-02-22

February 7, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-1.6A	S- 6	Air Dry	Pulverizing and Screening
K-117.6-1.6A	5-8	Air Dry	Pulverizing and Screening
K-122.4	S-5	Air Dry	Pulverizing and Screening
K-125.6	S-5	Air Dry	Pulverizing and Screening
K-125.6	ST-1	Air Dry	Not Necessary
K-127.9	\$-4	Air Dry	Pulverizing and Screening
K-127.9	ST-1	Air Dry	Not Necessary
K-128.0	S-7	Air Dry	Not Necessary
K-128.0	ST-1	Air Dry	Not Necessary
K-129.9A	S-5	Air Dry	Pulverizing and Screening
K-129.9A	ST-1	Air Dry	Not Necessary
K-129.9B	S-6	Air Dry	Pulverizing and Screening
K-129.9B	ST-1	Air Dry	Not Necessary

EQUIPMENT INFORMATION Liquid Limit Procedure: Multipoint - Method A Х Single Point - Method B **Liquid Limit Apparatus:** Manual Х **Motor Driven** X Liquid Limit Grooving Tool Material: **Plastic** Metal Liquid Limit Grooving Tool Shape: Flat Χ Curved (AASHTO Only) Mechanical Rolling Device **Plastic Limit:** Hand Rolled Х

	1			
Reviewed By:	1		Date:	02/07/22
•		7/		

Page 1 of 1

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 16 - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 16 is STA 20499+00 (43.359146° N, 73.494706° W)

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by TRC and the recent investigation by Atlantic Testing Laboratories, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480

HDD 16 Borings B127.06-1, K-127.0, K-127.1 Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

Champlain Hudson Power Express Project

Champlain Hudson Power Express Inc.

BORING LOCATION PLAN
Whitehall to Fort Edward
Figure A-3

Sheet 12 of 16

Prepared by: **AECOM**

5/19/2021

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

BORING **B127.06-1**G.S. ELEV. N/A

FILE 195651 SHEET 1 OF 1

	GROUI	NDWATER	R DATA		١	/ETHOD C	F ADVANC	ING BO	REHOLE	
FIRST E	NCOUNTI	ERED 2.0) '	∇	а	FROM	0.0 '	TO	10.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	_	d	FROM	10.0 '	TO	30.0 '	
				▼						

DRILLER	J. MEHALICK
HELPER	M. KERLIN
INSPECTOR	J. STAPLETON
DATE STARTED	01/07/2013
DATE COMPLETED	01/07/2013

SUMMARY OF LABORATORY TEST **DATA**

Project Name: Client Name: $\underline{TDI\ Champlain\ Hudson\ Power\ Express-CP}$

Transmission Developers, Inc.

TRC Project #: <u>195651</u>

SAMPLE I	DENTII	FICATION	nscs	GRAIN SIZE DISTRIBUTION					PLAS	TICIT	ΞY	vity	ntent	(bct)	9	tent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Silt (%) Clay (%)		Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-5	8.0-10.0	ı	-	-	ı	-	-	-	-	ı	-	36.7	1	-	-
	S-6	13.5-15.0	-	0.4	36.8	62	2.8	-	-	-	-	-	29.0	-	-	-
	S-7	18.5-20.0	-	-	-	-	-	-	-	-	-	-	23.8	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	13.7	-	-	-
B124.8-1	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	22.6	107.1	-	-
	S-5	8.0-10.0	-	0.0	22.1	7'	7.9	-	-	-	-	-	6.2	-	-	-
	S-1	0.0-2.0	CW CM	90.5	00.0	1/	.						17.0			
	S-2	2.0-4.0	SW-SM	29.5	60.3	10	0.2	-	-	-	-	-	17.9	-	-	-
B125.1-1	S-5	8.0-10.0	CD CM	0.0	00.5	0	. 0						10.1			
	S-6	13.5-15.0	SP-SM	0.3	90.5	9	0.2	-	-	-	-	-	19.1	-	-	-
	S-8	23.5-25.0	CH	-	-	-	-	53	25	28	0.1	-	29.1	-	-	-
D107.00.1	S-3	4.0-6.0	-	-	-	-	-	-	-	-	-	-	26.8	-	-	-
B127.06-1	S-5	8.0-10.0	-	0.0	6.7	7.8	85.5	-	-	-	-	2.80	29.3	-	-	-

SUMMARY OF LABORATORY TEST DATA

Project Name: Client Name: $\underline{TDI\ Champlain\ Hudson\ Power\ Express-CP}$

Transmission Developers, Inc.

TRC Project #: <u>195651</u>

SAMPLE I	IDENTII	FICATION	nscs			N SIZE BUTIO	N		PLAS	TICIT	ΓΥ	vity	ntent	(pcf)	7) (0)	tent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-6	13.5-15.0	-	-	-	-	ı	-	-	-	-	-	24.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	1	-	-	-	-	-	61.2	-	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	39.1	-	-	-
B129.2-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	62.5	60.1	-	-
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	42.1	80.5	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	33.2	-	-	-
D120 0 1	S-6	13.5-15.0	CL					35	17	18	1.0		45.7			
B130.8-1	S-7	18.5-20.0	CL	-	-	-	-	33	17	10	1.6	-	45.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	-	-	-	-	-	-	23.8	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	21.7	-	-	-
D191 5 1	S-3	4.0-6.0	CL	-	-	-	-	48	23	25	0.3	-	30.0	97.0	-	-
B131.5-1	S-5	8.0-10.0	-	0.0	14.2	85.8		-	-	-	-	-	34.7	-	-	-
	S-6	13.5-15.0	CL	0.0	15.7	41.0	43.3	47	21	26	0.2	2.74	25.5	-	-	-

Boring Location Plans Page 8 of 12	Drawn by ADW		Scale: Not to scale	Project No.: CD10279	Date: March 2022
Champlain Hudson Power Express Design Package 2 Whitehall to Glens Falls, New York	Albany, NY Poughkeepsie, NY	ATLAN Binghamtor NY Syracuse, N	n, Canto	,	Limited Plattsburgh, NY Watertown, NY

Subsurface Investigation

								Report No.:		CD10279D-01-	03-22		
Cli	ient:	_Ki	ewit Engineering	(NY) C	orp.		_	Boring Locati	on: See B	ring Location Plan			
Pr	oject:	Sı	ubsurface Investi	gation			_	-					
		_CI	hamplain Hudsor	Power	Express, Design P	ackage 2	2						
		_Va	arious Locations,	New Yo	ork		_	Start Date:	1/14/2022	Finish Date:	1/14/2022		
_									Groundwate	Groundwater Observations			
Вс	oring N	o.: _	K-127.0		Sheet 1 of _			Date	Time	Depth	Casing		
		Coordii	nates		Sampler Hami	mer		1/14/2022	AM	4.2'	8.0'		
No	orthing	7594	<u>51.404</u>		Weight: 140	lbs.		1/14/2022	AM	*3.3'	9.0'		
Ea	asting	16504	34.627		Fall: 30	in.		1/14/2022	PM	*9.9'	9.0'		
				Hamme	r Type: <u>Automati</u>	<u>c</u>							
Gr	round E	Elev.:	141.47	_	Boring Advance	e By:		*May be aff	ected by water	utilized to advan	ce the		
				HW	/ (4") Casing/3 7/8"	Wet Rot	ary	borehole.					
	NCE	NO.	DEPTH OF	LE E	BLOWS ON SAMPLER	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -		CLASSII	FICATION C	OF MATERIA	L		
	METHOD OF ADVANCE	SAMPLE	SAMPLE	SAMPLE	PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	f - fine m - medium				and - 35-50% some - 20-35% little - 10-20% trace - 0-10%		
			From To	l			c - coarse				trace -		

DEPTH	METHOD OF ADVANCE	SAMPLE NO.	SAM	PTH DF IPLE	SAMPLE	5	PEF 2" (/S OI PLEF R 6" D.D. PLEF	₹	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL f - fine m - medium and some - 20.35% iittle - 10-20%	Recovery
	<u> </u>		From	То	<u> </u>						c - coarse trace - 0-10%	
	C	1	0.0	2.0	SS	16	11	6	5	0.7	8" TOPSOIL & ORGANIC MATERIAL	1:
1—	S									1	Black cmf SAND; little SILT; trace f GRAVEL (moist, non-plastic)	
2—	Ť	2	2.0	4.0	SS	7	7	3	3	1 ,,	SM FILL	1
3 —	N G									3.0	Brown SILT; and CLAY; trace f SAND (moist, moderately plastic)	
4 —	0	3	4.0	6.0	SS	2	2	3	5	-	ML/CL	<u> </u>
5—		3	4.0	6.0	33			3	5	<u> </u>	Brown CLAY; and SILT; trace f SAND (moist, plastic) CL/ML	
6—					\	\]	w = 32.8%	
		4	6.0	8.0	SS	4	4	5	8		Similar Soil (moist, plastic) CL/ML	
7—					1					1	w = 31.2%, LL = 51, PL = 22, PI = 29	
8 —		5	8.0	10.0	SS	3	3	5	7			Н
9 —	WET									9.0	Brown mf SAND; some SILT; little CLAY (moist, slightly plastic)	
10 —	R				<u> </u>	1				-	SM-SC	L
11 —	<u> </u>									ļ		L
12 —	À									1	Advanced casing to 9.0 feet and began advancing 3 7/8" tri-cone	
	R										roller bit wet rotary open hole within the borehole.	
13 —										1		Т
14 —		6	14.0	16.0	SS	9	8	7	6	†	Brown mf+ SAND; some SILT (wet, non-plastic) SM	Т
15 —										1	w = 22.8% % Fines = 25.0%	H
16 —					<u> </u>	1				-		_
17 —										17.0		L
18 —												L
19 —		7	19.0	21.0	SS	2	1	WH	2	1	Grey CLAY; little SILT (wet, plastic) CH	
20 —										-		
21 —					+	1				1	 	_
22 —												_
23 —												
24 —												L
Z4 		8	24.0	26.0	SS	WH/	/18"		1]	Grey CLAY; trace SILT (wet, plastic) CH	

Split Spoon Sample Rock Core Undisturbed Sample (Shelby Tube) Estimated Groundwater

Drillers:

Mark Childs; lan Ross

Inspector:

Aaron Woods (ATL); Rae Kim (Kiewit)

Subsurface Investigation

	and - 35-50% some - 20-35% ttle - 10-20%
ST-1 28.0 30.0 SH SHELBYTUBE 9 30.0 32.0 SS WH 1 2 2 10 34.0 36.0 SS WR/18" WH 11 39.0 41.0 SS WR/12" WH/12" 11 39.0 41.0 SS WR/12" WH/12" 12 34.0 36.0 SS WR/12" WH/12" 13 39.0 41.0 SS WR/12" WH/12" 14 39.0 41.0 SS WR/12" WH/12" 15 39.0 41.0 SS WR/12" WH/12" 16 39.0 41.0 SS WR/12" WH/12" 17 39.0 41.0 SS WR/12" WH/12" 18 39.0 41.0 SS WR/12" WH/12" 19 30.0 32.0 SS WR/18" WH 10 34.0 36.0 SS WR/18" WH 11 39.0 41.0 SS WR/18" WH/12" 11 39.0 41.0 SS WR/12" WH/12" 12 39.0 41.0 SS WR/12" WH/12" 18 39.0 41.0 SS WR/12" WH/12" 19 30.0 32.0 SS WR/18" WH 10 34.0 36.0 SS WR/18" WH 11 39.0 41.0 SS WR/18" WH 11 39.0 41.0 SS WR/12" WH/12" 12 30.0 SS WR/18" WH 3 41.0 SS WR/18" WH/12" 3 50.0 SS WR/18" WH/12" 41.0 Similar Soil (saturated, plastic) CH 41.0	race - 0-10%
9 30.0 32.0 SS WH 1 2 2 (3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trac SAND (saturated, plastic) CH w = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0% 10 34.0 36.0 SS WR/18" WH 11 39.0 41.0 SS WR/12" WH/12" Similar Soil (saturated, plastic) CH w = 63.9% Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
9 30.0 32.0 SS WH 1 2 2 (3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trac SAND (saturated, plastic) CH w = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0% 10 34.0 36.0 SS WR/18" WH 11 39.0 41.0 SS WR/12" WH/12" Similar Soil (saturated, plastic) CH w = 63.9% Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
9 30.0 32.0 SS WH 1 2 2 (3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trac SAND (saturated, plastic) CH w = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0% 10 34.0 36.0 SS WR/18" WH Similar Soil (saturated, plastic) CH Similar Soil (saturated, plastic) CH w = 63.9% Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
SAND (saturated, plastic) CH w = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0% Similar Soil (saturated, plastic) CH Similar Soil (saturated, plastic) CH Similar Soil (saturated, plastic) CH w = 63.9% Similar Soil (saturated, plastic) CH w = 63.9% Similar Soil (saturated, plastic) CH w = 63.9% Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
SAND (saturated, plastic) CH w = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0% Similar Soil (saturated, plastic) CH Similar Soil (saturated, plastic) CH Similar Soil (saturated, plastic) CH w = 63.9% Similar Soil (saturated, plastic) CH w = 63.9% Similar Soil (saturated, plastic) CH w = 63.9% Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	mf
W = 81.7%, LL = 72, PL = 20, Pl = 52 % Fines = 96.0%	;
Similar Soil (saturated, plastic) CH w = 63.9% 41.0 Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Similar Soil (saturated, plastic) CH w = 63.9% 41.0 Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Similar Soil (saturated, plastic) CH w = 63.9% 41.0 Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Boring terminated at 41.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
2. Soil classifications based on ATL Field Engineer's field classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
classification. 3. Borehole was advanced with ATL's CME 45 Trailer (R No. CDGV429) drill rig.	
No. CDGV429) drill rig.	
	g Unit

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ /

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	K	Ciewit Eng	gineering	g (NY) C	orp.					Boring Local	10n: <u>See B</u>	oring Location Pl	an	_
	Project:	_s	ubsurfac	e Invest	tigation										_
			hamplair	Hudsoi	n Powe	r Expre	ess,	Design	Package 2						_
			arious Lo	ocations	, New Y	ork (Start Date:	1/17/2022	Finish Date:	1/17/2022	
						.						Groundwat	er Observations		
	Boring N	lo.:	K-127.	1		Sheet		of			Date	Time	Depth	Casing	
		Coord	inates			:	Sam	npler Ha	mmer		1/17/2022	PM	DRY	4.0'	_
	Northing	7592	281.613			Weigh		140			1/17/2022	PM	4.5'	9.0'	_
	Easting	1649	993.938			Fa	II:	30	in		1/17/2022	PM	*7.8'	9.0'	
					Hamm	er Type	e:	Autom	atic		1/17/2022	PM	*10.7'	9.0'	_
	Ground	Flev ·	14	1.015		В	lorin	g Advar	nce By:				utilized to advan		_
	0.00				— Н\			U	8" Wet Rot	ary	borehole.				_
			T		1	1					<u> </u>				Ŧ
_	METHOD OF ADVANCE	8	DE	PTH	щ			VS ON	Ь삤		CLASS	FICATION (OF MATERIAI	_	
DEPTH	Q § V	SAMPLE)F 1PLE	SAMPLE			PLER R 6"	DEPTH OF CHANGE					and - 35-50%	
8	ADV	Ą	J JAN	"	SA			O.D. PLER	평공	f - fine				some - 20-35%	
	≥`	Ś	From	То	1	3	AIVII	PLEK	"	m - medium c - coarse				little - 10-20% trace - 0-10%	- 1
	С	1	0.0	2.0	ss	10	27	7 4	0.3	3" TO	PSOIL & ORG	ANIC MATERIAL	_		Ŧ
_	A								\dashv	Blacki	sh-Reddish-G	rey cmf GRAVEL	; some cmf SAND	; trace	ł
_	S	2	2.0	4.0	SS	4	4	4 3	2.0	SILT;	trace DEBRIS	(cinders) (moist,	non-plastic) GW	FILL	╪
_	N		2.0	7.0	100	_	_	-	-	١		; some CLAY (sa	turated, moderatel	y plastic)	ŀ
_	G		1.0	0.0	00	\		0 0	4.0	\ML P	ossible FILL				4
_		3	4.0	6.0	SS	4	2	2 3	_	١	•		GRAVEL; little SIL	_T; little	ļ
_					<u> </u>							olastic) SW-SC			
		4	6.0	8.0	SS	6	5	4 6					ome mf SAND; trac		Ī
_					'	1			╗		rs); trace ORG ately plastic)		L (root hairs) (satu	rated,	Ī
_		5	8.0	10.0	SS	4	7	10 1	0		, ,	PL = 22, PI = 12	2, OC = 4.5%		t
—	WET								┪	NO R	ECOVERY				t
	R O								┪	-			e f GRAVEL; trace	cmf	ł
—	Ŧ								┥		(saturated, placed casing to	,	an advancing 3 7/8	R" tri_cone	ŀ
	R								12.0		-	pen hole within t	-		+
—	Ÿ								4	*		'			ŀ
ı —			110	100	00	_	_		4	DI 1:		CAND 1 OII	T		ļ
<u> </u>		6	14.0	16.0	SS	5	5	5 6	_		•	tic) SP % Fines	T; trace f GRAVEL	_	ļ
i —					<u> </u>				_	Galait	a, mon pias	, 01 /01/11/03	1.170		L
									17.0						
_															ſ
. —									7						Ī
		7	19.0	21.0	SS	WR/	12"	WH/12	2"	Grey 0	CLAY; trace SI	LT (saturated, pl	astic) CH		t
_									┪	w = 71	.7%				t
_					1				\dashv						+
									\dashv						-
—									-						+
ı —			04.0	20.0	00	VA/D/	10"	10/11/22)"	C!!!	- Cail /a -t 1	al minati-\ Oli			-
<u> </u>		8	24.0	26.0	ss \	WR/	12"	WH/12	<u>- </u>	Simila	ooii (saturate	ed, plastic) CH			_
															_
		Spoon Sar Core	mple							Drillers:		Mark Childs	; John Trathen		

Subsurface Investigation

	Boring N	No.: _	K-127.	1		Repo	ort No.:		CD10279D-01-03-22 Sheet 2 of 2	_
рертн	METHOD OF ADVANCE	SAMPLE NO.		PTH DF MPLE	SAMPLE	SAM PE 2"	WS ON IPLER R 6" O.D. IPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50° f - fine	% REC (F
26 — 27 — 28 — 29 — 30 — 31 — 32 — 33 — 34 — 35 — 36 — 41 — 42 — 44 — 45 — 46 — 47 — 48 — 50 — 51 — 52 — 55 — 56 — 57 — 58 — 59 — 60 — 61 — 62 — 62 — 62 — 61 — 62 — 62 — 62		9	34.0	32.0	SS		WH/12"	36.0	(3" Brass Lined Split Spoon) Grey CLAY; trace SILT (saturated, plastic) CH w = 58.0%, LL = 68, PL = 19, Pl = 49 % Fines = 100.0% Similar Soil (saturated, plastic) CH Boring terminated at 36.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classifications. 3. Borehole was advanced with ATL's CME 45 Trailer (Rig Unit No. CDGV429) drill rig.	12

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2), GPJ ATL4-08.GDT 4/12/22

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-3	4.0 - 6.0	Brown mf+ SAND; and SILT	48.0	17.8											
K-125.6	S-5	8.0 - 10.0	Brownish-Grey CLAY; trace mf SAND; trace SILT		24.7	50	22	28								
K-125.0	S-7	19.0 - 21.0	Grey CLAY; little SILT; trace mf SAND		49.2											
	ST-1	28.0 - 30.0	Grey CLAY; little SILT	100.0	49.4	60	20	40								
	S-3	4.0 - 6.0	Brown CLAY; and SILT; trace f SAND		32.8											
	S-4	6.0 - 8.0	Brown CLAY; and SILT; trace f SAND		31.3	51	22	29								
K-127.0	S-6	14.0 - 16.0	Brown mf+ SAND; some SILT	25.0	22.8											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT; trace mf SAND	96.0	81.7	72	20	52								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT; trace mf SAND							7,100	35	8.75	1,548			
	S-11	39.0 - 41.0	Grey CLAY; trace SILT; trace mf SAND		63.9											
K-127.1	S-3	4.0 - 6.0	Blackish-Brown SILT; some CLAY; some mf SAND; trace DEBRIS (cinders); trace ORGANIC MATERIAL (root hairs)		30.7	34	22	12	4.5							
1 22712	S-6	14.0 - 16.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	4.4												
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		71.7											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT	100.0	58.0	68	19	49								
	S-3	4.0 - 6.0	Brownish-Grey CLAY; little SILT; trace f SAND							300	65	7.93	1,170			
	S-4	6.0 - 8.0	Brownish-Grey CLAY; little SILT; trace f SAND	95.0	30.0	70	25	45								
K-127.9	S-6	14.0 - 16.0	Greyish-Brown CLAY; trace f SAND; trace SILT		32.4											
	S-8	24.0 - 26.0	Greyish-Brown CLAY; trace SILT		28.8											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	30.0	30	17	13								
	S-5	8.0 - 10.0	Brownish-Grey CLAY; some mf SAND; trace SILT		28.0											
K-128.0	S-7	19.0 - 21.0	Grey CLAY; trace SILT	100.0	39.2	78	23	55								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		30.3											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	51.2	43	18	25								
	S-5	8.0 - 10.0	Brown SILT; some mf SAND; little ORGANIC MATERIAL (root hairs)	24.0	134.2	NP	NP	NP	16.8							
K-129.9A	S-8	24.0 - 26.0	Grey c-mf+ SAND; little SILT	20.0	31.1											
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		52.6											
	ST-1	41.0 - 43.0	Grey CLAY; trace SILT	100.0	40.5	44	20	24								

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

ATL Report No.: CD10279E-01-01-22

Date: January 31, 2022 Page 2 of 2

TEST DATA (continued)

Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
		•	
K-125.5	S-3	4-6	21.4
	S-5	8-10	27.5
	S-7	19-21	51.5
	S-9	28-30	38.0
K-127.0	S-3	4-6	32.8
	S-4	6-8	31.2
	S-6	14-16	22.8
	S-9	30-32	81.7
	S-11	39-41	63.9
K-127.1	S-3	4-6	30.7
	S-7	19-21	71.7
	S-9	30-32	58.0

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:

Date: 01/31/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-01-01-22

Client: Kiewit Intrastructure Co. Date: 01/31/22

Sample No: K-127.0, S-6 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 14-16'

GRAIN SIZE - mm. % Fines % Gravel % Sand % +3" Silt Clay Coarse Fine Coarse Medium Fine 59 25 0 0 16

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#4	100		
#10	100	ŀ	
#40	84		
#200	25		
<u> </u>			
į			
j :			
		Į	
į			
ł			

PL=	Atterberg Limits LL=	P!=
D ₈₅ = 0.4359 D ₃₀ = 0.0854 C _u =	Coefficients D ₆₀ = 0.1858 D ₁₅ [±] C _c =	D ₅₀ = 0.1416 D ₁₀ =
	Classification	
USCS≈	AASHTC) m
	Remarks	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: _____01/31/22

Figure

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-01-01-22

Client: Kiewit Intrastructure Co.

Date: 01/31/22

Sample No: K-127.1, S-6

Location: In-place

Source of Sample: Boring Sample

Elev./Depth: 14-16'

			G	RAIN SIZE -	- mm.		
	% G	avel	% Sand			% Fines	
% +3"	Coarse		Coarse	Medium	Fine	Siit	Clay
0	0	I	1	23	71	4	

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
l/2"	100		
#4	99		
#10	98		
#40	75		
#200	4.4		
		•	
İ			
Į			
		i	
		ļ	

	Attachous Limits	
PL=	Atterberg Limits LL=	PI≕
	Coefficients	
$D_{85} = 0.6308$	$D_{60} = 0.2671$	$D_{50} = 0.2067$
$D_{30}^{30} = 0.1300$ $C_{u}^{2} = 3.16$	D ₁₅ = 0.0939 C _c = 0.75	D ₁₀ = 0.0844
	Classification	
USCS≍ SP	AASHTO)=

* (no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Date: 01/31/22

Figure

Reviewed by: 2

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project: Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Test Date:

January 25, 2022

Various Locations, New York

Performed By:

R. Parrow

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	initial Dry Weight (g)	% Finer than #200
K-123.2	S-10	28-30	А	10	107.62	97
K-123.7	S-6	14-16	Α	10	78.62	100
K-123.7	S-9	28-30	Α	10	120.67	100
K-123.8	5-9	28-30	A	10	219.15	100
K-125.5	S-9	28-30	A	10	219.28	94
K-127.0	S-9	30-32	Α	10	119.17	96
K-127.1	S-9	30-32	Α	10	124.57	100

Reviewed By:	K	
,		<u> </u>

Date: January 31, 2022

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-01-01-22

Report Date: Date Received: January 31, 2022 January 25, 2022

TEST DATA

TEST DATA						
Boring No.	Sample No.	ĹĽ	PL	Pl		
K-122.35	S-3	NP	NP	NP		
K-122.35	S-15	NP	NP	NP		
K-123.2	S-6	48	20	28		
K-123.2	S-10	67	21	46		
K-123.7	S-6	79	23	56		
K-123.7	S-9	73	20	53		
K-123.8	S-6	54	23	31		
K-123.8	59	67	18	49		
K-125.5	S-3	NP	NP	NP		
K-125.5	S-9	70	21	49		
K-127.0	5-4	51	22	29		
K-127.0	S-9	72	20	52		
K-127.1	S-3	34	22	12		
K-127.1	S-9	68	19	49		

SAMPLE INFORMATION

	JANA LE BY OTHER TOTAL						
		Maximum	Estimated Amount of Sample	As Received Moisture			
		Grain Sìze	Retained on No. 40 Sieve	Content			
Boring No.	Sample No.	(mm)	(%)	(%)			
K-122.35	S-3	2	5	23.5			
K-122.35	S-15	4.76	52	27.2			
K-123.2	S-6	2	1	28.4			
K-123.2	S-10	6.35	1	65.5			
K-123.7	S-6	0.297	0	25.9			
K-123.7	S-9	0.297	0	48.4			
K-123.8	S-6	2	7	66.5			
K-123.8	S-9	0.297	0	37.2			
K-125.5	S-3	2	5	21.4			
K-125.5	S-9	9.51	2	38.0			
K-127.0	S-4	2	2	31.2			
K-127.0	S-9	9.51	2	81.7			
K-127.1	S-3	6.35	24	30.7			
K-127.1	S-9	2	1	58.0			

Client: Project: Kiewit Instrastructure Co.

744474 71123

Champlain Hudson Power Express

ATL Report No.

CD10279E-01-01-22

Date:

January 31, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-122.35	S-3	Air Dry	Pulverizing and Screening
K-122.35	S-15	Air Dry	Pulverizing and Screening
K-123.2	S-6	Air Dry	Pulverizing and Screening
K-123.2	S-10	Air Dry	Pulverizing and Screening
K-123.7	S-6	Air Dry	Not Necessary
K-123.7	S-9	Air Dry	Not Necessary
K-123.8	S-6	Air Dry	Pulverizing and Screening
K-123.8	S-9	Air Dry	Not Necessary
K-125.5	S-3	Air Dry	Pulverizing and Screening
K-125.5	S-9	Air Dry	Pulverizing and Screening
K-127.0	S-4	Air Dry	Pulverizing and Screening
K-127.0	S-9	Air Dry	Pulverizing and Screening
K-127.1	S-3	Air Dry	Pulverizing and Screening
K-127.1	S-9	Air Dry	Pulverizing and Screening

	EQUIPIVIENT	INFORMATION		
Liquid Limit Procedure: Multip	oint - Method A	Х	Single Point - Method B	
Liquid Limit Apparatus:	Manual	X	Motor Driven	
Liquid Limit Grooving Tool Materi	al: Plastic	X	Metal	
Liquid Limit Grooving Tool Shape:	Flat	X	Curved (AASHTO Only)	
Plastic Limit:	Hand Rolled	Х	Mechanical Rolling Device	9

Reviewed By:	m	7/	 Date:	01/31/22	
	······	V	 		

WBE certified company

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-01-01-22

Project:

Champlain Hudson Power Express

Report Date:

January 31, 2022

United Cable Installation

Date Received:

January 25, 2022

Various Locations, New York

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT ASTM D 2974

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-122.35	S-4	4.5	95.5	22.8	Α	440
K-123.7	S-3	7.5	92.5	41.4	Α	440
K-123.8	S-6	6.9	93.1	66.5	Α	440
K-127.1	S-3	4.5	95.5	30.7	А	440

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MK

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 17 - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 17 is STA 20545+00 (43.347016° N, 73.501611° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and the recent investigation by Atlantic Testing Laboratories, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 17 Borings WFE-16, K-127.9, K-128.0 Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

Figure A-3

Sheet 13 of 16

Prepared by: **AECOM**

5/19/2021

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

HEB RON

Preliminary Pipe Bridge Location

Previous (2013) Boring Location

2021 Boring Location

Parcel Ownership

TOWN NAME

Road Name

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT						-		-					PROJECT NAME: CHPE -
	DRILLER:			1						M				PROJECT NO.: 60323056
	Chris Chaillo	ı					_							HOLE NO.: WFE-16
	SOILS ENGI	NEER/GEOLOGIST:												START DATE: 1/8/21
	Chris French							BORIN	IG LOG					FINISH DATE: 1/8/21
		M.P 127.95 (CP R	(ail)											OFFSET: N/A
		OBSERVATIONS				CAS	SING	SAM	PLER	DRIL	L BIT	CORE	BARREL	DRILL RIG: Geoprobe 7822DT
				T) /DE				Calif	ornia	Tric	one			·
	No water obs	ervea		TYPE SIZE I.D			oint Steel I"		dified .5"	Rolle	er bit			BORING TYPE: SPT BORING O.D.: 4.5"
				SIZE I.D			5"		.5 3"		7/8"			SURFACE ELEV.:
				HAMME) lbs) lbs	- 07	70			NORTHING
D	CORING	SAMPLE		HAMME			0"		0"					EASTING
Е	RATE	DEPTHS	TYPE	PEN.	REC.					N		STRAT.		
P -	MIN/FT	FROM - TO	AND	in	in		S PER 6 i			Corr. (2)	CLASS.			FIELD IDENTIFICATION OF SOILS
T H		(FEET)	NO.			(ROCK	QUALITY	DESIGN	IATION)			DEPTH		
		0'-5'					Hand (Cleared						Black fine-coarse SAND, some angular gravel;
1.0													frozen	
2.0												۵		Black fine-coarse SAND, llittle silt, little angular ose, moist
2.0											SP/SM	SAND		Light brown fine-medium SAND, little silt, loose,
3.0											.,		moist	
F		3'-5'	S-1											
4.0											ML/CL		4 0'-5 0'	Gray SILT and clay; medium stiff, moist
5.0											WIL/CL		TR-1; (3.	* '
		5'-7'	S-2	24"	18"	7	6	8	9	9	CL/ML		Gray CL/	AY and silt, trace fine sand; stiff, moist
6.0														
7.0														
7.0		7'-9'	S-3	24"	24"	6	9	13	11	8	ML/CL		Gray and	I brown SILT, some clay; stiff, moist
8.0									TR-2; (8					0'-8.5')
												ND ON		
9.0		9'-11'	S-4	24"	24"	12	12	17	17	19	ML/CL	LT A	SAA	
10.0		3-11	0-4	27		12	12	- 17	17	13	WILTOL	S		
11.0		441.401	0.5	24"	40"		-	40	44	44	MI /OI		Gray SII	T, some clay; medium stiff, moist
12.0		11'-13'	S-5	24	12"	8	7	10	11	11	ML/CL		olay ola	r, come day, modam can, mod
13.0													D 0	A.V. 1. 10
14.0		13'-15'	S-6	24"	16"	12	11	10	14	14	CL/ML		Brown C	LAY and silt; very stiff, moist
14.0														
15.0														
46.5		15'-17'	S-7	24"	24"	3	4	4	5	5	CL			ty CLAY; stiff, moist 5.0'-16.5')
16.0												SILTY CLAY	1110, (10	, 15.0)
17.0												_T		
												SIIS		
18.0										1				
19.0														
20.0														
	NOTES: (1) Thick-wall ri	ng lined drive sampler (California	sampler) u	sed for SP	T samples.	Rinas dime	ensions = 2	-1/2" O.D. I	ov 2-7/16" I	.D. bv 6" lei	nath.		mation contained on this log is not warranted he actual subsurface condition. The contractor
		actor: Ncorr=N*(2.0 ² -1.3				pioo.		2	0.5.1	., = ./10 1	, 0 101	J		nat he will make no claims against AECOM
														s that the actual conditions do not conform
	Soil description	on represents a field	identifica	tion after	DM Run	mister unl	ess other	wise note	d				to those i	indicated by this log.
	LE TYPE:			T SPOON			BY TUBE		R=ROC	(CORE			I	
	ORTIONS:		TRACE-			LITTLE=			SOME=3			AND-3	5-50%	

	BORING CO	NTRACTOR:												SHEET 2 OF 2
	ADT								-					PROJECT NAME: CHPE -
	DRILLER:						$\Delta \setminus \Xi$		10	W				PROJECT NO.: 60323056
	Chris Chaillo	и					_			$\Delta \mathbf{L}$				HOLE NO.: WFE-16
	SOILS ENGI	NEER:												START DATE: 1/8/21
	Chris French							BORIN	G LOG					FINISH DATE: 1/8/21
		M.P 127.95 (CP F	Rail)											OFFSET: N/A
D	CORING	DEPTHS	TYPE	PEN.	REC.					N	USCS	STRAT.		
E P	RATE	FROM - TO	AND	in	in	BLOW	S PER 6 i	in ON SAI	MPLER	Corr.	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS
T H	MIN/FT	(FEET)	NO.			(ROCK	QUALITY	/ DESIGN	IATION)			DEPTH		
• •		20'-22'	S-8	24"	24"	3	5	6	7	7	CL		SAA	
21.0		20 22	0.0	2-7	2-7	Ů		-	,		02			
22.0														
23.0														
24.0														
25.0														
		25'-27'	S-9	24"	24"	2	4	5	8	6	CL			y CLAY; medium stiff, moist
26.0													TR-4; (2	6.0'-26.5')
27.0														
28.0														
29.0														
30.0												SILTY CLAY		
00.0		30'-32'	S-10	24"	24"	2	4	6	14	7	CL	Τ-	SAA	
31.0												S		
32.0														
33.0														
34.0														
05.0														
35.0		35'-37'	S-11	24"	24"	3	5	6	13	7	CL		Gray silt	y CLAY; soft, moist
36.0				2. 2. 0 0 0 0								6.0'-36.5')		
37.0														
37.0														
38.0													C A A	
39.0		38'-40'	S-12	24"	24"	WOH	2	4	7	4	CL		SAA	
40.0													WFE-16	terminated at 40' then grouted to surface
41.0														<u> </u>
42.0														
42.0														
43.0														
44.0														
45.0	NOTES:												The inf-	rmation contained on this log is not
	MOTES:													rmation contained on this log is not warranted the actual subsurface condition. The contractor
													agrees t	hat he will make no claims against AECOM
	Soil doooring	on roprocente a ficial	idontifia	tion offer	D.M. D	mistor ·····	nee other	vice nate	4					ds that the actual conditions do not conform
	LE TYPE:	on represents a field	S= SPLIT			U=SHEL			R=ROCK	CORE			10 11050	indicated by this log.
	ORTIONS:		TRACE=			LITTLE=			SOME=2			AND=35	5-50%	

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH				IDENT	FICATION :	TESTS			REMARKS
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT	
							(1)	NO. 200	2 μm	(burnoff)	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)	
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39		
WFE-1A	S-5	11-13	43.0	68	23	45	CH	99.8	84		
WFE-1C	S-3	7-9	44.5				CH	99.3	86		
WFE-1C	S-7	15-17	44.5	78	27	51	CH	100	94		
WFE-1C	S-10	30-32	45.7	61	23	38	CH	100	87		
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3		
WFE-2	S-7	15-17	26.0				SC	28.5	13		
WFE-2	S-9	25-27	66.0	71	26	45	CH	100	90		
WFE-4	S-2	5-7	18.0				SC	34	13		
WFE-4	S-4	9-11	18.3				SM	17	5		
WFE-5	S-2	5-7	19.9				SM	19	3		
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28		
WFE-6A	S-2	5-7	13.6				SP-SC	9	3		
WFE-6A	S-4	9-11	17.4				SP-SM	7	2		
WFE-8	S-3	6-8	24.9				SC	48.5	12		
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43		
WFE-10	S-2	5-7	38.0	71	24	47	CH	94	76		
WFE-10	S-4	9-11	22.5				CL	83.9	32		
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35		
WFE-12	S-4	9-11	28.3				CL	95.8	37		
WFE-14	S-3	7-9	25.7				CL	75.7	44		
WFE-14	S-5	13-15	22.5				ML	53.9	17		
WFE-16	S-3	7-9	36.7	75	25	50	CH	100	90		
WFE-16	S-9	25-27	37.1	73	24	49	CH	100	80		
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1	
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26		
WFE-18	S-10	30-32	64.3	56	21	35	CH	100	87		
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29		
WFE-18A	S-7	15-17	18.9				SM	14.3	1		
WFE-18A	S-10	30-32	62.9	62	22	40	CH	99	86		
WFE-19A	S-3	7-9	38.1				SP-SM	8	3		
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2		
WFE-19A	S-10	30-32	17.6				SW-SM	8	1		
		,									

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 4/30/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21003 File: Indx1.xlsx Page 1 of 1

Boring Location Plans Page 9 of 12	Drawn by ADW		Scale: Not to scale	Project No.: CD10279	Date: March 2022
Champlain Hudson Power Express Design Package 2 Whitehall to Glens Falls, New York	Albany, NY Poughkeepsie, NY	ATLAN Binghamto NY Syracuse, I	on, Canto	,	Y Plattsburgh, NY

Subsurface Investigation

												Report No.:		CD10279D-0	1-03-22	_
	Client:	_K	iewit Eng	gineering	g (NY) C	orp.						Boring Loca	tion: Sec	Boring Location	Plan	_
	Project:	<u>_</u> S	ubsurfac	e Invest	igation											_
		_ <u>c</u>	hamplair	Hudson	n Powei	r Exp	oress	, Des	ign P	ackage 2						_
		v	arious Lo	ocations	, New Y	ork						Start Date:	1/26/2022	Finish Date:	1/26/2022	
	Boring N	lo.: _	K-127.	9		She	et _	1	of _	2		Date	Groundv Time	vater Observations Depth	Casing	
		Coordi	nates				Sar	mpler	Hami	mer		1/26/2022	PM	*7.3'	7.0'	-
	Northing	<u>7576</u>	81.003			Wei	-		140	lbs.						-
	Easting	1646	<u>016.024</u>		Hamana		Fall:		30	in.				_		_
					Hamm	егту	•		omati							-
	Ground	Elev.:	14	5.159	_				lvance				fected by wa	ter utilized to adv	ance the	-
					HV	N (4'	') Cas	sing/3	3 7/8"	Wet Rota	ry	borehole.				-
DEРТН	METHOD OF ADVANCE	SAMPLE NO.	c	PTH)F 1PLE	SAMPLE		SAN PE 2"	WS O IPLEI IR 6" O.D.	R	DEPTH OF CHANGE	f - fine	CLASS	IFICATION	OF MATERI	and - 35-50% some - 20-35%	Recovery
	≥ `	S	From	То	1		SAIV	IPLEI	N.		m - medium c - coarse				little - 10-20% trace - 0-10%	
	C	1	0.0	2.0	SS	13	15	8	7				ace f GRAVEL;	trace SILT (frozen	ı, non-plastic)	8
1—	S				1						SW FI	LL				
2—	N	2	2.0	4.0	SS	4	8	10	7	1			ace f GRAVEL	.; trace SILT (wet, r	non-plastic)	4
3—	Ğ									4.0	SW P	ossible FILL				
4		3	4.0	6.0	SS	7	6	6	7		Browni	sh-Grey CLA	Y; little SILT; ti	race f SAND (wet, p	plastic) CH	12
5— 6—					\											
7—		4	6.0	8.0	SS	7	7	8	8			Soil (wet, pla	,	45 0/ 5: O5 /	00/	24
8 —					__\									45 % Fines = 95.0		
9 —		5	8.0	10.0	SS	10	8	8	8		Browni CH	sh-Grey CLA	Y; some mf SA	AND; trace SILT (m	oist, plastic)	20
10 —	WET				<u> </u>	\							40.0 f+	h	7/0" +	
11 —	R				-	\vdash						-		began advancing 3 n the borehole.	5 7/8 tri-cone	
12 —	O T				-					12.0			· · · · · · · · · · · · · · · · · · · ·	•••••		
13 —	A R				-	+										-
14 —	Y	6	14.0	16.0	SS	2	2	2	2		Grevisl	h-Brown CLA	Y: trace f SAN	D; trace SILT (wet,	plastic)	22
15 —												= 32.4%		, , ,	. ,	
16 —																
17 —					1											
18 —					1											
19 —		7	19.0	21.0	SS	1	2	3	4		Brown	CLAY; trace \$	SILT (wet, plas	stic) CL		24
20 —																
21 —]						
22 —]						
23 — 24 —]						
		8	24.0	26.0	SS	1	2	2	5		Greyisl	h-Brown CLA	Y; trace SILT (wet, plastic) CL		24
25 —																
		Spoon San	nple								Orillers:		Jeffrey Don	ovan; John Trathe	en	
	NX Rock SH Undis		mple (Shelby T	ube)							nspector:			LaMarco (ATL)		

Subsurface Investigation

	Boring I	No.: _	K-127.	9		ı	Repo	rt No	.:		CD10279D-01-03-22 Sheet 2 of 2	
DEРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH OF MPLE	SAMPLE	,	SAM PE 2"	VS O PLEF R 6" O.D. PLEF	₹	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY
			FIOIII	10							w = 28.8%	
26 — 27 — 28 —										-	-	
9 — 0 — 1 —		9	29.0	31.0	SS	3	4	4	5	-	Similar Soil (wet, plastic) CL	24
2— 3— 4— 5—		10	34.0	36.0	SS	WH	1/18"		2		Grey CLAY; trace SILT (saturated, plastic) CL	24
6 — 7 — 8 — 9 —		ST-1	38.0	40.0	SS	WH	I/18"		4		(3" Brass Lined Split Spoon) Similar Soil (saturated, plastic) CL w = 30.0%, LL = 30, PL = 17, PI = 13 % Fines = 100.0%	24
0— 1— 2— 3—		11	43.0	45.0	ss	WH	1/24"				Similar Soil (wet, plastic) CL	24
4— 5— 6—										45.0	 	_
7— 8— 9—											Boring terminated at 45.0 feet. Notes: 1. Borehole backfilled with cement-bentonite grout. 2. Soil classifications based on ATL Field Engineer's field classifications. 3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
										- - -	Unit No. CDGV706) drill rig.	
5— 5— 7—										_		
8 — 9 — 0 —												
2-												

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GI

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	<u> </u>	Ciewit Eng	gineering	g (NY) C	orp.						Boring Locat	on: See B	oring Location P	lan
	Project:	_5	Subsurfac	e Invest	igation							-			
			Champlair	Hudso	n Powe	r Exp	oress	, Des	ign P	ackage 2					
		_\	/arious Lo	cations	, New Y	'ork						Start Date:	1/26/2022	Finish Date:	1/26/2022
	D		14 400	_		01			,	•			Groundwat	er Observations	
	Boring N	IO.:	K-128.	<u> </u>		She	et _	1	. or _	2		Date	Time	Depth	Casing
		Coord	linates				Sar	npler	Hami	mer		1/27/2022	AM	<u>*12.3'</u>	10.0'
	Northing	<u>757</u>	<u>486.435</u>			Wei	ight:		140	lbs.					
	Easting	1645	655.384			I	Fall:		30	in.					
					Hamm	er Ty	/pe:	Aut	omati	ic_					
	Ground I	Elev.:	14	5.207	_		Bori	ng Ad	lvance	e By:		*May be aff	ected by water	utilized to advar	nce the
					H\	<u>N (4'</u>	') Cas	sing/3	3 7/8"	Wet Rota	ry	borehole.			
	. 1		T		1	1						01.4001	FIG ATION (NE MATERIA	
_	METHOD OF ADVANCE	Š.		PTH	Щ		BLO\			DEPTH OF CHANGE		CLASSI	FICATION	OF MATERIA	L
DEPTH	보호	SAMPLE)F IPLE	SAMPLE		PE	IPLEI R 6"	ĸ	FX					and - 35-50%
<u> </u>	AD	Ā			SA T			O.D. IPLEI	R	뇸ㅎ	f - fine m - medium				some - 20-35% little - 10-20%
	_	S	From	То							c - coarse				trace - 0-10%
	С	1	0.0	2.0	SS	19	15	7	5					GRAVEL; trace SI	LT (moist,
	A S									2.0	non-pla	astic) SW FIL	L		
	N	2	2.0	4.0	SS	7	7	7	7				nf SAND; trace f	GRAVEL; trace S	ILT (moist,
_	G									1	plastic)	CL			
_		3	4.0	6.0	SS	4	4	4	4	1	Browni	sh-Grey CLA\	; trace f SAND;	trace SILT (moist,	plastic)
-					1					1	CL				
<u> </u>		4	6.0	8.0	SS	4	5	6	7	1	Grey C	LAY; little SIL	Γ (moist, plastic)	CL	
_					1					1					
_		5	8.0	10.0	SS	8	7	8	8	1	Browni	sh-Grey CLA\	; some mf SANI	D; trace SILT (moi:	st, plastic)
—										1	CL w	= 28.0%			
	WET					1				1	Advand	ced casing to	10.0 feet and be	gan advancing 3 7	7/8" tri-cone
_	R O		+			+				100	roller b	it wet rotary or	en hole within t	ne borehole.	
2—	T									12.0	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
	R		+		_	+				1					
—	Y	6	14.0	16.0	SS	1	3	3	4	1	Browni	sh-Grev CLA\	'; trace SILT (we	t. plastic) CH	
-			1		+ 1	\vdash		-		 		,		, , , , , , , , , , , , , , , , , , , ,	
_						1				 					
						+									
					1	+				 					
—		7	19.0	21.0	SS	1	2	3	4		Grev C	I AY: trace QII	.T (moist, plastic) CH	
			10.0	21.0	133	Ė								,, Cn 5 % Fines = 100.0	1%
_					1	1									
						_									
s—						\vdash									
ı —			24.0	20.0	00	4					0	1 AV. 4= O"	T (CLI	
<u> </u>		8	24.0	26.0	ss	1	2	2	2		Grey C	LAY; trace SIL	T (wet, plastic)	UH	
		Spoon Sa	mple								Orillers:		Jeffrey Donova	an; John Trathen	
	NX Rock SH Undist		mple (Shelby T	uba)											

Subsurface Investigation

	Boring I	NO	K-128.	<u>. </u>		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	-
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	C	PTH OF IPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY (inches)
					1				
26 —					<u> </u>		-		
7 —									
8 —									-
		9	29.0	31.0	SS	WH/12" 1 4		Similar Soil (wet, plastic) CH w = 30.3%	24
		<u> </u>	20.0	01.0	00	VVII/12 1 4		Cirrinal Con (wat, plastic) Or W 00.070	
_					<u> </u>		-		
_									
_									
		10	34.0	36.0	SS	WH/12" 1 4		Similar Soil (wet, plastic) CH	24
					1				
_							1		
_		ST-1	38.0	40.0	SS	WH 2 4 5	1	(3" Brass Lined Split Spoon) Grey CLAY; trace SILT (wet, plastic)	24
					1		•	CL w = 51.2%, LL = 43, PL = 18, PI = 25 % Fines = 100.0%	
							1		
_									
2—									-
—		11	43.0	45.0	SS	WH/18" 2	1	Similar Soil (saturated, plastic) CL	24
—			10.0	10.0				Circulation, practice, pra	<u> </u>
_					'		45.0		-
	_							Boring terminated at 45.0 feet.	-
_									
_								Notes:	
_								Borehole backfilled with cement-bentonite grout. Soil classifications based on ATL Field Engineer's field	
_								classifications.	
								3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
								Unit No. CDGV706) drill rig.	
_									
_							1		
-							1		
5—									
-							1		
7—							1		
							1		
—									
	-				-		-		
_									<u> </u>
		1	1	1					1

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-3	4.0 - 6.0	Brown mf+ SAND; and SILT	48.0	17.8											
K-125.6	S-5	8.0 - 10.0	Brownish-Grey CLAY; trace mf SAND; trace SILT		24.7	50	22	28								
K-125.0	S-7	19.0 - 21.0	Grey CLAY; little SILT; trace mf SAND		49.2											
	ST-1	28.0 - 30.0	Grey CLAY; little SILT	100.0	49.4	60	20	40								
	S-3	4.0 - 6.0	Brown CLAY; and SILT; trace f SAND		32.8											
	S-4	6.0 - 8.0	Brown CLAY; and SILT; trace f SAND		31.3	51	22	29								
K-127.0	S-6	14.0 - 16.0	Brown mf+ SAND; some SILT	25.0	22.8											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT; trace mf SAND	96.0	81.7	72	20	52								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT; trace mf SAND							7,100	35	8.75	1,548			
	S-11	39.0 - 41.0	Grey CLAY; trace SILT; trace mf SAND		63.9											
K-127.1	S-3	4.0 - 6.0	Blackish-Brown SILT; some CLAY; some mf SAND; trace DEBRIS (cinders); trace ORGANIC MATERIAL (root hairs)		30.7	34	22	12	4.5							
1 22712	S-6	14.0 - 16.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	4.4												
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		71.7											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT	100.0	58.0	68	19	49								
	S-3	4.0 - 6.0	Brownish-Grey CLAY; little SILT; trace f SAND							300	65	7.93	1,170			
	S-4	6.0 - 8.0	Brownish-Grey CLAY; little SILT; trace f SAND	95.0	30.0	70	25	45								
K-127.9	S-6	14.0 - 16.0	Greyish-Brown CLAY; trace f SAND; trace SILT		32.4											
	S-8	24.0 - 26.0	Greyish-Brown CLAY; trace SILT		28.8											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	30.0	30	17	13								
	S-5	8.0 - 10.0	Brownish-Grey CLAY; some mf SAND; trace SILT		28.0											
K-128.0	S-7	19.0 - 21.0	Grey CLAY; trace SILT	100.0	39.2	78	23	55								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		30.3											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	51.2	43	18	25								
	S-5	8.0 - 10.0	Brown SILT; some mf SAND; little ORGANIC MATERIAL (root hairs)	24.0	134.2	NP	NP	NP	16.8							
K-129.9A	S-8	24.0 - 26.0	Grey c-mf+ SAND; little SILT	20.0	31.1											
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		52.6											
	ST-1	41.0 - 43.0	Grey CLAY; trace SILT	100.0	40.5	44	20	24								

Client:

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS **ASTM D 2216**

PROJECT INFORMATION

Page 1 of 2

Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-02-02-22

Report Date: Date Received: February 7, 2022

February 1, 2022

TEST DATA

	1631 04		
Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
K-117.6-1.6A	S-3	6-8	6.8
	S-6 ¹	19-21	25.3
	S-8	28-30	33.3
K-122.4	S-5	8-10	24.8
	S-9 ¹	29-31	17.5
	S-13 ¹	49-51	21.7
	S-16	58-60	9.9
K-125.6	S-3	4-6	17.8
	S-5	8-10	24.7
	S-7	19-21	49.2
	ST-1	28-30	49.4
K-127.9	S-4	6-8	30.0
	S-6	14-16	32.4
	S-8	24-26	28.8
	ST-1	38-40	30.0
K-128.0	S-5	8-10	28.0
	S-7	19-21	39.2
	S-9	29-31	30.3
	ST-1	38-40	51.2

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-02-02-22

Report Date: Test Date:

February 7, 2022 February 3, 2022

Performed By:

M. White

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-117.6-1.6A	S-8	28-30	Α	10	672.08	70
K-122.4	\$-5	8-10	А	10	339.75	57
K-125.6	ST-1	28-30	А	10	257.41	100
K-127.9	S-4	6-8	А	10	164.08	95
K-127.9	ST-1	38-40	А	10	392.67	100
K-128.0	S-7	19-21	Α	10	163.31	100
K-128.0	ST-1	38-40	Α	10	216.36	100
K-129.9A	S-5	8-10	А	10	136.68	24
K-129.9A	\$T-1	41-43	А	10	240.79	100
K-129.98	ST-1	27-29	Α	10	186.13	100

Reviewed By:

Page 1 of 2

WBE certified company

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-02-02-22

Report Date:

February 7, 2022

Date Received:

February 1, 2022

TEST DATA

·····				
Boring No.	Sample No.	LL	PL	PI
K-117.6-1.6A	S-6	46	20	26
K-117.6-1.6A	S-8	47	19	28
K-122.4	S-5	NP	NP	NP
K-125.6	S-5	50	22	28
K-125.6	\$T-1	60	20	40
K-127.9	S-4	70	25	45
K-127.9	ST-1	30	17	13
K-128.0	S-7	78	23	55
K-128.0	ST-1	43	18	25
K-129,9A	S-5	NP	NP	NP
K-129.9A	ST-1	44	20	24
K-129.9B	S-6	96	49	47
K-129.98	ST-1	55	20	35

SAMPLE INFORMATION

		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-117.6-1.6A	S-6	4.76	19	25.3
K-117.6-1.6A	S-8	6.35	28	33.3
K-122.4	5-5	2	5	24.8
K-125.6	S-5	0.42	2	24.7
K-125.6	ST-1	0.177	0	49.4
K-127.9	S-4	2	13	30.0
K-127.9	\$T-1	0.177	0	30.0
K-128.0	S-7	0.149	0	39.2
K-128.0	ST-1	0.177	0	51.2
K-129.9A	S-5	2	25	134.2
K-129.9A	ST-1	0.177	0	40.5
K-129.98	S-6	0.841	9	88.0
K-129.98	ST-1	0.177	0	51.2

Client: Project: Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-02-02-22

February 7, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-1.6A	S- 6	Air Dry	Pulverizing and Screening
K-117.6-1.6A	5-8	Air Dry	Pulverizing and Screening
K-122.4	S-5	Air Dry	Pulverizing and Screening
K-125.6	Ş - 5	Air Dry	Pulverizing and Screening
K-125.6	ST-1	Air Dry	Not Necessary
K-127.9	\$-4	Air Dry	Pulverizing and Screening
K-127.9	ST-1	Air Dry	Not Necessary
K-128.0	S-7	Air Dry	Not Necessary
K-128.0	ST-1	Air Dry	Not Necessary
K-129.9A	S-5	Air Dry	Pulverizing and Screening
K-129.9A	ST-1	Air Dry	Not Necessary
K-129.9B	S-6	Air Dry	Pulverizing and Screening
K-129.9B	ST-1	Air Dry	Not Necessary

EQUIPMENT INFORMATION Liquid Limit Procedure: Multipoint - Method A Х Single Point - Method B **Liquid Limit Apparatus:** Manual Х **Motor Driven** X Liquid Limit Grooving Tool Material: **Plastic** Metal Liquid Limit Grooving Tool Shape: Flat Χ Curved (AASHTO Only) Mechanical Rolling Device **Plastic Limit:** Hand Rolled Х

	1			
Reviewed By:	- Jan		Date:	02/07/22
•		7/		

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. M K

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 18 - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 18 is STA 20648+00 (43.323835° N, 73.522193° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and the recent investigation by Atlantic Testing Laboratories, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 18 Borings WFE-18, K-129.9A, K-129.9B Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

Champlain Hudson Power Express Project

Champlain Hudson Power Express Inc.

BORING LOCATION PLAN Whitehall to Fort Edward Figure A-3

Sheet 14 of 16

Prepared by: **AECOM**

5/19/2021

	BORING CO	NTRACTOR:						SHEET 1 OF 2						
	ADT				1	A =	PROJECT NAME: CHPE -							
	DRILLER:						4	PROJECT NO.: 60323056						
	Chris Chaillo	ı				_	_							HOLE NO.: WFE-18
	SOILS ENGI	NEER/GEOLOGIST						START DATE: 1/11/21						
	Chris French							BORIN	FINISH DATE: 1/11/21					
	LOCATION:	M.P 129.89 (CP F	Rail)	•						OFFSET: N/A				
GRO	UND WATER	OBSERVATIONS				CAS	SING	SAM	PLER	DRIL	L BIT	CORE E	BARREL	DRILL RIG: CME LC-55
	No water obs	an rad		TYPE		Flunds In	oint Steel		ornia lified		one er Bit			BORING TYPE: SPT
	INO Water obs	erveu		SIZE I.D	1		1"		.5"					BORING O.D.: 4.5"
				SIZE O.			. .5"		. 		7/8"			SURFACE ELEV.:
				HAMME) lbs) lbs	0,	70			NORTHING
D	CORING	SAMPLE		HAMME			0"		0"					EASTING
Е	RATE	DEPTHS	TYPE	PEN.	REC.					N	USCS	STRAT.		
Р	MIN/FT	FROM - TO	AND	in	in		S PER 6			Corr.(2)	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS
T H		(FEET)	NO.			(ROCK	QUALITY	/ DESIGN	IATION)			DEPTH		
		0'-5'					Hand (Cleared					0.0'-2.5	'; Black fine-coarse SAND, little silt, little angular to
1.0													subrou	nded gravel, trace cobbles; loose, moist
2.0												0		
3.0												SAND	2.5'-3.5	; Brown fine-medium SAND; very loose, moist
3.0		3'-5'	S-1									0,		, ,
4.0											ML/SM		3.5'-5.0	; Gray SILT and fine sand; medium stiff
													TR-1; (3.0'-5.0')
5.0										_			No reco	N/OF/
6.0		5'-7'	S-2	24"	0"	6	3	4	4	5			No reco	very
0.0														
7.0														
		7'-9'	S-3	24"	24"	3	2	3	2	2	ML/OL		Dark br	own SILT, organics (organic silt); stiff, moist
8.0													TD_2: (7.0'-9.0')
9.0													1111-2, (7.0-9.0)
3.0		9'-11'	S-4	24"	24"	3	3	3	3	4	ML/OL		SAA	
10.0														
-														
11.0		441.401	S-5	24"	24"	2	2	4	2	-	MI /OI	c Silt	Grav S	LT, trace fine sand, very thin decomposing organics
12.0		11'-13'	5-5	24"	24"	3	3	4	3	5	ML/OL	rganic		anic silt laminates; soft, moist
												٥,		
13.0												SILT		
		13'-15'	S-6	24"	24"	2	4	5	5	6	ML/OL		SAA	
14.0														
15.0														
		15'-17'	S-7	24"	24"	WOH	1	2	3	2	ML/OL		Dark br	own SILT, little decomposing organics; soft, moist
16.0														
47.0													TR-3: (16.0'-16.5')
17.0													1111-5, (10.0 - 10.5)
18.0														
														18.5' (inferred)
19.0												≥ 9		
20.0												Silty SAND		
20.0	NOTES:												The info	ormation contained on this log is not warranted
		ng lined drive sampler (California	sampler) u	sed for SP	T samples.	Rings dime	ensions = 2	-1/2" O.D. I	oy 2-7/16" I	.D. by 6" le	ngth.		the actual subsurface condition. The contractor
	(2) Correction fa	actor: Ncorr=N*(2.0 ² -1.3	375 ²)in./(3.	.0 ² -2.4 ²)in. =	= N*0.65.								agrees	that he will make no claims against AECOM
														nds that the actual conditions do not conform
	Soil description	on represents a field	identifica	ation after	D.M. Buri	mister unl	ess other	wise note	d				to those	e indicated by this log.
	PLE TYPE:			T SPOON			BY TUBE		R=ROC	(CORE				
	ORTIONS:		TRACE=			LITTLE=			SOME=2			AND=35	5-50%	

	BORING CO	NTRACTOR:												SHEET 2 OF 2
	ADT							-	1	MA	4			PROJECT NAME: CHPE -
	DRILLER:						∆ V⊑			PROJECT NO.: 60323056				
	Chris Chaillo	ı		AECOM										HOLE NO.: WFE-18
	SOILS ENGI	NEER:								START DATE: 1/11/21				
	Chris French							BORIN	G LOG		FINISH DATE: 1/11/21			
		M.P 129.89 (CP F								T .	I	T		OFFSET: N/A
D E	CORING RATE	DEPTHS FROM - TO	TYPE AND	PEN. in	REC. in	BI OW	DED 6	n ON SAI	MDI ED	N Corr.	USCS CLASS.	STRAT. CHNG.		FIELD IDENTIFICATION OF SOILS
P T	MIN/FT	(FEET)	NO.	""	""			DESIGN		COII.	OLAGO.	DEPTH		FIELD IDENTIFICATION OF GOILG
Н		, ,				,			- ,					
		20'-22'	S-8	24"	24"	WOH	3	4	3	5	ML/SM		Gray SI	LT, little fine sand, trace clay; soft, moist
21.0														
22.0														
23.0														
24.0												AND		
25.0												Silty SAND		
25.0		25'-27'	S-9	24"	10"	11	19	13	7	21	SP	ω.		edium SAND, little fine sand, trace silt; very loose,
26.0													saturate	ed
27.0														
27.0														
28.0														28.5' (inferred)
29.0														20.3 (Illiened)
30.0		30'-32'	S-10	24"	24"	WOH	WOH	WOH	3		CL		Grav si	ty CLAY; soft, moist
31.0		00 02	0 10	2-7	2-7	WOIT	******	******	0		02			
00.0														
32.0														
33.0														
34.0												¥		
04.0												Silty CLAY		
35.0		051.071	0.44	0.411	0.411	14/011	14/011	144011	•		01	Sit	SAA	
36.0		35'-37'	S-11	24"	24"	WOH	WOH	WOH	2		CL		OAA	
													TR-4; (36.0'-36.5')
37.0														
38.0														
00.0		38'-40'	S-12	24"	24"	WOH	WOH	WOH	3		CL		SAA	
39.0														
40.0													14/55	
41.0													vv ⊢ ⊑ -18	8 terminated at 40', grouted to surface
42.0														
43.0														
	·													
44.0														
45.0														
	NOTES:													ormation contained on this log is not warranted the actual subsurface condition. The contractor
														that he will make no claims against AECOM
	0-11-1- : ::		ide este		D.M. 5									ds that the actual conditions do not conform
	Soil description PLE TYPE:	n represents a field	identifica S= SPLIT			nister unle U=SHELI			d. R=ROCk	CORF			to those	e indicated by this log.
	PORTIONS:		TRACE=			LITTLE=1			SOME=2			AND=35	5-50%	

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH	IDENTIFICATION TESTS R								REMARKS
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT	
							(1)	NO. 200	2 μm	(burnoff)	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)	
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39		
WFE-1A	S-5	11-13	43.0	68	23	45	CH	99.8	84		
WFE-1C	S-3	7-9	44.5				CH	99.3	86		
WFE-1C	S-7	15-17	44.5	78	27	51	CH	100	94		
WFE-1C	S-10	30-32	45.7	61	23	38	CH	100	87		
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3		
WFE-2	S-7	15-17	26.0				SC	28.5	13		
WFE-2	S-9	25-27	66.0	71	26	45	CH	100	90		
WFE-4	S-2	5-7	18.0				SC	34	13		
WFE-4	S-4	9-11	18.3				SM	17	5		
WFE-5	S-2	5-7	19.9				SM	19	3		
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28		
WFE-6A	S-2	5-7	13.6				SP-SC	9	3		
WFE-6A	S-4	9-11	17.4				SP-SM	7	2		
WFE-8	S-3	6-8	24.9				SC	48.5	12		
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43		
WFE-10	S-2	5-7	38.0	71	24	47	CH	94	76		
WFE-10	S-4	9-11	22.5				CL	83.9	32		
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35		
WFE-12	S-4	9-11	28.3				CL	95.8	37		
WFE-14	S-3	7-9	25.7				CL	75.7	44		
WFE-14	S-5	13-15	22.5				ML	53.9	17		
WFE-16	S-3	7-9	36.7	75	25	50	CH	100	90		
WFE-16	S-9	25-27	37.1	73	24	49	CH	100	80		
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1	
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26		
WFE-18	S-10	30-32	64.3	56	21	35	CH	100	87		
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29		
WFE-18A	S-7	15-17	18.9				SM	14.3	1		
WFE-18A	S-10	30-32	62.9	62	22	40	CH	99	86		
WFE-19A	S-3	7-9	38.1				SP-SM	8	3		
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2		
WFE-19A	S-10	30-32	17.6				SW-SM	8	1		
							1.0:				

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 4/30/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21003 File: Indx1.xlsx Page 1 of 1

Boring Location Plans Page 10 of 12	Drawn by ADW		Scale: Not to scale	,		Date: March 2022	
Champlain Hudson Power Express Design Package 2 Whitehall to Glens Falls, New York	Albany, NY Poughkeepsie, NY	ATLAN Binghamto NY Syracuse, I	on, Canto	•	ORIES, Li i nira, NY ca, NY	mited Plattsburgh, NY Watertown, NY	

Subsurface Investigation

												Report No.:		(CD10279D-01	-03-22	
	Client:	_K	iewit Eng	gineerin	g (NY) C	orp.						Boring Loca	tion: S	ee Bor	ing Location F	Plan	
	Project:	_ <u>s</u>	ubsurfac	e Invest	tigation												-
			hamplain	1 Hudso	n Powe	r Expr	ress,	Desi	ign Pa	ackage 2							-
		_ <u>v</u>	arious Lo	ocations	, New Y	ork_						Start Date:	1/27/2022	<u>2</u>	Finish Date:	1/27/2022	
	Boring N	No.:	K-129.9	<u>A</u>		Shee	et _	1_	of _	2		Date	Ground Time		Observations Depth	Casing	
	Northing		271.857			Weig	jht:	1	Hamm 40	_ lbs.		1/27/2022	PM	_	*14.3'	10.0'	-
	Easting	<u>1637</u>	<u>451.428</u>		Hamm		all:		30 omatic	in.							-
	Ground	Elev.:	14	13.39	_		Borir	ng Ad	vance	_	arv.	*May be at	fected by w	ater ut	ilized to adva	nce the	-
							Cas	ilig/3	110	vvet Rota	y	borenoie.					
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	C	PTH)F MPLE	SAMPLE	,	SAM PE 2"	VS O PLEF R 6" O.D. PLEF	₹	DEPTH OF CHANGE	f - fine m - medium	CLASS	IFICATIO	N OF	MATERIA	and - 35-50% some - 20-35% little - 10-20%	Recovery
			From	То			_				c - coarse					trace - 0-10%	
1—	C	1	0.0	2.0	SS	14	6	3	3			sh-Grey cmf 0 astic) GW Fl		ne c-m	SAND; trace S	SILT (frozen,	- 6
2—	S	0	0.0	1.0	00	_				2.0				OII T (01	_
з —	ļ Ņ	2	2.0	4.0	SS	4	3	5	6		Brown	CLAY; little f	SAND; trace	SIL1 (r	moist, plastic)	CL	1
4 —	G	3	4.0	6.0	SS	2	2	2	2		Brown	cmf SAND: a	nd CL AV: litt	الی ما	; trace f GRAV	El (moiet	1
5—			4.0	0.0	33	_					plastic		ild OLAT, ild	IC OIL I	, trace i GivAv	LL (MOISI,	
6—		4	6.0	8.0	SS	2	3	3	2		Brown	CLAY; little S	ILT; trace f S	SAND (r	moist, plastic)	CL	1.
7 —										8.0				`	,		
8 —		5	8.0	10.0	SS	WH	/12"	1	1	0.0	Brown	SILT; some n	nf SAND; littl	e ORG	ANIC MATERI	AL (root	1
9 —					1						,	(wet, non-plas	,		% % % Fines = 2	24.00/	
10 —	WET R														n advancing 3		
11 — 12 —	Q									12.0	roller b	it wet rotary o	pen hole wit	hin the	borehole.		
12 — 13 —	Å									,							
14 —	R																
15 —		6	14.0	16.0	SS	WH	/24"				Brown	SILT; and CL	AY; trace f S	AND (v	vet, plastic) M	L/CL	1
16 —					<u> </u>												
17 —																	
18 —				-		+			\dashv								
19 —		7	19.0	21.0	ss	WH	/24"		\dashv		Grev C	CLAY; little SIL	.T; trace f SA	ND (we	et, plastic) CL		2
20 —	\vdash			-	+				\dashv		, -	,	,	,	, , , , , , , , , ,		
1 —						1			\dashv	22.0							
22 —									$\overline{}$		• • • • • • • • • • • • • • • • • • • •	************			• • • • • • • • • • • • • • • • • • • •		
23 24 		8	24.0	26.0	SS	4	5	9	14		Grayo	-mf+ SAND; I	ittle SII T (w	at non	nlastic) SM		1
25 —		0	24.0	20.0	33	4	J	9	14		Giey C	-IIIIT SAND; I	ILI (WE	ı, 110f1-	piasuu) SIVI		<u></u>
	SS Split S	Spoon San	nple								Orillers:		Jeffrey Do	novan	John Trathe	n	
	SH Undis		mple (Shelby T	ube)							nspector:		Jame	s LaMa	rco (ATL)		

Subsurface Investigation

Boring N	lo.: _	K-129.9	<u>A</u> _		Report No.:		CD10279D-01-03-22 Sheet 2 of _	2
METHOD OF ADVANCE	SAMPLE NO.	SAM	F	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	m - medium little - 10	-50% -35% -20% -10%
		From	10				w = 31.1% % Fines = 20.0%	-1070
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		07.0		-
						27.0		
								-
	9	29.0	31.0	SS	WR/12" WH/12"		Grey CLAY; trace SILT (wet, plastic) CL	-
								-
				<u>'</u>				-
								-
								-
	10	34.0	36.0	SS	WH/24"		Similar Soil (wet, plastic) CL w = 52.6%	-
		34.0	30.0	00	VVI I/2-7		Offinial Coli (wet, plastic) GE w = 32.070	-
				<u> </u>				<u> </u>
								_
								_
	44	20.0	44.0	00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Circiles Cell (such releasies) Cl	_
	11	39.0	41.0	ss	WH/24"		Similar Soil (wet, plastic) CL	_
	OT 4	44.0	40.0	00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(Oll December of Onlike Oceans). Circiles Call (such relative). Ol	_
	ST-1	41.0	43.0	ss	WH 2 2 3		(3" Brass Lined Split Spoon) Similar Soil (wet, plastic) CL w = 40.5%, LL = 44, PL = 20, Pl = 24 % Fines = 100.0%	_
				<u> </u>			W 10.0%, EE 11,1 E 20,11 E1 701 III C 100.070	
								_
	12	48.0	50.0	SS	1 WH/12" 2		Similar Soil (wet, plastic) CL	
				\		50.0		
							Raying terminated at 50.0 foot	
							Boring terminated at 50.0 feet.	
							Notes:	
							Borehole backfilled with cement-bentonite grout. Sell placefeetings based on ATL Field Engineers field.	
							Soil classifications based on ATL Field Engineer's field classifications.	
							Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
							Unit No. CDGV706) drill rig.	
								classifications. 3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig

Subsurface Investigation

									Report No.: CD10279D-01-03-22	
Client:	_K	iewit Eng	gineering	g (NY) C	Corp.				Boring Location: See Boring Location Plan	
Project	: <u>S</u>	ubsurfac	e Invest	igation						
	<u></u> C	hamplair	1 Hudson	n Powe	r Exp	oress	, Desig	n Package		
	v	arious Lo	ocations	, New Y	ork/				Start Date: <u>1/27/2022</u> Finish Date: <u>1/28/2022</u>	
Boring	No.:	K-129.9	В		She	et _	_ 1 c	f <u>2</u>	Groundwater Observations Date Time Depth Casing	
	Coordi	nates				Sar	mpler Ha	ammer	<u>1/28/2022</u> <u>AM</u> <u>*9.3'</u> <u>10.0'</u>	
Northir	ng <u>7520</u>	27.252			Wei	ight:	140	lb:		
Easting	1637	<u>156.904</u>			ı	Fall:	30	ir		
				Hamm	ner Ty	/pe:	Auton	natic_		
Ground	d Elev.:	14	3.756	_		Bori	ng Adva	nce By:	*May be affected by water utilized to advance the	
				H\	W <u>(4'</u>	') Cas	sing/3 7	/8" Wet Ro	ary borehole.	
METHOD OF ADVANCE	SAMPLE NO.	c	PTH)F MPLE	SAMPLE TYPE		SAN PE 2"	WS ON IPLER :R 6" O.D. IPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% some - 20-35%	Recovery
2	Ø	From	То			О Д.,	II LLIX		m - medium little - 10-20% c - coarse trace - 0-10%	
C	1	0.0	2.0	SS	21	18	12 :	5	Brown cmf GRAVEL; some cmf SAND; trace SILT (frozen,	8
S					1			2.0	non-plastic) GW Possible FILL	
I N	2	2.0	4.0	SS	5	4	3 3	3	Brown cmf SAND; little SILT; trace CLAY (moist, very slightly	10
G								4.0	plastic) SM Possible FILL	
	3	4.0	6.0	SS	2	2	2 2	2	Brown CLAY; and mf SAND; trace SILT (moist, plastic) CL	13
				'	T			6.0		
	4	6.0	8.0	SS	2	2	1 '		Brown CLAY; some ORGANIC MATERIAL (root hairs); trace SILT	14
								8.0	(moist, plastic) OH OC = 34.9%	_
	5	8.0	10.0	SS	WI	H/24"			Grey CLAY; trace SILT (moist, plastic) CH	18
										_
WET R								7	Advanced casing to 10.0 feet and began advancing 3 7/8" tri-cone	_
0									roller bit wet rotary open hole within the borehole.	_
T A										_
R								\neg		_
	6	14.0	16.0	SS	WI	H/24"			Grey CLAY; little SILT; trace f SAND (moist, plastic) CH	24
									w = 88.0%, LL = 96, PL = 49, PI = 47	_
					1					
	+			 	+					
				 	+			\dashv		
	7	19.0	21.0	SS	WI	H/12"	1 .		Grey CLAY; some f SAND; trace SILT (wet, plastic) CL	18
+										
				 	+			22.0		
+	1			+	+			22.0		
+	+			+	+				<u> </u>	
+	8	24.0	26.0	SS	4	5	8	10	Grey c-mf SAND; trace SILT; trace f GRAVEL (moist, non-plastic)	8
	1			1 '	4					_
										_
NX Roc	it Spoon San ck Core								Drillers: Jeffrey Donovan; John Trathen	
	listurbed Sar imated Grou	nple (Shelby T ndwater	ube)						Inspector: James LaMarco (ATL)	4

Subsurface Investigation

	Boring	No.:	K-129.9	<u>B</u>		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	0	PTH DF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% some - 20-35% little - 10-20% c - course trace - 0-10%	RECOVERY (inches)
							26.0	SP-SM w = 18.3% % Fines = 7.0%	
26 -							1		
27 - 28 -		ST-1	27.0	29.0	SS	WH/18" 2	1	(3" Brass Lined Split Spoon) Grey CLAY; trace SILT (wet, plastic) CH w = 51.2%, LL = 55, PL = 20, PI = 35 % Fines = 100.0%	24
29 -		9	29.0	31.0	SS	WH/18" 1	1	Similar Soil (wet, plastic) CH	24
30 -							1		
31 -	+					1	1		
32 -							1		
33 -							1		
34 -		10	34.0	36.0	SS	WH/24"		Similar Soil (wet, plastic) CH w = 50.8%	24
35 -					'				
37 -									
38 -							1		
39 -		11	38.0	40.0	SS	WH/24"	_	Similar Soil (wet, plastic) CH	24
40 -					<u> </u>		40.0		
41-							1	Boring terminated at 40.0 feet.	
42-							1		
43-	_						1	Notes: 1. Borehole backfilled with cement-bentonite grout.	
44 -							1	Soil classifications based on ATL Field Engineer's field	
45-	+						1	classifications.	
46 -							1	Borehole was advanced with ATL's Geoprobe 7822D7 (Rig Unit No. CDGV706) drill rig.	
47 -	+						1	, ,	
48 -							1		
49 -	+						1		
50 -							1		
51 -	1						1		
52 -							1		
53-							1		
54 -									
55 -									
57 -									
58 -							1		
59 -							1		
60 -							1		
61 -							1		
62 -							1		
1	I	I	1	I	I	I			

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ ATL

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-3	4.0 - 6.0	Brown mf+ SAND; and SILT	48.0	17.8											
K-125.6	S-5	8.0 - 10.0	Brownish-Grey CLAY; trace mf SAND; trace SILT		24.7	50	22	28								
K-125.0	S-7	19.0 - 21.0	Grey CLAY; little SILT; trace mf SAND		49.2											
	ST-1	28.0 - 30.0	Grey CLAY; little SILT	100.0	49.4	60	20	40								
	S-3	4.0 - 6.0	Brown CLAY; and SILT; trace f SAND		32.8											
	S-4	6.0 - 8.0	Brown CLAY; and SILT; trace f SAND		31.3	51	22	29								
K-127.0	S-6	14.0 - 16.0	Brown mf+ SAND; some SILT	25.0	22.8											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT; trace mf SAND	96.0	81.7	72	20	52								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT; trace mf SAND							7,100	35	8.75	1,548			
	S-11	39.0 - 41.0	Grey CLAY; trace SILT; trace mf SAND		63.9											
K-127.1	S-3	4.0 - 6.0	Blackish-Brown SILT; some CLAY; some mf SAND; trace DEBRIS (cinders); trace ORGANIC MATERIAL (root hairs)		30.7	34	22	12	4.5							
1 22712	S-6	14.0 - 16.0	Blackish-Grey c-mf+ SAND; trace SILT; trace f GRAVEL	4.4												
	S-7	19.0 - 21.0	Grey CLAY; trace SILT		71.7											
	S-9	30.0 - 32.0	Grey CLAY; trace SILT	100.0	58.0	68	19	49								
	S-3	4.0 - 6.0	Brownish-Grey CLAY; little SILT; trace f SAND							300	65	7.93	1,170			
	S-4	6.0 - 8.0	Brownish-Grey CLAY; little SILT; trace f SAND	95.0	30.0	70	25	45								
K-127.9	S-6	14.0 - 16.0	Greyish-Brown CLAY; trace f SAND; trace SILT		32.4											
	S-8	24.0 - 26.0	Greyish-Brown CLAY; trace SILT		28.8											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	30.0	30	17	13								
	S-5	8.0 - 10.0	Brownish-Grey CLAY; some mf SAND; trace SILT		28.0											
K-128.0	S-7	19.0 - 21.0	Grey CLAY; trace SILT	100.0	39.2	78	23	55								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		30.3											
	ST-1	38.0 - 40.0	Grey CLAY; trace SILT	100.0	51.2	43	18	25								
	S-5	8.0 - 10.0	Brown SILT; some mf SAND; little ORGANIC MATERIAL (root hairs)	24.0	134.2	NP	NP	NP	16.8							
K-129.9A	S-8	24.0 - 26.0	Grey c-mf+ SAND; little SILT	20.0	31.1											
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		52.6											
	ST-1	41.0 - 43.0	Grey CLAY; trace SILT	100.0	40.5	44	20	24								

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	Atterburg Limits		Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-4	6.0 - 8.0	Brown CLAY; some ORGANIC MATERIAL (root hairs); trace SILT						34.9							
K-129.9B	S-6	14.0 - 16.0	Grey CLAY; little SILT; trace f SAND		88.0	96	49	47								
	S-8	24.0 - 26.0	Grey c-mf SAND; trace SILT; trace f GRAVEL	7.0	18.3							-				
	ST-1	27.0 - 29.0	Grey CLAY; trace SILT	100.0	51.2	55	20	35								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		50.8											
	S-4	6.0 - 8.0	Grey CLAY; little SILT; little mf SAND	85.8	46.6	39	18	21								
К-130.9	S-6	14.0 - 16.0	Grey c-mf+ SAND; some SILT; trace CLAY	35.0	65.2											
	RC-2	30.5 - 31.5	Dark Grey SHALE												1,153	2.75
	RC-2	31.5 - 31.8	Dark Grey SHALE											7,220		
	S-4	6.0 - 8.0	Grey CLAY; trace mf SAND; trace SILT	96.9	48.7	41	20	21								
K-131.6	S-7	19.0 - 21.0	Grey c-mf+ SAND; little SILT	15.0	22.6											
	ST-1	35.0 - 37.0	Grey CLAY; trace f SAND; trace SILT	99.9	55.9	62	25	37								
	S-3	4.0 - 6.0	Blackish-Brown cmf SAND; some mf GRAVEL; trace SILT							500	35	7.69	42,570			
	S-4	6.0 - 8.0	Grey mf+ SAND; and SILT; trace CLAY	50.0	23.3											
K-131.7A	S-7	19.0 - 21.0	Grey SILT; some CLAY; little f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)	78.3	43.6	53	21	32			-	-				
	S-9	29.0 - 31.0	Grey CLAY; little SILT; trace f SAND		70.9											
	ST-1	45.0 - 47.0	Grey CLAY; little mf SAND; trace SILT	86.6	66.4	53	25	28				1				
	S-5	8.0 - 10.0	Brownish-Grey CLAY; little SILT; little ORGANIC MATERIAL (root hairs); trace mf SAND					-1	10.5			-1				
K-131.7B	S-6	14.0 -16.0	Black ORGANIC MATERIAL (peat, root hairs); trace SILT	3.1	178.4	NP	NP	NP								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		60.9			-				1				
	ST-1	45.0 - 47.0	Grey CLAY; trace SILT; trace f SAND	99.8	58.7	55	19	36								
	S-5	8.0 - 10.0	Black ORGANIC MATERIAL (peat, root hairs); trace mf SAND; trace SILT	2.0	411.1	NP	NP	NP								
К-131.9	S-8	24.0 - 36.0	Grey c-m SAND; trace CLAY; trace SILT		62.8											

Client: Kiewit Intrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.: CD10279E-02-02-22

Date: February 7, 2022

Page 2 of 2

TEST DATA (continued)

Boring No.	Sample No.	Depth (ft)	Moisture Content (%)
K-129.9A	S-5	8-10	134.2
	S-8	24-26	31.1
	S-10	34-36	52.6
	ST-1	41-43	40.5
K-129.9B	S-6	14-16	88.0
	S-8	24-26	18.3
	ST-1	27-29	51.2
	S-10	34-36	50.8

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-02-02-22

Client: Kiewit Intrastructure Co. Date: 02/07/22

Sample No: K-129.9A, S-8 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 24-26'

GRAIN SIZE - mm % Gravel % Fines % Sand % Cobbles Coarse Coarse Medium Fine Silt Fine Clay 0 69 20 10

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
1/2"	1(10		
#4	100		
#10	99		
#40	89		
#200	20		
		and the second	
	1		
		1114	
			ļ

Grey c-mf+ SA	Soil Description ND: little SILT	
PL=	Atterberg Limits	: P !=
D ₈₅ = 0.3609 D ₃₀ = 0.0914 C _U =	Coefficients D60= 0.1763 D15= Cc=	D ₅₀ = 0.1401 D ₁₀ =
USCS=	Classification AASHT	-O=
Moisture Conte	Remarks nt= 31.1%	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Figure

Reviewed by:

Date: 02/07/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-02-02-22

Client: Kiewit Intrastructure Co.

Date: 02/07/22

Sample No: K-129.9B, S-8 Source of Sample: Boring Sample

Location: In-place

Elev./Depth: 24-26'

			(-	KAIN SIZE	- mm.			
P/ Cobbles	% G	ravel		% Sano		% Fines		
% Copples	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	1	5	38	49	7		

SIEVE	PERCENT	SPEC."	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
1/2"	100	<u> </u>	
#4	99		
#10	94		
#40	56		
#200	7.0		
		1	
			ļ
1		İ	1

oney o un or a	D; trace SILT; trace f	GWW
PL=	Atterberg Limits	P(=
D ₈₅ = 1.2169 D ₃₀ = 0.1736 C _u = 5.88	Coefficients D60= 0.4924 D15= 0.1006 Cc= 0.73	D ₅₀ = 0.3512 D ₁₀ = 0.0837
USCS=	Classification AASHT	O=
Moisture Conto	Remarks ent= 18.3%	

(no specification provided)

-ATLANTIC TESTING LABORATORIES, LIMITED

Figure

Reviewed by: 2

Date: _____02/07/22

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE **ASTM D 1140**

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-02-02-22

Report Date: Test Date:

February 7, 2022 February 3, 2022

Performed By:

M. White

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-117.6-1.6A	S-8	28-30	Α	10	672.08	70
K-122.4	\$-5	8-10	А	10	339.75	57
K-125.6	ST-1	28-30	А	10	257.41	100
K-127.9	S-4	6-8	А	10	164.08	95
K-127.9	ST-1	38-40	А	10	392.67	100
K-128.0	S-7	19-21	Α	10	163.31	100
K-128.0	ST-1	38-40	Α	10	216.36	100
K-129.9A	S-5	8-10	А	10	136.68	24
K-129.9A	\$T-1	41-43	Α	10	240.79	100
K-129.98	ST-1	27-29	Α	10	186.13	100

Reviewed By:

Page 1 of 2

WBE certified company

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-02-02-22

Report Date:

February 7, 2022

Date Received:

February 1, 2022

TEST DATA

Boring No.	Sample No.	LL	PL	PI
K-117.6-1.6A	S-6	46	20	26
K-117.6-1.6A	S-8	47	19	28
K-122.4	S-5	NP	NP	NP
K-125.6	S-5	50	22	28
K-125.6	\$T-1	60	20	40
K-127.9	S-4	70	25	45
K-127.9	ST-1	30	17	13
K-128.0	S-7	78	23	55
K-128.0	ST-1	43	18	25
K-129,9A	S-5	NP	NP	NP
K-129.9A	ST-1	44	20	24
K-129.9B	S-6	96	49	47
K-129.98	ST-1	55	20	35

SAMPLE INFORMATION

		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-117.6-1.6A	S-6	4.76	19	25.3
K-117.6-1.6A	S-8	6.35	28	33.3
K-122.4	S-5	2	5	24.8
K-125.6	S-5	0.42	2	24.7
K-125.6	ST-1	0.177	0	49.4
K-127.9	S-4	2	13	30.0
K-127.9	ST-1	0.177	0	30.0
K-128.0	S-7	0.149	0	39.2
K-128.0	ST-1	0.177	0	51.2
K-129.9A	S-5	2	25	134.2
K-129.9A	ST-1	0.177	0	40.5
K-129.98	S-6	0.841	9	88.0
K-129.98	ST-1	0.177	0	51.2

Client: Project: Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-02-02-22

February 7, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-1.6A	S- 6	Air Dry	Pulverizing and Screening
K-117.6-1.6A	5-8	Air Dry	Pulverizing and Screening
K-122.4	S-5	Air Dry	Pulverizing and Screening
K-125.6	S-5	Air Dry	Pulverizing and Screening
K-125.6	ST-1	Air Dry	Not Necessary
K-127.9	\$-4	Air Dry	Pulverizing and Screening
K-127.9	ST-1	Air Dry	Not Necessary
K-128.0	S-7	Air Dry	Not Necessary
K-128.0	ST-1	Air Dry	Not Necessary
K-129.9A	S-5	Air Dry	Pulverizing and Screening
K-129.9A	ST-1	Air Dry	Not Necessary
K-129.9B	S-6	Air Dry	Pulverizing and Screening
K-129.9B	ST-1	Air Dry	Not Necessary

EQUIPMENT INFORMATION Liquid Limit Procedure: Multipoint - Method A Х Single Point - Method B **Liquid Limit Apparatus:** Manual Х **Motor Driven** X Liquid Limit Grooving Tool Material: **Plastic** Metal Liquid Limit Grooving Tool Shape: Flat Χ Curved (AASHTO Only) Mechanical Rolling Device **Plastic Limit:** Hand Rolled Х

	1			
Reviewed By:	- Jan		Date:	02/07/22
•		7/		

WBE certified company

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-02-02-22

Project:

Champlain Hudson Power Express

Report Date:

February 7, 2022

United Cable Installation

Date Received:

February 1, 2022

Various Locations, New York

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT

ASTM D 2974

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-129.9A	S-5	16.8	83.2	134.2	А	440
K-129.9B	S-4	34.9	65.1	219.6	А	440

Reviewed By:

Date

02/07/22

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. M K

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 19 - Revision 1

Champlain Hudson Power Express Project

Hudson Falls, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located east of Hudson Falls, New York. The approximate station for the start of HDD crossing Number 19 is STA 20696+00 (43.3134° N, 73.5341° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by TRC and the recent investigation by Atlantic Testing Laboratories, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 19 Boring B130.8-1, K-130.9 Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

BORING B130.8-1 G.S. ELEV. N/A FILE 195651 SHEET

1 OF 1

	METHOD OF ADVANCING BOREHOLE					
$\Box \nabla$	а	FROM	0.0 '	TO	10.0 '	
] =	d	FROM	10.0 '	TO	30.0 '	
⋾						
7-						
		a	∑ a FROM	∑ a FROM 0.0 '	□ a FROM 0.0 ' TO	<u> </u>

DRILLERI	P. PLANTIER
HELPER	M. NAGEY
INSPECTOR	J. STAPLETON
DATE STARTED	01/23/2013
DATE COMPLETED	01/23/2013

SUMMARY OF LABORATORY TEST DATA

Project Name: Client Name: $\underline{TDI\ Champlain\ Hudson\ Power\ Express-CP}$

Transmission Developers, Inc.

TRC Project #: <u>195651</u>

SAMPLE IDENTIFICATION		nscs			IN SIZE IBUTION		PLASTICITY			vity	ntent	nt (pcf)	ve sf)	tent (%)		
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity Moisture Content (%)		Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-6	13.5-15.0	-	-	-	-	ı	-	-	-	-	-	24.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	1	-	-	-	-	-	61.2	-	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	39.1	-	-	-
B129.2-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	62.5	60.1	-	-
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	42.1	80.5	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	33.2	-	-	-
D120 0 1	S-6	13.5-15.0	CL					35	17	18	1.0		45.7			
B130.8-1	S-7	18.5-20.0	CL	-	-	-	-	33	17	10	1.6	-	45.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	-	-	-	-	-	-	23.8	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	21.7	-	-	-
D191 5 1	S-3	4.0-6.0	CL	-	-	-	-	48	23	25	0.3	-	30.0	97.0	-	-
B131.5-1	S-5	8.0-10.0	-	0.0	14.2	8	5.8	-	-	-	-	-	34.7	-	-	-
	S-6	13.5-15.0	CL	0.0	15.7	41.0	43.3	47	21	26	0.2	2.74	25.5	-	-	-

				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	B125.1-1	S-8	23.5-25.0 FT	29.1	25	53	28	СН
	B130.8-1	S-6 & S-7	13.5-20.0 FT	45.7	17	35	18	CL
	B131.5-1	S-3	4.0-6.0 FT	30.0	23	48	25	CL
♦	B131.5-1	S-6	13.5-15.0 FT	25.5	21	47	26	CL
▼	B135.35-1	S-6	13.5-15.0 FT	38.2	23	47	24	CL
*	B135.35-1	S-11	38.5-40.0 FT	36.3	19	26	7	CL-ML
\oplus	B143.59-1	S-8	23.5-25.0 FT	29.6	17	27	10	CL
+	B145.0-1	S-15	58.5-60.0 FT	23.7	20	18	NP	
\otimes	B150.5-1	S-3	4.0-6.0 FT	21.5	NP	NV	NP	SM
\times	B153.1-1	S-7	18.5-20.0 FT	22.8	20	19	NP	

TRC Engineers, Inc. Mt. Laurel, NJ Client: TDI CHAMPLAIN HUDSON POWER EXPRESS - CP

Project: TRANSMISSION DEVELOPERS, INC.

Project No.: 195651 **Figure** 2

Boring Location Plans Page 11 of 12	Drawn by: ADW		Scale: Not to scale	Project No.: CD10279		Date: March 202	22
Champlain Hudson Power Express Design Package 2	Albany, NY	ATLA Bingham NY	ton	NG LABOR on, NY	RATORIES, Lir Elmira, NY	mited Plattsburgh,	, NY
Whitehall to Glens Falls, New York	Poughkeepsie, NY	Syracuse,	, NY Roches	ster, NY	Utica, NY	Watertown,	NY

Subsurface Investigation

												Report No.:		-	CD10279D-01-03-22			
	Client:	_K	iewit Eng	ineering	g (NY) C	orp.						Boring Loca	ation:	See I				_
	Project:	S	Kiewit Engineering (NY) Corp. Boring Location: See Boring Location Plan Subsurface Investigation					_										
								ackage 2								_		
		Va	arious Lo	cations	, New Y	ork						Start Date:	1/2	8/2022	Fir	nish Date:	1/31/2022	
	Boring N	lo ·	K-130.9	,		Shee	et .	1	of _	2				Groundwa	iter Obs		0 .	
	Doming 1	_	11 10010			Onoc	^ _	•				Date		Time		Depth	Casing	
		Coordi						•	Hamm			1/31/2022	-	PM		*12.8'	10.0'	-
	Northing					Weig	•		40	_ lbs.			-				-	-
	Easting	16333	<u>324.323</u>		Hamm		all:		30 omatic	in.			-					-
	C	□ 1	44	740	riamin	•						*May be of	- 	d b	- <u> </u>	. d 4 a a du a		-
	Ground I	Elev.:	143	3.712				•	vance	•	V C	*May be af	песте	a by wate	r utilize	ed to adva	ance the	_
					HW (4") Cas	ing/	3 7/8"	weti	Rotary/N	X Core	borehole.						-
	Ŀ	<u>.</u>				1_						CLASS	IFIC	ATION	OF M	ATERI	AL	
Ŧ	NCE	E NO	DEF O		빌		SAM	VS O PLEF		声								very
DEPTH	METHOD OF ADVANCE	SAMPLE	SAM		SAMPLE		2"	R 6" O.D.		DEPTH OF CHANGE	f - fine						and - 35-50% some - 20-35%	Recovery
	ME A	SAI	From	То	"		SAM	PLEF	₹		m - medium c - coarse						little - 10-20% trace - 0-10%	" `
	С	1	0.0	2.0	SS	16	20	8	5			sh-Grey cmf G	GRAVE	EL: some o	m SAN	D: trace S		16
1 —	A									20		astic) GW FI		,		,	,	
2—	S	2	2.0	4.0	SS	4	7	7	4	2.0	Browni	sh-Grey mf S	SAND;	some CLA	Y; trace	e SILT (mo	oist,	10
3—	G G									4.0	modera	ately plastic)	SC			`		
4 —		3	4.0	6.0	SS	1	1	1	2	4.0	Dark B	rown & Grey	CLAY	; little SILT	; trace t	SAND; tr	ace	12
5—											ORGA	NIC MATERIA	AL (ro	ot hairs) (r	noist, pl	astic) CL		
6		4	6.0	8.0	SS	2	2	2	2		Grey C	LAY; little SIL	_T; littl	e mf SANI	D (wet, _I	olastic) C	L	23
7 —											w = 46	.6%, LL = 39,	, PL =	18, PI = 2	1 % Fir	nes = 85.8	3%	
8—		5	8.0	10.0	SS	WH	l/24"					sh-Grey CLA		e f GRAVE	L; little	mf SAND;	trace SILT	12
9—											(satura	ited, plastic) (CL					
10 — 11 —	WET R											ced casing to			•	•	7/8" tri-cone	
12—	Q									12.0	roller b	it wet rotary o	ppen h	ole within	the bore	ehole.		
13 —	Å																	
14 —	R Y																	
15 —		6	14.0	16.0	SS	WH	1 1	1	3			-mf+ SAND; s) SM w = 65.				(wet, very	slightly	24
16 —					<u> </u>						μιασιιό	, SIVI W - 00.	. <u>~</u> /U /	v i iiios – i	JJ.U /0			
17 —										. 17.0								_
18 —																		
9 —			40.0	00.0	00	40	00	F0."	0"		D' '	OD AV /E:		- 40417		L ANG 1	- OII T	10
20 —		7	19.0	20.0	SS \	13	30	50/0	U"	20.0		cmf GRAVEL; slightly plasti						12
1 —					_						GC							
2 —												ntered possib						
3 —						-					Auvano	ced 3 7/8" tri-	cone i	OI IIQ ISIIO	∠ט.U 10	ariu Deg	yan conng.	
4 —		8	24.0	24.0	98	E0//	<u> </u>				NO DE	COVEDY						0
5 —		ď	24.0	24.0	SS	50/0	J			25.0	NO RE	COVERY						
	SS Split S	Spoon Sam Core	ple								Orillers:		Jeff	rey Dono	/an; Jo	nn Trathe	n	
	SH Undist		nple (Shelby Tu	ube)						I	nspector:			James La	aMarco	(ATL)		

Subsurface Investigation

METHOD OF ADVANCE	SAMPLE NO.	C	PTH)F MPLE	SAMPLE TYPE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	### CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY
		From	То				c - course trace - 0-10%	
NX C		25.0	30.0	NX	RUN 1		Dark Grey SHALE	56
0							56" or 93% Recovery 8 Pieces (53") - 5% Chips and Fragments	
R E						7	6 Pieces longer than 4" (48") - RQD = 80%	
(WET)						1		
						1		
		30.0	35.0	NX	RUN 2	30.0	Dark Grey SHALE	5
		30.0	33.0	INA	NON 2	4	58" or 97% Recovery	
						_	10 Pieces (50") - 14% Chips and Fragments	
							6 Pieces longer than 4" (35") - RQD = 58%	
						1		
						35.0		
		35.0	40.0	NX	RUN 3		Dark Grey SHALE	60
			10.0	1.0.	1.0.1.0	4	60" or 100% Recovery	_
						4	5 Pieces (55") - 8% Chips and Fragments	
							5 Pieces longer than 4" (55") - RQD = 92%	
						40.0		
						+0:0_		
				-		┥	Boring terminated at 40.0 feet.	<u> </u>
						4		
						4	Notes:	
							Borehole backfilled with cement-bentonite grout.	
							Soil classifications based on ATL Field Engineer's field classifications.	
						1	Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
						┪	Unit No. CDGV706) drill rig.	
						-	,	
						4		<u> </u>
						╛		
						1		
						1		
				1		1		
		-		_		-		_
						4		
						╛		
						7		
						1		
		 	 	+	1	1		\vdash
						-		\vdash
						4		
<u> </u>								L
						1		

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ ATL4-08

K-130.9 - Runs 1 and 2

K-132.2 - Runs 1 and 2

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-4	6.0 - 8.0	Brown CLAY; some ORGANIC MATERIAL (root hairs); trace SILT						34.9							
K-129.9B	S-6	14.0 - 16.0	Grey CLAY; little SILT; trace f SAND		88.0	96	49	47								
	S-8	24.0 - 26.0	Grey c-mf SAND; trace SILT; trace f GRAVEL	7.0	18.3							-				
	ST-1	27.0 - 29.0	Grey CLAY; trace SILT	100.0	51.2	55	20	35								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		50.8											
	S-4	6.0 - 8.0	Grey CLAY; little SILT; little mf SAND	85.8	46.6	39	18	21								
К-130.9	S-6	14.0 - 16.0	Grey c-mf+ SAND; some SILT; trace CLAY	35.0	65.2											
	RC-2	30.5 - 31.5	Dark Grey SHALE												1,153	2.75
	RC-2	31.5 - 31.8	Dark Grey SHALE											7,220		
	S-4	6.0 - 8.0	Grey CLAY; trace mf SAND; trace SILT	96.9	48.7	41	20	21								
K-131.6	S-7	19.0 - 21.0	Grey c-mf+ SAND; little SILT	15.0	22.6											
	ST-1	35.0 - 37.0	Grey CLAY; trace f SAND; trace SILT	99.9	55.9	62	25	37								
	S-3	4.0 - 6.0	Blackish-Brown cmf SAND; some mf GRAVEL; trace SILT							500	35	7.69	42,570			
	S-4	6.0 - 8.0	Grey mf+ SAND; and SILT; trace CLAY	50.0	23.3											
K-131.7A	S-7	19.0 - 21.0	Grey SILT; some CLAY; little f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)	78.3	43.6	53	21	32			-					
	S-9	29.0 - 31.0	Grey CLAY; little SILT; trace f SAND		70.9											
	ST-1	45.0 - 47.0	Grey CLAY; little mf SAND; trace SILT	86.6	66.4	53	25	28				1				
	S-5	8.0 - 10.0	Brownish-Grey CLAY; little SILT; little ORGANIC MATERIAL (root hairs); trace mf SAND					-1	10.5			-1				
K-131.7B	S-6	14.0 -16.0	Black ORGANIC MATERIAL (peat, root hairs); trace SILT	3.1	178.4	NP	NP	NP								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		60.9			-				1				
	ST-1	45.0 - 47.0	Grey CLAY; trace SILT; trace f SAND	99.8	58.7	55	19	36								
	S-5	8.0 - 10.0	Black ORGANIC MATERIAL (peat, root hairs); trace mf SAND; trace SILT	2.0	411.1	NP	NP	NP								
К-131.9	S-8	24.0 - 36.0	Grey c-m SAND; trace CLAY; trace SILT		62.8											

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS

ASTM D 2216

Page 1 of 2

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-03-02-22

Report Date: Date Received: February 18, 2022

February 7, 2022

TEST DATA

1EST DATA										
Boring	Sample	Depth	Moisture							
No.	No.	(ft)	Content (%)							
K-117.6-0.2	S-4	6-8	25.3							
	S-7 ¹	19-21	18.3							
	S-9	28-30	55.0							
K-117.6-2.1	S-4	6-8	15.4							
	S-6	14-16	47.9							
	S-9	29-31	16.4							
	S-11 1	38-40	16.4							
K-117.6-2.3	S-4 ¹	6-8	13.7							
K-130.9	S-4	6-8	46.6							
	S-6	14-16	65.2							
K-131.6	S-4	6-8	48.7							
	S-7	19-21	22.6							
	ST-1	35-37	55.9							
K-131.7A	S-4	6-8	23.3							
	S-7	19-21	43.6							
	S-9	29-31	70.9							
	ST-1	45-47	66.4							
K-131.78	S-6	14-16	178.4							
	S-9	29-31	60.9							
	ST-1	45-47	58.7							

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-03-02-22

Client: Kiewit Intrastructure Co. Date: 02/18/22

Sample No: K-130.9, S-6

Source of Sample: Boring Sample

Location: In-place

Elev./Depth: 14-16'

			G	RAIN SIZE	- mm.			
		ravel	İ	% Sand	1	% Fines		
% Coopies	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	2	12	51	35		

SIZE FINER PERCENT SPEC. () 1/2" 100 #4 100 #10 #4<	SIEVE	PERCENT	SPEC.*	OUT OF
#4 100 #10 98 #40 86	SIZE	FINER	PERCENT	SPEC. (X)
#10 98 #40 86	1/2"	100		
#40 86	#4	100		
#40 86	#10	98		
		1		
		3		ŀ
	#200	20		}
				į į
		1.		{
				-
				1
			1	
		1		
	1.1		1.00	
	** i		1	
	44.5			İ
		1	[
	4.1	1 1 1 1		

	Soil Description	~- [
Grey e-mf+ SA?	ND: some SILT: trac	ce CLAY
PL=	Atterberg Limit	<u>s</u> PI=
D ₈₅ = 0.4113 D ₃₀ = C _u =	Coefficients D60= 0.1585 D15= Cc=	D ₅₀ = 0.1168 D ₁₀ =
USCS=	Classification AASH	TO=
Moisture Conte	Remarks nt= 65.2%	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Figure

Reviewed by:

Date: 02/18/22

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-03-02-22

Project: Ch

Champlain Hudson Power Express

Report Date:

February 18, 2022

United Cable Installation

Test Date:

February 11, 2022

Various Locations, New York

Performed By:

A. Rivers

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-117.5-0.2	5-4	6-8	А	10	205.83	41.7
K-117.6-0.2	S-7	19-21	Α	10	220.45	23.5
K-117.6-0.2	S9	28-30	А	10	273.37	99.7
K-117.6-2.1	S-6	14-16	А	10	163.54	57.2
K-130.9	S-4	6-8	А	10	144.29	85.8
K-131.6	S-4	6-8	А	10	138.58	96.9
K-131.6	ST-1	35-37	А	10	227.62	99,9
K-131.7A	S-7	19-21	А	10	175.90	78.3
K-131.7A	ST-1	45-47	A	10	221.28	86.6
K-131.7B	S-6	14-16	Α	10	147.24	3.1
K-131.7B	ST-1	45-47	А	10	239.55	99.8
K-131.9	S- 5	8-10	А	10	133.26	2.0
K-131.9	5T-1	35-37	А	10	194.65	99.0
K-132.1	S-6	14-16	А	10	202.17	44.3
K-132.1	ST-1	35-37	А	10	299.54	99.4

Reviewed By:

H-V

Date: February 18, 2022

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATI. Report No.: CD10279E-03-02-22

Report Date:

February 18, 2022

Date Received:

February 7, 2022

TEST DATA

1EST DATA											
Boring No.	Sample No.	LL	PL.	PΙ							
K-117.6-0.2	S-4	NP	NΡ	NP							
K-117.6-0.2	S-7	NΡ	NΡ	NP							
K-117.6-0.2	S- 9	65	26	39							
K-117.6-2.1	\$-6	41	19	22							
K-130.9	5-4	39	18	21							
K-131.6	Ş-4	41	20	21							
K-131.6	ST-1	62	25	37							
K-131.7A	S-7	53	21	32							
K-131.7A	5T-1	53	25	28							
K-131.7B	S-6	NP	NP	NP							
K-131.7B	\$T-1	55	19	36							
K-131.9	5-5	NP	NP	NP							
K-131.9	ST-1	51	20	31							
K-132.1	S-6	NP	NP	NP							
K-132.1	ST-1	44	19	25							

SAMPLE INFORMATION

SAMPLE HALORIMANON										
		Maximum	Estimated Amount of Sample	As Received Moisture						
		Grain Size	Retained on No. 40 Sieve	Content						
Boring No.	Sample No.	(mm)	(%)	(%)						
K-117.6-0.2	S-4	6.35	15	25.3						
K-117.6-0.2	5-7	2.38	30	18.3						
K-117.6-0.2	5-9	0.595	1	55.0						
K-117.6-2.1	S-6	2	5	47.9						
K-130.9	S-4	2	5	46.6						
K-131.6	S-4	0.595	2	48.7						
K-131.6	57-1	0.841	1	55.9						
K-131.7A	S-7	2	2	43.6						
K-131.7A	ST-1	9.51	10	65.4						
K-131.7B	S-6	9.51	30	178.4						
K-131.7B	ST-1	0.595	1	58.7						
K-131.9	S-5	4.76	20	411.1						
K-131.9	ST-1	2	1	70.9						
K-132.1	5-6	4.76	10	121.0						
K-132.1	ST-1	2	1	37.7						

Client: Project: Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-03-02-22

February 18, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-0.2	S-4	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-7	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-9	Air Dry	Pulverizing and Screening
K-117.6-2.1	5-6	Air Dry	Pulverizing and Screening
K-130.9	S-4	Air Dry	Pulverizing and Screening
K-131.6	S-4	Air Dry	Pulverizing and Screening
K-131.6	\$T-1	Air Dry	Pulverizing and Screening
K-131.7A	S-7	Air Dry	Pulverizing and Screening
K-131.7A	ST-1	Air Dry	Pulverizing and Screening
К-131.7В	\$-6	Air Dry	Pulverizing and Screening
K-131.7B	ST-1	Air Dry	Pulverizing and Screening
K-131.9	S-5	Air Dry	Pulverizing and Screening
K-131.9	ST-1	Air Dry	Pulverizing and Screening
K-132.1	S-6	Air Dry	Pulverizing and Screening
K-132.1	ST-1	Air Dry	Pulverizing and Screening

EQUIPMENT INFORMATION Single Point - Method B Liquid Limit Procedure: Multipoint - Method A X Liquid Limit Apparatus: **Motor Driven** Manual Liquid Limit Grooving Tool Material: X Metal **Plastic** Liquid Limit Grooving Tool Shape: Flat Х Curved (AASHTO Only) Plastic Limit: Hand Rolled X Mechanical Rolling Device 02/18/22 Date:

WBE certified company

Page 1 of 1

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-03-02-22

Report Date:

February 18, 2022

Date Received:

February 7, 2022

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012, Method C

Boring	Sample	Depth	Diameter	Length	Load Rate	Total	Area	Compressive
No.	No.	(ft)	(in)	(in)	(lbs/sec)	Load (lbs)	(in ²)	Strength (psi)
K-117.6-2.3	RC-4	32.7-33.0	1.98	4.01	300	62,970	3.08	20,440
K-130.9	RC-2	31.5-31.8	1.98	4.04	280	22,240	3.08	7,220

Failure Pictures K-117.6-2.3, RC-4, 32.7-33.0'

K-130.9, RC-2, 31.5-31.8'

Reviewed By:

K m

Date: February 18, 2022

DATE: September 23, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossing 20 and 20.A - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 20 is STA 20737+00 (43.305488° N, 73.543174° W). The approximate station for the start of HDD crossing Number 20.A is STA 20741+00 (43.304324° N, 73.544558° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM and TRC and the recent investigation by Atlantic Testing Laboratories, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.
- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 20, 20.A Borings WFE-18A, B131.5-1, K-131.6, K-131.7A, K-131.7B Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Boring	Northing	Easting	Ground Surface
		(feet)	(feet)	Elevation (feet)
TRC*	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
AECOM**	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

G.S. ELEV. N/A FILE 195651 SHEET 1 OF 1

B131.5-1

BORING

GROU	NDWATER	R DATA		١	/IETHOD C	F ADVANC	CING BO	REHOLE	
NCOUNTE	ERED NF	}	∇	а	FROM	0.0 '	TO	10.0 '	
HOUR	DATE	ELAPSED TIME	_	d	FROM	10.0 '	TO	20.0 '	
9:30	11/17	0 HR	▼						
			4						
	NCOUNTE HOUR	NCOUNTERED NE HOUR DATE		NCOUNTERED NR YEAR HOUR DATE ELAPSED TIME	NCOUNTERED NR	NCOUNTERED NR HOUR DATE ELAPSED TIME	NCOUNTERED NR	NCOUNTERED NR HOUR DATE ELAPSED TIME	NCOUNTERED NR

DRILLER	R.CARUSO
HELPER	C. SMART
INSPECTOR	C. POPPE
DATE STARTED	11/17/2012
DATE COMPLETED	11/17/2012

	BORING CO	NTRACTOR:												SHEET 1 OF 2					
	ADT						A =	-	1					PROJECT NAME: CHPE -					
	DRILLER:						<u>^</u>		O	M				PROJECT NO.: 60323056					
	Chris Chaillo	u				-								HOLE NO.: WFE-18A					
	SOILS ENGI	NEER/GEOLOGIST	:											START DATE: 1/12/21					
	Chris French							BORIN	G LOG					FINISH DATE: 1/12/21					
	LOCATION:	M.P 131.5 (CP Ra	ail)			T		ı						OFFSET: N/A					
GRO	UND WATER	OBSERVATIONS				CAS	SING		IPLER		L BIT	CORE E	BARREL	DRILL RIG: CME LC-55					
	11' (inferred)		TYPE		Flush Jo	oint Steel		fornia dified		cone er Bit			BORING TYPE: SPT					
				SIZE I.D).	4	4"	2	.5"					BORING O.D.: 4.5"					
				SIZE O.	D.	4	.5"	;	3"	3	7/8"			SURFACE ELEV.:					
				HAMME) lbs		0 lbs					LONGITUDE:					
D E	CORING RATE	S A M P L I DEPTHS	TYPE	HAMME PEN.	R FALL REC.	3	0"	3	80"	N	USCS	STRAT.		LATITUDE:					
P	MIN/FT	FROM - TO	AND	in	in	BLOW	S PER 6 i	n ON SA	MPLER	Corr. ⁽²⁾		CHNG.		FIELD IDENTIFICATION OF SOILS					
Т		(FEET)	NO.			(ROCK	QUALITY	DESIGN	NATION)			DEPTH							
Н		01.51					l le e el C	DI					0 0'-1 5	; Black fine-coarse SAND, little silt, little subangular					
1.0		0'-5'					Hand	Cleared						loose, moist (0'-0.5' frozen)					
2.0											ML		1.5'-4.0	; Gray SILT, some fine sand (Brown), trace clay;					
											I WIE		medium	n stiff, moist					
3.0		3'-5'	S-1							=									
4.0														; (3.0'-5.0')					
5.0											SM	_	4.0'-5.0' saturate	'; Brown fine SAND, some silt, trace clay; loose, ed					
		5'-7'	S-2	24"	24"	4	5	5	8	7	ML	Silty SAND	Gray SI	LT, little clay, red-brown mottling; medium stiff, moist					
6.0											Silty								
7.0																			
8.0		7'-9'	S-3	24" 14" 3 3 3 2 4 ML					SAA TR-2: (8	3.0'-8.5')									
0.0											,								
9.0													Crov fin	ne SAND, little silt; medium dense, moist-wet					
10.0		9'-11'	S-4	24"	24"	WOH	WOH	4	5	3	SM		Gray IIII	le SAND, illie siit, medium dense, moist-wet					
11.0		11'-13'	S-5	24"	24"	8	18	21	30	25	SP		Brown f	ine SAND, little medium sand; loose saturated					
12.0																			
13.0										=									
10.0		13'-15'	S-6	24"	18"	33	24	26	22	33	SP		SAA						
14.0																			
15.0										-									
16.0		15'-17'	S-7	24"	18"	32	23	27	25	33	SP	SAND	Gray fin	e SAND, some medium sand; very loose, saturated					
16.0												0)	TR-3; (1	16.0'-16.5')					
17.0																			
18.0																			
19.0										 									
20.0																			
		ing lined drive sampler actor: Ncorr=N*(2.0 ² -1.3				T samples.	Rings dime	ensions = 2	?-1/2" O.D. I	by 2-7/16" I	I.D. by 6" le	ngth.	to show agrees if he fin	ormation contained on this log is not warranted the actual subsurface condition. The contractor that he will make no claims against AECOM add that the actual conditions do not conform indicated by this log.					
		on represents a field								/ 0055									
	LE TYPE: ORTIONS:		S= SPLI TRACE=	T SPOON =1-10%	I	U=SHEL LITTLE=	.BY TUBE 10-20%		R=ROCH SOME=2			AND=3	5-50%						
							0/0			. 50/0		0	0,0						

	BORING CO	NTRACTOR:											SHEET 2 OF 2
	ADT						A =		1				PROJECT NAME: CHPE -
	DRILLER:						4		U	N			PROJECT NO.: 60323056
	Chris Chaillo	ı				-				-	•		HOLE NO.: WFE-18A
	SOILS ENGI	NEER:											START DATE: 1/12/21
	Chris French							BORING	G LOG				FINISH DATE: 1/12/21
		M.P 131.5 (CP Ra			-	ı				1	1		OFFSET: N/A
D E	CORING	DEPTHS	TYPE	PEN.	REC.	DI OW	0 DED 0 :	- ON OAR	4DLED	N	USCS	STRAT.	
P T	RATE MIN/FT	FROM - TO (FEET)	AND NO.	in	in		S PER 6 i QUALITY			Corr.	CLASS.	CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS
H	IVIII V/I	(1 221)	NO.			(NOON	QUALITI	DEGIGIA	ATION)			DEI III	
		20'-22'	S-8	24"	14"	19	17	23	27	26	SP		Gray fine-medium SAND; loose, saturated
21.0													
22.0													
23.0													
24.0													
												SAND	
25.0												0)	Crow fine medium SAND little coorse and trace
26.0		25'-27'	S-9	24"	12"	14	15	18	18	21	SP		Gray fine-medium SAND, little coarse sand, trace subangular gravel; very loose, saturated
20.0													TR-4; (26.0'-26.5')
27.0													
28.0													
													28.5' (inferred
29.0													
30.0													
		30'-32'	S-10	24"	24"	WOH	WOH	WOH	3	0	СН		Gray silty CLAY; soft, moist
31.0													
32.0													
33.0													
34.0												LAY	
05.0												Silty CLAY	
35.0		35'-37'	S-11	24"	24"	WOH	WOH	2	2	1	СН	S	SAA
36.0													
37.0													
37.0													
38.0													
39.0		38'-40'	S-12	24"	24"	WOH	WOH	3	4	2	СН		SAA TR-5; (39.0'-39.5')
00.0													
40.0													WFE-18A terminated at 40', grouted to surface
41.0													WFE-16A terminated at 40, grouted to surface
42.0													
43.0													
44.0													
45.0													
	NOTES:												The information contained on this log is not warranted
													to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM
													if he finds that the actual conditions do not conform
		on represents a field											to those indicated by this log.
	LE TYPE:		S= SPLIT			U=SHEL	BY TUBE		R=ROCK			AND-36	E 500/

SUMMARY OF LABORATORY TEST DATA

Project Name: Client Name: $\underline{TDI\ Champlain\ Hudson\ Power\ Express-CP}$

Transmission Developers, Inc.

TRC Project #: <u>195651</u>

SAMPLE I	IDENTII	FICATION	nscs			N SIZE BUTIO	N		PLAS	TICIT	ΓΥ	vity	ntent	(pcf)	7) (0)	tent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-6	13.5-15.0	-	-	-	-	ı	-	-	-	-	-	24.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	1	-	-	-	-	-	61.2	-	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	39.1	-	-	-
B129.2-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	62.5	60.1	-	-
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	42.1	80.5	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	33.2	-	-	-
D120 0 1	S-6	13.5-15.0	CL					35	17	18	1.0		45.7			
B130.8-1	S-7	18.5-20.0	CL	-	-	-	-	33	17	10	1.6	-	45.7	-	-	-
	S-8	23.5-25.0	-	-	-	-	-	-	-	-	-	-	23.8	-	-	-
	S-2	2.0-4.0	-	-	-	-	-	-	-	-	-	-	21.7	-	-	-
D191 5 1	S-3	4.0-6.0	CL	-	-	-	-	48	23	25	0.3	-	30.0	97.0	-	-
B131.5-1	S-5	8.0-10.0	-	0.0	14.2	8	5.8	-	-	-	-	-	34.7	-	-	-
	S-6	13.5-15.0	CL	0.0	15.7	41.0	43.3	47	21	26	0.2	2.74	25.5	-	-	-

	SOIL DATA											
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	B125.1-1	S-8	23.5-25.0 FT	29.1	25	53	28	СН				
	B130.8-1	S-6 & S-7	13.5-20.0 FT	45.7	17	35	18	CL				
	B131.5-1	S-3	4.0-6.0 FT	30.0	23	48	25	CL				
♦	B131.5-1	S-6	13.5-15.0 FT	25.5	21	47	26	CL				
▼	B135.35-1	S-6	13.5-15.0 FT	38.2	23	47	24	CL				
*	B135.35-1	S-11	38.5-40.0 FT	36.3	19	26	7	CL-ML				
\oplus	B143.59-1	S-8	23.5-25.0 FT	29.6	17	27	10	CL				
+	B145.0-1	S-15	58.5-60.0 FT	23.7	20	18	NP					
\otimes	B150.5-1	S-3	4.0-6.0 FT	21.5	NP	NV	NP	SM				
\times	B153.1-1	S-7	18.5-20.0 FT	22.8	20	19	NP					

TRC Engineers, Inc. Mt. Laurel, NJ Client: TDI CHAMPLAIN HUDSON POWER EXPRESS - CP

Project: TRANSMISSION DEVELOPERS, INC.

Project No.: 195651 **Figure** 2

Tested By: TBT 12/20/12 Checked By: ____

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH				IDENT	FICATION :	TESTS			REMARKS
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT	
							(1)	NO. 200	2 μm	(burnoff)	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)	
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39		
WFE-1A	S-5	11-13	43.0	68	23	45	CH	99.8	84		
WFE-1C	S-3	7-9	44.5				CH	99.3	86		
WFE-1C	S-7	15-17	44.5	78	27	51	CH	100	94		
WFE-1C	S-10	30-32	45.7	61	23	38	CH	100	87		
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3		
WFE-2	S-7	15-17	26.0				SC	28.5	13		
WFE-2	S-9	25-27	66.0	71	26	45	CH	100	90		
WFE-4	S-2	5-7	18.0				SC	34	13		
WFE-4	S-4	9-11	18.3				SM	17	5		
WFE-5	S-2	5-7	19.9				SM	19	3		
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28		
WFE-6A	S-2	5-7	13.6				SP-SC	9	3		
WFE-6A	S-4	9-11	17.4				SP-SM	7	2		
WFE-8	S-3	6-8	24.9				SC	48.5	12		
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43		
WFE-10	S-2	5-7	38.0	71	24	47	CH	94	76		
WFE-10	S-4	9-11	22.5				CL	83.9	32		
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35		
WFE-12	S-4	9-11	28.3				CL	95.8	37		
WFE-14	S-3	7-9	25.7				CL	75.7	44		
WFE-14	S-5	13-15	22.5				ML	53.9	17		
WFE-16	S-3	7-9	36.7	75	25	50	CH	100	90		
WFE-16	S-9	25-27	37.1	73	24	49	CH	100	80		
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1	
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26		
WFE-18	S-10	30-32	64.3	56	21	35	CH	100	87		
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29		
WFE-18A	S-7	15-17	18.9				SM	14.3	1		
WFE-18A	S-10	30-32	62.9	62	22	40	CH	99	86		
WFE-19A	S-3	7-9	38.1				SP-SM	8	3		
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2		
WFE-19A	S-10	30-32	17.6				SW-SM	8	1		
		,									

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 4/30/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21003 File: Indx1.xlsx Page 1 of 1

Boring Location Plans Page 11 of 12	Drawn by: ADW	:	Scale: Not to scale	•	ject No.: 010279	Date: March 202	22
Champlain Hudson Power Express Design Package 2	Albany, NY	ATLA Bingham NY	ton	NG LABOR on, NY	RATORIES, Lir Elmira, NY	mited Plattsburgh,	, NY
Whitehall to Glens Falls, New York	Poughkeepsie, NY	Syracuse,	, NY Roches	ster, NY	Utica, NY	Watertown,	NY

Subsurface Investigation

											Report No.:		CD10279	D-01-03-	22	_
Client:	_K	iewit Eng	gineering	g (NY) C	Corp.						Boring Locat	ion: See	Boring Locat	ion Plan		_
Project:	_ <u>s</u>	ubsurfac	e Invest	igation												_
	_ <u>c</u>	hamplain	Hudsor	n Powe	r Exp	oress	, Desi	ign P	ackage 2							-
	v	arious Lo	ocations	, New Y	ork_						Start Date:	2/1/2022	Finish D	ate:	2/1/2022	
Boring I	No.:	K-131.	6		She	et _	1_	of _	2		Date	Ground Time	vater Observati Dep		Casing	
	Coordi	nates				Sar	mpler	Ham	mer		2/1/2022	PM	DR'	Υ	10.0'	_
Northing	g <u>7464</u>	35.732			Wei	ght:	1	40	lbs.							_
Easting	<u>1630</u>	320.22			ı	Fall:	;	30	in.							_
				Hamm	er Ty	/pe:	Auto	omat	ic							-
Ground	Elev.:	14	15.25	_		Bori	ng Ad	vanc	e By:							_
				H\	W <u>(4'</u>	') Cas	sing/3	7/8"	Wet Rota	ıry						-
METHOD OF ADVANCE	SAMPLE NO.	c	PTH)F 1PLE	SAMPLE		SAN PE 2"	WS OI IPLEF IR 6" O.D. IPLEF	₹	DEPTH OF CHANGE	f - fine	CLASSI	FICATION	OF MATE	an so	me - 20-35%	Recovery
≥ `	Ŋ	From	То			OAN		<u> </u>	_	m - medium c - coarse				litt tra	le - 10-20% ace - 0-10%	
Ç	1	0.0	2.0	SS	16	49	30	6		•			d cmf SAND; tra	ace SILT ((frozen,	18
A S				\					2.0	non-pia	astic) GW FIL	-L				
N	2	2.0	4.0	SS	5	8	16	8		Grey C	CLAY; little f SA	ND; trace SII	T (moist, plasti	ic) CL		14
G				\	\											
	3	4.0	6.0	SS	2	2	1	2]	Similar	Soil (moist, p	lastic) CL				22
					\											
	4	6.0	8.0	SS	WI	H/12"	2	1	1	•			SILT (moist, pla 21 % Fines =	,		23
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\				1							<u></u>
	5	8.0	10.0	ss	1	2	3	3		Grey C	CLAY; trace mt	SAND; trace	SILT (moist, pla	astic) CL		14
WET				<u> </u>	<u> </u>							1005 1 1		0.7/01		
R				<u> </u>	_						-		began advancir n the borehole.	ng 3 7/8"	tri-cone	
0 T				<u> </u>	-				12.0							
A R				_	+											
ļ Ÿ	6	14.0	16.0	SS	10/1	H/18"		2		Gray f	SAND: some (N ΔV: li#la SI	LT (moist, mod	erately pl	astic)	24
	"	14.0	10.0	33	٧٧١	1/10				SC-SM		JL⊼T, IIME SI	L1 (1110151, 11100	cratery pr	usuo)	
				 												
				1	+				17.0							-
	<u> </u>			1	+				 							\vdash
	7	19.0	21.0	SS	7	5	8	9		Grev o	-mf+ SAND· lit	tle SILT (wet	non-plastic) S	М		14
	<u> </u>	10.0	-1.0	155	Ė				-	-	.6% % Fines	•				
				+	1				 							
+				+	+				 							
+				1	+				 							\vdash
	8	24.0	26.0	SS	5	7	8	10	 	Similar	Soil (wet, nor	-plastic) SM				12
					ľ	•										
NX Rock	Spoon San Core								ı	Orillers:		Jeffrey Don	ovan; John Tra	athen		
	sturbed Sar nated Grou	nple (Shelby T	ube)						1	nspector:		James	LaMarco (ATL)		4

Subsurface Investigation

	Boring	No.:	K-131.	6		Report No.:		CD10279D-01-03-22	Sheet <u>2</u> of <u>2</u>	-
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH DF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	f - fine m - medium c - course	### AMATERIAL and - 35-50%	RECOVERY (inches)
26 — 27 — 30 — 31 — 32 — 33 — 35 — 36 — 37 — 42 — 44 — 45 — 45 — 51 — 55 — 55 — 56 — 57 — 58 — 57 — 58 — 57 — 58 — 57 — 58 — 57 — 58 — 58	METH ADV.	9 ST-1			SS	2" O.D.	27.0 40.0	m - medium	some - 20-35% little - 10-20% trace - 0-10% wet, plastic) CH AY; trace f SAND; trace = 62, PL = 25, Pl = 37	24
59 — 60 — 61 — 62 —										

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ /

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	_	Kiewit Eng	ineering	g (NY) C	orp.					В	oring Location	on: See B	oring Location F	Plan	_
	Project:	_5	Subsurface	e Invest	igation						_					_
			Champlain	Hudson	n Powei	r Expr	ess,	Des	ign P	ackage 2	_					_
		\	Various Lo	cations	, New Y	ork					S	start Date:	2/1/2022	Finish Date:	2/2/2022	
	D		14 404 =	_		01			,	•			Groundwat	er Observations		
	Boring N	0.:	K-131.7	<u>A</u>		Shee	τ _	1	ot _	2		Date	Time	Depth	Casing	
		Coord	dinates				San	npler	Hamı	mer		2/2/2022	AM	<u>*5.7'</u>	10.0'	_
	Northing	746	175.646			Weig	ht:	1	40	lbs.	_					_
	Easting	1629	9988.338			F	all:	;	30	in.	_					_
					Hamm	er Typ	e:	Auto	omati	<u>c</u>	_					_
	Ground I	Elev.:	144	1.641	_		Borir	ng Ad	vance	e By:		*May be aff	ected by water	utilized to adva	nce the	_
					HV	N (4")	Cas	ing/3	7/8"	Wet Rotary	_!	borehole.				_
	ш	<u></u>	Τ									CLASSI	FICATION (OF MATERIA	<u> </u>	T
ᇎᆝ	N CE	NO.	DEF		SAMPLE			VS O PLEF		CHANGE					_	3
DEPTH	동돌	교	SAM		₹			R 6" O.D.		#¥					and - 35-50%	200000
"	METHOD OF ADVANCE	SAMPLE			∫ છે.	;		PLEF	₹	置さ f - f	fine medium				some - 20-35% little - 10-20%	&
			From	То	1						coarse				trace - 0-10%	4-
₁ _	C	1	0.0	2.0	SS	29	30	13	4	1		•	,	trace SILT (moist	,	Ľ
, 2	S				1	1				2.0	non-piasi	ic) GW FIL	L			
	I N	2	2.0	4.0	SS	3	7	9	6	l I				GRAVEL; trace S	SILT (moist,	_
3	Ğ									r	non-plasti	ic) SW Pos	sible FILL			
4		3	4.0	6.0	SS	3	2	2	2		Similar So	oil (moist, no	n-plastic) SW	Possible FILL		
5					1					6.0						
6		4	6.0	8.0	SS	1	1	1	1		Grey mf+	SAND; and	SILT; trace CLA	AY (moist, very sli	ghtly	<u> </u>
7										8.0 F	plastic) S	SM w = 23.3	% % Fines = 5	0.0%		
8		5	8.0	10.0	ss	1	1	1	1		Grey CLA	Y; trace f SA	ND; trace SILT	(wet, plastic) CH	1	1
9—																
	WET		1							,	Advanced	d casing to 1	0.0 feet and beg	gan advancing 3	7/8" tri-cone	
1—	R O				T					12.0 r	roller bit v	wet rotary op	en hole within th	ne borehole.		\vdash
2	T A		+ -		+					114.0					• • • • • • • • • • • • • • • • • • • •	\vdash
3—	R		+		+	\vdash										
1—	Y	6	14.0	16.0	SS	WH	/24"				Grey c-mi	f SAND; son	ne SILT; trace C	LAY (moist, very	slightly	\vdash
5—			+							I I	plastic) S		, ====	, -,7	· ,	\vdash
\dashv			+		 	1										-
-			+		+	-				17.0					•••••	\vdash
\dashv			+		1	\vdash										\vdash
-		7	19.0	21.0	SS	WH	/24"			,	Grev SII 7	T: some CI /	Y· little f SAND	trace ORGANIC	ΜΔΤΕΡΙΔΙ	-
\dashv			13.0	21.0	155	V V I 1				I I				noderately plastic		L
\dashv			+		<u> </u>	—				\	w = 43.6%	%, LL = 53, F	PL = 21, PI = 32	% Fines = 78.3°	%	_
\dashv			1		 											_
-			\perp			_										
																L
		8	24.0	26.0	SS	WH	1	1	1	1	NO RECO	OVERY - CO)BBLE fragmen	t in split spoon sh	oe	
	SS Split S	poon Sa Core	ample							Drille	ers: _		Jeffrey Donova	an; John Trather	1	
	SH Undist	urbed Sa	ample (Shelby Tu undwater	ube)						Inspe	ector:		James La	Marco (ATL)		

Subsurface Investigation

i i	METHOD OF ADVANCE	SAMPLE NO.	c	PTH)F IPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine
	2	S	From	То		0,		
					<u> </u>		_	
							27.0	
							-	
		9	29.0	31.0	SS	WH/24"	-	Grey CLAY; little SILT; trace f SAND (wet, plastic) CH
							-	w = 70.9%
						1	-	
							-	
							-	
		10	34.0	36.0	SS	WH/24"	-	Similar Soil (wet, plastic) CH
							-	
							-	
							1	
							-	
		11	39.0	41.0	SS	WH/24"	+	Grey CLAY; little mf SAND; trace SILT (wet, plastic) CH
							1	
							1	
							1	
_								
							1	
		ST-1	45.0	47.0	SS	WH/24"	1	(3" Brass Lined Split Spoon) Grey CLAY; little mf SAND; trace
								SILT (wet, plastic) CH w = 66.4%, LL = 53, PL = 25, PI = 28 % Fines = 86.6%
								% Filles = 00.0%
		12	48.0	50.0	SS	WH/24"		Grey CLAY; little f SAND; trace SILT (wet, plastic) CH
					'		50.0	
							J	
								Boring terminated at 50.0 feet.
								Notes:
								Borehole backfilled with cement-bentonite grout.
								Soil classifications based on ATL Field Engineer's field classifications.
								3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig
								Unit No. CDGV706) drill rig.
_								

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	K	Ciewit Eng	gineering	g (NY) C	orp.				Boring Location: See Boring Location Plan					
	Project:	s	ubsurfac	e Invest	igation										
			hamplain	Hudso	n Powe	r Exp	ress,	Desi	ign Pa	ackage 2					
			arious Lo	cations	s, New York						Start Date:	2/2/2022	Finish Date:	2/2/2022	
	Davis 11	ا ما	V 404 -	Б		CI-	_4			•			Groundwat	er Observations	
	Boring No.: <u>K-131.7B</u> Sheet <u>1</u> of <u>2</u>			Date	Time										
		Coord	inates				San	npler	Hamr	mer		2/2/2022	PM	<u>*11.7'</u>	10.0'
	Northing	7460	022.808			Wei	ght:	1	40	lbs.					
	Easting	1629	771.027			F	Fall:	;	30	in.					
					Hamm	er Ty	pe:	Auto	omati	<u>c</u>					
	Ground E	Elev.:	143	3.464	_		Borin	ıg Adı	vance	By:		*May be aff	ected by water	utilized to advan	ice the
					H\	N (4") Cas	ing/3	7/8"	Wet Rota	ry	borehole.			
			<u> </u>		1	1				h h					
	ᆼ삤	Ŏ.	DE	РТН	l		BLOV	vs o	N	ᇈ		CLASSI	FICATION (OF MATERIA	L
DEPTH	ANG	9	0	OF											
	AMPLE SAMPLE	[윤충	f - fine				and - 35-50% some - 20-35%								
	Σ `	S	From	То	+		SAIVI	PLER	•		m - medium c - coarse				little - 10-20% trace - 0-10%
	С	1	0.0	2.0	SS	17	20	20	10		Brown	cmf SAND; so	me mf GRAVEL	; trace SILT (moist	t,
-	A S		+							2.0	non-pla	stic) SW Po	ssible FILL		
<u> </u>	1	2	2.0	4.0	SS	8	10	7	6	2.0	Greyish	n-Brown CLAY	; and f SAND; ti	ace SILT (moist, p	olastic) CL
—	N G		+								·			, , , , ,	Ť
-		3	4.0	6.0	SS	8	5	6	5		Brownis	sh-Grev CLAY	': some f SAND:	trace SILT (moist,	plastic)
;—			1	0.0	100	Ě					CL	o o.o, o	,,		, p.a.oo,
		4	6.0	8.0	SS	6	5	6	4		Brownie	sh-Grev CLAY	∕· little SILT· trac	e f SAND (moist, p	olastic) Cl
			0.0	0.0		Ŭ			_		Brown	on Groy GE (1	, mao oiz i , a do	0 1 07 1 1D (111010t, p	naono, oz
		5	8.0	10.0	SS	4	3	3	1		Brownis	sh-Grev CLAY	': little SILT: little	ORGANIC MATE	:RIAL (root
—			1		-				•			•		OH OC = 10.5%	`
—	WET					1					Advanc	ed casing to 1	10.0 feet and be	gan advancing 3 7	//8" tri-cone
ı —	R O				+	+						-	en hole within t	-	
2—	T									12.0					
3 —	R					+									
ı —	Y	6	14.0	16.0	SS	WE	1/24"				Black C	ORGANIC MA	TERIAL (peat ro	oot hairs); trace SIL	т
<u> </u>			+			<u> </u>						ted, non-plasti		-,, 200 512	
			+		+	1					w = 178	3.4%, LL = NF	P, PL = NP, PI =	NP % Fines = 3.1	1%
<i>—</i>					-	1				17.0	•••••				
-					1	+									
		7	19.0	21.0	SS	\ \ /L	1/24"				Gray C	I AV: littla QII -	T: trace mf CANII	D: trace OPCANIC	
—		1	18.0	21.0	33	۷۷۱	1/24				Grey CLAY; little SILT; trace mf SAND; trace ORGANIC MATERIAL (root hairs) (moist, plastic) OH		'		
_					<u> </u>	_									
<u> </u>						_									
3—						_									
1 —			1								_		_,		
· 5—		8	24.0	26.0	SS	WH	1/24"				Grey C	LAY; trace SIL	T (wet, plastic)	CH	
		· 0	mple								Neillana.		Jeffrey Demoy	I-b- T4b	
	SS Split S	poon Sar	ripic								rillers:		Jetrey Donov	an; John Trathen	

Subsurface Investigation

	Boring N	No.: _	K-131.7	В		Report No.:	CD10279D-01-03-22		Sheet <u>2</u> of <u>2</u>	_
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH OF IPLE To	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	f - fine m - medium c - course	and - 35-50% some - 20-35% little - 10-20% trace - 0-10%	RECOVERY (inches)
ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIONS (PACKAGE 2), GDJ 41/12/22 ALIT-COG1 NE CD10279 KIEWIT INFRASTRUCTURE COG1 NE CD10279 KIEWIT INFRAS		9 10 11 12 12	29.0 29.0 34.0 34.0 45.0	31.0 36.0 41.0 50.0	SS SS SS SS SS SS SS SS SS SS SS SS SS	WH/24" WH/24" WH/24" WH/24"	.50.0	Similar Soil (wet, plastic) CH w = 60.99 Similar Soil (wet, plastic) CH Similar Soil (wet, plastic) CH (3" Brass Lined Split Spoon) Grey CLA SAND (wet, plastic) CH w = 58.7%, LL % Fines = 99.8% Similar Soil (wet, plastic) CH Boring terminated at 50.0 feet. Notes: 1. Borehole backfilled with cement-bent 2. Soil classifications based on ATL Fiel classifications. 3. Borehole was advanced with ATL's GUnit No. CDGV706) drill rig.	Y; trace SILT; trace f . = 55, PL = 19, PI = 36 onite grout. Id Engineer's field	24
62 —										

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water- Soluble	Water- Soluble			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Content		рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-4	6.0 - 8.0	Brown CLAY; some ORGANIC MATERIAL (root hairs); trace SILT						34.9							
K-129.9B	S-6	14.0 - 16.0	Grey CLAY; little SILT; trace f SAND		88.0	96	49	47								
	S-8	24.0 - 26.0	Grey c-mf SAND; trace SILT; trace f GRAVEL	7.0	18.3							-				
	ST-1	27.0 - 29.0	Grey CLAY; trace SILT	100.0	51.2	55	20	35								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		50.8											
	S-4	6.0 - 8.0	Grey CLAY; little SILT; little mf SAND	85.8	46.6	39	18	21								
К-130.9	S-6	14.0 - 16.0	Grey c-mf+ SAND; some SILT; trace CLAY	35.0	65.2											
	RC-2	30.5 - 31.5	Dark Grey SHALE												1,153	2.75
	RC-2	31.5 - 31.8	Dark Grey SHALE											7,220		
	S-4	6.0 - 8.0	Grey CLAY; trace mf SAND; trace SILT	96.9	48.7	41	20	21								
K-131.6	S-7	19.0 - 21.0	Grey c-mf+ SAND; little SILT	15.0	22.6											
	ST-1	35.0 - 37.0	Grey CLAY; trace f SAND; trace SILT	99.9	55.9	62	25	37								
	S-3	4.0 - 6.0	Blackish-Brown cmf SAND; some mf GRAVEL; trace SILT							500	35	7.69	42,570			
	S-4	6.0 - 8.0	Grey mf+ SAND; and SILT; trace CLAY	50.0	23.3											
K-131.7A	S-7	19.0 - 21.0	Grey SILT; some CLAY; little f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)	78.3	43.6	53	21	32			-	-				
	S-9	29.0 - 31.0	Grey CLAY; little SILT; trace f SAND		70.9											
	ST-1	45.0 - 47.0	Grey CLAY; little mf SAND; trace SILT	86.6	66.4	53	25	28				1				
	S-5	8.0 - 10.0	Brownish-Grey CLAY; little SILT; little ORGANIC MATERIAL (root hairs); trace mf SAND					-1	10.5			-1				
K-131.7B	S-6	14.0 -16.0	Black ORGANIC MATERIAL (peat, root hairs); trace SILT	3.1	178.4	NP	NP	NP								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		60.9			-				1				
	ST-1	45.0 - 47.0	Grey CLAY; trace SILT; trace f SAND	99.8	58.7	55	19	36								
	S-5	8.0 - 10.0	Black ORGANIC MATERIAL (peat, root hairs); trace mf SAND; trace SILT	2.0	411.1	NP	NP	NP								
К-131.9	S-8	24.0 - 36.0	Grey c-m SAND; trace CLAY; trace SILT		62.8											

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS

ASTM D 2216

Page 1 of 2

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-03-02-22

Report Date: Date Received: February 18, 2022

February 7, 2022

TEST DATA

IEST DATA									
Boring	Sample	Depth	Moisture						
No.	No.	(ft)	Content (%)						
K-117.6-0.2	S-4	6-8	25.3						
	S-7 ¹	19-21	18.3						
	S-9	28-30	55.0						
K-117.6-2.1	S-4	6-8	15.4						
	S-6	14-16	47.9						
	S-9	29-31	16.4						
	S-11 1	38-40	16.4						
K-117.6-2.3	S-4 ¹	6-8	13.7						
K-130.9	S-4	6-8	46.6						
	S-6	14-16	65.2						
K-131.6	S-4	6-8	48.7						
	S-7	19-21	22.6						
	ST-1	35-37	55.9						
K-131.7A	S-4	6-8	23.3						
	S-7	19-21	43.6						
	S-9	29-31	70.9						
	ST-1	45-47	66.4						
K-131.78	S-6	14-16	178.4						
	S-9	29-31	60.9						
	ST-1	45-47	58.7						

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-03-02-22

Client: Kiewit Intrastructure Co. Date: 02/18/22

Sample No: K-131.6, S-7 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 19-21'

GRAIN SIZE - mm. % Fines % Gravel % Sand % Cobbles Coarse Fine Silt Clay Fine Coarse Medium 00 28 56 15

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#4 #10	100 99		
#40	71		
#200	15		
	i	1	:

•	ND; little SILT						
PL=	Atterberg Limits	PI=					
D ₈₅ = 0.7456 D ₃₀ = 0.1151 C _u =	Coefficients D ₆₀ = 0.2874 D ₁₅ = C _c =	D ₅₀ = 0.2089 D ₁₀ =					
USCS=	Classification AASHT0	O=					
Remarks Moisture Content= 22.6%							

* (no specification provided) Figure
ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: 02/18/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-03-02-22

Client: Kiewit Intrastructure Co. Date: 02/18/22

Sample No: K-131.7A, S-4 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 6-8'

 GRAIN SIZE - mm.

 % Cobbles
 % Gravel
 % Sand
 % Fines

 Coarse
 Fine
 Coarse
 Medium
 Fine
 Silt
 Clay

 0
 0
 0
 1
 49
 50

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #40 #200	100 99 50		
-			

Soil Description	1							
Grey mf+ SAND; and SILT: trace CLAY								
Atterberg Limits								
LL=	P!=							
Coefficients D ₆₀ = 0.1001 D ₁₅ = C _c =	D ₅₀ = 0.0756 D ₁₀ =							
Classification AASHTC) =							
Remarks nt= 23.3%								
	Atterberg Limits LL= - Coefficients D60= 0.1001 D15= Cc= Classification AASHTO							

(no specification provided) Figure

ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: 02/18/22

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-03-02-22

Project: Ch

Champlain Hudson Power Express

Report Date:

February 18, 2022

United Cable Installation

Test Date:

February 11, 2022

Various Locations, New York

Performed By:

A. Rivers

TEST DATA

Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-117.5-0.2	5-4	6-8	А	10	205.83	41.7
K-117.6-0.2	S-7	19-21	Α	10	220.45	23.5
K-117.6-0.2	S9	28-30	А	10	273.37	99.7
K-117.6-2.1	S-6	14-16	А	10	163.54	57.2
K-130.9	S-4	6-8	А	10	144.29	85.8
K-131.6	S-4	6-8	А	10	138.58	96.9
K-131.6	ST-1	35-37	А	10	227.62	99,9
K-131.7A	S-7	19-21	А	10	175.90	78.3
K-131.7A	ST-1	45-47	A	10	221.28	86.6
K-131.7B	S-6	14-16	Α	10	147.24	3.1
K-131.7B	ST-1	45-47	А	10	239.55	99.8
K-131.9	S- 5	8-10	А	10	133.26	2.0
K-131.9	5T-1	35-37	А	10	194.65	99.0
K-132.1	S-6	14-16	А	10	202.17	44.3
K-132.1	ST-1	35-37	А	10	299.54	99.4

Reviewed By:

H-V

Date: February 18, 2022

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATI. Report No.: CD10279E-03-02-22

Report Date:

February 18, 2022

Date Received:

February 7, 2022

TEST DATA

		1EST DA	IA	
Boring No.	Sample No.	LL	PL.	PΙ
K-117.6-0.2	S-4	NP	NΡ	NP
K-117.6-0.2	S-7	NΡ	NΡ	NP
K-117.6-0.2	S- 9	65	26	39
K-117.6-2.1	\$-6	41	19	22
K-130.9	5-4	39	18	21
K-131.6	Ş-4	41	20	21
K-131.6	ST-1	62	25	37
K-131.7A	S-7	53	21	32
K-131.7A	5T-1	53	25	28
K-131.7B	S-6	NP	NP	NP
K-131.7B	\$T-1	55	19	36
K-131.9	5-5	NP	NP	NP
K-131.9	ST-1	51	20	31
K-132.1	S-6	NP	NP	NP
K-132.1	ST-1	44	19	25

SAMPLE INFORMATION

SAMPLE INFORMATION								
		Maximum	Estimated Amount of Sample	As Received Moisture				
		Grain Size	Retained on No. 40 Sieve	Content				
Boring No.	Sample No.	(mm)	(%)	(%)				
K-117.6-0.2	S-4	6.35	15	25.3				
K-117.6-0.2	5-7	2.38	30	18.3				
K-117.6-0.2	5-9	0.595	1	55.0				
K-117.6-2.1	S-6	2	5	47.9				
K-130.9	S-4	2	5	46.6				
K-131.6	S-4	0.595	2	48.7				
K-131.6	57-1	0.841	1	55.9				
K-131.7A	S-7	2	2	43.6				
K-131.7A	ST-1	9.51	10	65.4				
K-131.7B	S-6	9.51	30	178.4				
K-131.7B	ST-1	0.595	1	58.7				
K-131.9	S-5	4.76	20	411.1				
K-131.9	ST-1	2	1	70.9				
K-132.1	5-6	4.76	10	121.0				
K-132.1	ST-1	2	1	37.7				

Client: Project: Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-03-02-22

February 18, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-0.2	S-4	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-7	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-9	Air Dry	Pulverizing and Screening
K-117.6-2.1	5-6	Air Dry	Pulverizing and Screening
K-130.9	S-4	Air Dry	Pulverizing and Screening
K-131.6	S-4	Air Dry	Pulverizing and Screening
K-131.6	\$T-1	Air Dry	Pulverizing and Screening
K-131.7A	S-7	Air Dry	Pulverizing and Screening
K-131.7A	ST-1	Air Dry	Pulverizing and Screening
К-131.7В	\$-6	Air Dry	Pulverizing and Screening
K-131.7B	ST-1	Air Dry	Pulverizing and Screening
K-131.9	S-5	Air Dry	Pulverizing and Screening
K-131.9	ST-1	Air Dry	Pulverizing and Screening
K-132.1	S-6	Air Dry	Pulverizing and Screening
K-132.1	ST-1	Air Dry	Pulverizing and Screening

EQUIPMENT INFORMATION Single Point - Method B Liquid Limit Procedure: Multipoint - Method A X Liquid Limit Apparatus: **Motor Driven** Manual Liquid Limit Grooving Tool Material: X Metal **Plastic** Liquid Limit Grooving Tool Shape: Flat Х Curved (AASHTO Only) Plastic Limit: Hand Rolled X Mechanical Rolling Device 02/18/22 Date:

DATE: December 16, 2022

TO: Antonio Marruso, P.E.; CHA Consulting, Inc.

FROM: Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH

Jaren Knighton; Kiewit Engineering (NY) Corp.

SUBJECT: Geotechnical Data: Segment 3 - Package 2 - HDD Crossings 21 and 21A - Revision 1

Champlain Hudson Power Express Project

Fort Ann, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. HDD crossings 21 and 21A are located south of Fort Ann, New York. The approximate station for the start of HDD crossing Number 21 is STA 20756+00 (43.3011° N, 73.5482° W). The approximate station for the start of HDD crossing Number 21A is STA 20780+00 (43.2969° N, 73.5546° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by AECOM, the recent investigations by Atlantic Testing Laboratories and Terracon, and a geophysical investigation by Schnabel Engineering, referenced below.

- AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.
- Atlantic Testing Laboratories, Subsurface Investigation Services, Champlain Hudson Power Express, Design Package 2, Whitehall to Glens Falls, New York, dated June 15, 2022.
- Schnabel Engineering, Geophysical Services Report, Champlain Hudson Power Express Upland Cable Installation Project, Wetland Crossing, Near Hudson Falls (HDD21), Whitehall, Washington County, New York, dated June 14, 2022.
- Terracon, Results of Field Exploration, Champlain-Hudson Power Express Additional HDD Borings Phase 3, Fort Ann to Coxsackie, NY, dated November 3, 2022.

Contact us if you have questions or require additional information.

Kiewit Project Number: 20001480 Page 1 of 1

HDD 21 and 21A
Borings WFE-19, WFE-19A,
K-131.9, K-132.1, K-132.2,
K-132.4, K-132.5, K-132.6,
KB-132.1A, KB-132.3A, KB-132.5A
Package 2 - Segment 3

CHPE Segment 3 - Package 2 HDD Soil Boring Coordinates and Elevations

Firm	Davina	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B122.4-1	1673988.1	762589.1	134.0
	B123.1-1	1670533.1	761581.7	134.0
TRC*	B127.6-1	1650236.9	759369.7	143.0
	B130.8-1	1633732.2	749229.1	144.0
	B131.5-1	1630565.5	746543.8	148.0
	WFE-2	1693039.7	776227.9	125.9
	WFE-6	1683884.0	771830.6	128.7
	WFE-6A	1683645.5	771707.7	129.0
	WFE-7	1683295.0	771591.2	128.7
	WFE-9	1677994.3	769427.4	133.9
	WFE-9A	1678043.5	769246.8	140.2
AECOM**	WFE-9B	1676842.4	767745.7	141.7
	WFE-12	1657680.6	760822.6	135.3
	WFE-16	1645866.1	757602.8	145.2
	WFE-18	1637293.5	752138.0	143.6
	WFE-18A	1630756.2	746790.9	144.9
	WFE-19	1628651.1	745226.2	139.1
	WFE-19A	1625848.4	743218.4	139.0

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.
- Elevations are referenced to the NAVD88 datum.
- * TRC boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.
- ** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.
- *** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

B1134-1 F

SC

Cpw Cpw

Ocs

B1134-1

Previous (2013) Boring Location DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

HEB RON

Preliminary Pipe Bridge Location

2021 Boring Location

Parcel Ownership

TOWN NAME

Road Name

5/19/2021

Figure A-3

Sheet 16 of 16

Prepared by: **AECOM**

	BORING COI	NTRACTOR:								SHEET 1 OF 2													
	ADT						-			PROJECT NAME: CHPE -													
	DRILLER:						4			PROJECT NO.: 60323056													
	Chris Chaillou	I					_			HOLE NO.: WFE-19													
	SOILS ENGI	NEER/GEOLOGIST:		1						START DATE: 1/12/21													
	Chris French							BORIN		FINISH DATE: 1/12/21													
		M.P 132.0 (CP Ra	ail)							OFFSET: N/A													
		OBSERVATIONS	XII)			CAS	SING	SAM	PLER	DRIL	L BIT	CORE	BARREL	DRILL RIG: CME LC-55									
								California		Tricone													
	7' (inferred)			TYPE		Flush Joint Steel		Modified		Roller Bit				BORING TYPE: SPT BORING O.D.: 4.5"									
				SIZE I.D.		4" 4.5"		2.5" 3"						SURFACE ELEV.:									
				SIZE O.D. HAMMER WT.) lbs) lbs	3 /	3 7/8"			LONGITUDE:									
D	CORING	SAMPLE		HAMME			0"		60"					LATITUDE:									
Е	RATE	DEPTHS	TYPE	PEN.	REC.	Ť	-		-	N	USCS	STRAT.											
Р	MIN/FT	FROM - TO	AND	in	in		S PER 6 i			Corr.(2)	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS									
T H		(FEET)	NO.			(ROCK	QUALITY	/ DESIGN	NATION)			DEPTH											
- 11		0'-5'					Hand (Cleared					0.0'-1.0'	Black fine-coarse SAND, some angular gravel, little									
1.0														en 0'-0.5', loost, moist 0.5'-1'									
														; Dark gray fine-coarse SAND, little subrounded very loose, moist									
2.0													gravoi, i	ory locate, most									
3.0													TR-1; (3	.0'-5.0')									
		3'-5'	S-1								SP												
4.0												Silt											
- 0												SAND and											
5.0		5'-7'	S-2	24"	2"	15	14	11	12	16	ML	SANI	Gray SII	_T, some fine-coarse sand; stiff, moist									
6.0												0,											
7.0		71.01	0.0	0.41	40"			•	7		SP		Gray/bro	own fine-medium SAND, little coarse sand; loose,									
8.0		7'-9'	S-3	24"	12"	4	6	6	/	8	52		saturate										
0.0													TR-2; (8	.0'-8.5')									
9.0													_										
10.0		9'-11'	S-4	24"	18"	9	7	8	8	10	OL		Brown o	rganic SILT and docomposing organics; loose, moist									
10.0													TR-3; (1	0.0'-10.5')									
11.0																							
		11'-13'	S-5	24"	16"	12	10	12	8	14	OL		SAA										
12.0																							
13.0																							
		13'-15'	S-6	24"	18"	13	11	12	13	15	OL	8		rganic SILT, little decomposing organics; loose,									
14.0												rgan	moist										
15.0												itho											
13.0		15'-17'	S-7	24"	10"	5	2	2	3	3	OL	SILT, with organics	SAA										
16.0												S											
17.0																							
18.0																							
19.0																							
20.0																							
_0.0	NOTES:			1		1	1		1		1		The info	rmation contained on this log is not warranted									
	(1) Thick-wall ri	ng lined drive sampler (T samples.	Rings dime	ensions = 2	-1/2" O.D. b	oy 2-7/16" I	.D. by 6" le	ngth.		the actual subsurface condition. The contractor									
	(2) Correction fa	actor: Ncorr=N*(2.0 ² -1.3	375 ²)in./(3.	.0²-2.4²)in. =	: N*0.65.								-	hat he will make no claims against AECOM									
														ds that the actual conditions do not conform indicated by this log.									
	Soil description	on represents a field	identifica	ation after	D.M. Buri	mister unl	ess other	wise note	d.					, ,									
			S= SPLI	T SPOON	-	U=SHEL	BY TUBE		R=ROCk	CORE													
DDO	ODTIONS:		TDACE_	1 100/		LITTI C.	10 200/		SOME-	00 250/		VVID-3	SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35-50%										

	BORING CO	NTRACTOR:												SHEET 2 OF 2		
	ADT						-		Р	PROJECT NAME: CHPE -						
	DRILLER:						$\Delta \setminus \Xi$		Р	PROJECT NO.: 60323056						
	Chris Chaillo	ı							н	HOLE NO.: WFE-19						
	SOILS ENGI	NEER:							s	START DATE: 1/12/21						
	Chris French			BORING LOG										INISH DATE: 1/12/21		
		M.P 132.0 (CP Ra				ī					1	T	С	DFFSET: N/A		
D E	CORING RATE	DEPTHS FROM - TO	TYPE AND	PEN. in	REC. in	BI OW/	S DER 6 i	in ON SAI	MDI FR	N Corr.	USCS CLASS.	STRAT. CHNG.		FIELD IDENTIFICATION OF SOILS		
P T	MIN/FT	(Feet)	NO.					DESIGN		0011.	02100.	DEPTH		TIEED IDENTIFICATION OF COILE		
Н								ı								
21.0		20'-22'	S-8	24"	18"	1	2	3	2	3	OL	S .	SAA			
21.0												organ				
22.0												with o				
23.0												SILT, with organics				
												σ		23.5' (inferre		
24.0																
25.0												ravel				
00.0		25'-27'	S-9	24"	8"	9	11	8	6	12	SP	⊗ ⊗		coarse SAND, little angular-subrounded gravel; , saturated		
26.0												SAND & Gravel		very 1003et, Saturated		
27.0												0)		00.51 (informa		
28.0														28.5' (inferred		
20.0																
29.0																
30.0																
		30'-32'	S-10	24"	24"	WOH	WOH	WOH	3	0	СН		-	CLAY; very soft, wet		
31.0													TK-4; (31.0	FR-4; (31.0'-31.5')		
32.0																
33.0																
55.0												¥				
34.0												Silty CLAY				
35.0												S				
		35'-37'	S-11	24"	24"	1	2	3	2	3	СН		SAA			
36.0																
37.0																
38.0																
50.0		38'-40'	S-12	24"	24"	WOR	WOH	2	3	1	СН		SAA			
39.0													TR-5; (39.0	0'-39.5')		
40.0																
													WFE-19 te	erminated at 40', grouted to surface		
41.0																
42.0																
43.0																
45.0																
44.0																
45.0																
	NOTES:													nation contained on this log is not warranted		
														e actual subsurface condition. The contractor at he will make no claims against AECOM		
													_	that the actual conditions do not conform		
		on represents a field								(0005			to those in	dicated by this log.		
SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35-4											5-50%					

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT						-			PROJECT NAME: CHPE -				
	DRILLER:						△ -	C		PROJECT NO.: 60323056				
	Chris Chaillo	u								HOLE NO.: WFE-19A				
	SOILS ENGI	NEER/GEOLOGIST												START DATE: 1/13/21
	Chris French					BORIN	G LOG		FINISH DATE: 1/13/21					
	LOCATION:	M.P 132.49 (CP F	Rail)							OFFSET: N/A				
		OBSERVATIONS				CAS	SING	SAMPLER		DRILL BIT		CORE E	ARREL	
	Water at 7' (ii	oferred)		TYPE		Flush Id	int Steel	California Modified		Tricone Roller Bit				BORING TYPE: SPT
	valor at 7 (ii	norred)		SIZE I.D).				5"		. .			BORING O.D.: 4.5"
				SIZE O.			5"		3"	3 7	7/8"			SURFACE ELEV.:
				HAMME	R WT.	140) lbs	140) lbs					LONGITUDE:
D	CORING	SAMPLE	Ē	HAMME	R FALL	3	0"	3	0"					LATITUDE:
E	RATE	DEPTHS	TYPE	PEN.	REC.					N (2)	USCS	STRAT.		
P T	MIN/FT	FROM - TO (FEET)	AND NO.	in	in			in ON SAI / DESIGN		Corr.(2)	CLASS.	CHNG. DEPTH		FIELD IDENTIFICATION OF SOILS
Н		(1 221)	140.			(INOOIN	QUALITI	DEGIGIO	IATION)			DEI III		
		0'-5'					Hand (Cleared	1					'; Black fine-coarse SAND, little gravel (subrounded ular), trace silt; loose (0'-1' frozen), moist
1.0										=			Subang	ular), trace siit, loose (0-1 mozeri), moist
2.0														
2.0														
3.0														
4.0		3'-5'	S-1							=			TR-1; (3.0'-5.0')
4.0														
5.0														
		5'-7'	S-2	24"	4"	4	3	4	4	5			SAA (m	ninimal recovery)
6.0														
7.0										•				
		7'-9'	S-3	24"	5"	4	3	4	5	5				own fine-coarse SAND, some silt, little subangular very loose, saturated
8.0										-			graver,	very 10036, Saturated
9.0														
		9'-11'	S-4	24"	8"	7	11	12	16	15	SP	_	Gray fir	ne-medium SAND, trace silt; loose, saturated
10.0												SAND		
11.0												0)		
		11'-13'	S-5	24"	0"	16	14	18	20	21			No Red	covery
12.0														
13.0														
		13'-15'	S-6	24"	19"	15	16	17	16	21	SP		-	ne SAND, some medium sand, trace silt; loose,
14.0													saturate	ed 14.0'-14.5')
15.0													1 K-2, (14.0-14.5)
13.0		15'-17'	S-7	24"	0"	10	9	12	5	14			No Red	covery
16.0										-				
17.0														
17.0														
18.0														
10.0										ł				
19.0														
20.0														
	NOTES:	no lineal debar	Celle		CT		Dine: "		1/0" 0 5	0 7/2° :	D keeper/			ormation contained on this log is not warranted
		ng lined drive sampler of actor: Ncorr=N*(2.0 ² -1.3				ı sampies.	ruigs aime	nisions = 2	- 1/2 U.D. I	∪y ∠-1/16° I	יט עט .ט. le	ngtri.		the actual subsurface condition. The contractor that he will make no claims against AECOM
													if he fir	nds that the actual conditions do not conform
	Soil dooorint	on roprocente a field	idontifia-	tion offe-	DM P	mietor ···-!	000 044-0-	vice note	4				to those	e indicated by this log.
	Soil description	on represents a field		T SPOON			ess otnen BY TUBE		a. R=ROCł	CORF.				
	ORTIONS:		TRACE=			LITTLE=			SOME=2			AND=3	5-50%	

		NTRACTOR:											SHEET 2 OF 2		
	ADT						A =		1	M	4		PROJECT NAME: CHPE -		
	DRILLER:						<u> </u> ۲⊢		PROJECT NO.: 60323056						
	Chris Chaillo					_			HOLE NO.: WFE-19A						
	SOILS ENGI												START DATE: 1/13/21		
	Chris French							BORIN		FINISH DATE: 1/13/21					
D	CORING	M.P 132.49 (CP F	Rail) TYPE	PEN.	REC.					N	USCS	STRAT.	OFFSET: N/A		
E P T H	RATE MIN/FT	FROM - TO (FEET)	AND NO.	in	in	BLOWS PER 6 in ON SAMPLER (ROCK QUALITY DESIGNATION)				Corr.	CLASS.	CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS		
		20'-22'	S-8	24"	15"	18	9	10	12	12	SP		Gray fine SAND, trace silt, trace medium sand; very loose,		
21.0		20-22	3-0	24	13	10	9	10	12	12	35		saturated		
22.0													TR-3; (21.0'-21.5')		
23.0															
24.0															
25.0															
26.0		25'-27'	S-9	24"	13"	10	11	12	12	15	SP		Gray fine-medium SAND, trace silt; very loose, saturated		
27.0												SAND			
28.0															
29.0															
30.0															
31.0		30'-32'	S-10	24"	16"	13	16%	14	14	20	SP		Dark Gray medium-coarse SAND, some fine sand, trace subrounded gravel; very loose, saturated		
32.0													TR-4; (31.0'-31.5')		
33.0													33.5' (inferred)		
34.0															
35.0															
36.0		35'-37'	S-11	24"	24"	WOH	3	5	8	5	CH	LAY	Gray silty CLAY; soft, moist-wet		
37.0												Silty CL/			
38.0												0)			
39.0		38'-40'	S-12	24"	24"	WOH	WOH	3	4	2	CH		SAA TR-5; (39.0'-39.5')		
40.0													NIET 400 / 1 / 1 / 1 / 1 / 1		
41.0													WFE-19A terminated at 40', grouted to surface		
42.0															
43.0															
44.0															
45.0															
	NOTES: The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform Soil description represents a field identification after D.M. Burmister unless otherwise noted. The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.														
	SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35											5-50%			

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH				IDENT	FICATION	TESTS			REMARKS
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC	
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT	
							(1)	NO. 200	2 μm	(burnoff)	
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)	
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39		
WFE-1A	S-5	11-13	43.0	68	23	45	CH	99.8	84		
WFE-1C	S-3	7-9	44.5				CH	99.3	86		
WFE-1C	S-7	15-17	44.5	78	27	51	CH	100	94		
WFE-1C	S-10	30-32	45.7	61	23	38	CH	100	87		
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3		
WFE-2	S-7	15-17	26.0				SC	28.5	13		
WFE-2	S-9	25-27	66.0	71	26	45	CH	100	90		
WFE-4	S-2	5-7	18.0				SC	34	13		
WFE-4	S-4	9-11	18.3				SM	17	5		
WFE-5	S-2	5-7	19.9				SM	19	3		
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28		
WFE-6A	S-2	5-7	13.6				SP-SC	9	3		
WFE-6A	S-4	9-11	17.4				SP-SM	7	2		
WFE-8	S-3	6-8	24.9				SC	48.5	12		
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43		
WFE-10	S-2	5-7	38.0	71	24	47	CH	94	76		
WFE-10	S-4	9-11	22.5				CL	83.9	32		
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35		
WFE-12	S-4	9-11	28.3				CL	95.8	37		
WFE-14	S-3	7-9	25.7				CL	75.7	44		
WFE-14	S-5	13-15	22.5				ML	53.9	17		
WFE-16	S-3	7-9	36.7	75	25	50	CH	100	90		
WFE-16	S-9	25-27	37.1	73	24	49	CH	100	80		
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1	
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26		
WFE-18	S-10	30-32	64.3	56	21	35	CH	100	87		
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29		
WFE-18A	S-7	15-17	18.9				SM	14.3	1		
WFE-18A	S-10	30-32	62.9	62	22	40	CH	99	86		
WFE-19A	S-3	7-9	38.1				SP-SM	8	3		
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2		
WFE-19A	S-10	30-32	17.6				SW-SM	8	1		

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

Prepared by: NG Reviewed by: CMJ Date: 4/30/2021 **TerraSense, LLC** 45H Commerce Way Totowa, NJ 07512 Project No.: 7853-21003 File: Indx1.xlsx Page 1 of 1

Boring Location Plans Page 12 of 12	Drawn by: ADW		Scale: Not to scale		ject No.: D10279	Date: March 2022
Champlain Hudson Power Express Design Package 2	Albany, NY Poughkeepsie, NY	ATLAN Binghamto NY Syracuse,	on, Canto	on, NY	RATORIES, Lir Elmira, NY Utica, NY	nited Plattsburgh, NY Watertown, NY
Whitehall to Glens Falls, New York	i ougrikeepsie, ivi	Syracuse,	IVI Roches	ster, ivi	Ottoa, IVI	watertown, N

Subsurface Investigation

											Report No.:		CD10279D-01-	03-22	-
(Client:	_K	ewit Eng	jineering	g (NY) C	orp.					Boring Local	tion: See I	Boring Location P	lan	-
ı	Project:	S	ubsurfac	e Invest	igation										-
		C	hamplain	Hudson	n Powe	r Expres	ss, De	esign P	ackage 2						-
		Va	arious Lo	cations	, New Y	ork					Start Date:	2/3/2022	Finish Date:	2/3/2022	
ı	Boring N	0.:	K-131.9	9		Sheet	1	of	2		Dete		ter Observations	Cooling	
	3	-		_							Date	Time	Depth	Casing	
	Northing	Coordi				S Weight	•	er Ham 140	mer lbs.		2/3/2022	AM	*11.2'	10.0'	
	Easting					Fall		30	in.						
•		.0200	.0-1.07-0		Hamm	er Type:	_	utomat							•
(Ground E	Elev.:	14	0.11		Вс	oring /	Advanc	— e By:		*May be af	fected by wate	r utilized to advar	nce the	•
					— н\		-		' Wet Rota	ry	borehole.	•			
-					1	1									F
_	METHOD OF ADVANCE	Ŏ.	DEF	РТН	щ		ows		ᆼ삤		CLASS	FICATION	OF MATERIA	L	1
DEPTH	H A H	SAMPLE)F IPLE	SAMPLE	F	AMPL PER 6	6"	DEPTH OF CHANGE					and - 35-50%	Dogovan
	AD	ΑM			\ &_		" O.I Ampl		품호	f - fine m - medium				some - 20-35% little - 10-20%	ď
			From	То						c - coarse				trace - 0-10%	
1—	C	1	0.0	2.0	SS	17 1	6 1	0 6			•	GRAVEL; and cn ghtly plastic) G\	nf SAND; trace CLA N FILL	AY; trace	_
2	S			4.0		<u> </u>				,		, ,		O T	_
3—	N	2	2.0	4.0	SS	3 3	3	4		•		some cmf SANL plastic) GW FII); trace CLAY; trace	e SIL I	_
4—	G		4.0	0.0	00	\			4.0					A)// : 1	L
5—		3	4.0	6.0	SS	1 1	2	! 1		•		e mr GRAVEL; t SP Possible F	race SILT; trace CI ILL	_AY (moist,	_
6		4	6.0	8.0	ss	3 1	1	1	6.0				IC MATERIAL (pea	et root	_
7			0.0	0.0	100	J 1	-	'	1		-) (moist, non-pla	,,	it, 100t	
8—		5	8.0	10.0	SS	1 V	VH/12	2" 1		Black (ORGANIC MA	TERIAL (peat. r	oot hairs); trace mf	SAND:	H
9						-				trace S	SILT (saturated	d, non-plastic) F	PT w = 411.1%	,	_
10	WET									LL = N	P, PL = NP, F	PI = NP % Fines	s = 2.0%		
11	R O					+				Advand	ced casing to	10.0 feet and be	egan advancing 3 7	7/8" tri-cone	
12	T A								1	roller b	it wet rotary o	pen hole within	the borehole.		
13	R														
14	<u> </u>	6	14.0	16.0	SS	WH/2	4"			NO RE	COVERY				
15									1						
16															
17															
18]						
20		7	19.0	21.0	SS	WH/2	4"				ORGANIC MA wet, non-plast		oot hairs); little mf	SAND; little	
11					<u> </u>					JILI (V	wor, non-piast	io, i i			
					1				22.0						L
2 - 1					-	-									L
					1	1			1						1
22		8	24.0	26.0	SS	6 6	5 7	9	1	Greve	m SAND: tra	ne CL AV: trace	SILT (moist, very sl	iahtly	<u> </u>

Subsurface Investigation

	Boring I	No.:	K-131.	9		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH OF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY (inches)
					1			plastic) SC w = 62.8%	
26 —	+				 		27.0		
27 —							270		
28 —							1	 	
29 —	+	9	29.0	31.0	SS	WH/24"	1	Grey CLAY; trace SILT; trace f SAND (wet, plastic) CH	24
30 —	+						1		
31 —	+				<u> </u>		1	-	
32 —	+						1		
33 —	+				<u> </u>		-		
34 —	-						_	_	
35 —									
36 —		ST-1	35.0	37.0	SS	WH/24"		(3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trace f SAND (wet, plastic) CH w = 70.9%, LL = 51, PL = 20, Pl = 31	24
37—					,			% Fines = 99.0%	
38 —									
39 —		10	38.0	40.0	SS	WH/24"		Similar Soil (wet, plastic) CH	24
					1		40.0		
40 —							T · - · - ·		
41 —							1	Boring terminated at 40.0 feet.	
42 —							1	Notes:	
43 —							1	Borehole backfilled with cement-bentonite grout.	
44 —	+				 		1	Soil classifications based on ATL Field Engineer's field	
45 —	+						1	classifications. 3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
46 —	+				+		1	Unit No. CDGV706) drill rig.	
47 —							1	· · · · · · · · · · · · ·	
48 —	+				-		1		
49 —	+						-	-	
50 —	+				<u> </u>		-		
51 —	+					-	1		
52 —							1	_	
53 —							1		
54 —	\perp						1	<u> </u>	
55 —									
56 —									
								Γ	
57 —]	Γ	
58 —							1	Ţ	
59 —							1		
60 —	1						1		
61 —	+						1	 	
62 —	+	 	 		+	 	<u> </u>	<u> </u>	

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2):GPJ ATL4-08.GDT 4/12/22

Subsurface Investigation

ect: S Cord hing 7449	K-132.1 inates 149.351 269.008	e Investi Hudsor cations,	igation Power New Y	Sheet Sa Weight: Fall: er Type:	1ampler F	10 lbs	Start D Dat	e —	3/2022_	Finish Date: er Observations Depth	2/3/2022 Casing	
Coording 7449 ing 1628 und Elev.:	hamplain arious Lo K-132.1 inates 149.351 269.008	Hudsor cations,	n Power	Sheet Sa Weight: Fall: er Type:	1ampler	of <u>2</u> Hammer	Start D Dat	e —	Groundwate Time	er Observations Depth	Casing	
Coord hing 7448 hing 1628 und Elev.:	K-132.1 mates 49.351 269.008 138	3.278	, New Y	Sheet Sa Weight: Fall: er Type:	1ampler	of <u>2</u> Hammer	Start D Dat	e —	Groundwate Time	er Observations Depth	Casing	•
Coord hing 7448 ing 1628 und Elev.:	K-132.1 inates 149.351 269.008	3.278	Hamme	Sheet Sa Weight: Fall: er Type:	ampler F 	lammer I 0 lbs	Dat <u>2/3/2</u> 0	e —	Groundwate Time	er Observations Depth	Casing	
Coord hing <u>7449</u> ing <u>1628</u> und Elev.:	138 DEF	3.278	_	Sa Weight: Fall: er Type:	ampler F 	lammer I 0 lbs	2/3/20	e	Time	Depth	· ·	
Coord hing <u>7449</u> ing <u>1628</u> und Elev.:	138 DEF	3.278	_	Sa Weight: Fall: er Type:	ampler F 	lammer I 0 lbs	2/3/20			•	· ·	
hing 7449 ing 1628 und Elev.:	138 DEF		_	Weight: Fall: er Type:		10 lbs		022	PM	*C ()		
ing 1628	138 DEF		_	Fall: er Type:	3					*6.9'	10.0'	
und Elev.:	138		_	er Type:		<u>0</u> ir						
	DEF		_	•	Auto	4!	·					
	DEF		– HV	Bor								
ADVANCE SAMPLE NO.	0	PTH	HV	M / AIII O -	•	ance By:			a by water i	utilized to advan	ice the	•
ADVANCE SAMPLE NO.	0	РТН	1	V (4") Ca	ising/3	7/8" Wet Ro	ary <u>bore</u>	noie.				•
ADVANCE SAMPLE NO	0	PTH		l			CL A	ASSIFIC	ATION O	F MATERIAI	L	
ADVA			빌		OWS ON MPLER	ᅵᇦᇕ					_	ery
SAI			SAMPLE		ER 6" ' O.D.	DEPTH OF CHANGE	f - fine				and - 35-50% some - 20-35%	Recovery
	_	_	ှိ		MPLER	1 20	m - medium				little - 10-20%	<u>د</u> م
; 1	From 0.0	To 2.0	ss	15 22	2 13	6	c - coarse Blackish-Grevi	sh-Brown c	mf GRA\/FI	.; some cmf SANE		20
	- 0.0	5			0		1			plastic) GW-GC		
2	2.0	4.0	SS	3 5	6	7	Blackish-Grev	cmf SAND:	and cmf GF	RAVEL; trace CLA	AY; trace	10
<u> </u>					-		1			-SC Possible FIL		
3	4.0	6.0	SS	2 2	1	1	Grey cmf GRA	VEL; little C	LAY; little m	n-f SAND; trace SI	ILT (moist,	6
						-	slightly plastic)				` '	
4	6.0	8.0	SS	1 1	1	1 6.0	Greyish-Brown	CLAY; and	mf SAND;	little ORGANIC M	IATERIAL	4
						8.0				astic) OH OC =		
5	8.0	10.0	SS	1 W	/H/18"	0.0	Black ORGANI	IC MATERI	AL (peat, roo	ot hairs); trace mf	SAND;	24
							trace SILT (wet	t, non-plasti	c) PT			
ET								-	_	an advancing 3 7	7/8" tri-cone	
						12.0	roller bit wet ro	tary open h	ole within the	e borehole.		
								•••••				
?												
6	14.0	16.0	SS	WH/24	"				*	Γ; little ORGANIC		8
									, ,	d, non-plastic) SI NP % Fines = 44.		
						17.0		,				
7	19.0	21.0	SS	7 6	6	4	NO RECOVER	RY				С
			\									
						22.0						
	24.0	26.0	SS	4 1	1	1	Grey CLAY; litt	le cmf SAN	D; trace SIL	T; trace ORGANI	C	1
	7						7 19.0 21.0 SS 7 6 6 4 22.0	7 19.0 21.0 SS 7 6 6 4 NO RECOVER	7 19.0 21.0 SS 7 6 6 4 NO RECOVERY	7 19.0 21.0 SS 7 6 6 4 NO RECOVERY	7 19.0 21.0 SS 7 6 6 4 NO RECOVERY	7 19.0 21.0 SS 7 6 6 4 NO RECOVERY

Subsurface Investigation

	Boring	No.:	K-132.	1		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH DF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY (inches)
								MATERIAL (root hairs) (wet, plastic) OH w = 44.8%	
26 —									
27—							1		
28—									
30—		9	29.0	31.0	SS	WH/24"		Grey CLAY; little cmf SAND; trace SILT (wet, plastic) CL	24
31 —					\				
32—									
33 —							1		
34 —									
35 —		OT 4	25.0	07.0	00	WH/24"		(Oll Durand Line of Onlife One and Consultation of Consultatio	0.4
36 —		ST-1	35.0	37.0	SS	VVH/24"		(3" Brass Lined Split Spoon) Grey CLAY; trace SILT; trace f SAND (wet, plastic) CL w = 37.7%, LL = 44, PL = 19, PI = 25	24
37—					<u> </u>		-	% Fines = 99.4%	
38—	-	10	38.0	40.0	SS	WH/24"	-	Grey CLAY; little SILT; trace f SAND (wet, plastic) CL	24
39 —		10	30.0	40.0	00	VVI 1/2-4	1	Orey OEAT, Ittle OILT, trace t OAIAD (Well, plastic) OE	27
40 —					 '		40.0	<u> </u>	
41 —							1	Boring terminated at 40.0 feet.	
42 —							1	Notes:	
43 —							1	Borehole backfilled with cement-bentonite grout.	
44—							1	Soil classifications based on ATL Field Engineer's field	
45—							1	classifications. 3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
46—								Unit No. CDGV706) drill rig.	
47—							1		
48 —									
49 —									
51 —							_		
52 —							1		
53 —							1		
54 —					1		-		
55 —					1				
56—	-				-		-		
57 —					1		-		
58—					1		1		
59 —					+		1		
60 —					1		1		
61 —					+		1		
62 —	1	-	+	+	+				

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ ,

Subsurface Investigation

										Report No.: CD10279D-01-03-22	
Cli	ent:	_Ki	ewit Eng	gineering	g (NY) (Corp.				Boring Location: See Boring Location Plan	_
Pro	oject:	_Sı	ubsurfac	e Invest	igation						
		CI	hamplain	Hudson	n Powe	r Exp	ress	, Desig	n Package 2		_
		Va	arious Lo	cations	, New Y	York				Start Date: <u>2/4/2022</u> Finish Date: <u>2/4/2022</u>	<u>!</u>
Во	ring N	o.: _	K-132.	2		She	et _	1	of	Groundwater Observations Date Time Depth Casin	9
		Coordir 7447 1627					ght: Fall:	mpler H 	lbs		<u> </u>
Gro	ound E	Ξlev.:	13	8.045	Hamm — HW (4		Bori	•	natic Ince By: Vet Rotary/I	*May be affected by water utilized to advance the Core borehole.	<u> </u>
METHOD OF	ADVANCE	SAMPLE NO.	o	PTH OF IPLE	SAMPLE		SAN PE 2"	WS ON IPLER ER 6" O.D. IPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35- fine some - 20- 1- medium little - 10-	5% 8
<u> </u>			From	То	00	200	40			- coarse trace - 0-	_
- 1	C	1	0.0	2.0	SS	30	18	8	3	Black/Light Brown cmf SAND; and cmf GRAVEL; little SILT (frozen, non-plastic) SW-SM FILL	14
+	S	2	2.0	4.0	SS	2	1	4	5	Grey cmf SAND; little mf GRAVEL; trace SILT; trace CLAY (moist,	8
	N G		2.0	4.0	33	_		-	-	very slightly plastic) SW-SC FILL	
+	9	3	4.0	6.0	SS	1	1	1	1	Grey mf GRAVEL; and c-m SAND; trace SILT (moist, non-plastic)	2
+	\dashv				155	Ė	•	•	_	GP FILL	<u> </u>
+	\dashv	4	6.0	8.0	SS	1	1	1/12'	6.0	Brown ORGANIC MATERIAL (peat); trace CLAY; trace f SAND;	12
+	\dashv					lacktriangledown			-	trace SILT (moist, very slightly plastic) PT OC = 90.7%	
		5	8.0	10.0	SS	1	1	1	8.0	Grey CLAY; some f SAND; trace SILT (moist, plastic) CL	14
_	VET R O								12.0	Advanced casing to 10.0 feet and began advancing 3 7/8" tri-cone roller bit wet rotary open hole within the borehole.	
\top	A R					_					
	Y	6	14.0	16.0	SS	3	4	3	3	Grey c-mf SAND; trace SILT (wet, non-plastic) SP-SM w = 22.7% % Fines = 6.0%	10
		7	19.0	21.0	SS	4	5	4	5	Grey mf GRAVEL; trace mf SAND; trace SILT; trace CLAY (wet, very slightly plastic) GP-GC	1
‡		•				•					1
		8	24.0	26.0	SS	3	4	5	7	Grey cm+f SAND; trace mf GRAVEL; trace SILT (moist,	10

Subsurface Investigation

	Boring I	No.:	K-132.	2		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	
DEPTH	METHOD OF ADVANCE	SAMPLE NO.		PTH DF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% and - 35-50% some - 20-35% m - medium c - course ittle - 10-20% trace - 0-10%	RECOVERY (inches)
			1		1			non-plastic) SW-SM w = 17.0% % Fines = 8.0%	
26 —	-	-	+				+	' '	
27 —							+	Advanced 3 7/8" tri-cone roller bit to 30.0 feet and began coring.	
28 —					+		1		
29 —							1		
30 —	NX NX		30.0	35.0	NX	RUN 1	30.0	Dark Grey SHALE	60
31 —	<u>C</u>		30.0	33.0	IVX	KONT	1	60" or 100% Recovery	
32 —	R						-	5 Pieces (55") - 8% Chips and Fragments	
33 —	(WET)						-	5 Pieces longer than 4" (55") - RQD = 92%	
34 —	(**_1)						1	_	
35 —							35.0		
36 -			35.0	40.0	NX	RUN 2	_	Dark Grey SHALE 60" or 100% Recovery	60
37 —								4 Pieces (48") - 20% Chips and Fragments	
38 -								3 Pieces longer than 4" (43") - RQD = 72%	
39 -							40.0		
40 -					_		T	<u> </u>	
41 –							1	Boring terminated at 40.0 feet.	
42 -			1				†	Notes:	
43 –					1		1	Borehole backfilled with cement-bentonite grout.	
44 —							+	Soil classifications based on ATL Field Engineer's field	
45 -							+	classification.	
46 –			+		-		+	Borehole was advanced with ATL's Geoprobe 7822D7 (Rig Unit No. CDGV706) drill rig.	
47 –					-		4	Onicho. Observoo) driii rig.	
48 –			-		<u> </u>		4	<u> </u>	
49 –							4	_	
50 -							_		
51 –							_		
52 -									
53 -									
54 -									
1									
55 -							7	Γ	
56 -			<u> </u>				1	<u> </u>	
57 –			1				1		
58 -			+				1	 	
59 –							1	<u> </u>	
60 –		-	+		+		1	 	
61 –		-	+				+		
62 —		_	-				-		
			•	•	•	•			

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ ATL4-08

Subsurface Investigation

Client: Kiewit Engineering (NY) Corp. Project: Subsurface Investigation Champlain Hudson Power Express, Design Package 2	Plan
, ————————————————————————————————————	
Champlain Hudson Power Express, Design Package 2	
Various Locations, New York Start Date: 4/11/2022 Finish Date:	4/12/2022
Groundwater Observations	
Boring No.: K-132.4 Sheet 1 of 2 Date Time Depth	Casing
Coordinates Sampler Hammer <u>4/11/2022</u> <u>PM</u> *8.1'	10.0'
Northing <u>1626953.45</u> Weight: <u>140</u> lbs. <u>4/12/2022</u> <u>AM</u> *5.7'	10.0'
Easting <u>744108.1</u> Fall: <u>30</u> in. <u>4/12/2022</u> <u>PM</u> *10.7'	15.0'
Hammer Type: Automatic	
Ground Elev.: 139.6 Boring Advance By: *May be affected by water utilized to advance By:	nce the
HW (4") Casing/3 7/8" Wet Rotary borehole.	
	

DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DEF O SAM		SAMPLE TYPE		SAN PE 2"	WS C MPLE ER 6" O.D. MPLE	R	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	Recovery
		Ø	From	То							c - coarse trace - 0-10%	
1—	C A	1	0.0	2.0	SS	1	2	4	2		Black cmf SAND; some mf GRAVEL; trace ORGANIC MATERIAL (moist, non-plastic) FILL SP	15
2 	S I N	2	2.0	4.0	SS	3	3	3	7		Brown mf SAND; little mf GRAVEL; trace ORGANIC MATERIAL (moist, non-plastic) OC = 6.7% SP	2
4 —	G									4.0	, , ,	
5—		3	4.0	6.0	SS	7	5	6	12		Brown mf SAND; trace CLAY; trace ORGANIC MATERIAL (moist, very slightly plastic) COBBLE in split spoon shoe SC	1
6 		4	6.0	8.0	SS	9	8	6	7		Similar Soil (wet, very slightly plastic) COBBLE in split spoon shoe SC	3
8 —				40.0	00	_				8.0	0.000	10
9 —		5	8.0	10.0	SS	8	9	6	5		Brown cmf+ SAND; some SILT; little f GRAVEL (moist, non-plastic) w = 18.3% SM	18
10 —	WET					1					Advanced casing to 10.0 feet and began advancing 3 7/8" tri-cone	
11 —	RO					+					roller bit wet rotary open hole within the borehole.	
12 —	T					 				12.0		
13 —	A R					<u> </u>						
14 —	Y	6	14.0	16.0	SS		1	1	1		Brownish-Grey mf SAND; little SILT (wet, non-plastic) SM	5
15 —			14.0	10.0	33			'	'		Blownish-Grey IIII GAND, IIIIIe SILT (Wet, Hori-plastic) Sivi	
16 —					<u> </u>	_						
17 —												
18 —												
19 —												
		7	19.0	21.0	SS	4	3	3	2		Grey cmf SAND; trace SILT (wet, non-plastic) SM	
20 —												
21 —										1		
22 —										1		
23 —	\vdash											
24 —		8	24.0	25.0	SS	5	5	4	5	ł	Similar Soil (wet, non-plastic) SM	

Split Spoon Sample

Rock Core
Undisturbed Sample (Shelby Tube) Estimated Groundwater

Drillers: Inspector: Jeffrey Donovan; Chase Bertrand James LaMarco (ATL)

Subsurface Investigation

	Boring I	No.:	K-132.	4		Report No.:		CD10279D-01-03-22 Sheet 2 of 2	
ОЕРТН	METHOD OF ADVANCE	SAMPLE NO.		PTH OF MPLE	SAMPLE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	RECOVERY (inches)
26—									
27 —							27.0		
28 —					-				
29 — 30 —		9	29.0	31.0	SS	WH/24"	-	Grey CLAY; trace f SAND; trace SILT (wet, plastic) CH	24
31 — 32 —		TR-1	31.0	33.0	SS	1 1 1 1		(3" Brass Lined Split Spoon) Grey CLAY; trace f SAND; trace SILT (wet, plastic)	24
33 —	-				<u> </u>		<u> </u>	w = 43.4%, LL = 45, PL = 19, Pl = 26, % Fines = 93.3% CH	
34 — 35 —		10	34.0	36.0	SS	WH/24"		Similar Soil (wet, plastic) CH	24
36 —					<u> </u>		<u> </u>		
37—							-		
38 —									
40 —		11	39.0	41.0	ss	WH/24"	41.0	Similar Soil (wet, plastic) w = 31.3%, LL = 39, PL = 18, PI = 21, % Fines = 98.7% CH	24
41—							1.71.9		
43 —								Boring terminated at 41.0 feet.	
44 —								Notes: 1. Borehole backfilled with cement-bentonite grout.	
45—							1	Soil classifications based on ATL Field Engineer's field	
46—							1	classification. 3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
47—]	Unit No. CDGV706) drill rig.	
49—									
50 —					-				
51 —							1		
52—							_		
53 —							1		
54 — 55 —									
56—									
57—					-		-		
58 —							1		
59—							†		
60 —]		
62 —									
1	I	I	I	I	I	I			1

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2).GPJ A:

Subsurface Investigation

											Report No.: CD10279D-01-03-22	-
	Client:	_Ki	ewit Eng	ineering) (NY) C	orp.					Boring Location: See Boring Location Plan	-
	Project:	_Sı	ubsurface	e Investi	igation							-
		CI	namplain	Hudsor	1 Powe	r Exp	ress	, Desi	ign P	ackage 2		-
		Va	arious Lo	cations,	, New Y	ork					Start Date: <u>4/12/2022</u> Finish Date: <u>4/12/2022</u>	
	Boring N	lo ·	K-132.5	;		She	et	1	of	2	Groundwater Observations	
	Borning i	_	102.0			Cilo	· -		ŭ. <u>-</u>		Date Time Depth Casing	
		Coordin						npler			<u>4/12/2022</u> <u>AM</u> <u>*6.1'</u> <u>10.0'</u>	-
	Northing					Wei	•		40	lbs.	<u>4/12/2022</u> <u>PM</u> <u>*8.8'</u> <u>10.0'</u>	-
	Easting	7437	60.08		Llamm		Fall:		30	in.		-
					Hamm	erry	-		omati	_		-
	Ground I	Elev.:	14	11.3	_			ng Ad			*May be affected by water utilized to advance the	-
					H\	<u>N (4"</u>) Cas	sing/3	7/8"	Wet Rota	borehole.	-
	ш	-i				1					CLASSIFICATION OF MATERIAL	
Ξ	METHOD OF ADVANCE	NO	DEF O		۵۳ ا			NS O IPLEF		DEPTH OF CHANGE	OLAGOII IOATION OF MATERIAL	ery
DEPTH	H	SAMPLE	SAM		SAMPLE			R 6" O.D.		HAN	and - 35-50%	Recovery
-	A A	SAI	_		S			IPLEF	3	Bo	- fine - 20-35% - medium little - 10-20%	\ \tilde{x} \
	С	1	From 0.0	To 2.0	ss \	6	6	7	8		- coarse trace - 0-10% Brown cmf SAND; little mf GRAVEL; little SILT (moist, non-plastic)	18
1—	A	•	5.5	2.0	130	Ě		•			SM	<u> </u>
2—	S	2	2.0	4.0	SS	5	8	9	9		Similar Soil (moist, non-plastic) SM	12
3—	N G		2.0	1.0	00	Ŭ					ommar con (molot, non practic) cim	<u> </u>
4—		3	4.0	6.0	SS	6	11	13	16	4.0	Brown cmf SAND; some SILT (moist, non-plastic) SM	18
5—		_	- 110			Ė						
6—		4	6.0	8.0	SS	10	33	36	29		Brown cmf SAND; little mf GRAVEL; little SILT (moist, non-plastic)	24
7—		•	0.0	0.0	33	_					SM	
8—		5	8.0	10.0	SS	18	16	21	17		Brown c-mf+ SAND; some SILT (moist, non-plastic) w = 19.6%	18
9—											SM	
10 —	WET					1					Advanced casing to 10.0 feet and began advancing 3 7/8" tri-cone	
11—	R O					 				400	roller bit wet rotary open hole within the borehole.	
12 —	T					1				12.0		
13 —	R					1						
14 —	Y	6	14.0	16.0	SS	5	4	4	6		Grey cmf SAND; trace SILT (wet, non-plastic) SM	7
15 —												
16 —						1						
17 —						T						
18 —						1						
19 —		7	19.0	21.0	SS	5	6	6	5		Grey cmf SAND; little SILT; trace mf GRAVEL (wet, non-plastic)	8
20 —											SM	
21 —						T						
22 —						T						
23 —						1						
24 ——		8	24.0	26.0	SS	4	6	6	5		Grey cmf SAND; little SILT (wet, non-plastic) w = 24.3% SM	10
25—					<u> </u>	4				<u>I</u>	·	
	SS Split S	Spoon Samp	ole								illers: Jeffrey Donovan; Chase Bertrand	

Subsurface Investigation

METHOD OF ADVANCE	SAMPLE NO.	c	PTH)F MPLE	SAMPLE TYPE		SAMF PER 2" C	S ON PLER 8 6" D.D. PLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine	PECOVERV
_	0,	From	То	1					c - course trace - 0-10%	_
				\						Ш
										Ш
										L
										L
	9	29.0	31.0	SS	3	3	5 6		Similar Soil (wet, non-plastic) SM	
				<u> </u>	\			31.0		
								_		L
										_
	ST-1	33.0	35.0	SS	WH	/12"	1 2		(3" Brass Lined Split Spoon) Grey CLAY; trace f SAND; trace SILT (wet, plastic) w = 61.3%, LL = 62, PL = 21, PI = 41,	
				<u> </u>	\				% Fines = 95% CH	L
										L
	10	38.0	40.0	ss	WH	/18"	1		Similar Soil (wet, plastic) CH	L
				\ \ \				40.0		L
									Paring terminated at 40.0 fact	
									Boring terminated at 40.0 feet.	
									Notes:	L
									Borehole backfilled with cement-bentonite grout. Soil classifications based on ATL Field Engineer's field	
									classification.	L
								_	3. Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	L
								_	Unit No. CDGV706) drill rig.	L
								_		L
								_		L
								_		L
								_		L
								_		L
								_		L
								_		L
										L
								_		L
								_		L
								_		L
										L
										L
										L
										1

ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 2) GPJ ATL

Subsurface Investigation

Report No.:

CD10279D-01-03-22

	Client:	_K	iewit Eng	gineering	g (NY) C	Corp.					Boring Location: See Boring Location Plan				
	Project:	s	ubsurfac	e Invest	tigation										
			hamplair	Hudso	n Powe	r Exp	ress	, Des	ign Pa	ackage 2					
			arious Lo	ocations	, New Y	ork/						Start Date:	4/13/2022	Finish Date:	4/13/2022
	D! N	1	I/ 400 /	•		Ob a	-4		ء.	•			Groundwate	er Observations	
	Boring N	NO.: .	K-132.	<u> </u>		She	et _	1	or _			Date	Time	Depth	Casing
		Coord	inates				Sar	npler	Hamr	mer		4/13/2022	PM	<u>*10.7'</u>	10.0'
	Northing	1626	3102.8 <u>5</u>			Wei	ght:	1	40	lbs.					
	Easting	743	497.62				Fall:	;	30	in.					
					Hamm	er Ty	/pe:	Auto	omati	<u>c</u>					
	Ground	Elev.:	1	40.3			Bori	ng Ad	vance	e By:		*May be affe	ected by water	utilized to advar	nce the
					H\	W (4"	') Cas	sing/3	7/8"	Wet Rota	ry	borehole.			
	ш				1							CI ASSIE	FICATION C	OF MATERIA	ı
<u> </u>	METHOD OF ADVANCE	N N		PTH)F	SAMPLE			NS O IPLEF		DEPTH OF CHANGE		02.00	,		_
DEPTH	문절	SAMPLE		IPLE	AM F			R 6" O.D.		F					and - 35-50%
-	ME.	SAN			\ \oldsymbol{S} \cdot \text{.}			IPLEF	₹	품호	f - fine m - medium				some - 20-35% little - 10-20%
			From	То		<u> </u>					c - coarse				trace - 0-10%
_	C	1	0.0	2.0	SS	4	5	6	11		Brown o	cmf SAND; sor	me SILT (moist,	non-plastic) SM	
	ŝ				'	1				2.0					
_	I N	2	2.0	4.0	SS	10	12	8	9		Brown o	m SAND; little	e mf GRAVEL; li	ttle SILT (moist, n	on-plastic)
_	G					\									
		3	4.0	6.0	SS	8	10	7	26			SAND; little r	mf GRAVEL; little	e SILT (moist, nor	n-plastic)
					\						SM				
, <u> </u>		4	6.0	8.0	SS	24	19	16	15					f GRAVEL (moist,	
					<u> </u>						non-pia:	stic) w = 8.5%	o SIVI		
_		5	8.0	10.0	SS	17	15	13	12		Grey mf SM	SAND; some	mf GRAVEL; lit	tle SILT (moist, no	on-plastic)
					<u> </u>	\					SIVI				
_	WET R											-	-	gan advancing 3 7	7/8" tri-cone
_	Ō									12.0	roller bit	wet rotary op	en hole within th	ie borenoie.	
	Å														
, 	R Y														
		6	14.0	16.0	SS	6	4	3	6		•	nf SAND; trace	e SILT; trace f G	RAVEL (wet, non-	-plastic)
_]	SM				
															Ī
															Ī
_		7	19.0	21.0	SS	5	4	3	5]	-		e SILT; trace f	SRAVEL (wet, non	ı-plastic)
_]	w = 18.6	o% SM			Ţ
_]					İ
_]					İ
		TR-1	23.0	25.0	SS	4	9	13	19					of SAND; little SILT	Γ; trace f
_					\						GRAVE	L (wet, non-pl	astic) SM		-
	SS Split	Spoon San	nple							[Orillers:	.10	effrey Donovar	n; Chase Bertran	d
	NX Rock	Coro												,	

Subsurface Investigation

		ı	Boring N	No.: _	K-132.	6			Repo	rt No.:		CD10279D-01-03-22 Sheet <u>2</u> of <u>2</u>	
-	DEPTH		METHOD OF ADVANCE	SAMPLE NO.	c	PTH DF MPLE	SAMPLE		SAM PEI 2" (VS ON PLER R 6" O.D. PLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% some - 20-35% little - 10-20% little - 0-10% trace - 0-10%	(inches)
F		1		TR-1	25.0	27.0	ss	6	10	12 13			14
	26	4		111/-1	25.0	27.0	33	_		12 13	4	(3 Blass Effect Spilt Spootly Sittilial Soil (wet, Hort-plastic) Sivi	
	27	_					1				1	_	
	28	\Box									_		
				8	28.0	30.0	SS	6	7	10 7		Similar Soil (wet, non-plastic) SM	12
	29										30.0		
	30	\dashv									<u> </u>	<u></u>	
	31	\dashv									1	Boring terminated at 30.0 feet.	
	32	\dashv									1	<u> </u>	
	33	\dashv									1	Notes: 1. Borehole backfilled with cement-bentonite grout.	
	34	\dashv									_	Soil classifications based on ATL Field Engineer's field	
	35	\Box									_	classification.	
	36	\Box]	Borehole was advanced with ATL's Geoprobe 7822D7 (Rig	
												Unit No. CDGV706) drill rig.	
5/22	37										1		
. 6/1	38	\dashv									1		
GDT	39	\dashv									†	 	
4-08	40	\dashv									1	 	
ATL	41	\dashv									1	<u> </u>	
ЗРJ	42	\dashv									1	_	
≡ 2).(43	\Box											
ΚAGI	44												
PAC													
NS (I	45	\neg									1		
\TIO	46	\exists									1		
/OC/	47	\dashv									1	 	
VARIOUS LOCATIONS (PACKAGE 2).GPJ ATL4-08.GDT 6/15/22	48	\dashv									1	 	
ARIC	49	4				-					-	<u> </u>	
>-0	50	\dashv									1	<u> </u>	
ŏ	51	\Box									1		
Ę	52												
J. J.													
3AS1	53	\neg									1		
Ŗ	54	\exists									1		
MIT.	55	\dashv									†	 	_
A E	56	\dashv									1	 	
1027	57	\dashv									-	<u> </u>	
8	58	4									1		
NE E	59	\Box									1		
90								<u> </u>					
11-1	60												
^	61	\dashv									1		
ł	62	\dashv						\vdash			†	 	

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

		Sample		Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	Sample No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	ш	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	рН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	S-4	6.0 - 8.0	Brown CLAY; some ORGANIC MATERIAL (root hairs); trace SILT						34.9							
K-129.9B	S-6	14.0 - 16.0	Grey CLAY; little SILT; trace f SAND		88.0	96	49	47								
	S-8	24.0 - 26.0	Grey c-mf SAND; trace SILT; trace f GRAVEL	7.0	18.3							-				
	ST-1	27.0 - 29.0	Grey CLAY; trace SILT	100.0	51.2	55	20	35								
	S-10	34.0 - 36.0	Grey CLAY; trace SILT		50.8											
	S-4	6.0 - 8.0	Grey CLAY; little SILT; little mf SAND	85.8	46.6	39	18	21								
К-130.9	S-6	14.0 - 16.0	Grey c-mf+ SAND; some SILT; trace CLAY	35.0	65.2											
	RC-2	30.5 - 31.5	Dark Grey SHALE												1,153	2.75
	RC-2	31.5 - 31.8	Dark Grey SHALE											7,220		
	S-4	6.0 - 8.0	Grey CLAY; trace mf SAND; trace SILT	96.9	48.7	41	20	21								
K-131.6	S-7	19.0 - 21.0	Grey c-mf+ SAND; little SILT	15.0	22.6											
	ST-1	35.0 - 37.0	Grey CLAY; trace f SAND; trace SILT	99.9	55.9	62	25	37								
	S-3	4.0 - 6.0	Blackish-Brown cmf SAND; some mf GRAVEL; trace SILT							500	35	7.69	42,570			
	S-4	6.0 - 8.0	Grey mf+ SAND; and SILT; trace CLAY	50.0	23.3											
K-131.7A	S-7	19.0 - 21.0	Grey SILT; some CLAY; little f SAND; trace ORGANIC MATERIAL (root hairs, wood fragments)	78.3	43.6	53	21	32			-	-				
	S-9	29.0 - 31.0	Grey CLAY; little SILT; trace f SAND		70.9											
	ST-1	45.0 - 47.0	Grey CLAY; little mf SAND; trace SILT	86.6	66.4	53	25	28				1				
	S-5	8.0 - 10.0	Brownish-Grey CLAY; little SILT; little ORGANIC MATERIAL (root hairs); trace mf SAND					-1	10.5			-1				
K-131.7B	S-6	14.0 -16.0	Black ORGANIC MATERIAL (peat, root hairs); trace SILT	3.1	178.4	NP	NP	NP								
	S-9	29.0 - 31.0	Grey CLAY; trace SILT		60.9			-				1				
	ST-1	45.0 - 47.0	Grey CLAY; trace SILT; trace f SAND	99.8	58.7	55	19	36								
	S-5	8.0 - 10.0	Black ORGANIC MATERIAL (peat, root hairs); trace mf SAND; trace SILT	2.0	411.1	NP	NP	NP								
К-131.9	S-8	24.0 - 36.0	Grey c-m SAND; trace CLAY; trace SILT		62.8											

LABORATORY TEST SUMMARY TABLE

ATL No. CD10279: Kiewit Infrastructure Co. - Champlain Hudson Power Express

	Sample			Percent	Moisture	At	terburg Lim	nits	Organic	Water-	Water-			Rock Unconfined	Rock Splitting	Rock
Boring ID	No.	Depth (ft.)	Soil/Rock Description	Finer No. 200 Sieve	Content (%)	LL	PL	PI	Content (%)	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	pН	Resistivity (ohm-cm)	Compressive Strength (psi)	Tensile Strength (psi)	CERCHAR Abrasiveness Corrected CAI
	ST-1	35.0 - 37.0	Grey CLAY; trace SILT; trace f SAND	99.0	70.9	51	20	31								
	S-4	6.0 - 8.0	Greyish-Brown CLAY; and mf SAND; little ORGANIC MATERIAL (peat, root hairs), trace SILT						14.1							
K-132.1	S-6	14.0 - 16.0	MATERIAL (peat, root hairs)	44.3	121.0	NP	NP	NP								
	S-8	24.0 - 26.0	Grey CLAY; little cmf SAND; trace SILT; trace ORGANIC MATERIAL (root hairs) (wet, plastic)		44.8						-1					
	ST-1	35.0 - 37.0	Grey CLAY; trace SILT; trace f SAND	99.4	37.7	44	19	25								
	S-4	6.0 - 8.0	Brown ORGANIC MATERIAL (peat); trace CLAY; trace f SAND; trace SILT						90.7							
K-132.2	S-6	14.0 - 16.0	Grey c-mf SAND; trace SILT	6.0	22.7											
K-132.2	S-8	24.0 - 26.0	Grey cm+f SAND; trace mf GRAVEL; trace SILT	8.0	17.0											
	R-1	31.73	Dark Grey SHALE												898	1.33
	R-1	33.0 - 33.3	Dark Grey SHALE											7,920		
	S-2	2.0-4.0	Brown mf SAND; little m GRAVEL; trace OM						6.7							
K-132.4	S-5	8.0-10.0	Brown cmf+ SAND; some SILT; little f GRAVEL	24.0	18.3											
	TR-1	31.0-33.0	Grey CLAY; trace f SAND; trace SILT	93.3	43.4	45	19	26								
	S-11	39.0-41.0	Grey CLAY; trace f SAND; trace SILT	98.7	31.3	39	18	21								
	S-3	4.0-6.0	Brown cmf SAND; some SILT							7600	35.0	11.5	5,805			
K-132.5	S-5	8.0-10.0	Brown c-mf+ SAND; some SILT	35.0	19.6							-				
	S-8	24.0-26.0	Grey cmf SAND; little SILT		24.3											
	ST-1	33.0-35.0	Grey CLAY; trace f SAND; trace SILT	95	61.3	62	21	41								
K-132.6	S-4	6.0-8.0	Grey cmf SAND; some SILT; some mf GRAVEL	27.0	8.5											
K-132.0	S-7	19.0-21.0	Grey c-mf SAND; trace SILT; trace f GRAVEL	8.5	18.6			-		-		-				

Client:

Kiewit Intrastructure Co.

Project:

Champlain Hudson Power Express

ATL Report No.: CD10279E-03-02-22

Date: February 18, 2022 Page 2 of 2

TEST DATA (continued)

TEST ONTA (CONTINCE)										
Boring	Sample	Depth	Moisture							
No.	No.	(ft)	Content (%)							
K-131.9	S-5	8-10	411.1							
	5-8	24-26	62.8							
	ST-1	35-37	70.9							
K-132.1	S-6	14-16	121.0							
	S-8	24-26	44.8							
	ST-1	35-37	37.7							

1. Sample mass was less than the minimum mass outlined in the referenced test method.

	N ~		
Reviewed By:	Fy F	Date:	02/18/22

Project:

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS ASTM D 2216

PROJECT INFORMATION

Page 1 of 2

Client: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-04-03-22

Report Date: Date Received: March 1, 2022

February 18, 2022

TEST DATA

TEST DATA									
Boring	Sample	Depth	Moisture						
No.	No.	(ft)	Content (%)						
K-117.6-1.6B	S-4 ¹	6-7.2	10.0						
	S-7	19-21	18.2						
	S-9	28-30	26.7						
K-117.6-1.6C	S-4	8-9.3	17.6						
	S-6 ¹	19-21	12.4						
	5-8	28-30	35.1						
K-132.2	S-6	14-16	22.7						
	5-8 ¹	24-26	17.0						

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS ASTM D 2216

Page 1 of 1

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

Project: Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.: CD10279E-13-04-22

Report Date:

April 26, 2022

Date Received:

April 18, 2022

TEST DATA

Boring	Sample	Depth	Moisture
No.	No.	(ft)	Content (%)
K-132.4	S-5	8-10	18.3
	TR-1 ¹	31-33	43.4
	S-11	39-41	31.3
K-132.5	S-5	8-10	19.6
	5-8	24-26	24.3
	ST-1	33-35	61.3
K-132.6	S-4 ¹	6-8	8.5
	S-7	19-21	18.6

Remarks

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:	K	\sim	Date:	04/26/22
				

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-04-03-22

Client: Kiewit Intrastructure Co. Date: 03/01/22

Sample No: K-132.2, S-6 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 14-16'

GRAIN SIZE - mm.										
	% G:	ravel	{	% San	đ	% Fines				
% Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
()	Ο	0		40	44	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

ŞIEVE	PERCENT	SPEC.	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
1/2"	100		
#4	100		
#10	99		
#40	50		
#200	6.0		
			,
	1		
	-		
1	STATE OF THE PERSON OF THE PER	-	
	1		

(§ Grey c-mf SAND;	Soil Description trace SILT	
Ī	JF= "	Atterberg Limits LL=	PI=
[D ₈₅ = 1.1130 D ₃₀ = 0.2186 D _U = 6.16	Coefficients D60= 0.5603 D15= 0.1152 Cc= 0.94	D ₅₀ = 0.4258 D ₁₀ = 0.0909
į	JSCS=	Classification AASHTO:	=
. ,	Moisture Content	Remarks = 22.7%	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Figure

Reviewed by:

Date: 03/01/22

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-13-04-22

Client: Kiewit Intrastructure Co. Date: 04/26/22

Sample No: K-132.4, S-5 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 8-10'

GRAIN SIZE - mm. % Gravel % Sand % Fines % Cobbles Coarse Coarse Medium Fine Clay Fine 0 24 11 10 48

	SIEVE	PERCENT	SPEC.*	OUT OF
	SIZE	FINER	PERCENT	SPEC. (X)
	1/2"	100		
	#4	89		
	#10	82		
	#40	72		
	#200	24		
i	ļ			
1				
]			

rberg Limits =	PI=
pefficients 0= 0.2428 5 ^m	D ₅₀ = 0.1689 D ₁₀ =
ssification AASHTO=	
t	ssification

* (no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Reviewed by:

Date: 04/26/22

Figure

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-13-04-22

Client: Kiewit Intrastructure Co. Date: 04/26/22

Sample No: K-132.5, S-5 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 8-10'

	SIEVE	PERCENT	SPEC.*	OUT OF
	SIZE	FINER	PERCENT	SPEC. (X)
	#4	100		
i	#10	99		
	#40	90		
	#200	35		
1				
ŀ				
ł				
ı	:			

Atterberg Limits	I
L E	
D ₈₅ = 0.3389	White
Classification USCS= AASHTO=	
Remarks Moisture Content= 19.6%	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED—

Reviewed by:

Date: _____04/26/22

Figure

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-13-04-22

Client: Kiewit Intrastructure Co. Date: 04/26/22

Sample No: K-132.6, S-4 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 6-8'

GRAIN SIZE - mm. % Fines % Gravel % Sand % Cobbles Coarse Fine Sit Fine Coarse Medium Clay 0 27 16 24

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
1"	100	1	
1/2"	89		
#4	76		
#10	67		
#40	51		
#200	27	To the second se	
}			
i			
-			
		;	

Soil Description						
Grey cmf SANI	Grey cmf SAND; some SILT; some mf GRAVEL					
	A44					
PL=	Atterberg Limits LL=	Pi=				
	Coefficients					
D ₈₅ = 9.4554	D ₆₀ = 0.9677	D ₅₀ ≈ 0.3787				
D30= 0.0900 Cu=	D ₁₅ = C _c =	D10-				
- u	ū					
USCS=	Classification AASHT)=				
	Remarks					
Moisture Content= 8.5%						

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED-

Reviewed by:

Date: 04/26/22

Figure

Particle Size Distribution Report

Project: Champlain Hudson Power Express United Cable Install Report No.: CD10279E-13-04-22

Client: Kiewit Intrastructure Co. Date: 04/26/22

Sample No: K-132.6, S-7 Source of Sample: Boring Sample

Location: In-place Elev./Depth: 19-21'

	GRAIN SIZE - mm.							
% Cobbles	% G	ravel			% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	4	7	43	38	8		

			·	
	SIEVE	PERCENT	SPEC.*	OUT OF
	SIZE	FINER	PERCENT	SPEC. (X)
	1/2"	100		
	#4	96		
	#10	89		
	#40	46		
	#200	8.5	1	
		1		
	İ			
:				
			\$ I	

Soil Description							
Grey c-mf SAND; trace SILT; trace f GRAVEL							
PL=	Atterberg Limits	PI=					
D ₈₅ = 1.6359 D ₃₀ = 0.2260 C _u = 8.26	Coefficients D ₆₀ = 0.6735 D ₁₅ = 0.1072 C _c = 0.93	D ₅₀ = 0.4878 D ₁₀ = 0.0816					
USCS=	Classification AASHTC)=					
Moisture Conter	Remarks						

* (no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED

Date: _____04/26/22

Figure

Reviewed by:

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-03-02-22

Project: (

Champlain Hudson Power Express

Report Date:

February 18, 2022

United Cable Installation Various Locations, New York Test Date:

February 11, 2022

Performed By:

A. Rivers

TEST DATA

Boring	Sample	Depth	Method	Soak Time	Initial Dry	% Finer
No.	No.	(ft)	(A or B)	(min)	Weight (g)	than #200
K-117.5-0.2	S-4	6-8	А	10	205.83	41.7
K-117.6-0.2	S-7	19-21	Α	10	220.45	23.5
K-117.6-0.2	S9	28-30	А	10	273.37	99.7
K-117.6-2.1	S-6	14-16	А	10	163.54	57.2
K-130.9	S-4	6-8	Α	10	144.29	85.8
K-131.6	S-4	6-8	А	10	138.58	96.9
K-131.6	ST-1	35-37	А	10	227.62	99.9
K-131.7A	S-7	19-21	А	10	175.90	78.3
K-131.7A	ST-1	45-47	A	10	221.28	86.6
K-131.7B	S-6	14-16	Α	10	147.24	3.1
K-131.7B	ST-1	45-47	Α	10	239.55	99.8
K-131.9	S-5	8-10	Α	10	133.26	2.0
K-131.9	ST-1	35-37	А	10	194.65	99.0
K-132.1	S-6	14-16	А	10	202.17	44.3
K-132.1	ST-1	35-37	Α	10	299.54	99.4
				1	1	

Reviewed By:

h~

Date: Febru

February 18, 2022

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-13-04-22

Project:

Champlain Hudson Power Express

Report Date:

April 26, 2022

United Cable Installation

Test Date:

April 22, 2022

Various Locations, New York

Performed By:

E. Hannon

TEST DATA

Boring	Sample	Depth	Method	Soak Time	Initial Dry	% Finer
No.	No.	(ft)	(A or B)	(min)	Weight (g)	than #200
K-132.4	TR-1	31-33	А	10	92.01	93.3
K-132.4	\$- 1 1	39-41	Α	10	44.75	98.7
K-132.5	ST-1	33-35	A	10	161.78	95.0

Reviewed By:	1/-		Date:	04/26/22
		1/	***************************************	

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL **ASTM D 4318**

PROJECT INFORMATION

Client:

Kiewit Instrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATI. Report No.: CD10279E-03-02-22

Report Date:

February 18, 2022

Date Received:

February 7, 2022

TEST DATA

TEST DATA						
Boring No.	Sample No.	LL	PŁ.	PΙ		
K-117.6-0.2	S-4	NP	NP	NP		
K-117.6-0.2	S-7	NP	NP	NP		
K-117.6-0.2	S-9	65	26	39		
K-117.6-2.1	\$-6	41	19	22		
K-130.9	S-4	39	18	21		
K-131.6	Ş-4	41	20	21		
K-131.6	ST-1	62	25	37		
K-131.7A	S-7	53	21	32		
K-131.7A	5T-1	53	25	28		
K-131.7B	S-6	NP	NP	NP		
K-131.7B	\$T-1	55	19	36		
K-131.9	S-5	NP	NP	NP		
K-131.9	\$T-1	51	20	31		
K-132.1	S-6	NP	NP	NP		
K-132.1	ST-1	44	19	25		
				······································		

SAMPLE INFORMATION

			TE INFORMATION	
		Maximum	Estimated Amount of Sample	As Received Moisture
		Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-117.6-0.2	S-4	6.35	15	25.3
K-117.6-0.2	S-7	2.38	30	18.3
K-117.6-0.2	5-9	0.595	1	55.0
K-117.6-2.1	S-6	2	5	47.9
K-130.9	S-4	2	5	46.6
K-131.6	S-4	0.595	2	48.7
K-131.6	ST-1	0.841	1.	55.9
K-131.7A	S-7	2	2	43.6
K-131.7A	ST-1	9.51	10	65.4
K-131.7B	S-6	9,51	30	178.4
K-131.78	ST-1	0.595	1	58.7
K-131.9	S-5	4.76	20	411.1
K-131.9	ST-1	2	1	70.9
K-132.1	5-6	4.76	10	121.0
K-132.1	ST-1	2	1	37.7

Client: Project:

Kiewit Instrastructure Co.

Champlain Hudson Power Express

ATL Report No.

Date:

CD10279E-03-02-22

February 18, 2022

Page 2 of 2

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-117.6-0.2	S-4	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-7	Air Dry	Pulverizing and Screening
K-117.6-0.2	S-9	Air Dry	Pulverizing and Screening
K-117.6-2.1	5-6	Air Dry	Pulverizing and Screening
K-130.9	S-4	Air Dry	Pulverizing and Screening
K-131.6	S-4	Air Dry	Pulverizing and Screening
K-131.6	\$T-1	Air Dry	Pulverizing and Screening
K-131.7A	5-7	Air Dry	Pulverizing and Screening
K-131.7A	ST-1	Air Dry	Pulverizing and Screening
K-131.7B	S-6	Air Dry	Pulverizing and Screening
K-131.7B	ST-1	Air Dry	Pulverizing and Screening
K-131.9	S-5	Air Dry	Pulverizing and Screening
K-131.9	ST-1	Air Dry	Pulverizing and Screening
K-132.1	S-6	Air Dry	Pulverizing and Screening
K-132.1	ST-1	Air Dry	Pulverizing and Screening

EQUIPMENT INFORMATION Single Point - Method B Liquid Limit Procedure: Multipoint - Method A X Liquid Limit Apparatus: **Motor Driven** Manual Liquid Limit Grooving Tool Material: X Metal **Plastic** Liquid Limit Grooving Tool Shape: Flat Х Curved (AASHTO Only) Plastic Limit: Hand Rolled X Mechanical Rolling Device 02/18/22 Date:

WBE certified company

Page 1 of 1

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL ASTM D 4318

PROJECT INFORMATION

Client: Kiewit Instrastructure Co.

ATL Report No.: CD10279E-13-04-22

Project: Champlain Hudson Power Express

Report Date:

April 26, 2022

United Cable Installation

Date Received:

April 18, 2022

Various Locations, New York

TEST DATA

Boring No.	Sample No.	LL	PL	PI
K-132.4	TR-1	45	19	26
K-132,4	S-11	39	18	21
K-132.5	ST-1	62	21	41

SAMPLE INFORMATION

<u> </u>		Maximum	Estimated Amount of Sample	As Received Moisture
	1	Grain Size	Retained on No. 40 Sieve	Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-132.4	TR-1	4.76	1	43.4
K-132.4	S-11	0.25	0	31.3
K~132.5	ST-1	4.76	2	61.3

PREPARATION INFORMATION

Boring No. Sample No.		Preparation	Method of Removing Oversized Material
K-132.4	TR-1	Air Dry	Pulverizing and Screening
K-132.4	S-11	Air Dry	Not Necessary
K-132.5	ST-1	Air Dry	Pulverizing and Screening

EQUIPMENT INFORMATION

		+		
Liquid Limit Procedure: Multip	point - Method A	х	Single Point - Method 8	
Liquid Limit Apparatus:	Manual	X	Motor Driven	
Liquid Limit Grooving Tool Mater	al: Plastic	X	Metal	
Liquid Limit Grooving Tool Shape:	Flat		Curved (AASHTO Only)	
Plastic Limit:	Hand Rolled	X	Mechanical Rolling Device	

Reviewed By:	7	
	Į.	

Date:	04/26/22

WBE certified company

PROJECT INFORMATION

Client: Kiewit Int

Kiewit Intrastructure Co.

ATL Report No.:

CD10279E-03-02-22

Project:

Champlain Hudson Power Express

Report Date:

February 18, 2022

United Cable Installation

Date Received:

February 7, 2022

Various Locations, New York

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT ASTM D 2974

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-131.7B	S-5	10.5	89.5	97.7	Α	440
K-132.1	S-4	14.1	85.9	84.6	А	440

Reviewed By:

Date: 02/18/22

WBE certified company

PROJECT INFORMATION

Client: Project: Kiewit Intrastructure Co.

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-04-03-22

Report Date: Date Received: March 1, 2022

February 18, 2022

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT **ASTM D 2974**

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-132.2	5-4	90.7	9.3	633.7	Α	440

Reviewed By: ______

03/01/22

WBE certified company

PROJECT INFORMATION

Client: Kiewit Intrastructure Co.

ATL Report No.: CD10

CD10279E-13-04-22

Project:

Champlain Hudson Power Express

Report Date:

April 26, 2022

United Cable Installation

Date Received:

April 18, 2022

Various Locations, New York

PERCENT ORGANICS, ASH CONTENT, AND MOISTURE CONTENT

ASTM D 2974

						Furnace
Boring	Sample	Organics	Ash	Moisture	Test	Temperature
No.	No.	(%)	(%)	(%)	Method	(°C)
K-132.4	S-2	6.7	93.3	15.2	А	440

CORROSION ANALYSIS SUITE

Client:	Kiewit Intrastructure Co.	ATL Report No.	CD10279E-13-04-22
Project:	Champlain Hudson Power Express	Report Date:	April 26, 2022
	United Cable Installation	Date Received:	April 18, 2022

Location: Various Locations, New York

Sample: K-132.5, S-3 Depth (ft): 4-6

MEASURING pH OF SOIL FOR USE IN CORROSION TESTING ASTM G 51

Type of Test	Soil Temperature (°C)	р	H Reading	ζS	Average
Laboratory	22.5	11.44	11.45	11.45	11.45

pH of calibration standards used:

7.00

MEASUREMENT OF SOIL RESISITIVITY USING THE TWO-ELECTRODE SOIL BOX METHOD ASTM G 187 (LABORATORY)

Test Date:	04/18/22	Performed by:	E. Hannon
Meter Used:	Miller 400A	Soil Box Factor:	1.29

	Temperature at	Measured	Calculated
Date Collected	Collection (°C)	Resistance (Ω)	Resistivity (Ω/cm)
Not Provided	Not Provided	4,500	5,805

WATER-SOLUBLE CHLORIDE ION CONTENT IN SOIL AASHTO T 291, Method A

/> \
ariva:
ng/kg)

WATER-SOLUBLE SULFATE IN SOIL ASTM C 1580

Sulfate by Mass of Sample (%)	Sulfate by Mass of Sample (mg/kg)
0.76	7600

Reviewed By:	1-		Date:	04/26/22
		1	***************************************	mrv .

WBE certified company

Page 1 of 1

PROJECT INFORMATION

Client:

Kiewit Intrastructure Co.

Project:

Champlain Hudson Power Express

United Cable Installation

Various Locations, New York

ATL Report No.:

CD10279E-04-03-22

Report Date:

March 1, 2022

Date Received:

February 18, 2022

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012, Method C

Boring	Sample	Depth	Diameter	Length	Load Rate	Total	Area	Compressive
No.	No.	(ft)	(in)	(in)	(lbs/sec)	Load (lbs)	(in²)	Strength (psi)
K-132.2	R-1	33.0-33.3	1.98	4.04	300	24,410	3.08	7,920

Failure Pictures K-132.2, R-1, 33.0-33.3

Reviewed By:

12 mg

Date:

March 1, 2022

K-130.9 - Runs 1 and 2

K-132.2 - Runs 1 and 2

EXPLORATION PLAN

CHPE - Additional HDD Borings - Phase 3 ■ Fort Ann to Coxsackie, NY

November 3, 2022 Terracon Project No. JB215256G

GP.

JB215256G CHPE - ADDITIONAL

GEO SMART LOG-NO WELL

REPORT.

ORIGINAL

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215256G CHPE - ADDITIONAL. GPJ TERRACON DATATEMPLATE. GDT 11/2/22

GEO SMART LOG-NO WELL

REPORT.

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB215256G CHPE - ADDITIONAL GPJ TERRACON DATATEMPLATE. GDT 11/2/22

Summary of Laboratory Results

				Sheet 1 c
BORING ID	Depth (Ft.)		Water Content (%)	Organic Content (%)
KB-115.5	2-4	13.4		3.4
KB-115.5	15-17		70.8	
KB-117.6-1.6D	3-5		4.0	
KB-117.6-1.6D	20-22		22.7	
KB-117.6-1.6D	35-37		26.2	
KB-117.6-1.6D	49-51		15.3	
KB-122.9	4-6		23.1	
KB-122.9	15-17		18.6	
KB-122.9	25-27		77.9	
KB-122.9	45-47		74.8	
KB-123.0	2-4		10.9	
KB-123.0	20-22		68.3	
KB-123.0	35-37		51.0	
KB-123.0	50-52		45.9	
KB-123.0	65-67		34.5	
KB-132.1A	4-6		27.5	
KB-132.1A	15-17		38.1	
KB-132.1A	30-32		34.0	
KB-132.3A	4-6		12.1	
KB-132.3A	15-17		45.2	
KB-132.3A	30-32	37.2		
KB-132.5A	4-6	17.4		
KB-132.5A	30-32	38.8		
KB-132.5A	45-47	38.2		
KB-135.7	2-4	36.6		
KB-135.7	15-17	41.9		
KB-135.7	30-32		34.8	
KB-135.8	2-4		5.6	
KB-135.8	15-17		42.7	
KB-135.8	30-32		36.8	
KB-135.8	40-42		28.3	
KB-160.6	2-4		12.2	
KB-163.1	4-6		11.7	
KB-163.2	8-10		12.1	
KB-169.0-3.3	6-8		12.0	
KB-169.0-3.3	25-27		11.5	
KB-169.0-3.3	35-37		8.4	
KB-177.1	10-12		8.9	
KB-177.1	25-27		11.5	
KB-177.1	40-42		11.2	
KB-177.1	50-52	5.7		
KB-182.7B	6-8		31.5	
PROJECT: C	CHPE - Addition hase 3	nal HDD Borings -	Terracor	PROJECT NUMBER: JB215256G
SITE: Fort Ar	nn to Coxsackie	e, NY	30 Corporate Cir Ste 201 Albany, NY	CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO

ATTERBERG LIMITS RESULTS

ASTM D4318

,	oring ID [Depth (Ft)	LL	PL	PI	Fines	USCS	Description
•	KB-115.5	15 - 17	59	26	33	86.6	СН	FAT CLAY
	KB-117.6-1.6D	20 - 22	29	17	12	25.5	SC	CLAYEY SAND
A	KB-117.6-1.6D	35 - 37	31	17	14	48.6	SC	CLAYEY SAND
*	KB-122.9	25 - 27	73	30	43	98.8	СН	FAT CLAY
⊙	KB-122.9	45 - 47	68	27	41	91.5	СН	FAT CLAY
•	KB-123.0	20 - 22	52	24	28	81.5	СН	FAT CLAY with SAND
0	KB-123.0	35 - 37	45	23	22	75.9	CL	LEAN CLAY with SAND
	KB-123.0	50 - 52	46	23	23	65.8	CL	SANDY LEAN CLAY
8	KB-123.0	65 - 67	54	16	38	91.9	СН	FAT CLAY
 △ ⊗ ⊕ □ 	KB-132.1A	4 - 6	NP	NP	NP	10.0	SP-SM	POORLY GRADED SAND with SILT and GRAVEL
	KB-132.1A	15 - 17	52	25	27	96.9	СН	FAT CLAY
•	KB-132.1A	30 - 32	31	20	11	100.0	CL	LEAN CLAY
•	KB-132.3A	4 - 6	NP	NP	NP	31.7	SM	SILTY SAND
☆	KB-132.3A	15 - 17	60	27	33	88.6	СН	FAT CLAY
ន	KB-132.3A	30 - 32	NP	NP	NP	53.0	ML	SANDY SILT with GRAVEL
	KB-132.5A	4 - 6	35	21	14	94.3	CL	LEAN CLAY
₩★₩₩	KB-132.5A	30 - 32	40	22	18	98.7	CL	LEAN CLAY
	KB-132.5A	45 - 47	33	21	12	94.9	CL	LEAN CLAY
×	KB-135.7	2 - 4	41	24	17	26.1	GC	CLAYEY GRAVEL with SAND
	KB-135.7	15 - 17	40	21	19	91.9	CL	LEAN CLAY

PROJECT: CHPE - Additional HDD Borings - Phase 3

30 Corporate Cir Ste 201 Albany, NY PROJECT NUMBER: JB215256G

CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ATTERBERG LIMITS J8215256G CHPE - ADDITIONAL GPJ TERRACON DATATEMPLATE. GDT 11/2/22

SITE: Fort Ann to Coxsackie, NY

GRAIN SIZE DISTRIBUTION

ASTM D422 / ASTM C136

SITE: Fort Ann to Coxsackie, NY

Phase 3

30 Corporate Cir Ste 201 Albany, NY

CLIENT: Kiewit Engineering (NY) Corp

Lone Tree, CO

GRAIN SIZE DISTRIBUTION

ASTM D422 / ASTM C136

SITE: Fort Ann to Coxsackie, NY

Phase 3

30 Corporate Cir Ste 201 Albany, NY

PROJECT NUMBER: JB215256G

CLIENT: Kiewit Engineering (NY) Corp

Lone Tree, CO

GEOPHYSICAL SERVICES REPORT

Champlain Hudson Power Express Upland Cable Installation Project Wetland Crossing, Near Hudson Falls (HDD21) Whitehall, Washington County, New York

Schnabel Reference # 21C25020.040 June 14, 2022

June 14, 2022

Mr. Jaren Knighton, PE Kiewit Engineering Group, Inc. (Kiewit Engineering (NY) Corp.) 8880 Penrose Ln. Lenexa, KS 66219

Subject: Geophysical Services Report – Champlain Hudson Power Express Upland Cable

Installation Project (HDD21); Wetland Crossing, near Hudson Falls, Whitehall,

Washington County, New York (Schnabel Reference 21C25020.040)

Dear Mr. Knighton:

SCHNABEL ENGINEERING OF NEW YORK is pleased to submit our geophysical report for this project. This study was performed in accordance with our proposal dated April 29, 2022, and revised May 5, 2022; and by Kiewit Task Assignment Order No. 04 (effective date May 6, 2022) of our Master Service Agreement KEG_MSA_Schnabel_2017 (December 11, 2017, Amended May 21, 2020).

EXECUTIVE SUMMARY

This report presents the results of our geophysical survey performed along the Canadian Pacific Railway south of Whitehall, New York, for Kiewit Engineering (NY) Corp. as part of the Champlain Hudson Power Express project.

Schnabel collected 1,800 linear feet of seismic data between about 200 ft southwest of Borehole K-132.4 and about 100 ft northeast of Borehole K-132.1; refer to Figure A-1 of this report. The data was processed using both multi-channel analysis of surface waves (MASW) and seismic refraction tomography (SRT) methods. The MASW method was unable to produce reliable results, most likely due to the subsurface conditions and geologic setting. The SRT method proved more effective and provided results that show the depth to rock varies between about 25 to 45 ft below the ground surface along the alignment.

We are providing this Executive Summary solely for purposes of overview. Any party that relies on this report must read the full report. This Executive Summary omits several details, any one of which could be important to the proper application of the report.

PROJECT DESCRIPTION

Site Description

The site of this geophysical survey is located along the Canadian Pacific (CP) Railway, about 2 miles east of Hudson Falls, Washington County, New York. A Site Vicinity Map is included as Figure 1.

Figure 1: Site Vicinity Map (Site Represented by Red Symbol)

The seismic survey was conducted generally about 10 ft northwest of and parallel to the railroad line, starting about 200 ft southwest of Borehole K-132.4 and extending about 100 ft northeast of Borehole K-132.1. Three existing test borings were located along the seismic line. From the boring logs and data provided by Kiewit, two of the three boreholes were located directly along the line, while one (K-132.4) was about 65 ft to the southeast of the seismic data line. Figure 2 shows the site layout. Photographs 1, 2, and 3 show the site conditions at the time of data collection. Topography was generally flat with little variation. The ground surface was generally comprised of gravel (ballast) and provided effective ground coupling using geophones with 3-inch spikes.

Figure 2: Site Layout (Background Image from Azure Imagery)

Photographs 1,2, and 3: Site Conditions During Data Collection

SURVEY OBJECTIVE AND SCOPE

The objective of this study was to estimate the depth to bedrock between the test borings that were drilled along the proposed HDD21 alignment, and in particular to identify zones where bedrock is shallower than about 40 to 50 ft deep.

Given the available data and expected subsurface conditions, we recommended an MASW survey that would be collected in a manner that P-wave seismic refraction data could also be analyzed from the same data set. MASW measures how surface waves propagate and disperse through the soil, thereby inferring shear-wave velocities in those areas. Shear-wave velocities directly correlate to the stiffness of soil and will, therefore, be used to locate soft soil areas in contrast with stiff materials such as bedrock. Seismic refraction measures the time it takes for a P-wave, or compressional wave, to travel from the source at the ground surface to the soil/bedrock interface and back to geophones placed along the surface. With analysis, the travel times can be calculated to provide estimates of depths to the interface.

We collected 1,800 linear feet of seismic data between about 200 ft southwest of Borehole K-132.4 and about 100 ft northeast of Borehole K-132.1. The data was processed using both MASW and SRT methods. The MASW method was unable to produce reliable results, most likely due to the subsurface conditions and geologic setting; however, the SRT method proved more effective and will be the focus of this report.

Geophysical Methods

Schnabel personnel collected seismic data using two Geometrics, Inc., Geode, 24-channel seismographs and 48 geophones along a linear array on May 17, 2022. The geophones were spaced 10 ft along the array. We collected shot records starting 30 ft off the end of the line and every 30 ft down the line. The energy source was a 16-pound sledgehammer striking a polypropylene plate on the ground surface. Once shot points were collected along the first half of the initial 48-channel (470 ft) spread, the first 24 geophones were picked up and moved to the end of the line, and shot points continued to move up the line. This roll-along method was continued until data was collected for the full 1,800-ft line, at which time the shot points continued through the final spread. The seismic data were recorded digitally directly onto a laptop computer that controlled the seismograph. Sub-meter GPS data was collected along the full

seismic line using a Trimble Geo 7x. The GPS data were used to both located the horizontal location of the geophysical data collected and to generate a topographic surface for data processing and displaying the results.

Multi-Channel Analysis of Surface Waves (MASW)

Schnabel performed analysis on the seismic data using a surface wave recognition and modeling program (SurfSeis Version 6, Kansas Geological Survey). The data for each array location were processed and then modeled using an inversion method to estimate the subsurface shear wave velocities. The inversion models from each source/receiver array location were combined to form a two-dimensional cross-section model of the subsurface shear wave velocity for each MASW traverse; however, the dispersive energy for this dataset was inconsistent and not conducive to reliable modeling. This variability in data quality can be caused by subsurface geologic conditions or high levels of vibrational noise at the site. In this case, the noise levels were not abnormally high, so the geological conditions are expected to be the cause of the ineffectiveness of the MASW method.

Seismic Refraction Tomography (SRT)

Seismic data processing was conducted using Rayfract Version 4, from Intelligent Resources. The processing involved Schnabel personnel manually picking first-arrival times of seismic energy, incorporating elevations into the data, and generating a model that matches the first arrivals. Gradational velocity changes are common in geologic environments with thicker zones of weathered and fractured bedrock, such as at this site; therefore, we performed a tomographic inversion to estimate these gradational changes in the P-wave velocities.

Results and Interpretations

As discussed above, the MASW method did not produce reliable results; therefore, the results from the SRT method, which did produce reliable results that met the project objectives, are discussed below.

The SRT results are shown in Figure A-1, located in Appendix A. The figure shows the P-wave velocity model using a 10:1 vertical to horizontal scaling to enhance the variation on the velocity structure in the top 50 ft below ground surface (bgs). On the bottom left corner of the figure is a Location Plan that shows where the results are, with distances on the base map corresponding to the horizontal axis of the P-wave velocity model. The base map is also color coded to represent ranges of estimated depth to rock, as described below.

The three existing boreholes that were located along the seismic line are represented on the velocity model. Bedrock was not encountered in Boreholes K-132.4 and K-132.1, so we know that rock is deeper than the bottom of those boreholes at those locations. Borehole K-132.2 encountered apparent bedrock at a depth of 30 ft, and this depth is represented by a solid black line perpendicular to the boring stick.

Based on correlation with the limited borehole information and our experience in similar geologic settings, we chose the 7,500 ft/s contour line to represent the top of bedrock. This is shown as a dashed black line on the seismic refraction velocity model on Figure A-1. The black lines on either side represent the zone within 10% of the depth to the 7,500 ft/s contour line. A depth range of ±10% is the typical expected resolution for the seismic refraction method. Additionally, the Location Plan on Figure A-1 shows where

Kiewit Engineering (NY) Corp. Champlain Hudson Power Express Upland Cable Installation Project (HDD21)

depth to top of bedrock, as indicated by the 7,500 ft/s contour line, is less than 30 ft, between 30 ft and 40 ft, or greater than 40 ft.

Based on these results, the depth to bedrock is shallower than 50 ft for a portion of the 1,800-ft alignment. For the southern 500 ft of the line, the depth to bedrock varies between elevations of 94 and 100 ft, or 35 and 45 ft bgs. From a distance of 420 ft to about 1,220 ft, the bedrock slopes upward from about an elevation of 94 ft (45 ft bgs) to an elevation of 115 ft (25 ft bgs). From 1,220 ft to a distance of about 1,600 ft, the bedrock drops back down to about an elevation of 100 ft (40 ft bgs).

LIMITATIONS

The seismic refraction method is based on subsurface interfaces (boundaries) that refract the seismic waves. The seismic wave energy refracts through interfaces where there is a lower velocity layer above a higher velocity layer. It is not capable of detecting a lower velocity layer beneath a higher velocity layer. Based on the observed soft clay material in the borehole logs and Boring K-132.2 indicating bedrock below the clay, we infer the transition from clay to bedrock is similar below Borings K-132.4 and K-132.1 in comparison to Boring K-132.2; however, this limitation (e.g., a lower velocity layer beneath a higher velocity layer) could affect the results for this project for conditions where lower velocity material underlies higher velocity material along the line of study.

Schnabel based the analyses and recommendations submitted in this report on the information provided by Kiewit and the information revealed by our geophysical exploration. We attempted to provide for normal contingencies, but the possibility remains that unexpected conditions may be encountered during construction.

Geophysical data depict a broad estimate of actual subsurface conditions. Correlation of this data with intrusive method data will indicate some variance due to the nature of measured geophysical properties. Also, the resolution of the geophysical methods may be such as to not detect potentially significant smaller features that may appear significant in HDD drilling results or excavations at a particular location. As such, some amount of variation in the actual field conditions should be expected, including possible natural wood/tree material, boulders, and a variable/jagged bedrock surface. Annotations on the results represent our interpretation of the data.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report or other instrument of service.

Kiewit Engineering (NY) Corp. Champlain Hudson Power Express Upland Cable Installation Project (HDD21)

We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,

SCHNABEL ENGINEERING OF NEW YORK

Jacob Sheehan, PGp Senior Scientist

Mia A. Painter, PG-NY

Associate

JRS:CMM:MAP:MPT:vm

Appendix A: Seismic Refraction Results

APPENDIX A

SEISMIC REFRACTION TOMOGRAPHY RESULTS

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 9 Conduit 1

P2

Start Date: 02-28-2022 End Date: 02-28-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 9 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 127.18) ft End Coordinate (546.00, 0.00, 125.88) ft

Project Length 546.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

Depth: 2.00 ft

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SW

Depth: 6.00 ft

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH

Depth: 2.00 ft

Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #4 USCS, Sand (S), SC

Depth: 11.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CH

Depth: 12.00 ft

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 555.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed		
Earth Pressure	2.7	9.3		
Water Pressure	10.6	10.6		
Surface Surcharge	0.0	0.0		
Internal Pressure	0.0	0.0		
Net Pressure	13.3	19.9		
Deflection				
Earth Load Deflection	0.768	2.536		
Buoyant Deflection	0.132	0.132		
Reissner Effect	0	0		
Net Deflection	0.900	2.668		
Compressive Stress [psi]				
Compressive Wall Stress	59.9	89.5		

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	9347.8	9347.8
Pullback Stress [psi]	260.7	260.7
Pullback Strain	4.534E-3	4.534E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	260.7	285.5
Tensile Strain	4.534E-3	5.414E-3

Net External Pressure = 16.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.900	7.5	8.3	OK
Unconstrained Collapse [psi]	16.7	127.7	7.7	OK
Compressive Wall Stress [psi]	59.9	1150.0	19.2	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Спеск
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	26.6	240.0	9.0	OK
Tensile Stress [psi]	285.5	1200.0	4.2	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.00 in	59.368 psi	52.906 psi
1	6.00 in	12.00 in	58.547 psi	52.184 psi
2	12.00 in	16.13 in	57.787 psi	51.457 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 325.5

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 127.18) ft End Coordinate (546.00, 0.00, 125.88) ft

Project Length 546.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 555.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.1	9.3
Water Pressure	10.6	10.6
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.7	19.9
Deflection		
Earth Load Deflection	0.385	2.536
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.414	2.565
Compressive Stress [psi]		
Compressive Wall Stress	52.7	89.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	565.9	565.9
Pullback Stress [psi]	323.3	323.3
Pullback Strain	5.623E-3	5.623E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	323.3	328.1
Tensile Strain	5.623E-3	5.805E-3

Net External Pressure = 16.8 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.414	7.5	18.1	OK
Unconstrained Collapse [psi]	16.7	134.1	8.0	OK
Compressive Wall Stress [psi]	52.7	1150.0	21.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	26.6	238.4	9.0	OK
Tensile Stress [psi]	328.1	1200.0	3.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 9 Conduit 2

P2

Start Date: 02-28-2022 End Date: 02-28-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 9 Conduit 2 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 127.18) ft End Coordinate (546.00, 0.00, 125.88) ft

Project Length 546.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM

Depth: 2.00 ft

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Sand (S), SW

Depth: 6.00 ft

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CH

Depth: 2.00 ft

Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 300.00, Coh: 5.60 [psi]

Soil Layer #4 USCS, Sand (S), SC

Depth: 11.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CH

Depth: 12.00 ft

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 555.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.7	8.9
Water Pressure	10.0	10.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.7	18.9
Deflection		
Earth Load Deflection	0.771	2.435
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	0.903	2.567
Compressive Stress [psi]		
Compressive Wall Stress	57.2	85.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	9230.1	9230.1
Pullback Stress [psi]	257.4	257.4
Pullback Strain	4.477E-3	4.477E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	257.4	281.9
Tensile Strain	4.477E-3	5.351E-3

Net External Pressure = 17.6 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.903	7.5	8.3	OK
Unconstrained Collapse [psi]	15.7	127.7	8.1	OK
Compressive Wall Stress [psi]	57.2	1150.0	20.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	25.7	240.1	9.3	OK
Tensile Stress [psi]	281.9	1200.0	4.3	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	58.682 psi	53.027 psi
1	8.00 in	12.00 in	57.961 psi	52.504 psi
2	12.00 in	16.13 in	57.305 psi	51.788 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 127.18) ft End Coordinate (546.00, 0.00, 125.88) ft

Project Length 546.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 555.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.1	8.9
Water Pressure	10.0	10.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	11.1	18.9
Deflection		
Earth Load Deflection	0.381	2.435
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.410	2.464
Compressive Stress [psi]		
Compressive Wall Stress	50.0	85.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	560.1	560.1
Pullback Stress [psi]	320.0	320.0
Pullback Strain	5.566E-3	5.566E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	320.0	324.5
Tensile Strain	5.566E-3	5.742E-3

Net External Pressure = 17.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.410	7.5	18.3	OK
Unconstrained Collapse [psi]	15.7	134.0	8.5	OK
Compressive Wall Stress [psi]	50.0	1150.0	23.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	25.7	238.5	9.3	OK
Tensile Stress [psi]	324.5	1200.0	3.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 10 Conduit 1

P2

Start Date: 09-22-2022 End Date: 09-22-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 10 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 129.14) ft End Coordinate (1210.00, 0.00, 136.00) ft

Project Length 1210.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

From Assistant

Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]

Soil Layer #3 USCS, Clay (C), CL

From Assistant

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Soil Layer #4 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1215.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.1	19.0
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	23.2	39.2
Deflection		
Earth Load Deflection	1.221	5.178
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.353	5.310
Compressive Stress [psi]		
Compressive Wall Stress	104.5	176.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	20515.2	20515.2
Pullback Stress [psi]	572.1	572.1
Pullback Strain	9.950E-3	9.950E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	572.1	593.4
Tensile Strain	9.950E-3	1.077E-2

Net External Pressure = 19.9 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.353	7.5	5.5	OK
Unconstrained Collapse [psi]	23.2	126.6	5.5	OK
Compressive Wall Stress [psi]	104.5	1150.0	11.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	31.4	221.0	7.0	OK
Tensile Stress [psi]	593.4	1200.0	2.0	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	103.571 psi	60.486 psi
1	8.00 in	12.00 in	103.423 psi	57.148 psi
2	12.00 in	16.13 in	103.210 psi	55.148 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 129.14) ft End Coordinate (1210.00, 0.00, 136.00) ft

Project Length 1210.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1215.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.2	19.0
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.4	39.2
Deflection		
Earth Load Deflection	0.858	5.178
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.887	5.207
Compressive Stress [psi]		
Compressive Wall Stress	96.1	176.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1110.9	1110.9
Pullback Stress [psi]	634.8	634.8
Pullback Strain	1.104E-2	1.104E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	634.8	636.0
Tensile Strain	1.104E-2	1.116E-2

Net External Pressure = 19.9 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.887	7.5	8.5	OK
Unconstrained Collapse [psi]	21.5	127.5	5.9	OK
Compressive Wall Stress [psi]	96.1	1150.0	12.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	31.4	219.0	7.0	OK
Tensile Stress [psi]	636.0	1200.0	1.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 10 Conduit 2

P2

Start Date: 09-22-2022 End Date: 09-22-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 10 Conduit 2 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 129.14) ft End Coordinate (1240.00, 0.00, 136.00) ft

Project Length 1240.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4

Soil Layer #1 USCS, Sand (S), SM

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL

From Assistant

Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]

Soil Layer #3 USCS, Clay (C), CL

From Assistant

Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 200.00, Coh: 3.13 [psi]

Soil Layer #4 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1245.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.1	19.0
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	23.2	39.2
Deflection		
Earth Load Deflection	1.217	5.178
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.349	5.310
Compressive Stress [psi]		
Compressive Wall Stress	104.5	176.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	20991.8	20991.8
Pullback Stress [psi]	585.4	585.4
Pullback Strain	1.018E-2	1.018E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	585.4	606.5
Tensile Strain	1.018E-2	1.100E-2

Net External Pressure = 19.8 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.349	7.5	5.6	OK
Unconstrained Collapse [psi]	23.2	126.6	5.5	OK
Compressive Wall Stress [psi]	104.5	1150.0	11.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	31.3	220.2	7.0	OK
Tensile Stress [psi]	606.5	1200.0	2.0	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	103.573 psi	60.356 psi
1	8.00 in	12.00 in	103.422 psi	56.979 psi
2	12.00 in	16.13 in	103.205 psi	55.146 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 859.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 129.14) ft End Coordinate (1240.00, 0.00, 136.00) ft

Project Length 1240.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1245.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.2	19.0
Water Pressure	20.1	20.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	21.4	39.2
Deflection		
Earth Load Deflection	0.859	5.178
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.888	5.207
Compressive Stress [psi]		
Compressive Wall Stress	96.1	176.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1134.2	1134.2
Pullback Stress [psi]	648.0	648.0
Pullback Strain	1.127E-2	1.127E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	648.0	649.1
Tensile Strain	1.127E-2	1.139E-2

Net External Pressure = 19.8 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.888	7.5	8.4	OK
Unconstrained Collapse [psi]	21.4	127.5	6.0	OK
Compressive Wall Stress [psi]	96.1	1150.0	12.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	31.3	218.1	7.0	OK
Tensile Stress [psi]	649.1	1200.0	1.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 11 - Conduit 1

P2

Start Date: 06-24-2022 End Date: 06-24-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 11 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 129.00) ft End Coordinate (1250.00, 0.00, 129.00) ft

Project Length 1250.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CL

From Assistant

Unit Weight: 100.0000 (dry), 120.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 145.00, Coh: 8.30 [psi]

Soil Layer #4 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

From Assistant

Unit Weight: 107.8272 (dry), 177.6384 (sat) [lb/ft3]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1274.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.9	19.6
Water Pressure	12.4	12.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	16.3	32.0
Deflection		
Earth Load Deflection	1.162	5.344
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.294	5.476
Compressive Stress [psi]		
Compressive Wall Stress	73.2	144.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	22775.1	22775.1
Pullback Stress [psi]	635.2	635.2
Pullback Strain	1.105E-2	1.105E-2
Bending Stress [psi]	0.0	23.4
Bending Strain	0	4.072E-4
Tensile Stress [psi]	635.2	657.0
Tensile Strain	1.105E-2	1.183E-2

Net External Pressure = 19.1 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.294	7.5	5.8	OK
Unconstrained Collapse [psi]	26.1	124.2	4.8	OK
Compressive Wall Stress [psi]	73.2	1150.0	15.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	36.1	217.6	6.0	OK
Tensile Stress [psi]	657.0	1200.0	1.8	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.50 in	105.909 psi	132.552 psi
1	6.50 in	12.00 in	105.629 psi	132.035 psi
2	12.00 in	16.13 in	105.314 psi	131.455 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 378.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 129.00) ft End Coordinate (1250.00, 0.00, 129.00) ft

Project Length 1250.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1274.99 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.5	19.6
Water Pressure	12.4	12.4
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.9	32.0
Deflection		
Earth Load Deflection	0.609	5.344
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.638	5.373
Compressive Stress [psi]		
Compressive Wall Stress	62.7	144.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1221.2	1221.2
Pullback Stress [psi]	697.8	697.8
Pullback Strain	1.214E-2	1.214E-2
Bending Stress [psi]	0.0	5.2
Bending Strain	0	8.996E-5
Tensile Stress [psi]	697.8	701.4
Tensile Strain	1.214E-2	1.229E-2

Net External Pressure = 19.1 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.638	7.5	11.8	OK
Unconstrained Collapse [psi]	26.1	132.7	5.1	OK
Compressive Wall Stress [psi]	62.7	1150.0	18.3	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	36.1	215.3	6.0	OK
Tensile Stress [psi]	701.4	1200.0	1.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 11 - Conduit 2

P2

Start Date: 06-29-2022 End Date: 06-29-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 11 Conduit 2 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 129.00) ft End Coordinate (1200.00, 0.00, 129.00) ft

Project Length 1200.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Silt (M), MH

From Assistant

Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3]

Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #3 USCS, Clay (C), CL

From Assistant

Unit Weight: 100.0000 (dry), 120.0000 (sat) [lb/ft3]

Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]

Soil Layer #4 USCS, Sand (S), SW

From Assistant

Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3]

Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #5 Rock, Geological Classification, Sedimentary Rocks

From Assistant

Unit Weight: 107.8272 (dry), 177.6384 (sat) [lb/ft3]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1214.99 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.8	6.6
Water Pressure	11.5	11.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.3	17.7
Deflection		
Earth Load Deflection	1.166	1.911
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.298	2.043
Compressive Stress [psi]		
Compressive Wall Stress	64.2	79.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	22180.9	22180.9
Pullback Stress [psi]	618.6	618.6
Pullback Strain	1.076E-2	1.076E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	618.6	639.9
Tensile Strain	1.076E-2	1.154E-2

Net External Pressure = 20.1 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.298	7.5	5.8	OK
Unconstrained Collapse [psi]	26.4	127.9	4.8	OK
Compressive Wall Stress [psi]	64.2	1150.0	17.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	36.4	218.3	6.0	OK
Tensile Stress [psi]	639.9	1200.0	1.9	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	6.50 in	69.919 psi	70.704 psi
1	6.50 in	12.00 in	66.362 psi	67.233 psi
2	12.00 in	16.13 in	63.140 psi	64.058 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

> Fluid Consistency Index (K): 63.17 Power Law Exponent (n): 0.14 Effective Viscosity (cP): 378.3

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 129.00) ft End Coordinate (1200.00, 0.00, 129.00) ft

Project Length 1200.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1214.99 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.3	6.6
Water Pressure	11.6	11.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	12.9	17.7
Deflection		
Earth Load Deflection	0.768	1.911
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.797	1.940
Compressive Stress [psi]		
Compressive Wall Stress	57.9	79.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1192.2	1192.2
Pullback Stress [psi]	681.2	681.2
Pullback Strain	1.185E-2	1.185E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	681.2	684.3
Tensile Strain	1.185E-2	1.199E-2

Net External Pressure = 20.1 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.797	7.5	9.4	OK
Unconstrained Collapse [psi]	26.4	133.4	5.0	OK
Compressive Wall Stress [psi]	57.9	1150.0	19.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	36.4	216.0	5.9	OK
Tensile Stress [psi]	684.3	1200.0	1.8	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 12 - Conduit 1

P2

Start Date: 06-21-2022 End Date: 06-21-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 12 Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 131.80) ft End Coordinate (705.20, 0.00, 140.75) ft

Project Length 705.20 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 2

Soil Layer #1 USCS, Sand (S), SM

Depth: 1.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 Rock, Geological Classification, Sedimentary Rocks

Depth: 25.00 ft

Unit Weight: 107.8272 (dry), 177.6384 (sat) [lb/ft3]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 720.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.8	23.7
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.7	31.6
Deflection		
Earth Load Deflection	1.589	6.444
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.721	6.576
Compressive Stress [psi]		
Compressive Wall Stress	61.9	142.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12257.2	12257.2
Pullback Stress [psi]	341.8	341.8
Pullback Strain	5.945E-3	5.945E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	341.8	364.9
Tensile Strain	5.945E-3	6.793E-3

Net External Pressure = 21.5 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.721	7.5	4.4	OK
Unconstrained Collapse [psi]	20.1	118.4	5.9	OK
Compressive Wall Stress [psi]	61.9	1150.0	18.6	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	30.1	235.1	7.8	OK
Tensile Stress [psi]	364.9	1200.0	3.3	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	1309.762 psi	1329.978 psi
1	8.00 in	12.00 in	1305.627 psi	1329.576 psi
2	12.00 in	16.13 in	1299.646 psi	1328.993 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Rod Diameter

Start Coordinate (0.00, 0.00, 131.80) ft End Coordinate (705.20, 0.00, 140.75) ft

Project Length 705.20 ft
Pipe Type HDPE
OD Classification IPS
Pipe OD 2.375 in
Pipe DR 9.0
Pipe Thickness 0.26 in
Rod Length 15.00 ft

Drill Rig Location (0.00, 0.00, 0.00) ft

3.5 in

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 720.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.4	23.7
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.3	31.6
Deflection		
Earth Load Deflection	0.662	6.444
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.692	6.473
Compressive Stress [psi]		
Compressive Wall Stress	46.3	142.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	707.9	707.9
Pullback Stress [psi]	404.5	404.5
Pullback Strain	7.034E-3	7.034E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	404.5	407.4
Tensile Strain	7.034E-3	7.184E-3

Net External Pressure = 21.5 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.692	7.5	10.8	OK
Unconstrained Collapse [psi]	20.1	130.0	6.5	OK
Compressive Wall Stress [psi]	46.3	1150.0	24.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	30.1	233.3	7.8	OK
Tensile Stress [psi]	407.4	1200.0	2.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 12 - Conduit 2

P2

Start Date: 06-21-2022 End Date: 06-21-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 12 Conduit 2 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 131.07) ft End Coordinate (920.00, 0.00, 142.07) ft

Project Length 920.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 2.875 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 2

Soil Layer #1 USCS, Sand (S), SM

Depth: 1.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]

Soil Layer #2 Rock, Geological Classification, Sedimentary Rocks

Depth: 25.00 ft

Unit Weight: 107.8272 (dry), 177.6384 (sat) [lb/ft3]

Phi: 35.00, S.M.: 1450.40, Coh: 2900.80 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 930.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.8	24.3
Water Pressure	7.7	7.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.5	32.0
Deflection		
Earth Load Deflection	1.587	6.607
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.719	6.739
Compressive Stress [psi]		
Compressive Wall Stress	60.9	143.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	15479.9	15479.9
Pullback Stress [psi]	431.7	431.7
Pullback Strain	7.508E-3	7.508E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	431.7	453.5
Tensile Strain	7.508E-3	8.336E-3

Net External Pressure = 22.3 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.719	7.5	4.4	OK
Unconstrained Collapse [psi]	20.8	118.4	5.7	OK
Compressive Wall Stress [psi]	60.9	1150.0	18.9	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	30.8	229.6	7.5	OK
Tensile Stress [psi]	453.5	1200.0	2.6	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	3.00 in	1306.899 psi	1330.555 psi
1	3.00 in	12.00 in	1305.175 psi	1329.913 psi
2	12.00 in	16.13 in	1303.695 psi	1329.361 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 26.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 131.07) ft End Coordinate (920.00, 0.00, 142.07) ft

Project Length 920.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 2.875 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 930.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.5	24.3
Water Pressure	7.7	7.7
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.2	32.0
Deflection		
Earth Load Deflection	0.672	6.607
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.701	6.637
Compressive Stress [psi]		
Compressive Wall Stress	45.8	143.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	865.2	865.2
Pullback Stress [psi]	494.3	494.3
Pullback Strain	8.597E-3	8.597E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	494.3	496.1
Tensile Strain	8.597E-3	8.727E-3

Net External Pressure = 22.3 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.701	7.5	10.7	OK
Unconstrained Collapse [psi]	20.8	129.7	6.2	OK
Compressive Wall Stress [psi]	45.8	1150.0	25.1	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	30.8	227.8	7.4	OK
Tensile Stress [psi]	496.1	1200.0	2.4	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General: CHPE HDD 12A - Conduit 1

P2

Start Date: 06-21-2022 End Date: 06-21-2022

Project Owner: TDI
Project Contractor: Kiewit
Project Consultant: CHA/BCE

Designer:

Description: HDD 12A Conduit 1 10-inch DR 9

Input Summary

Start Coordinate (0.00, 0.00, 137.09) ft End Coordinate (1490.00, 0.00, 143.80) ft

Project Length 1490.00 ft
Pipe Type HDPE
OD Classification IPS

Pipe OD 10.750 in

Pipe DR 9.0
Pipe Thickness 1.19 in
Rod Length 15.00 ft
Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 3

Soil Layer #1 USCS, Sand (S), SP

Depth: 4.00 ft

Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3]

Phi: 30.00, S.M.: 1.39, Coh: 0.00 [psi]

Soil Layer #2 Rock, Geological Classification, Sedimentary Rocks

Depth: 40.00 ft

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Soil Layer #3 Rock, Geological Classification, Sedimentary Rocks

Depth: 20.00 ft

Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3]

Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]

Bore Cross-Section View

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75")

Pipe DR: 9

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 1.34400002161662 ft

Silo Width: 1.34400002161662 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.0	34.7
Water Pressure	11.2	11.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	16.2	45.8
Deflection		
Earth Load Deflection	1.423	9.437
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.555	9.569
Compressive Stress [psi]		
Compressive Wall Stress	72.9	206.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	24484.2	24484.2
Pullback Stress [psi]	682.8	682.8
Pullback Strain	1.188E-2	1.188E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	682.8	703.1
Tensile Strain	1.188E-2	1.268E-2

Net External Pressure = 27.6 [psi]

Buoyant Deflection = 0.1

Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.555	7.5	4.8	OK
Unconstrained Collapse [psi]	27.4	120.8	4.4	OK
Compressive Wall Stress [psi]	72.9	1150.0	15.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	37.4	213.4	5.7	OK
Tensile Stress [psi]	703.1	1200.0	1.7	OK

Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	190.926 psi	248.409 psi
1	8.00 in	12.00 in	190.725 psi	247.950 psi
2	12.00 in	16.13 in	190.436 psi	247.288 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/min

Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate (0.00, 0.00, 137.09) ft End Coordinate (1490.00, 0.00, 143.80) ft

Project Length 1490.00 ft **HDPE** Pipe Type OD Classification IPS Pipe OD 2.375 in Pipe DR 9.0 Pipe Thickness 0.26 in Rod Length 15.00 ft Rod Diameter 3.5 in

Drill Rig Location (0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable

Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375")

Pipe DR: 9

Pipe Length: 1500.00 ft Internal Pressure: 0 psi

Borehole Diameter: 0.531000018119812 ft

Silo Width: 0.531000018119812 ft

Surface Surcharge: 0 psi

Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3

Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi

Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi

Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3

Pipe-soil friction angle: 30

Slurry Unit Weight: 93.64118 lb/ft3

Hydrokinetic Pressure: 10 psi

Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	2.0	34.7
Water Pressure	11.2	11.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.2	45.8
Deflection		
Earth Load Deflection	0.611	9.437
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.640	9.466
Compressive Stress [psi]		
Compressive Wall Stress	59.3	206.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1304.7	1304.7
Pullback Stress [psi]	745.4	745.4
Pullback Strain	1.296E-2	1.296E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	745.4	745.6
Tensile Strain	1.296E-2	1.307E-2

Net External Pressure = 27.6 [psi]

Buoyant Deflection = 0.0

Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.640	7.5	11.7	OK
Unconstrained Collapse [psi]	27.4	131.2	4.8	OK
Compressive Wall Stress [psi]	59.3	1150.0	19.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	37.4	211.2	5.7	OK
Tensile Stress [psi]	745.6	1200.0	1.6	OK