

HDD Design Summary Report Crossings HDD 3 to HDD 8 in Segment 3 – Package 1C

Whitehall to Fort Ann Washington County, New York

CHA Project Number: 066076

Prepared for: Transmission Developers Inc. 1301 Avenue of the Americas, 26th Floor New York, NY 10019

> Prepared by: CHA Consulting, Inc. III Winners Circle Albany, New York 12205 (518) 453-4500

> > March 2023

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
	1.1	Purpose	1
2.0	Proje	ECT DESCRIPTION	1
3.0	BACK	GROUND	2
4.0	SITE C	Conditions	3
		4.1.1 Project Datum and Topography	3
		4.1.2 Geotechnical Data	
5.0	DESIG	GN SUMMARY	7
	5.1	Geometry and Layout	
	5.2	Subsurface Model Development	
		5.2.1 BoreAid Analysis	
		5.2.2 Inadvertent Return and Hydro-fracture Analysis	.11
	5.3	Limitations	.12
6.0	Cons	TRUCTION CONSIDERATIONS	.13
	6.1	Risk Awareness and Assessment	.13
	6.2	Site Analysis	.13
	6.3	Erosion Control	
	6.4	Surveillance and Monitoring	.13
7.0	Refer	RENCES	.14

LIST OF REFERENCED APPENDICES

Appendix A: Work Zones

- Appendix B: Locus Map
- Appendix C: Geotechnical Data Report for CHPE Segment 3 Package 1C HDDs
- Appendix D: BoreAid HDD Simulation Output
- Appendix E: HDD Design Drawings

Appendix F: Proposed Soil Properties for CHPE Segment 3 – Package 1C HDDs

1.0 INTRODUCTION

1.1 PURPOSE

The Champlain Hudson Power Express (CHPE) project consists of installing a pair of HVDC electrical transmission cables with an associated telecommunications line from Canada to New York City. The portion of the work addressed herein is located in the upland portion of the route from the south end of Lake Champlain to New York City along the uplands of the Hudson River Valley. This work includes approximately 170 crossings (two crossings at approximately 85 locations) under roads, railroads, wetlands water bodies, and obstructions to be installed using horizontal directional drilling (HDD) methods to minimize interference with use or impacts to the environment. This Design Summary Report addresses the design for the HDD crossings in Segment 3 – Package 1C from Whitehall to Fort Ann. These crossings are designated HDD 3 through HDD 8, inclusive of A and B designations.

The purposes of this Design Summary Report are to provide the following:

- Review of the existing geological, hydrogeological, and geotechnical conditions for HDD 3 through HDD 8 for a total of 14 crossings (2 per site) in the Segment 3 Package 1C.
- Provide a descriptive narrative of the HDD Crossings in support of the attached design drawings and technical specifications.
- Present stress and inadvertent release analyses that support the proposed designs.
- Evaluate construction considerations including inadvertent return mitigation.

2.0 PROJECT DESCRIPTION

The proposed CHPE route follows the Hudson River Valley of New York. The new transmission line will be approximately 146 miles in length, extending from the south end of Lake Champlain to Astoria, NY. Segment 3 – Package 1C is located in approximately a 5.9-mile section of the route in Washington County, New York.

A Project Locus Map and a plan showing the locations of the HDD 3 through HDD 8 crossings are presented in Appendix B.

The HDD crossing addressed in this report are located as shown in Table 1 below:

HDD #	Start Station	End Station	HDD Length, ft	Obstruction Crossed
3	15074+50	15093+20	1868, 1869	Wetlands
4	15138+60	15144+75	628, 650	Culvert
4A	15163+05	15170+50	735, 760	Railroad Tracks
5	15175+15	15182+40	712, 723	Culvert & Wetlands
6	15218+15	15231+50	1339, 1453	Railroad Tracks & Culvert
7	15256+05	15269+00	1305	Wetlands
8	15296+20	15304+95	655, 838	Railroad Tracks & Culvert

Table 1: HDD Locations, Lengths, and Description

3.0 BACKGROUND

The underground construction of two HVDC electrical transmission cables is proposed to be housed in individual 10-inch-diameter DR 9 HDPE conduits spaced a distance dependent on depth and soil Thermal Resistivity (TR) values provided by NKT and as shown on drawing plans. A third, 2-inch-diameter DR 9 conduit will be bundled with one of the 10-inch diameter conduits for a telecommunications line. Longer and deeper bores may require a larger diameter (i.e. 12-inch and 3-inch) and larger DR, thicker walls, values (i.e. DR 7) to resist tension stresses during installation and collapsing long-term. This is checked and determined on a case-by-case basis and design sizes are shown on the design drawings shown in Appendix E. The conduits are to be installed in 16 to 22-inch final ream diameter bore holes. The proposal is to install the cables at least 25 feet below congested areas, roads, railroads, under/around other obstructions, 15 to 25 feet below wetland and small streams, and 35 to 45 feet below open bodies of water using HDD methods. HDD is a widely used trenchless construction method to install conduits with limited disturbance to the ground around the bore alignment, minimal ground surface impacts above the alignment, and to minimize the potential of inadvertent releases of drilling fluids while boring. The goal for using HDD methods is to install the conduits while controlling and minimizing the amount of impact to congested areas, existing underground obstructions, and to the adjacent wetlands to the extent possible.

4.0 SITE CONDITIONS

4.1.1 Project Datum and Topography

<u>HDD #3</u>

HDD #3 consists of two, bores, approximately 1868 and 1869 feet long crossing wetlands and open water to the west of Canadian Pacific (CP) Rail railroad tracks at the CP Rail railroad yard in Whitehall, NY. The ground surface elevations along the HDD path gently slope down from North to South starting at El. 127 and reaching El. 121. About 100' north of the entry, the drill passes underneath open water in a wetland with standing water at about El. 116 (reference datum NAVD 1988).

<u>HDD #4</u>

HDD #4 consists of two straight HDD bores, approximately 628 and 650 feet long, crossing under an 84" reinforced concrete culvert pipe (RCP) on the west side of tracks approximately 630 feet east of the Champlain Canal. The ground surface elevations along the HDD path gently undulates between El. 124 and El. 121 for the majority of the run before taking a dip to El. 114 at the southern end, approximately 70% through the alignment (reference datum NAVD 1988).

HDD #4A

HDD #4A consists of two straight HDD bores, approximately 735 and 760 feet long, that cross from the west side of the CP Rail railroad tracks, under the tracks, and to the east side approximately 500 feet east of the Champlain Canal. The ground surface elevations along the HDD path gently builds from around El. 116 to El. 124 under the tracks and then gently back down to around El. 113 on the south end of the alignment (reference datum NAVD 1988).

<u>HDD #5</u>

HDD #5 consists of two straight HDD bores, approximately 712 and 723 feet long, located on the east side of the CP Rail railroad tracks that pass underneath an arm of the Champlain Canal. There are four (4) 84" corrugated metal pipe (CMP) running underneath the tracks for the canal at this location. It is approximately 200 feet from the Champlain Canal to the east. The ground surface elevations along the HDD path gently undulates around El. 117 to El. 124 aside from an El. drop to approximately El. 111 at the canal edges (reference datum NAVD 1988). The culverts have

inverts at a range of El. 107.7 to El. 109.2 (reference datum NAVD 1988). The depth of water at this crossing is not known. A water depth of 5 feet was assumed for design purposes and analysis.

<u>HDD #6</u>

HDD #6 consists of two horizontally curved HDD bores, approximately 1339 and 1453 feet long, crossing the CP Rail railroad tracks from the east side to the west. Both bores cross the tracks at, and under open water immediately west of a 84" RCP crossing at an arm of the Champlain Canal. It is approximately 400 feet west from the Champlain Canal. The ground surface elevations along the HDD path hovers between El. 120 and El. 117 with the tracks at the center of the path reaching a peak at El. 125 (reference datum NAVD 1988). The culvert invert ranges El. 112.3 (on the west side of the tracks) to El. 109.4 (on the east) (reference datum NAVD 1988).

<u>HDD #7</u>

HDD #7 consists of two, straight, HDD bores, approximately 1305 feet long, crossing underneath wetlands and standing water. It is approximately 580' from the Champlain Canal to the east. The ground surface elevations along the HDD path gently undulates between El. 118 and El. 1249 (reference datum NAVD 1988). The depth of water at this crossing is not known. A water depth of 5 feet was assumed for design purposes and analysis.

<u>HDD #8</u>

HDD #8 consists of two straight HDD bores; the eastern bore is approximately 655 and 838 feet long, while the western bore is approximately 802 feet long. Both bores cross the CP Rail railroad tracks from the west to the east side of the tracks heading out of rail R.O.W. and towards N Old Rte 4. It is approximately 500 feet from the Champlain Canal to the east. The ground surface elevations along the HDD path gently undulates between El. 133 and El. 129, with the largest change in elevation occurring within the first 20% of the bores (reference datum NAVD 1988).

4.1.2 Geotechnical Data

<u>HDD #3</u>

Subsurface investigations were conducted in 2012 by TRC, 2021 by SoilTesting, Inc.2022 by Kiewit. There are four borings to date at HDD #3: KB-113.3, B113.4-1, K-113.5 and KB-113.6, which extended to depths of 57, 30, 52 and 52 feet below grade, respectively. There appears to be

an 8-foot layer of loose fill over a 49-foot layer of medium stiff low plasticity clay in boring KB-113.3. There appears to be a 4-foot layer of loose fill over a 9.5-foot layer of medium stiff low plasticity clay over a 16.5-foot layer of medium stiff fat clay in boring B113.4-1. There appears to be a 6-foot layer of medium compact fill over a 24-foot layer of medium stiff fat clay, over a 22foot layer of soft fat clay in boring K-113.5. There appears to be a 2-foot layer of loose fill over an 8-foot layer of medium stiff low plasticity clay, over a 2-foot layer of stiff fat clay, over a 15foot layer of soft low plasticity clay, over a 10-foot layer of soft fat clay, over a 5-foot layer of soft low plasticity clay in boring KB-113.6. The BoreAid analysis will be based on non-horizontal layering corresponding to borings KB-113.3, K-113.5 and KB-113.6, which all encountered similar conditions.

The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #3 BoreAid analyses will be divided into three [3] layers: loose fill, medium stiff low plasticity clay and soft fat clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #4</u>

Subsurface investigations were conducted in 2012 by TRC for Transmission Developers, Inc. and in 2021/2022 by Kiewit. There are two bores at HDD #4: B114.4-1 and K-114.6. B114.4-1 bore log, reaching a depth of 30 feet, indicates fill over a thin layer of soft clayey silt all over soft to medium stiff clay. Bore K-114.6 terminated at a depth of 72 feet. This bore indicates a 10 to 12 foot initial layer of fill (silty sand with gravel; moist) over wet, a fat medium stiff to stiff clay to 22 feet, then very soft to soft clay to 72 feet. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #4 BoreAid analyses will be divided into five [5] layers: Gravel, loose silt, medium stiff clay, and two layers of lower soft clays. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #4A</u>

No subsurface investigations were conducted at HDD #4A. The soil conditions at this location were estimated based on nearby borings since borings within the 4A HDD alignment were not available. It is recommended that the HDD subcontractor drill a test boring at the start of construction at the HDD 4A site before starting the HDD to confirm the ground conditions.

Based on the adjacent borings, the soil profile for HDD #4A BoreAid analysis was divided into three [3] layers: gravel, medium stiff lean clay, and very soft to soft fat clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #5</u>

Subsurface investigations were conducted in 2013 by TRC for Transmission Developers, Inc. and in 2021/2022 by Kiewit. There are two borings at HDD #5: B115.2-1 and K-115.2. that reached a depth of 30 feet. Bore B115.2-1 indicates that there is a thin layer of loose fill (ash and cinders) over medium stiff to soft clayey silt. Bore K-115.2, reaching a deeper depth of 30 feet, shows a 10 foot layer of medium stiff lean clay over moist, plastic soft fat clay. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings and the elevation and location of that bore, the soil profile for the HDD #5 BoreAid analyses will be divided into three [3] layers: gravel, medium stiff lean clay, and soft fat clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #6</u>

Subsurface investigations were conducted in 2013 by TRC for Transmission Developers, Inc. and in 2021/2022 by Kiewit. There are three borings at HDD #6: B116.1-1, B116.2-2, and K-116.1. Borings B116.1-1 and B116.2-2, both reaching a depth of 30 feet, indicate loose fill over stiff to soft clayey stilt with loose silty sand at the bottom ranging from 23.5 to 18.5 feet deep. Bore K116.1, terminated at a depth of 65 feet, shows an initial 4 to 5 foot layer of fill over 11 to 12 feet of medium stiff lean clay, 2 to 3 feet of soft fat clay, of lean clay, 2 to 3 feet of fat clay, all over a 10 foot layer of well graded sand. Fat clay continues to the end of the bore. The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings, the soil profile for the HDD #6 BoreAid analyses will be divided into five [5] layers: Loose silt, medium stiff lean clay, second layer of loose silt, poorly graded medium dense sand, and soft clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #7</u>

Subsurface investigations were conducted in 2012 by TRC for Transmission Developers, Inc. and in 2021/2022 by Kiewit. There are two borings at HDD #7: B116.8-1 and K-116.9. Bore B116.8-

1, that reached a depth of 65 feet, indicates medium dense sand to about 10 to 15 feet deep. The remainder of the bore is medium stiff clay over soft to very soft clay. Bore K-116.9, terminated at a depth of 67 feet, shows a fat medium stiff to stiff clay to 32 feet, then very soft to soft clay to 67 feet under an initial 15-to-16-foot layer of fill (mainly silty sand with gravel). The Geotechnical Data Report for this location is provided in Appendix C.

Based on the borings and the elevation and location of that bore, the soil profile for the HDD #7 BoreAid analyses will be divided into four [4] layers: poorly graded medium dense sand, stiff lean clay, and two layers of soft to very soft fat clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

<u>HDD #8</u>

Subsurface investigations were conducted in 2021 by AECOM for Transmission Developers, Inc. There are two borings at HDD #8: WFE-1C and WFE-1. Both bores reach a depth of 40'. Both bores indicate that there is mostly medium stiff to soft silty clay underneath a layer of loose sand (Poorly Graded Sand). The Geotechnical Data Report for this location is provided in Appendix C. Based on the borings, the soil profile for the HDD #8 BoreAid analyses will be divided into two [2] layers: Poorly graded sand and medium stiff fat clay. The soil profiles used for BoreAid analyses of the HDDs in this segment are presented in Appendix D.

5.0 DESIGN SUMMARY

The HDD construction process generally consists of three steps:

Step 1: Drill a small diameter (approximately 7 to 9 inches diameter) pilot hole along the preplanned bore path. During the pilot hole boring, the location of the drill bit is tracked to confirm that it is following the planned path. If the drilling is observed to start to deviate from the planned path, corrections are made using a "bent" lead drilling section and controlled rotation of drill pipe string. The drill bit is designed to cut through the soil in combination with pressurized drilling fluid assisting the cutting of the soil, and transport of the cuttings to the entry pit for removal. The drilling fluid is generally a combination of bentonite (a clay mineral) and water, combined with NSF certified additives to support sides of the borehole and to better carry the cuttings to the entry pit at lower pressures and velocities. The drilling fluids used under waterbodies and wetland areas

are typically required in the project specifications to be "non-toxic and environmentally friendly". Once the pilot bore reaches the exit point, the next step of the process, hole enlargement begins.

Step 2: Enlarge the pilot hole to the diameter required for insertion of the conduits. This is accomplished by using successively larger reaming bits pulled through the pilot bore to gradually enlarge the bore from about 8 inches diameter to 16 to 22 inches diameter to accommodate in this case a HDPE conduit about 10 inches in diameter in one bore and a bundle of two conduits, one 10 inches diameter and the other 2 inches diameter, that are to be pulled into the enlarged bore hole. We estimate that one, and possibly a second reaming pass, will be used to create the 16-to-22-inch diameter borehole. This pulling in of a bundle of conduits is sometimes referred to as a slick bore. During this step, the borehole is still filled with drilling fluid to support the sides of the bore hole in preparation for Step 3, the insertion of the conduit.

Step 3: Pull the conduits into the enlarged hole. While the pilot hole and reaming operations are ongoing, the contractor will also be fabricating the conduits to be installed. The conduits come in about 40-foot-long sections and need to be fusion butt welded, debeaded internally, and arranged for the pullback into to the borehole. Ideally, the complete conduit (or bundle of conduits) will be welded (and bundled) into one long length for insertion. The goal is usually to pull the bundle into the bore in one, continuous, smooth, around the clock, operation. However, depending on work area and access constraints, sometimes the pipe is assembled in 2 or 3 lengths that then joined (welded), "on the fly" as the conduit (bundle) is slowly pulled into the borehole. As the conduit (bundle) is pulled into the hole it is usually ballasted with clean water, and some of the drilling fluid supporting the sides of the hole is displaced by the conduit and collected for eventual disposal. Upon completion of the conduit installation, the conduit will be allowed to relax and come to equilibrium in the hole, and the conduit will be cleaned and capped as described in the HDD technical specifications.

5.1 GEOMETRY AND LAYOUT

The HDD profiles are generally defined by the following parameters:

- Entry point location;
- Exit point location;

- Entry angle;
- Exit angle;
- Horizontal and vertical radius of Curvature;
- Lengths of tangent sections;
- Length of crossing;
- Depth of crossing and depth of cover;
- Site constraints and obstructions; and
- Available work and layout areas

The proposed bore paths entry angle, exit angle, and a vertical and horizontal design radii of curvature for each HDD crossing in this segment are shown in the design drawings provided in Appendix E. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The design drawings to summarize the proposed HDD installations are in Appendix E. The HDD technical specifications are found in Section 330507.13 of the Technical Specifications. Inadvertent release prevention and mitigation plans for each HDD crossing are provided as separate documents.

The site conditions posed various challenges in developing a design that is both constructible and minimizes the potential for negative environmental impacts. The proposed design has entry and exit pits areas constrained by available easements and traffic constraints. Available work areas may limit the lengths of the conduit that can be pre-assembled, necessitating having to pre-assemble the bundle several segments that will have to be welded together during the pull back. Work zone requirements are shown in Appendix A. HDD specific work areas at the entry and exit ends of the bores are noted on the drawings in Appendix E. In addition, space and easement constraints will require that during pullback, the above ground sections of the conduit will not be straight and will require rollers to accommodate a horizontal bend. Conduit assembly is expected to be performed at the ends of the alignment shown on the drawings in Appendix E for HDD specific work areas. In some cases, the limited work area at the one end of the HDD rig located at the one end of the alignment, but the HDD rig may need to be relocated to the other end of the alignment for the pullback/conduit installation phase of the work. In addition, for some longer

bores in soft/weak ground conditions, the intersection bore method may be used to better control the risk of inadvertent drilling fluid releases.

5.2 SUBSURFACE MODEL DEVELOPMENT

A subsurface model was developed based on the boring logs as approximate representation of subsurface conditions along the proposed HDD alignment. BoreAid Version 5.0.14 (2015) modeling software (a product of Vermeer) was used to model the HDD. Geotechnical input parameters of the soil were estimated as described below.

The internal friction angles (AASHTO LRFD, Ed. 7) were estimated using the Standard Penetration Test (SPT) blow counts. The shear modulus (G) of each layer was estimated using soil density or consistency based on SPT blow count (N-value) and representative soil layer descriptions were used to estimate Young's Modulus (E) using Hunt (1986). The shear modulus was estimated using the relationship G = E/[2(1+v)], taking Poison's Ratio (v) equal to 0.3. Dry and saturated unit weights were selected based on soil type using Table 2-8 from the Manual on Estimating Soil Properties for Foundation Design (EPRI, 1990). For cohesive soils, cohesion was estimated based on empirical correlations with SPT blow counts (EPRI 1990). Tables for soil properties that will be used for the HDDs in Segment 3 – Package 1C are presented in Appendix F.

5.2.1 BoreAid Analysis

For the BoreAid analyses, the pipe configuration analyzed was for a pipe with a dimension ratio (DR) of 9 which is assumed to not be ballasted with water during pullback to create a near neutral buoyancy. The following conduit configurations will be used:

- 1) An individual 10-inch-diameter DR 9 HDPE (or 12-inch diameter DR 7 HDPE) conduit, and
- A bundle consisting of a 10-inch-diameter DR 9 HDPE conduit and a 2-inch-diameter DR
 9 HDPE conduit (or a 12-inch diameter DR 7 HDPE conduit with a 3-inch-diameter DR 7
 HDPE conduit)

The stresses and deflections of the pipe are evaluated and compared to allowable values as shown on the BoreAid runs presented in Appendix D.

In addition, a run where 2-inch-diameter DR 9 HDPE conduit is modeled alone was performed to check stresses in that conduit.

5.2.2 Inadvertent Return and Hydro-fracture Analysis

BoreAid modeling software was used to perform inadvertent return analyses for each HDD alignment. The bore path alignment was selected and checked so that the allowable bore pressures are greater than the static and circulating pressures throughout most of the alignment except at the ends. The allowable pressures are related to in-situ ground and water stresses around the bore hole, and the strength of the ground. The Limiting Formation Pressure Figure indicates a generally acceptable factor of safety against the potential for inadvertent return along the proposed bore paths except at the ends.

Based on the bore path selection process, areas with the greatest potential for an inadvertent return were examined and adjusted during the design process to further limit the risks associated with an inadvertent return when possible. The entry and exit points exhibited the greatest potential for inadvertent returns. The depth of the entry/exit pits should be considered by the Contractor to increase the effective soil stress and provide a storage volume for returns to and near the entry and exit points. Note that while the potential for inadvertent return has been reduced through the design process, inadvertent returns are still possible through existing fissures in the soil or rock, shrinkage cracks, weak soils, or porous deposits of coarse gravel.

Fractures within and/or inadvertent releases through the surrounding soils may cause loss of drilling fluid pressures or inadvertent return of drilling fluid into the wetlands. The areas of greatest concern are reduced soil cover over the bore alignment and where there is a risk of release to the wetlands. The contractor will be required to institute pre-emptive measures in this area to mitigate the effects of a release in the event that one should occur. Such measures may include containment booms and a standby vacuum truck to collect any released drilling fluids immediately. Ground heave or settlement from inadvertent releases also pose risks to structures such as roadways. The HDD alignment was designed with geometries to providing enough soil cover to reduce the risk

of inadvertent return. The Inadvertent Release Contingency Plan details additional methods for mitigating inadvertent returns.

5.3 LIMITATIONS

The structural analysis and inadvertent return mitigation analysis were performed using the proposed design bore paths and typically anticipated equipment and means and methods. The HDD subcontractor must submit structural and inadvertent return mitigation calculations and analysis for each bore path, including their final bore path geometry reflecting its specific equipment and contractor's specific means, methods, drilling fluids, and proposed final contractor refined final planned alignment. It is important to note that the Kiewit Design Team's analysis has been done without consideration for point loading due to unpredictable subsurface features such as encountering rocks, boulders, or other extremely dense material that may damage the conduit. The risk of such conduit damage is low yet has been reported on some projects in recent years.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 RISK AWARENESS AND ASSESSMENT

The risks to be aware of during HDD include: inadvertent returns or fluid loss; any potential obstructions blocking or causing large deviations from the planned bore path; and electromagnetic effects on the HDD steering equipment from nearby high voltage power lines.

6.2 SITE ANALYSIS

A site analysis must be performed prior to commencing HDD operations. Considerations might need to be taken for items such as for site access, construction of HDD entry and exit pits, and layout area for equipment and supplies.

6.3 EROSION CONTROL

The proposed bore path crosses under roads, parking lots, water, stormwater and gas and electric utility lines, as well as under streams/wetlands, bodies of water, and railroads. The soil erosion control drawing will show where primary soil erosion control measures are required. The technical specifications and Inadvertent Release Contingency Plan both detail the requirements for both primary and secondary sediment and erosion control measures to be followed in case of an inadvertent return, which ultimately could deposit the fine bentonite sediment into the stream or wetland or bodies of water if not controlled. Construction of the exit pit will be close to the stream/wetlands. Silt fence, straw bales, and other soil erosion control measures are to be readily accessible at or near the work areas in accordance with the project specifications and Inadvertent Release Contingency Plan.

6.4 SURVEILLANCE AND MONITORING

During installation of the pipe by HDD, monitoring the stream, wetlands, waterbodies and bore alignment for indications of potential inadvertent returns or inadvertent releases will be necessary. The contractor will have primary responsibility for this monitoring and associated response and reporting in real-time. This will be accomplished as detailed in the Inadvertent Release Contingency Plan. Continuous visual inspection of the entire path is the most significant method

of detection. However, an experienced drill crew can often prevent a return by monitoring drilling fluid pressures. A loss of pressure may indicate inadvertent release has occurred. Regardless of the level of preparation, inspection, monitoring, etc., inadvertent returns are not always possible to predict or prevent. However, a significant effort can minimize the possibility but not eliminate it.

7.0 **REFERENCES**

American Association of State Highway and Transportation Officials. (2014). AASHTO LRFD bridge design specifications, Seventh edition, U.S. customary units. Washington, DC: American Association of State Highway and Transportation Officials.

Mayne, P.W., and Kulhawy, F.H. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute (EPRI).

Hunt, R.E. (1986). Geotechnical Engineering Analysis and Evaluation, McGraw-Hill Book Company, New York.

Work Zones

HDD WORK ZONE CONFIGURATION CONSIDERATIONS

Introduction:

In general, HDD requires ample space for both entry and exit operations, work area, or Work zones. The HDD contractor or subcontractor ideally wants to consolidate all operations within these footprints. The exit Work zone also includes a narrower extension for the assembly of the full length pull back string of conduit or pipe. The size of these desired Work zones is driven by rig size in Table 1.

TYPICAL HDD	ENTRY AND EXIT	WERKSPACE
SYSTEM DESCRIPTION	ENTRY WORKSPACE	EXIT WORKSPACE
MAXI (24"-48")	150' X 350'	150' X 250'
MID1 (12"-<24")	150' X 250'	100′ X 200′
MINI (2*-<12*)	VARIES PER SITE	VARIES PER SITE

TABLE 1

An example of an entry Work zones is shown in Figure 1a below.

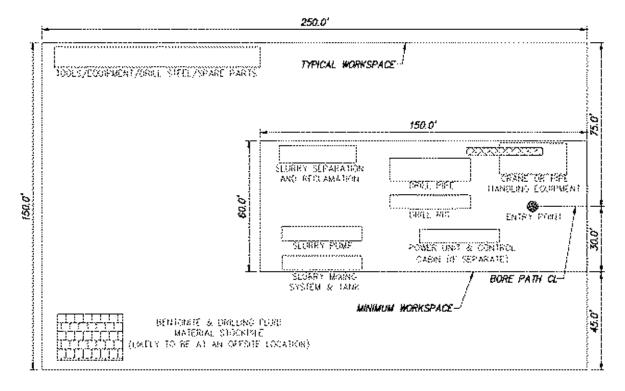


FIGURE 1a: Typical Entry Work Zone Configuration

An example of an exit Work zones is shown in Figure 1b below.

HDD WORK ZONE CONFIGURATION CONSIDERATIONS

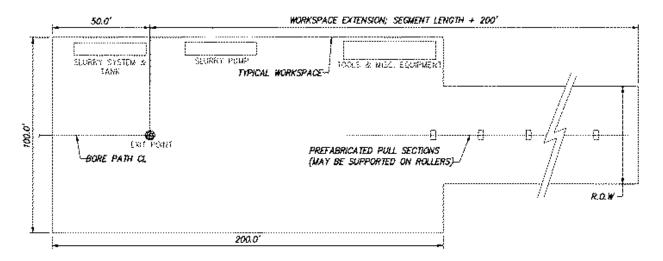


FIGURE 1b: Typical Exit Work Zone Configuration

Work zones should also be able to facilitate contingencies for space to recover a failed bore hole and a new offset bore, the ability swap entry for exit, or in some cases rigs on both ends.

CHPE Project Limitations:

Available Work zone areas for the Champlain Hudson Power Express Project (CHPE) are constrained because the project occupies a narrow existing corridor and is essential in a linear brown field. This is complicated by the rail corridor which precedes most forms of environmental regulations, and it traverses numerous wetlands or other sensitive areas which affects available Work zone areas.

We have assumed the majority of HDDs will be accommodated by a Mini or Midi HDD class machine and support equipment, <12-inch diameter and 1500 feet individual bores.

- Ideally, an Entry workspace approximately 20 to 25 feet wide x 150 to 200 feet long for a small rig with a mounted pipe rack and self-contained power unit and operator control cabin on the rig; a separate mud mixing and pumping unit, plus a separate mud processing and separation unit support by equipment arranged linearly. Since each crossing is a pair two, 20 x 150 Work zones are equivalent to a 40 x 150 overall work area, and we have assumed the support equipment will be set once for both HDDs. It is also assumed existing roads or access roads will parallel one side of a Work zone.
- 2. Ideally, an exit workspace approximately 15 to 20 feet wide and between 60% and 110% of the bore length is needed to layout and assemble the conduit for pullback.

A somewhat smaller entry Work zones may be possible depending on drill rig specifics and the availability of nearby areas for support equipment support operations. The project will have remote

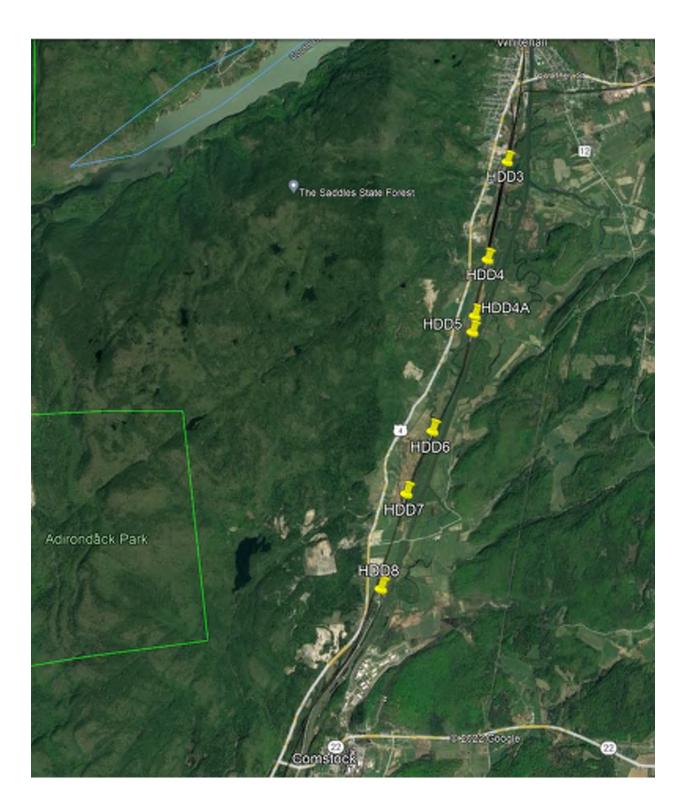
HDD WORK ZONE CONFIGURATION CONSIDERATIONS

yards. Small work areas tend to reduce access and efficiency of operations, raise costs, but are necessitated by the specific project and site constraints.

See Figure 1c below covers general considerations and typical workspace configurations drafted for the CHPE Project.

GROUND TYPE	AIG SIZE	BORE LENGTH	WORK AREA	NOMINAL FOOTPRINT
		(ft)	(ft²)	(ft x ft)
SOIL	€arge/Maxi	>2,500	37,500*	150 x 250*
	Medium/Mida	1000-2500	15,000*	100 x 150*
	Small/Mini	<3000	3,000*	30 x 160*
ROCK	€arge/Maxi	>2,500	37,500*	150 x 250*
	Small/Mini &	1000-2500	15,000*	100 x 150*
	Medium/Midí			
PIPE ASSEMBLY	ALL	ALL	**	25 x (conduit length +
				50)**

Notes:


* The entry and exit workspaces typically need space for a drift rig and support equipment such as a pipe rack, power unit operator control cabin, a mud mixing and pumping unit, plus a separate mud processing and separation unit support equipment arranged linearly in line may be possible. Somewhat smaller work areas may be possible depending on drill rig specifics and availability of nearby areas for support equipment and support operations. Often need to coordinate final work areas with selected contractor's specific operations. Smaller work areas tend to reduce access and efficiency of operations.

** For HDD conduit bundle assembly and pullback, need a corridor equal to at least 1/3 to % of the length of the total bundle length and minimum 20 feet wide, typically at the exit end. Best if corridor equals the full length of the total bundle length plus about 50 ft

FIGURE 1c

Appendix B

Locus Map

Appendix C

Geotechnical Data Report for CHPE Segment 3 – Package 1C HDDs

MEMORANDUM

DATE:	February 28, 2023
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT	: Geotechnical Data: Segment 3 – Package 1C - HDD Crossing 3 – Revision 2 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing Number 3 is STA 15084+00 (43.5380°N, 73.4067°W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by TRC and recent investigations by Schnabel and Kiewit, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Schnabel Engineering, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Subsurface Explorations, dated March 3, 2022.
- Kiewit Engineering (NY) Corp., Package 1C Phase 4 Borings, Champlain Hudson Power Express, New York, dated January 20, 2023.

Contact us if you have questions or require additional information.

HDD 3 Borings B113.4-1, K-113.5 KB-113.3, KB-113.6 Segment 3 - Package 1C

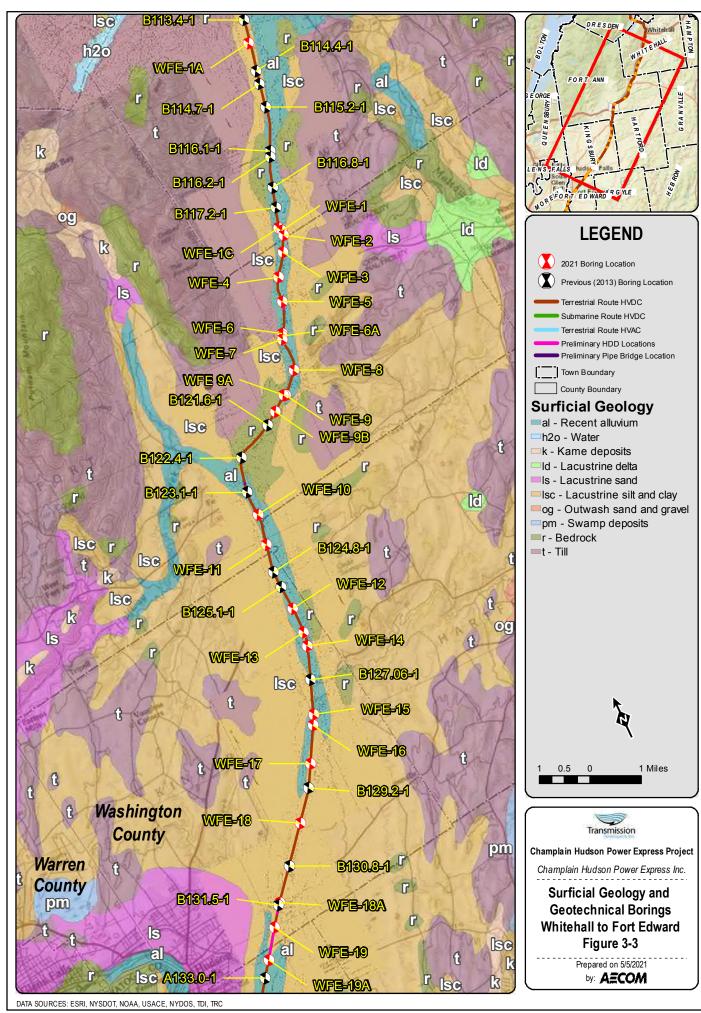
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

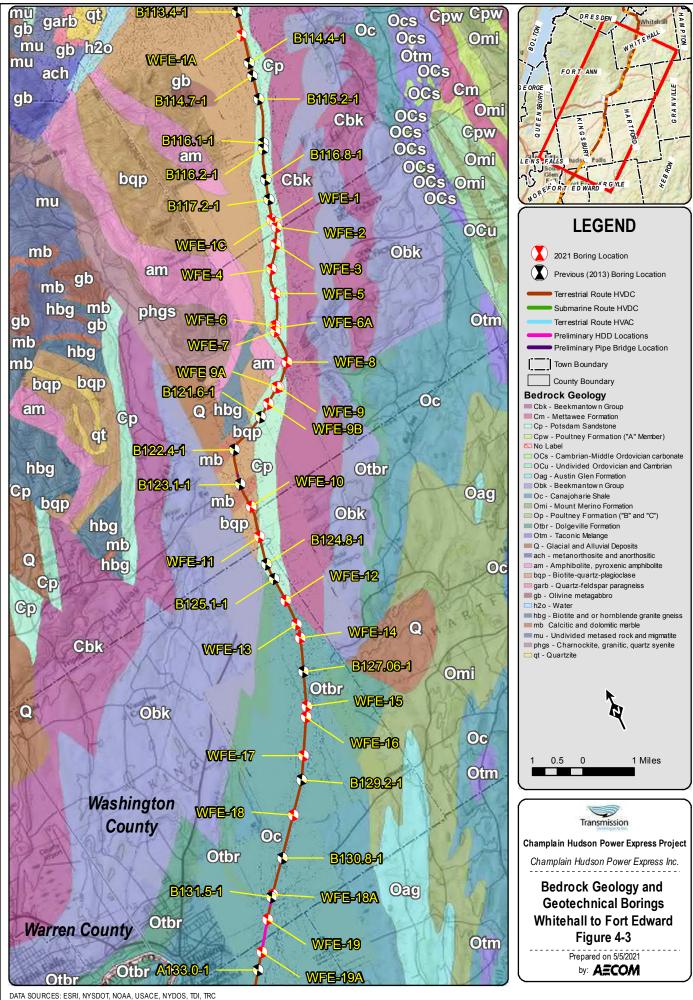
Firms	Dering	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B102.4-1	1762367.3	777951.9	139.42
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8
	B110.1-1	1728142.0	776337.8	105.0
	B113.4-1	1714875.2	781894.9	122.9
	B114.4-1	1709558.6	780857.2	122.7
TRC*	B115.2-1	1705777.9	780186.6	120.9
INC	B116.1-1	1701426.5	778616.5	124.1
	B116.2-1	1700894.8	778375.8	124.3
	B116.8-1	1697938.4	777308.2	131.6
	PD-7	1783019.4	778020.6	266.4
AECOM**	PD-7A	1782960.9	778149.9	269.5
AECOIVIT	WFE-1	1693492.9	776280.6	127.9
	WFE-1C	1693895.8	776092.3	129.3

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

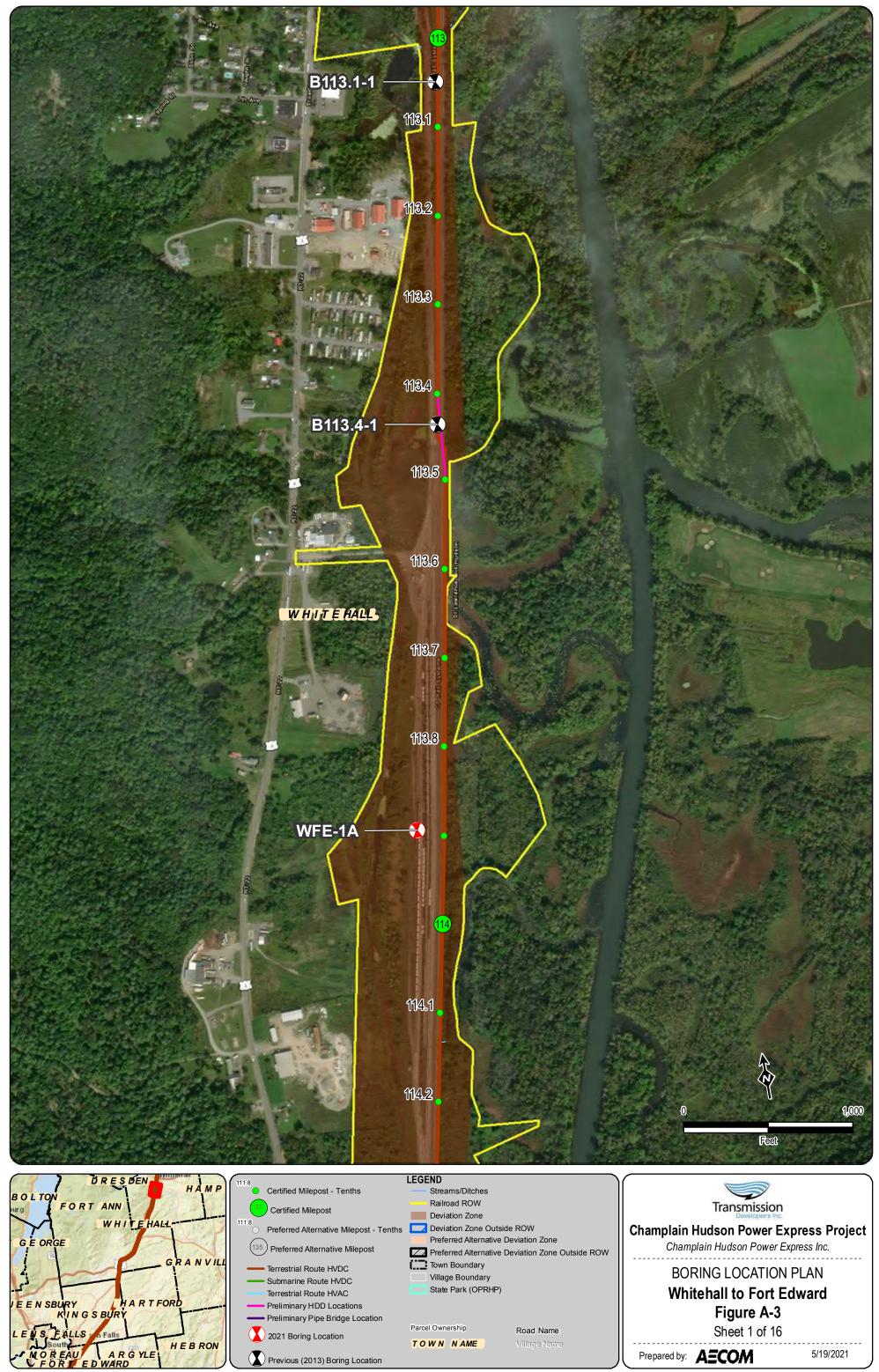

* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.



Vav

Bedrock

t E

Vav

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

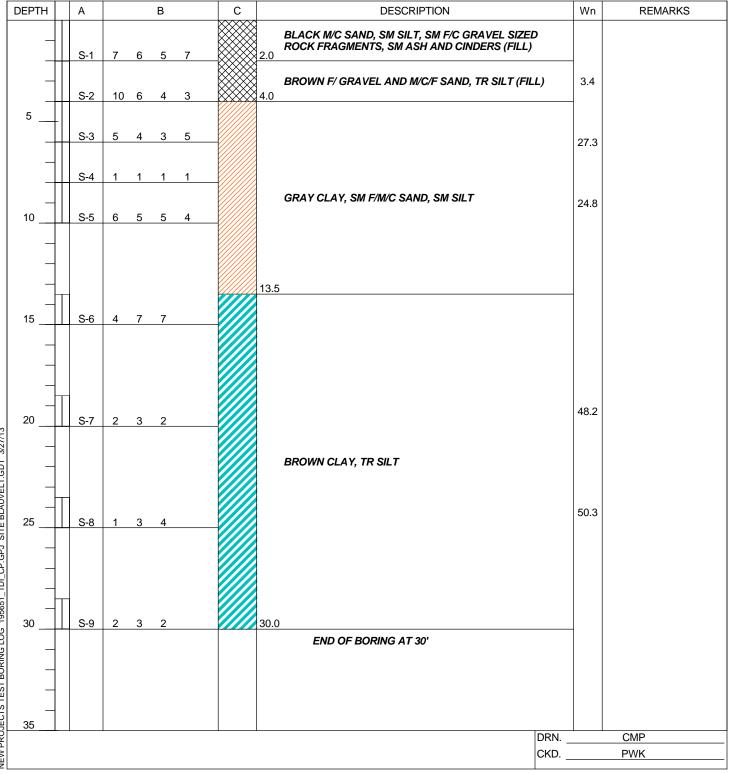
©TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

				-					
	GROUNDWATER DATA <u>RST ENCOUNTERED</u> DRY <u>PTH</u> HOUR DATE ELAPSED TII				N	METHOD C	OF ADVANC	CING BO	REHOLE
FIRST E	NCOUNT	ERED DF	RY	∇	а	FROM	0.0 '	то	10.0 '
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	10.0 '	ТО	30.0 '
				-					
]					

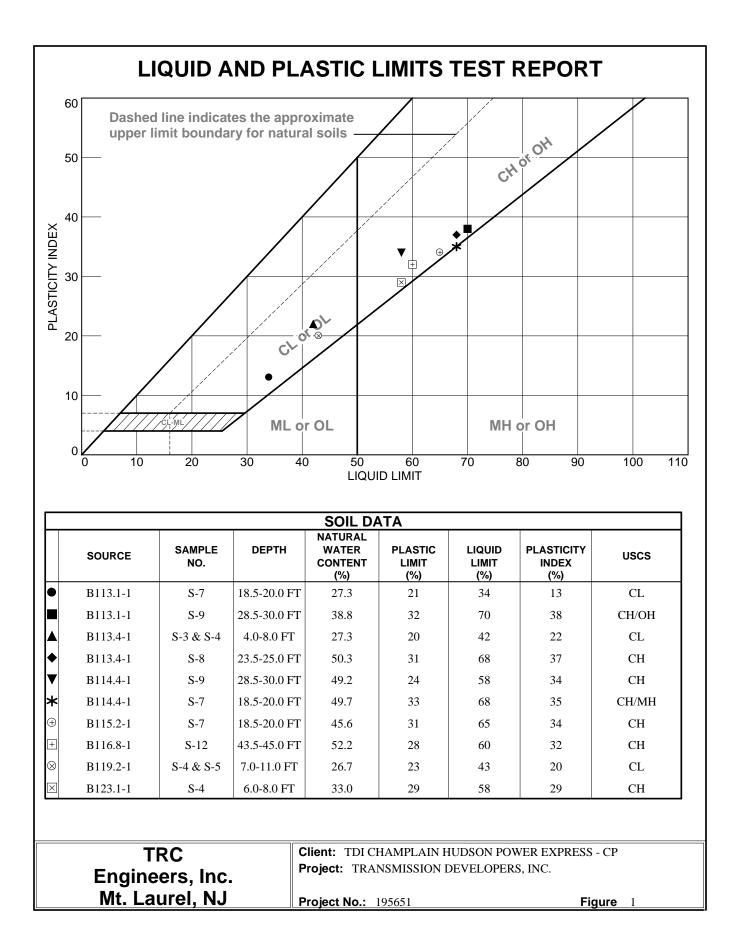

BORING B113.4-1 N/A

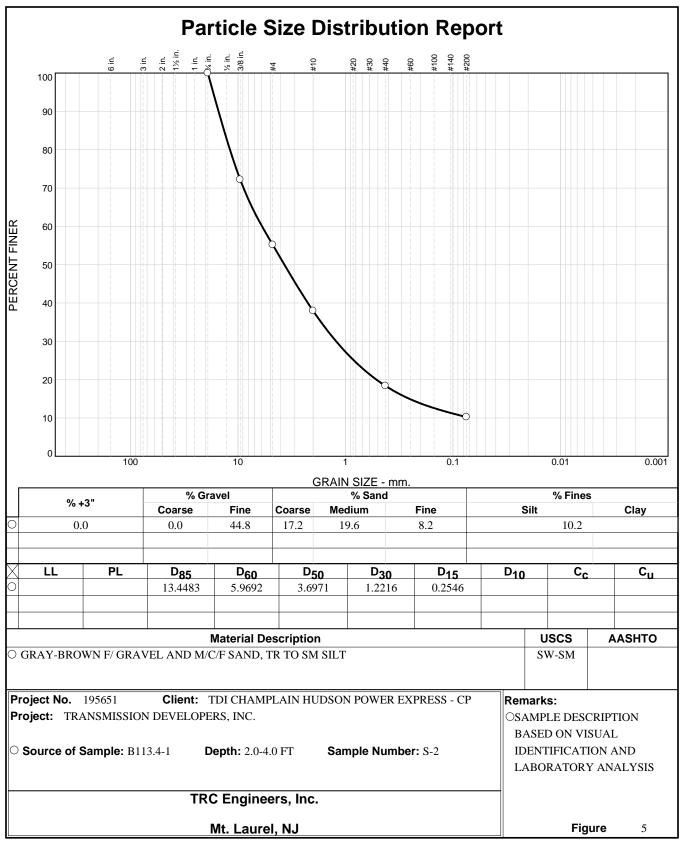
G.S. ELEV.

FILE 195651

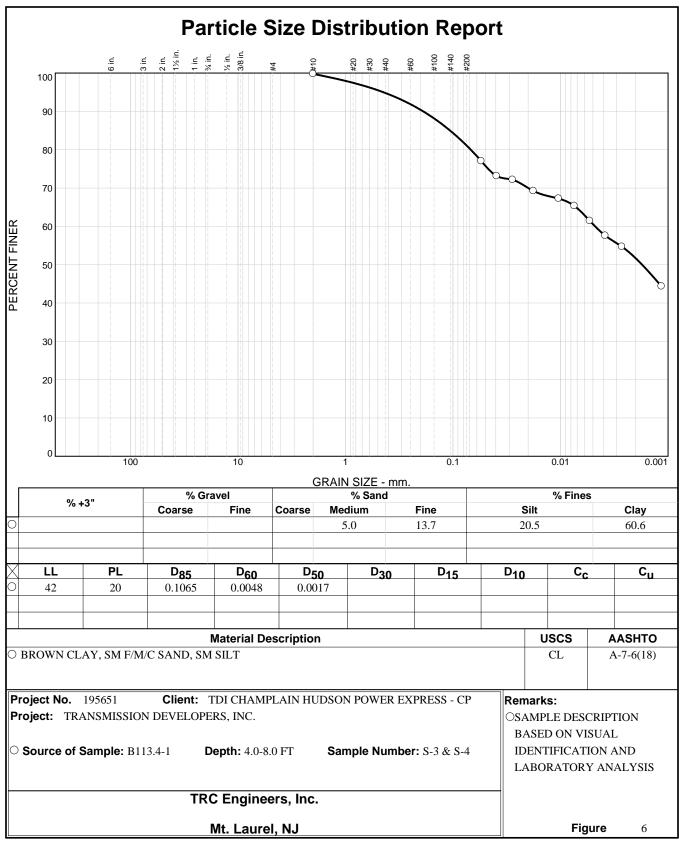
SHEET	1 OF 1
-------	--------

DRILLER	P. PLANTIER
HELPER	M. NAGEY
INSPECTOR	C. POPPE
DATE STARTED	12/11/2012
DATE COMPLETED	12/11/2012

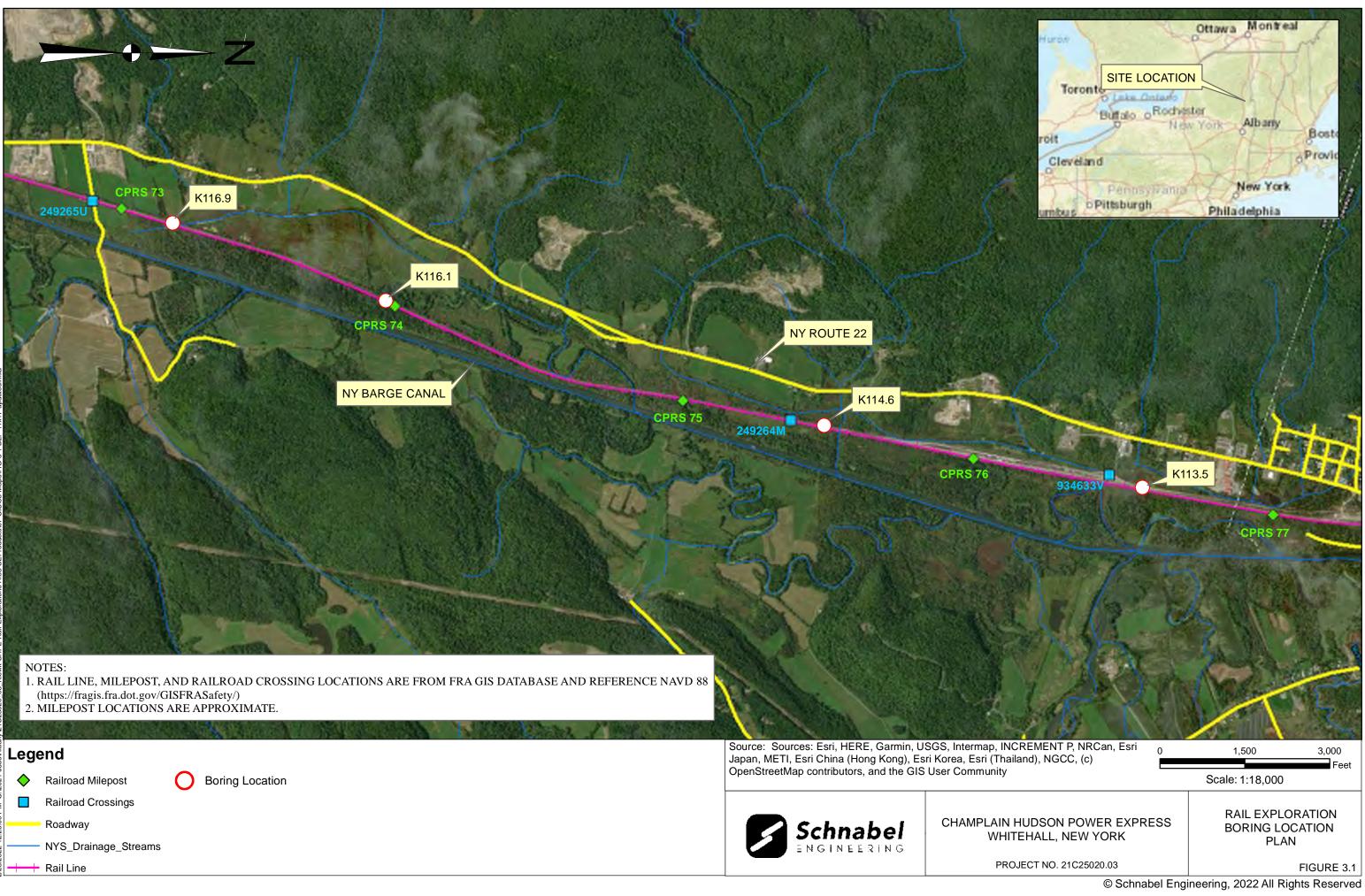

NEW PROJECTS TEST BORING LOG 195651_TDI_CP.GPJ SITE BLAUVELT.GDT 3/27/13



Project Name: Client Name: TRC Project #: <u>TDI Champlain Hudson Power Express – CP</u> <u>Transmission Developers, Inc.</u> <u>195651</u>


SAMPLE IDENTIFICA		FICATION	USCS	GRAIN SIZE DISTRIBUTION					PLASTICITY				Content	(pcf)		tent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Co (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-3	4.0-6.0	SW-SM	21.2	72.1	6.7		_	_	_	_	-	14.9	_	_	_
	S-4	6.0-8.0	3 10-2111	21.2	12.1			-	-	-	-	-	14.9	-	-	-
B113.1-1	S-6	13.5-15.0	-	-	-	-	I	-	-	-	-	-	25.7	-	-	-
D113.1-1	S-7	18.5-20.0	CL	-	-	-	I	34	21	13	0.5	I	27.3	-	-	-
	S-8	23.5-25.0	-	-	-	-	I	-	-	-	-	-	33.9	-	-	5.9
	S-9	28.5-30.0	CH/OH	-	-	-	I	70	32	38	0.2	I	38.8	-	-	-
	S-2	2.0-4.0	SW-SM	44.8	45.0	10).2	-	-	-	-	-	3.4	-	-	-
	S-3	4.0-6.0	CL	10	8.9	20.5	60.6	42	20	22	0.3	2.81	27.3	_		
B113.4-1	S-4	6.0-8.0	CL	10	5.9	20.3	00.0	42	20	22	0.5	2.01	21.3	-	-	-
D113.4-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	24.8	97.4	-	-
	S-7	18.5-20.0	-	-	-	-	-	-	-	-	-	-	48.2	73.8	-	-
	S-8	23.5-25.0	СН	-	-	-	-	68	31	37	0.5	-	50.3	-	-	-

DRAWN BY: TBT 03/27/13



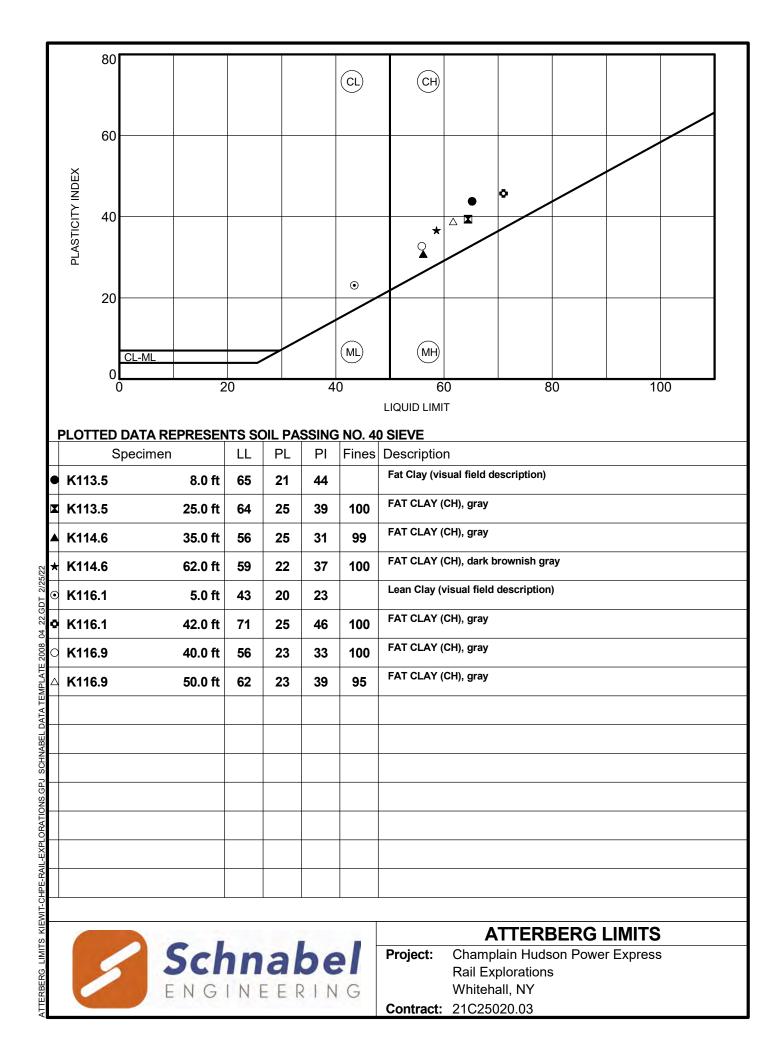
Tested By: BMH 01/24/13 Checked By:

Tested By: <u>TBT 02/12/13</u>

Checked By:

1	Schnabel ENGINEERING BORI	NG	Champ Rail Ex Whiteh	ploratio	ons	ower E	xpress			Contra	Number: ct Number: 2 1 of 2		13.5
Contrac	tor: Soil Testing Inc.								Water L		ervations		
. .	Oxford, Connecticut								Date	Time	Depth	Casing	Caved
	tor Foreman: S. DeAngelis				Er	ncounte	ered	∇	12/23/21	9:55 AN	1 15.0'	15.0'	
	el Representative: S. Henry	/										50.01	
	ent: Diedrich D-50 (ATC)				C	omplet	ion .	Y	12/23/21	11:55 Al	M 32.0'	50.0'	
Method:	4-1/4" I.D. Hollow Stem Au	ıger											
Hammer	r Type: Safety Hammer (14	0 lb)											
		ed: 12/23/21											
X: 7818	52.6 ft Y: 1714661 ft By: L	and Survey											
	ate System: Lat-Long (Deci	-											
Plunge:		Bearing:											
Ground	Surface Elevation: 122.5 (1	t) Total Dep	th: 52	2.0 ft		-							
DEPTH (ft)	MATERIAL DESCR	IPTION	SYME	BOL	ELEV (ft)	STRA TUM	S		/IPLING DATA		TESTS	REMA	RKS
0.2					100.0								
0.2	0.0 - 0.2 ft: FILL, sampled	/	FILL		122.3		ĺĺĺ	VI	S-1, SPT 12+8+9+14				
	0.2 - 6.0 ft: FILL, sampled with gravel; moist, black a	as silly sand ind brown			-]	[]	\wedge	REC=10", 4	42%			
-					-	-	┝─┤	$\left(\right)$	S-2, SPT				
_			FILL		-	F		VI	16+13+6+5 REC=11", 4				
								\wedge					
_					-				S-3, SPT				
_					-	-	- 5 -	X	3+4+4+6 REC=0", 0 ^o	%			
6.0 -					116.5 -		\downarrow	/					
0.0	6.0 - 8.0 ft: SANDY FAT (gray, probable LACUSTR	CLAY; moist,			110.0				S-4, SPT 8+4+5+5		C = 21.1% Passing		
-	gray, probable EACOOTT		СН		-	-			REC=3", 13	^{5%} #2	200 = 50.1		
8.0 -	8.0 - 52.0 ft: FAT CLAY; r	noiot grov			114.5 -			$\left(\right)$	S-5, SPT		P = 0.00 tsf _ = 65		
_	probable LACUSTRINE m				_			VI	1+3+4+5 REC=16", 6	P	L = 21		
								\wedge	KEC-10, 0	⁷⁷⁰ P	P = 0.50 tsf		
							- 10 -						
-					-								
					_								
-					-	-							
-					-								
		$\overline{\Delta}$,				- 15 -						
	15.0 ft: Change: wet, gray of brown	with mottles				L	13	$\backslash /$	S-6, SPT 3+5+9+12	P	P = 2.75 tsf		
-			<u></u>		-	-		X	REC=22", 9	92%			
-			СН		-		┝─┤	/ \					
					-		[]						
-					-	1							
_					· _	4	- 20 -		0 7 05-				
	20.0 ft: Change: brown						[M	S-7, SPT 4+3+5+6		P = 2.50 tsf		
-					-	1		\wedge	REC=24", ²	100%			
-					-	1	╞╶┦	<u>'</u>					
_					-	4	L 1						
-					-	1	F 1						
	(continued)												

TEST BORING LOG KIEWIT-CHPE-RAIL-EXPLORATIONS.GPJ SCHNABEL DATA TEMPLATE 2008_07_06.GDT 3/3/22

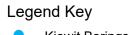

(continued)

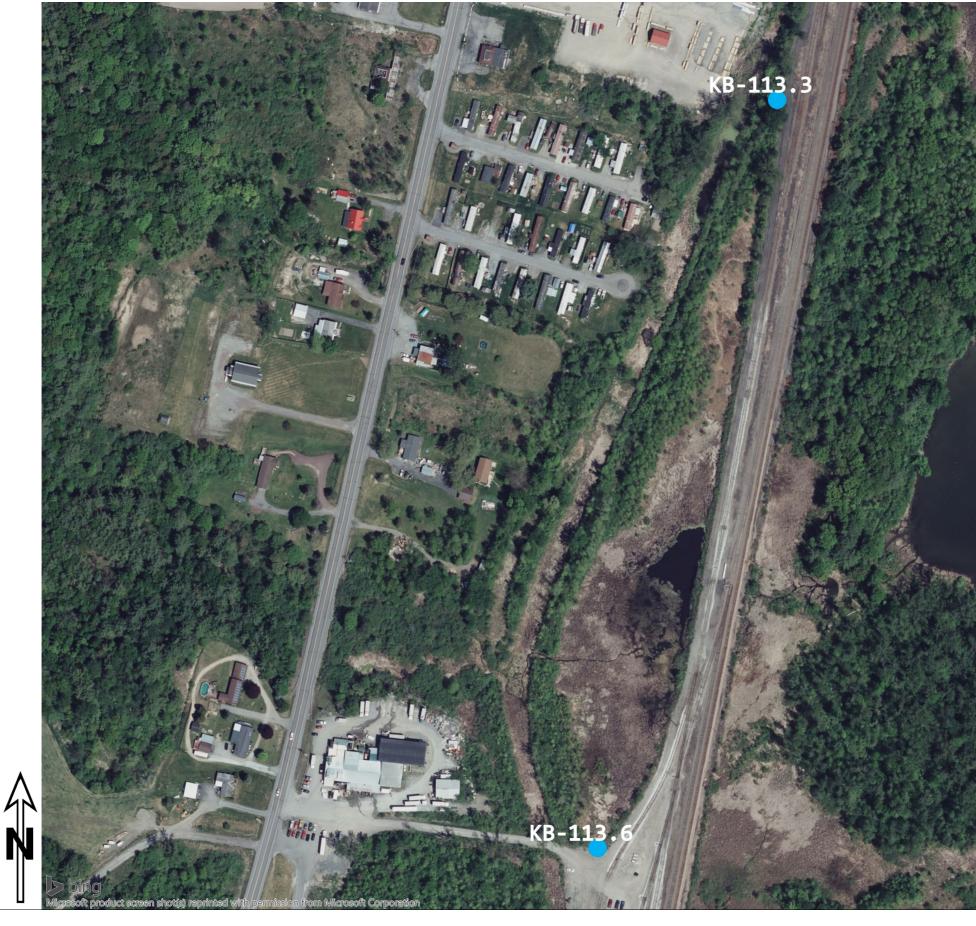
۶	Schnabel BORING ENGINEERING LOG	Champlain H Rail Explora Whitehall, N	tions		41000		C	Boring Number: Contract Number: 2 Sheet: 2 of 2	K113 . 21C25020.03
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	DEPT		MPLING DATA	TESTS	REMARKS
-	8.0 - 52.0 ft: FAT CLAY; moist, gray, probable LACUSTRINE material <i>(continued)</i> 25.0 ft: Change: gray			-			UD-1, UNDIST REC=24", 100 ⁴ S-8, SPT 3+5+4+6 REC=24", 100 ⁴	 [%] PL = 25 MC = 43.7% % Passing #200 = 99.8 PP = 0.00 tsf 	
-		Y		-	30 	$1 \times / 1$	S-9, SPT WOR/12"+4+5 REC=24", 100 ⁶	PP = 0.00 tsf	
				-	 35 	$ \rangle/ $	S-10, SPT WOR+WOH+1 REC=24", 100 ⁽	+3 %	
_		СН		- - -	 - 40 -		UD-2, UNDIST REC=17", 71%		
-				-		$ \rangle/ $	S-11, SPT 3+1+1+3 REC=24", 100 ⁰	MC = 71.1% PP = 0.00 tsf	
-				-	- 45 - 	$ \rangle $	S-12, SPT WOR/24" REC=24", 100 ⁰	PP = 0.00 tsf	
				-	 - 50 -	1×1	S-13, SPT WOR/24" REC=24", 100 ⁰	PP = 0.00 tsf	
52.0 -	Bottom of Boring at 52.0 ft. Boring terminated at selected depth. Boring backfilled with cement grout throu Unable to obtain a "Casing Pulled" grour Coordinates and elevations were provide Stratum Designations: F: Fill Material L: Lacustrine Deposits	ndwater readin	g due to	grout.		n Ja	n. 18, 2022.	- I	

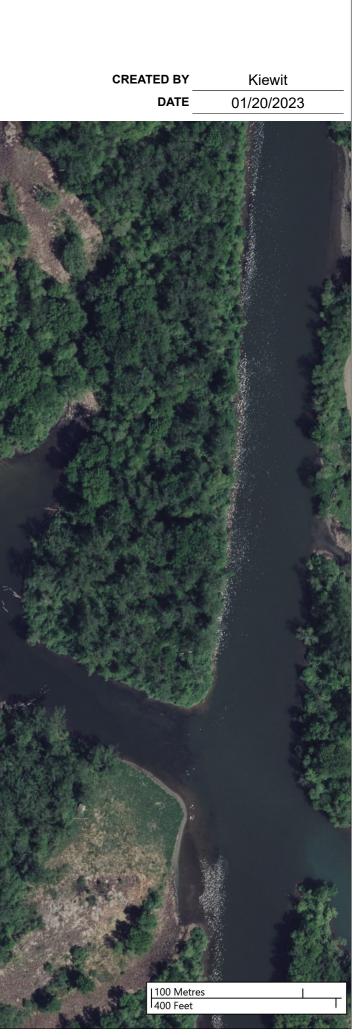
Summary Of Laboratory Tests

											Proje			625020	J.03
Boring No.	Sample Depth ft	Sample Type	Description of Soil Specimen		(%)	imit	imit	/ Index	1g Sieve	Organic Content (%)		Sulfates (mg/Kg)	Chlorides (mg/Kg)	ty	Oxidation Reduction Potential (mV)
	Elevation ft			Stratum	Natural Moisture (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Passing No. 200 Sieve	Organic	Hq	Sulfates	Chloride	Resistivity (ohm-cm)	Oxidatio Potentia
K113.5	6.0 - 8.0	Jar	Sandy Fat Clay (visual field description)	L	21.1				50.1						
	116.5 - 114.5														
K113.5	8.0 - 10.0	Jar	Fat Clay (visual field description)	L		65	21	44		1.84					
1110.0	114.5 - 112.5	001				00				1.04					
K113.5	25.0 - 27.0	Tube	FAT CLAY (CH), gray	L	43.7	64	25	39	99.8						
	97.5 - 95.5				40.7		20		00.0						
K113.5	42.0 - 44.0	Jar	Fat Clay (visual field description)	L	71.1										
K113.5	80.5 - 78.5	Jai			71.1										
K114.6	5.0 - 7.0	Jar	Silty Sand with Gravel (visual field description)	F	13.1						6.48	140	6.2	3010	590
	116.8 - 114.8				10.1						0.40		BRL		
K114.6	15.0 - 17.0	Jar	Fat Clay (visual field description)	L	44.7										
	106.8 - 104.8	001													
K114.6	35.0 - 37.0	Tube	FAT CLAY (CH), gray	L	55.7	56	25	31	99.4						
	86.8 - 84.8				00.7	00	20		00.4						
2. S and 3. K	oil classifications a visual classification	are in gen n. s: NP=No	nce with ASTM standards. eral accordance with ASTM D2487(as applicable n-Plastic; indicates no test performed; BRL = I				ed			5	ENG	hna	RING		
								Proje	ct: Cha Rail Whit	mplain Explora tehall, N	ations	n Power	Expres	SS	

Appendix Sheet 1 of 3 Project Number: 21C25020.03




20001480


PROJECT NUMBER

Package 1C Phase 4 Borings Champlain Hudson Power Express New York

Kiewit Borings

BORING NO: KB-113.3

Introduction Joint / Geophole 7822D1 HAMMER TYPE/EFF. A Op Op<	1974.78						S. (44/00/00	-	OT . D-	
Instruct Altimeter Open all Solution Sol	23.9 ft			GROUND ELEV.	7822DT	probe	/ Geo			11/09/2022	_		
FILL: Silty SAND with Gravel (SM), brown, loose 58% 3-3-2-2 (5) 1000 29% 2-4-5-4 (9) 115.9 Silty SAND (SM), brown, medium dense, moist 46% 3-3-4-5 (7) 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 (16) 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 (16) 1000 12-15-13-12 (28) 46% 100% 12-2-3-4 (5) 46% 100% 1-2-3-4 (5) 46%	utomatic	Au	EFF.	HAMMER TYPE/E	<u>. </u>	DRILL CONTRACTOR ADT Inc.				11/10/2022	DATE_	FINISH	
FILL: Silty SAND with Gravel (SM), brown, loose 58% 3-3-2-2 (5) 105.9 29% 2-4-5-4 (9) 115.9 Silty SAND (SM), brown, medium dense, moist 46% 3-3-4-5 (7) 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 (16) 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 (16) 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 (5) 100% 1-2-3-4 (5) 4 4	egend N Value (%) & LL (%) es Content (%	▲ SPT N ● MC (% — PL & I ■ Fines		Notes	llow Counts (N Value)	Pocket Pen. (tsf)	Recovery % RQD	ample Type ore Run No.	al Description	Material D	èraphic Log	levation (ft)	
115.9 Silty SAND (SM), brown, medium dense, moist 29% 2.4.5.4 46% 115.9 Silty SAND (SM), brown, medium dense, moist 46% 3.3.3.2 48 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1.2.3.4 100% 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1.2.3.4 4			20			L			th Gravel (SM), brown,			ш	
115.9 Silty SAND (SM), brown, medium dense, moist 6% 3-3-3-2 46% 3-3-4-5 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 46%				-								(_
115.9 Silty SAND (SM), brown, medium dense, moist 46% 3-3-4-5 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7-9-11 108.9 12-15-13-12 12-15-13-12 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 108.9 12-15-13-12 100% 1-2-3-4 100%				-			29%	Å				ć	-
115.9 Silty SAND (SM), brown, medium dense, moist (7) 115.9 Silty SAND (SM), brown, medium dense, moist 50% 6-7.9-11 108.9 trace subangular gravel 92% 12-15-13-12 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 100% 1-2-3-4 (5)							50%	XI.				(-
Shity SAND (SM), Brown, medium dense, moist Itrace subangular gravel 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 108.9				-			46%	X				115.0	-
108.9 108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 (5) 1-2-3-6							50%	$\overline{\mathbb{A}}$	own, medium dense, moist	Silty SAND (SM), brown		115.9	-
108.9 CLAY with Sand (CH), brown to gray, firm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 (5)		•		-	12-15-13-12		92%	$\overline{\mathbb{A}}$	avel	trace subangular grave) - -
CLAY with sand (CH), blown to gray, nm, moist to wet, high plasticity, fine to medium sand 100% 1-2-3-4 (5) 100% 1-2-3-4 (5) 100% 1-2-3-4 (5) 100% 1-2-3-4 (5) 100% 1-2-3-4 (5)				-	(28)			4				1	-
- -												1	-
				-	1-2-3-4		100%	7	1), brown to gray, firm, asticity, fine to medium	moist to wet, high plasti		108.9	5 -
				-	(5)			4		sand			_
				-									-
				-			100%	$\overline{\mathbb{N}}$) - -
				-	(8)			4					_
				-									-
)		-	0-2-3-3		100%	$\overline{\mathbb{N}}$; - -
				-	(5)								-
				-									-

BORING NO: KB-113.3

PROJ	ECT NU	MBER	20001480	LOGGED BY		S. C	rowley		COORDINATES			794.8 ⁻ 74.78			
	START	DATE	11/09/2022	DRILLER/RIG	John	/ Geop	probe 78	322DT	GROUND ELEV.		123	9 ft			
	FINISH	DATE_	11/10/2022	DRILL CONTRACTO	२	AD	DT Inc.		HAMMER TYPE/I	EFF	F. Automatic				
Depth (ft)	Elevation (ft)	Graphic Log	Material Des	scription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT N MC (% PL & L Fines (Content (-		
	93.9		Sandy SILT (MH), brown a wet, high plasticity, fine to	and gray, soft to firm,		100%		2-2-2-4 (4)		20	40		80		
35 -						100%		2-3-5-6 (8)							
40 -					X			5-7-8-9	3-inch ring sampler						
45 - - - - - - - -	78.9		CLAY (CH), brown to gray high plasticity	، firm, moist to wet,		100%		4-3-4-5 (7)							
50 - - - - - -						100%		0-3-4-5 (7)							
55 -	68.9		Boring Terminated at 57ft			100%		0-0-3-2 (3)							
-															

BORING NO: KB-113.6

PROJE	ECT NUI	MBER	20001480	LOGGED BY		S. C	rowley	ý	COORDINATES		71416 '8160		
	START		11/08/2022	DRILLER/RIG	John	/ Geo	probe 7	7822DT	GROUND ELEV.		120.0	ft	
	FINISH	DATE_	11/09/2022	DRILL CONTRACTOR	R	A	DT Inc.		HAMMER TYPE/E	FF	Auto	matic	
Depth (ft)	Elevation (ft)	Graphic Log	Material De	scription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes	▲ S ● M ─ F ▼ F 20	Lege PT N Va IC (%) PL & LL (ines Cor 40	ilue (%) htent (%	5) 1 80
· - · · · · · · · · · · · · · · · · · ·			FILL: Silty SAND with Gr loose to dense, moist to	avel (SM), brown,		36% 34% 34% 54%		2-2-3-6 (5) 3-3-3-2 (6) 4-5-5-6 (10) 7-9-10-11 (19)	-				
	108.0	////	CLAY (CH), brown, soft t	o firm		75%		(19) 14-17-16-15 (33) 22-18-15-16 (33)					
 						100%		0-1-3-4 (4)			•		
20						100%		2-2-4-5 (6)	- - - - - - - - - - - - - - - - - 				
25 -						100%		0-3-5-6 (8)	- 				

BORING NO: KB-113.6

ROJE	ECT NI		20001480	LOGGED BY		S. C	rowley		COORDINATES		1714 5 781			
	START		11/08/2022	DRILLER/RIG	John	/ Geo	probe 7	822DT	GROUND ELEV.		120).0 ft		
	FINISH	I DATE	11/09/2022	DRILL CONTRACTO			OT Inc.		HAMMER TYPE/EFF.		Au	Itoma	atic	
neptin (iti)	Elevation (ft)	Graphic Log	Material Des	cription	Sample Type Core Run No.	Recovery % RQD	Pocket Pen. (tsf)	Blow Counts (N Value)	Notes		SPT N MC (% PL & I Fines	Conte	nt (%)	-
-			CLAY (CH), brown, soft to			100%		3-3-5-6 (8)		20	40	60	8	
5 -	85.0		Silty SAND (SM), brown, v	wet	K	100%			3-inch ring sampler					
- 0 0	80.0		CLAY (CH), brown, soft to	firm, wet	\mathbb{X}	100%		0-0-3-3 (3)						
5					\mathbb{X}	100%		0-3-3-4 (6)						
- - - - - - - - - - - - - - - - - - -	68.0		Boring Terminated at 52ft		\mathbb{N}	66%		0-0-4-4 (4)						
5														
0													ge 2	

SOIL LEGEND

Explanation of Symbols and Terms Used on Boring and Test Pit Logs for Sampling and Description of Soils

SAI	MPLE AND DRILL METHODS		COMMON ABBREVIAT	IONS AND	ACRONYMS		
	Standard Penetration Split-Spoon	MR	Mud Rotary	Bulk	Bulk Sample		
	Sample HSA		Hollow Stem Auger	EOB	End of Boring		
	Undisturbed Sample SSA Solid Stem Auger		Solid Stem Auger	AR	Auger Refusal		
\blacksquare	 Piston Sampler Grab Sample 		Split Spoon Sampler	N-Value	Sum of blows for last two 6-in.		
1997 1997	Grab Sample	UD	Undisturbed Sample	in-value	increments of SPT		
\bigcirc	Bulk Sample	WOR	Weight of Rods	USCS	Unified Soil Classification		
	Auger Cuttings	WOH	Weight of Hammer	0303	System		
	Rock Core	SPT	Standard Penetration Test				
	Modified California Sample	REC	Recovery				
١	WATER LEVEL SYMBOLS	RQD	Rock Quality Designation	CROSS SECTION LEGEND			
∇	Observation at time of drilling	MC	Moisture Content				
\mathbf{V}	Observation after drilling	PI	Plasticity Index	Ν	I(bpf)		
T	Delayed observation	PL	Plastic Limit		Moisture Content		
Ţ	Perched water observed at drilling	LL	Liquid Limit	Recove	<u>a</u>		
∧ ⊌	Observed Seepage	CPT	Cone Penetration Test				
	Cave-in Depth	PP	Pocket Penetrometer				

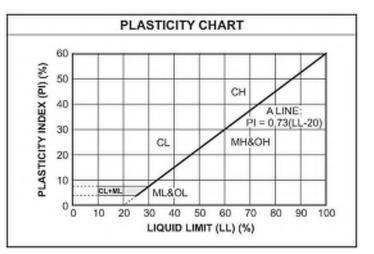
	RELATIVE D	ENSITY / CONSI	STENCY					
Coarse-g	rained Soils	Fine-grained Soils						
N-Value	Density	N-Value	Consistency	Pocket Pen (TSF)				
0 - 4	Very Loose	0 - 1	Very Soft	0.0 - 0.25				
5 - 10	Loose	2 - 4	Soft	0.25 - 0.50				
11 - 30	Medium	5 - 8	Firm	0.51 - 1.00				
		9 - 15	Stiff	1.01 - 2.00				
31 - 50	Dense	16 - 30	Very Stiff	2.01-4.00				
> 50	Very Dense	> 30	Hard	> 4.00				

RELATIVE PROPORTIONS OF GRAVEL, SAND, AND FINES Trace > 5 %								
> 5 %								
5 to 10 %								
15 to 25 %								
30 - 45 %								
50 to 100 %								

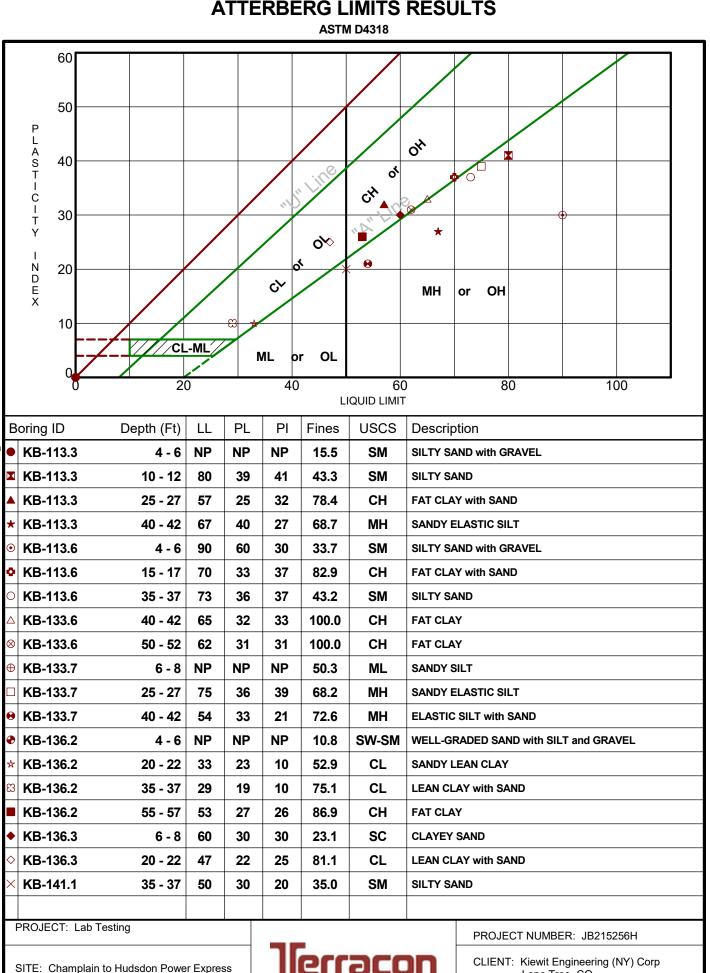
SOIL GRAIN SIZE

				U.S. Stan	dard Siev	е			
6	" 3	3" 3/4	4" 4	4 1	0 4	0 2	00		
Douldoro	Cabblaa	Gra	vel	Sand			Cilt		Clay
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt		Clay
15	52 76	6.2 19	.1 4.	76 2.	00 0.4	20 0.0	074	0.00	2 (mm)

CRITERIA	FOR DESCRIBING MOISTURE CONDITION	CRITERIA FOR DESCRIBING CEMENTATION					
Description	Criteria	Description	Criteria				
Dry	Absence of moisture, dusty, dry to the touch	Weak	Crumbles or breaks with handling or little finger pressure				
Moist	Damp but no visible free water	Moderate	Crumbles or breaks with considerable finger pressure				
Wet	Visible free water, typically soil is below water table	Strong	Will not crumble or break with finger pressure				


	CRITERIA FOR DESCRIBING STRUCTURE							
Description	Criteria							
Stratified	Alternating layers of varying material or color with layers at least 1/4 in. thick; note thickness							
Laminated	Laminated Alternating layers of varying material or color with the layers less than 1/4 in. thick; note thickness							
Fissured	Breaks along definite planes of fracture with little resistance to fracturing							
Slickensided	Fracture planes appear polished or glossy, sometimes striated							
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown							
Lensed	Inclusion of small pockets of different soils, such as lenses of sand scattered through a mass of clay; note thickness							
Homogeneous Same color and appearance throughout								

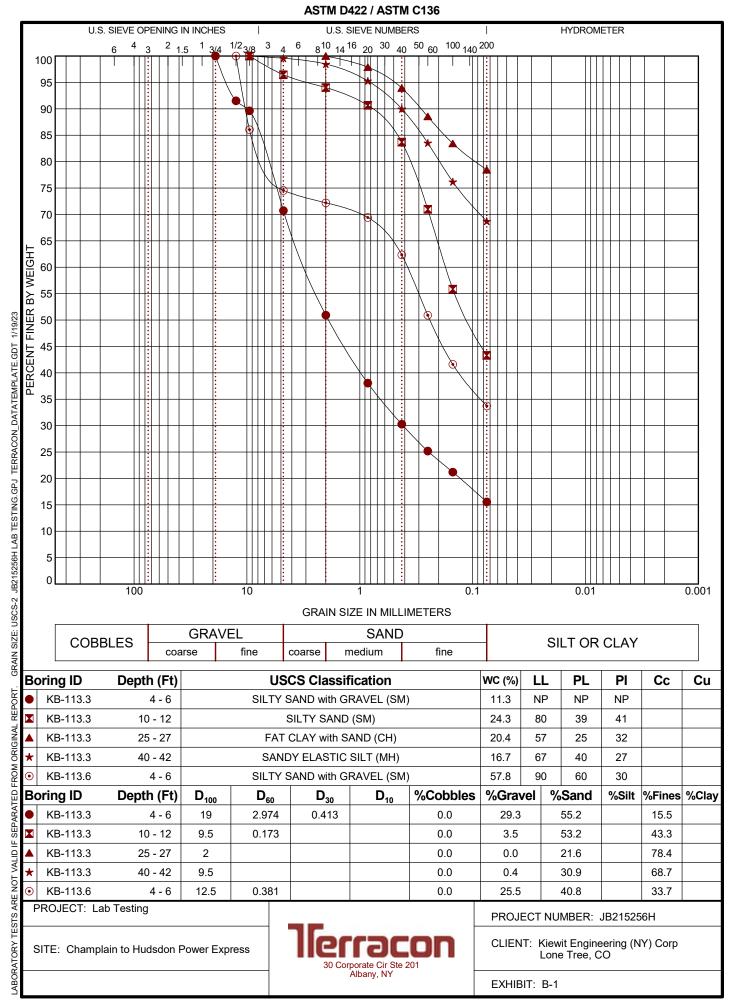
SOIL SYMBOLS


		USCS SOIL TYPES
Symbol	Group	Description
	GW	Well-graded gravels, gravel sand mixtures with trace or no fines
8°23	GP	Poorly-graded gravels, gravel-sand mixtures with trace or no fines
	GW-GM	Well-graded gravels, gravel-sand mixtures with silt fines
	GW-GC	Well-graded gravels, gravel-sand mixtures with clay fines
2000 2000 2000	GP-GM	Poorly-graded gravels, gravel-sand mixtures with silt fines
82	GP-GC	Poorly-graded gravels, gravel-sand mixtures with clay fines
	GM	Silty gravels, gravel-silt-sand mixtures
S-93	GC	Clayey gravels, gravel-sand-clay mixtures
	GC-GM	Clayey gravels, gravel-sand-clay-silt mixtures
	SW	Well-graded sands, sand-gravel mixtures with trace or no fines
	SP	Poorly-graded sands, sand-gravel mixtures with trace or no fines
с <u>с</u>	SW-SM	Well-graded sands, sand-gravel mixtures with silt fines
	SW-SC	Well-graded sands, sand-gravel mixtures with clayfines
1 - 1 - 1 1 -	SP-SM	Poorly-graded sands, sand-gravel mixtures with silt fines
	SP-SC	Poorly-graded sands, sand-gravel mixtures with clay fines
a a a a a a dama da a a da a a dama da a a da a da	SM	Silty sands, sand-gravel-silt mixtures
MAAA	SC	Clayey sands, sand-gravel-clay mixtures
	SC-SM	Clayey sands, sand-gravel-clay-silt mixtures
	ML	Inorganic silts with low plasticity
	CL	Inorganic clays of low plasticity, gravelly or sandy clays, silty clays, lean clays
	CL-ML	Inorganic clay-silts of low plasticity, gravelly clays, sandy clays, silty clays, lean clays
<u> </u>	OL	Organic silts and organic silty clays of low plasticity
	MH	Inorganic silts of high plasticity, elastic silts
	СН	Inorganic clays of high plasticity, fat clays
\$\$\$\$\$	ОН	Organic clays and organic silts of high plasticity
<u>at at at</u> <u>1 an an</u> ,	PT	Peat, humus, swamp soils with high organic contents

	OTHER MATERIALS
Symbol	Description
	Asphalt
	Concrete
	Crushed Stone/Aggregate Base
	Fill

			limary of Laboratory Res	Sheet 1 of 2			
BORING ID	Depth (Ft.)		Water Content (%)				
KB-113.3	4-6		11.3				
KB-113.3	10-12		24.3				
KB-113.3	25-27		20.4				
KB-113.3	40-42		16.7				
KB-113.6	4-6		57.8				
KB-113.6	15-17		45.6				
KB-113.6	35-37		44.5				
KB-133.6	4-6		17.3				
KB-133.6	15-17		20.9				
KB-133.6	40-42		62.7				
KB-133.6	50-52		62.0				
KB-133.7	6-8		22.0				
KB-133.7	20-22		21.3				
KB-133.7	25-27		48.1				
KB-133.7	40-42		51.1				
KB-136.2	4-6		11.0				
KB-136.2	20-22		28.3				
KB-136.2	35-37		39.2				
KB-136.2	55-57		21.5				
KB-136.3	6-8		28.9				
KB-136.3	20-22		39.0				
KB-136.3	25-27		19.4				
KB-141.1	4-6		9.7				
KB-141.1	15-17		24.3				
KB-141.1	25-27		24.5				
KB-141.1	35-37		36.9				
KB-144.5B	4-6		7.5				
KB-144.5B	15-17		21.0				
KB-144.5B	30-32		20.2				
KB-144.5B	45-47		19.9				
KB-144.6	4-6		8.9				
KB-144.6	15-17		25.2				
KB-144.6	35-37		27.6				
KB-144.6	50-52		24.4				
KB-144.8	4-6		8.7				
KB-144.8	15-17		22.8				
KB-144.8	35-37		20.2				
KB-144.8	50-52		23.0				
KB-149.6	6-8		29.7				
KB-149.6	25-27		22.4				
KB-149.6	35-37		24.7				
KB-149.6	45-47		20.0				
	KB-149.6 45-47 PROJECT: Lab Testing						
		n Power Express	Terracon	PROJECT NUMBER: JB215256H CLIENT: Kiewit Engineering (NY) Corp Lone Tree, CO			
		30 Corporate Cir Ste 201 Albany, NY					
				EXHIBIT: B-1			

Summary of Laboratory Results


DATATEMPLATE.GDT 1/19/23 **TERRACON** UD GP TEST d ⊿ 5256H ATTERRERG REPORT NAI UDINAI Ë EROM SEPARATED VALID TESTS ARE NOT LABORATORY

30 Corporate Cir Ste 201 Albany, NY

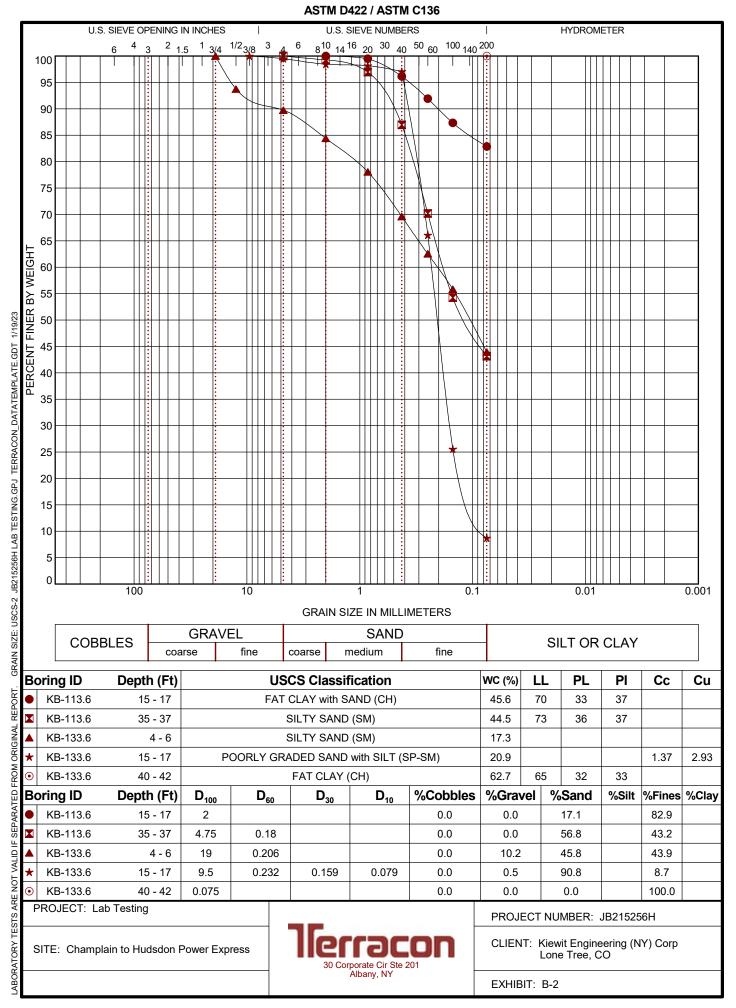

Lone Tree, CO

EXHIBIT: B-1

GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

Kiewit

DATE:	September 23, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 3 – Package 1C - HDD Crossing 4 – Revision 1 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the attached geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing number 4 is STA 15139+00 (43.5206° N, 73.4114° W).

The geotechnical data at this HDD crossing is attached. The available data is from the previous investigation by TRC and the recent investigation by Schnabel, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Schnabel Engineering, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Subsurface Explorations, dated March 3, 2022.

Contact us if you have questions or require additional information.

HDD 4 Borings B114.4-1, K-114.6 Segment 3 - Package 1C

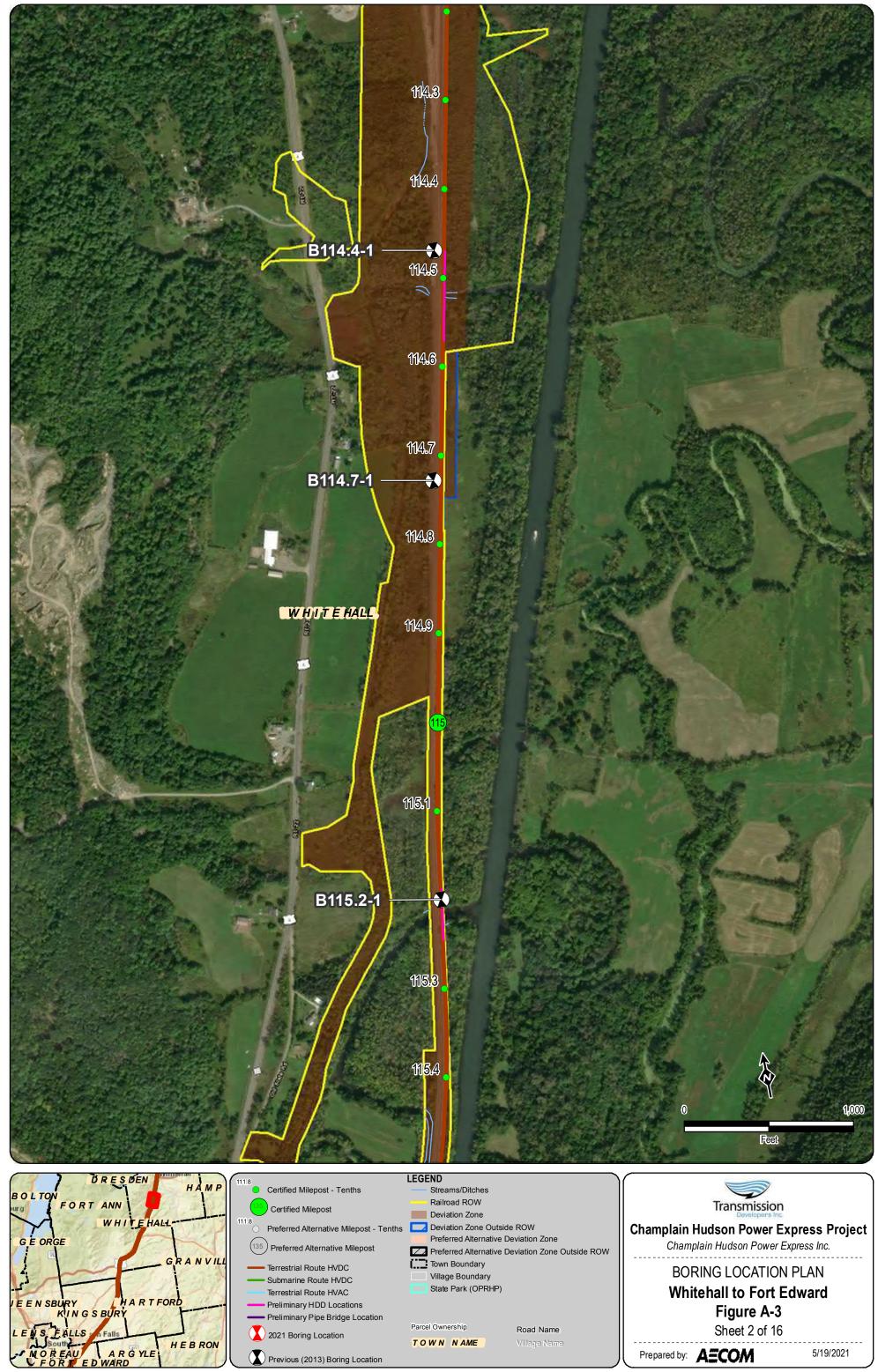
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

Firms	Dering	Northing	Easting	Ground Surface		
Firm	Boring	(feet)	(feet)	Elevation (feet)		
	B102.4-1	1762367.3	777951.9	139.42		
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4		
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8		
	B110.1-1	1728142.0	776337.8	105.0		
	B113.4-1	1714875.2	781894.9	122.9		
	B114.4-1	1709558.6	780857.2	122.7		
TRC*	B115.2-1	1705777.9	780186.6	120.9		
INC	B116.1-1	1701426.5	778616.5	124.1		
	B116.2-1	1700894.8	778375.8	124.3		
	B116.8-1	1697938.4	777308.2	131.6		
	PD-7	1783019.4	778020.6	266.4		
AECOM**	PD-7A	1782960.9	778149.9	269.5		
ALCOM	WFE-1	1693492.9	776280.6	127.9		
	WFE-1C	1693895.8	776092.3	129.3		

Notes:

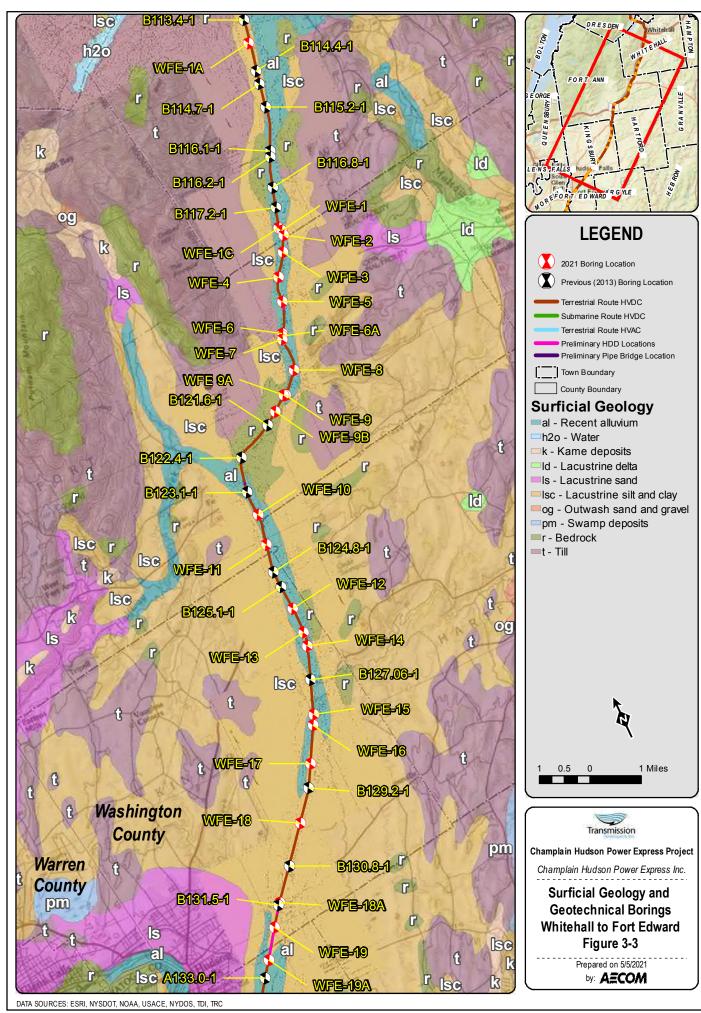
- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

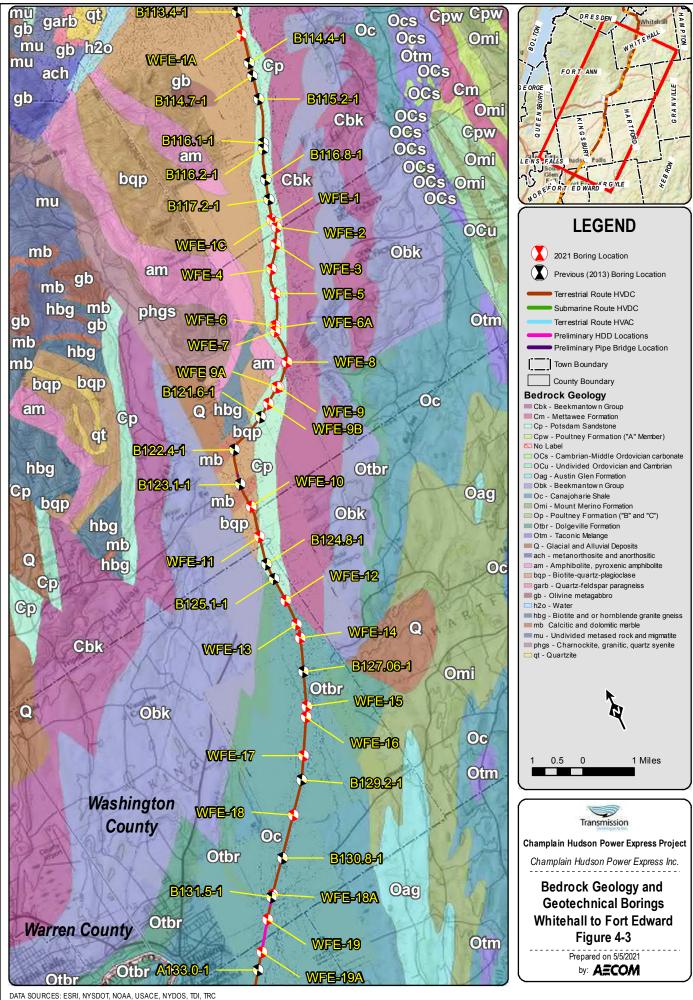
- Elevations are referenced to the NAVD88 datum.


* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.

** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.


Reference:


AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.

Y:IP rojects/CHPEI/Route/Consensus_Alternative_Routes/MXDIAIt_5_Routes_DZ_201909/Boring_Locations/Maps_for

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

Vav

Bedrock

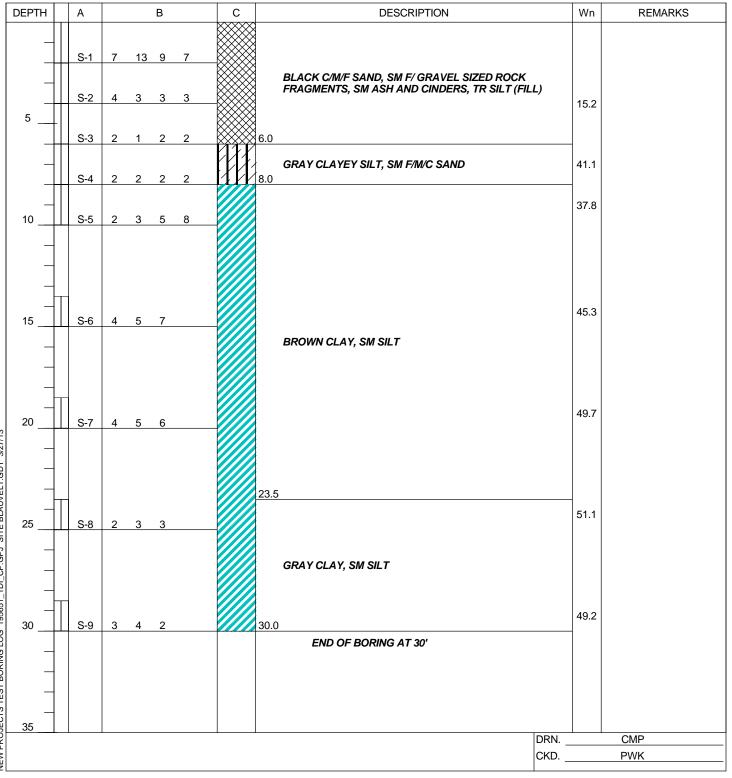
t E

Vav

©TRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

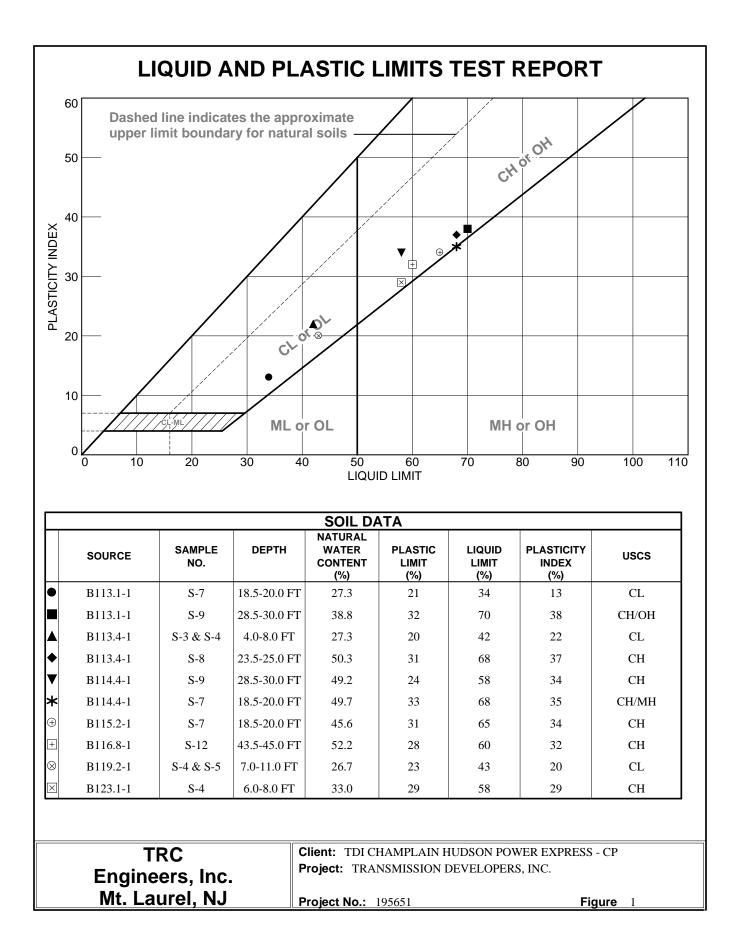

LOCATION: CP RAILROAD ROW, NY

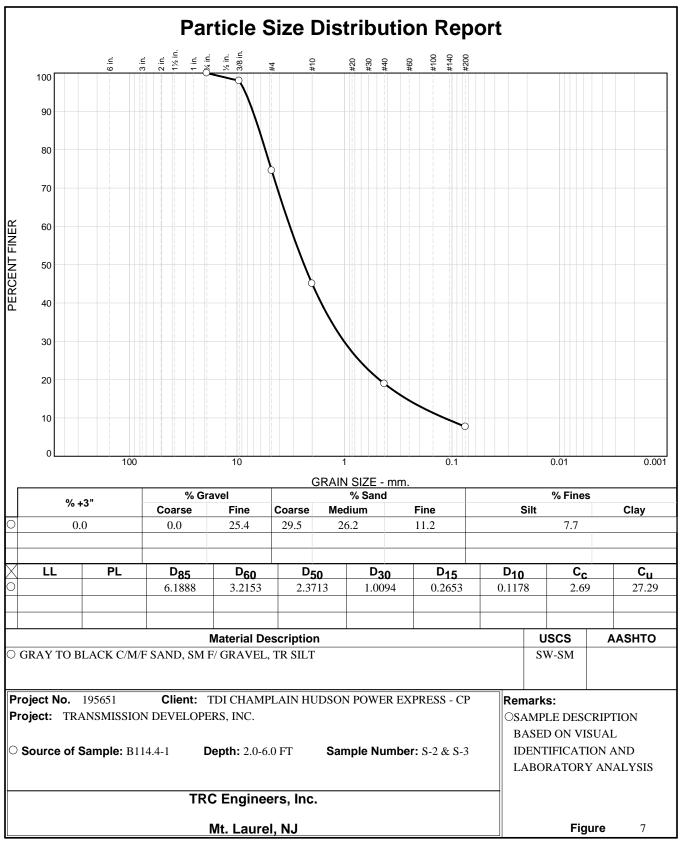
GROUNDWATER DATA					METHOD C	CING BO	G BOREHOLE		
NCOUNTE	ERED DF	RΥ	∇	а	FROM	0.0 '	то	10.0 '	
HOUR DATE ELAPSED TIME				d	FROM	10.0 '	то	30.0 '	
			1						
	NCOUNT	NCOUNTERED DF	NCOUNTERED DRY			NCOUNTERED DRY	NCOUNTERED DRY	NCOUNTERED DRY	NCOUNTERED DRY

B114.4-1 BORING G.S. ELEV. N/A FILE 195651

SHEET 1 OF 1

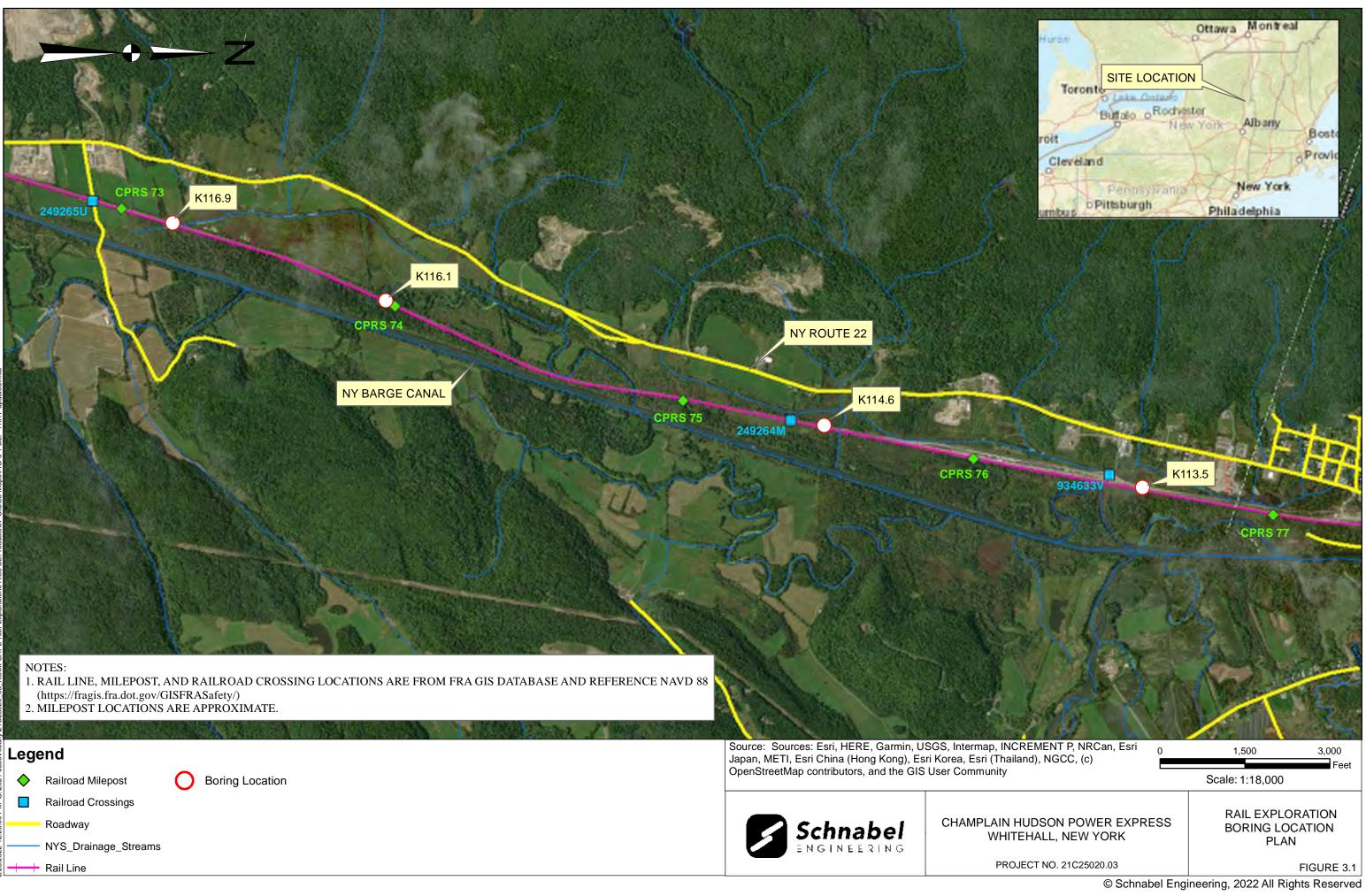
DRILLER	R. CARUSO
HELPER	C. SMART
INSPECTOR	C. POPPE
DATE STARTED	12/12/2012
DATE COMPLETED	12/12/2012


NEW PROJECTS TEST BORING LOG 195651_TDI_CP.GPJ SITE BLAUVELT.GDT 3/27/13



SUMMARY OF LABORATORY TEST DATA

Project Name: Client Name: TRC Project #: TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651


Organic Content (%) Soil Group (USCS System) **GRAIN SIZE** SAMPLE IDENTIFICATION PLASTICITY Moisture Content (%) Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Limit (%) Liquidity Index) # Limit (%) Boring # Sand (%) Clay (%) Sample ∮ Plastic Silt (%) Liquid S-2 2.0 - 4.0SW-SM 25.4 66.9 7.7 15.2 _ _ _ _ _ _ _ _ S-3 4.0-6.0 S-4 6.0-8.0 41.1 _ _ _ _ _ _ _ _ _ _ _ _ _ 8.0-10.0 37.8 84.5 S-5 _ _ _ _ _ _ _ _ _ _ _ _ B114.4-1 S-6 13.5-15.0 45.3 _ _ _ _ _ _ _ _ _ _ _ _ _ 18.5-20.0 CH/MH 33 35 49.7 S-7 68 0.5 -_ -_ ----23.5-25.0 S-8 _ _ _ 51.1 72.2 _ _ _ _ _ _ _ _ _ 28.5-30.0 CH 58 24 34 0.7 49.2 S-9 _ _ _ _ _ _ _ _ 6.0-8.0 S-4 55.7 _ _ -_ _ _ _ _ -_ _ _ _ 45.7 S-6 13.5-15.0 78.0 _ _ _ _ _ _ _ _ _ _ _ _ B114.7-1 18.5-20.0 49.0 S-7 _ _ _ _ _ _ _ _ _ _ _ -_ S-8 23.5-25.0 53.7 _ -_ -_ _ _ _ _ _ _ _ _ B115.2-1 S-2 2.0 - 4.026.9 _ _ _ _ _ _ _ -_ _ _ _ -

Tested By: <u>BMH 01/24/13</u>

Checked By:

5	Schnabel TEST BORING LOG	-	Champlain Huo Rail Exploration Whitehall, New	าร		xpress		Boring N Contract Sheet:	t Number: 2		14.6
Contrac	tor: Soil Testing Inc. Oxford, Connecticut							evel Obse			
Contrac	tor Foreman: S. DeAngelis						Date	Time	Depth	Casing	Caved
	el Representative: S. Henry			E	ncounte	ered Σ	12/20/21	1:30 PM	11.5'	10.0'	
	ent: Diedrich D-50 (ATC)			C	Complet	ion 🛛	12/22/21	1:05 PM	10.0'	45.0'	
	: 4-1/4" I.D. Hollow Stem Auger	/ 3" Fluid Ro	tary			_					
Hammei	r Type: Safety Hammer (140 lb)										
Dates	Started: 12/20/21 Finished:	12/22/21									
	59.1 ft Y: 1709035 ft By: Land	-									
	ate System: Lat-Long (Decimal I										
Plunge:	-90 Surface Elevation: 121.8 (ft)	Bearing:	th: 72.0 ft								
Ground		Total Dep	un. 72.0 m								
DEPTH (ft)	MATERIAL DESCRIPTI	ON	SYMBOL ^E	ELEV (ft)	STRA TUM	SA DEPTH	MPLING		TESTS	REMA	RKS
	0.0 - 11.7 ft: FILL, sampled as						S-1, SPT 3+4+5+4				
-	sand with gravel; moist, black, mica	contains			-	F -1X	REC=14", 8	58%			
-					_	\vdash					
					1	F 1					
				-	-	- 5 +	S-2, SPT	MC	; = 13.1%		
_			FILL		F	X	2+1+1+1 REC=7", 29	Re	sistivity =		
							,,_	Re	10 Ohms-cm dox = 590		
					1			mv pH	= 6.48		
_					-			'			
-					-	\vdash \dashv					
		$\bar{\mathbf{\Lambda}}$		_	_	- 10					
	10.0 ft: Change: wet, gray	-					S-3, SPT 2+4+1+2				
- 11.7		$\overline{\Delta}$. 🕅 .	110.1		r 1Å	REC=5", 2 ⁻	1%			
	11.7 - 72.0 ft: FAT CLAY; wet, with mottles of brown, probabl	gray		110.1	-	+ +	S-4, SPT		= 2.00 tsf = 2.00 tsf		
-	LACUSTRINE material	C			-	F -1X	2+3+3+6 REC=24", ⁻		- 2.00 (3)		
					_						
				_	1	- 15 -	S-5, SPT 1+2+4+6		c = 44.7%		
-					-	F -1X	REC=20", 8	83%	= 2.00 tsf		
-					_	\vdash \downarrow					
			сн		L						
-					1	├ ┤					
	20.0 ft: Change: gray				-	- 20 -	S-6, SPT		= 0.50 tsf		
	20.0 n. Onanye. ylay				_	L IV	2+2+3+4 REC=24", 1		- 0.00 (5)		
					1	[]					
-					-	├ ┤					
- 11.7 - - - - - - - - - - - - - - - - - - -					_	\vdash \downarrow					
	(continued)										

5	Schnabel	TEST Project: BORING	Rail Exploration	ons	ower Ex	ress			Boring Number: Contract Number: 2	K114.6 21C25020.03
DEPTH (ft)			Whitehall, Net	w York ELEV (ft)	STRA TUM			/PLING	Sheet: 2 of 3 TESTS	REMARKS
-	11.7 - 72.0 ft: FAT with mottles of bro LACUSTRINE ma	wn. probable				DEPTI	M	DATA S-7, SPT WOR/24" REC=24", 100	PP = 0.00 tsf	
-					-	 - 30 - 	1×1	S-8, SPT WOR/24" REC=24", 100	PP = 0.00 tsf	
-				- - - -	-	 - 35 - 		UD-1, UNDIS REC=24", 100 S-9, SPT WOR/24" REC=2", 8%	T LL = 56 PL = 25 MC = 55.7% % Passing #200 = 99.4 PP = 0.00 tsf PP = 0.00 tsf	
-			СН		- - - -	 - 40 		S-10, SPT WOR/24" REC=24", 100	PP = 0.00 tsf	
-				- - -	-	 - 45 - 	1×1	S-11, SPT WOR/24" REC=9", 38%	PP = 0.00 tsf	45.0 ft: Drilling method switch to mud rotary with tricone rollerbit.
-					-	 - 50 - 		S-12, SPT WOR/24" REC=24", 100	PP = 0.00 tsf	
-				 -		 - 55 - 		S-13, SPT WOR/24" REC=24", 100	MC = 60.2% PP = 0.00 tsf	
-				-						

5	Schnabel ENGINEERING	TEST Project: BORING	Champlain H Rail Explorat	ions	ower E	xpress	Boring Number: Contract Number: 2	K114.(1C25020.03	
_		LOG	Whitehall, N	ew York		1		Sheet: 3 of 3	Ι
EPTH (ft)	MATERIAL	DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SAI DEPTH	MPLING DATA	TESTS	REMARKS
-	11.7 - 72.0 ft: FAT with mottles of bro LACUSTRINE ma	own, probable			-	- 60 - 	UD-2, UNDIS REC=22", 92	ST PP = 0.00 tsf	
-	62.0 ft: Change: d	ark brownish gray			-		S-14, SPT WOR/18"+W REC=24", 10	UCH PL = 59 PL = 22 MC = 52.7% % Passing #200 = 99.9 PP = 0.00 tsf	
-			СН		- - -		S-15, SPT WOR/18"+W REC=24", 10	/OH PP = 0.00 tsf	
_					-	- 70	S-16, SPT WOR+WOH/ REC=24", 10	/18" 00%	
	"Completion" grou Unable to obtain a		mpacted by m dwater reading	ud rotary due to	/ drilling grout.	g fluids.	ın. 18, 2022	2.	

Summary Of Laboratory Tests

												Project Number: 21C25020.0							
Boring No.	Sample Depth ft	Sample Type	Description of Soil Specimen		(%)	imit	imit	/ Index	1g Sieve	Organic Content (%)		Sulfates (mg/Kg)	Chlorides (mg/Kg)	ty	Oxidation Reduction Potential (mV)				
	Elevation ft			Stratum	Natural Moisture (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Passing No. 200 Sieve	Organic	Hq	Sulfates	Chloride	Resistivity (ohm-cm)	Oxidatio Potentia				
K113.5	6.0 - 8.0	Jar	Sandy Fat Clay (visual field description)	L	21.1				50.1										
116.5 - 114.5																			
K113.5	8.0 - 10.0 Jar		Fat Clay (visual field description)	L		65	21	44		1.84									
1110.0	114.5 - 112.5	001				00				1.04									
K113.5	25.0 - 27.0	Tube	FAT CLAY (CH), gray	L	43.7	64	25	39	99.8										
	97.5 - 95.5				40.7		20		00.0										
K113.5	42.0 - 44.0	Jar	Fat Clay (visual field description)	L	71.1														
K113.5	80.5 - 78.5	Jai			71.1														
K114.6	5.0 - 7.0	Jar	Silty Sand with Gravel (visual field description)	F	13.1						6.48	140	6.2	3010	590				
	116.8 - 114.8				10.1						0.40		BRL						
K114.6	15.0 - 17.0	Jar	Fat Clay (visual field description)	L	44.7														
	106.8 - 104.8	001																	
K114.6	35.0 - 37.0	Tube	FAT CLAY (CH), gray	L	55.7	56	25	31	99.4										
	86.8 - 84.8				00.7	00	20		00.4										
2. S and 3. K	oil classifications a visual classificatio ey to abbreviation	are in gen n. s: NP=No	nce with ASTM standards. eral accordance with ASTM D2487(as applicable n-Plastic; indicates no test performed; BRL = I				ed			5	ENG	hna	RING						
	 4. Strata: F=Fill; L=Lacustrine Project: Champlain Hudson Power Express Rail Explorations Whitehall, NY 																		

Appendix Sheet 1 of 3 Project Number: 21C25020.03

Summary Of Laboratory Tests

										Project Number: 21C25020					1.03
Boring No.	Sample Depth ft	_ Sample Type	Description of Soil Specimen		(%)	nit	mit	Index	g ieve	Organic Content (%)		mg/Kg)	(mg/Kg)	>	Oxidation Reduction Potential (mV)
NO.	Elevation ft	туре	Specimen	Stratum	Natural Moisture (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Passing No. 200 Sieve	Organic C	Hd	Sulfates (mg/Kg)	Chlorides (mg/Kg)	Resistivity (ohm-cm)	Oxidation Potential
K114.6	55.0 - 57.0	Jar	Fat Clay (visual field description)	L	60.2										
	66.8 - 64.8	Jai			00.2										
K114.6	62.0 - 64.0	Jar	FAT CLAY (CH), dark brownish gray	L	52.7	59	22	37	99.9						
	59.8 - 57.8	Jai			52.7	59	22	31	99.9						
K116.1	5.0 - 7.0	– Jar	Lean Clay (visual field description)	L		43	20	23					 		
K110.1	119.9 - 117.9	Jai				43	20	23							
K116.1	10.0 - 12.0	Jar	Lean Clay (visual field description)	L	30.5				98.1						
K110.1	114.9 - 112.9	Jai			50.5				30.1						
K116.1	25.0 - 27.0	Jar	Well-graded Sand (visual field description)	L	19.0		-								
K110.1	99.9 - 97.9	Jai			19.0										
K116 1	42.0 - 44.0	Jar	FAT CLAY (CH), gray	L	71.4	71	25	46	99.9	0.88					
K116.1	82.9 - 80.9	Jai			71.4		25	40	99.9	0.00					
K116.1	57.0 - 59.0	Jar	Fat Clay (visual field description)	L	66.6										
KIIU.I		Jai	,	1 5 7	00.0	1	,					1 I	, ,	1 - '	

Notes: 1. Soil tests in general accordance with ASTM standards.

2. Soil classifications are in general accordance with ASTM D2487(as applicable), based on testing indicated

and visual classification.

3. Key to abbreviations: NP=Non-Plastic; -- indicates no test performed; BRL = below reporting limit

4. Strata: F=Fill; L=Lacustrine

67.9 - 65.9

2008 04

P

DATA .

SCHNABEL

Ц Ц Ц

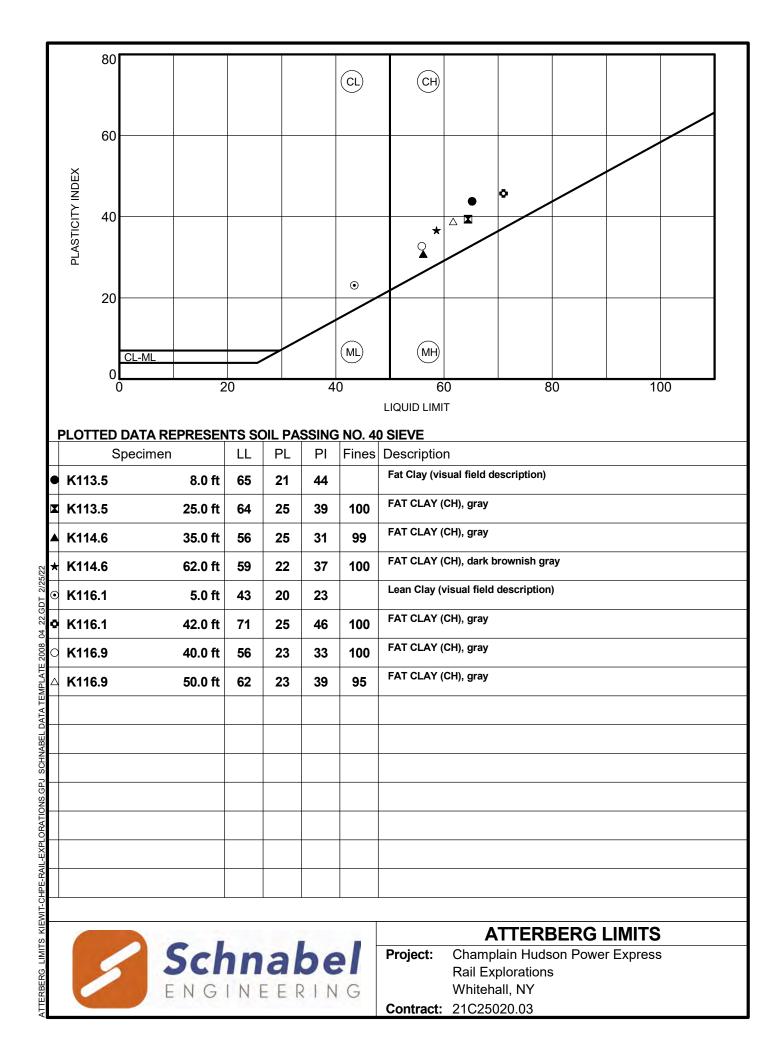
DRATIONS

CHPE-RAIL-EX

FWIT

Y

SUMMARY


DYNAMIC LAB

Project: Champlain Hudson Power Express Rail Explorations Whitehall, NY

Schnabel ENGINEERING

Appendix Sheet 2 of 3

Project Number: 21C25020.03

SOIL MECHANICS LABORATORY CORROSION POTENTIAL SERIES

Project Name: Champlain Hudson Power Express Rail Explorations

Location: Whitehall, NY

Project No: 21C25020.03

Sample No: K-114.6

Depth (ft): 5.0-7.0

Classification: SILTY SAND WITH GRAVEL (SM), black

Test	Unit	Readings	AWWA Guidelines Points	NACE Guidelines Points
Resistivity	ohm-cm	3,010	0	4
рН		6.48	0	0
Redox	mV	590	0	0
Sulfide	ppm	BRL	2	
Moisture	condition	Moist	1	
Sulfate	ppm	140		
Chloride	ppm	BRL		0
Soil Description		Sand		0
		Total Points	3	4

Notes:

1. See attached Tables for point system information and data interpretation

2. BRL = Below Reporting Limit

Set up by: MDE	Tested by: Access	Checked by: SRH
Date: 2/8/22	Date: 2/18/22	Date: 2/24/2022

Soil Characteristics	Points
Resistivity (Ω-cm) ¹	
< 1,500	10
≥1,500-1,800	8
>1,800 - 2,100	5
>2,100-2,500	2
>2,500-3,000	1
> 3,000	0
рН	
0-2	5
2.01 - 4.00	3
4.01 - 6.5	0
6.51 – 7.5	0*
7.51 - 8.5	0
> 8.5	3
Redox potential (mV)	
>+100	0
+50 to +100	3.5
0 to +50	4
< 0	5
Sulfides	
Positive	3.5
Trace	2
Negative	0
Moisture	
Wet	2
Moist	1
Dry	0

Table 1: AWWA Guidelines. AWWA C-105, 10-pt soil test evaluation for iron pipe

* If sulfides are present and a low (<100mV) or negative redox result is obtained, three points shall be given for this pH range.

¹Based on water-saturated soil box. This method is designed to obtain the lowest and most accurate resistivity reading.

NOTE: If total cumulative points \geq 10, the tested soil has potential for corrosion, according to the AWWA Guidelines.

Sulfate exposure	Water soluble Sulfate (SO4) in soil, percent by weight	Sulfate (SO4) in water, ppm	Cement type	Maximum water-cementitious material ratio, by weight, normal weight concrete*	Minimum f c', normal-weight and lightweight concrete, psi*
Negligible	$0.00 \leq \mathrm{SO4} < 0.10$	$0 \le SO4 < 150$			_
Moderate ¹	$0.10 \le SO4 < 0.20$	150 ≤ SO4 < 1500	II, IP(MS), IS(MS), P(MS), I(PM)(MS), I(SM)(MS)	0.50	4000
Severe	$0.20 \leq SO4 \leq 2.00$	$1500 \leq \mathrm{SO4} \leq 10{,}000$	V	0.45	4500
Very severe	SO4 > 2.00	SO4 > 10,000	V plus pozzolan ²	0.45	4500

Table 2: ACI 318 Guidelines-Requirements for concrete exposed to sulfate-containing solutions

* When both Table 4.3.1 and Table 4.2.2 are considered, the lowest applicable maximum water-cementitious material ratio and highest applicable minimum fc' ¹ Seawater.
 ² Pozzolan that has been determined by test or service record to improve sulfate resistance when used in concrete containing Type V cement.

Table 3: NACE Guidelines. Adapted from Table 20.1 "Assessment of Overall Soil Corrosivity to
Steel", C.P. Dillon Corrosion Control in the Chemical Process Industries.

ANALYSIS TYPE	ANALYSIS RANGE	POINTS	ANALYSIS TYPE	ANALYSIS RANGE	POINTS
	0 - 2	5		Clay (Blue-Gray)	10
pН	2 - 4	3		Clay/Stone	5
	4 - 8.5	0	Soil	Clay	3
	> 8.5	3	Description	Silt	2
Chloride Content	> 1000 ppm	10		Clean Sand	0
	500 – 1000 ppm	6			
	200 – 500 ppm	4		< 1,000 ohm-cm	10
	50 – 200 ppm	2		1,000 – 1,500 ohm-cm	8
	0-50 ppm	0	Soil	1,500 – 2,500 ohm-cm	6
Redox Potential	Negative	5	Resistivity	2,500 – 5,000 ohm-cm	4
	$0-100 \ mV$	4		5,000 – 10,000 ohm-cm	2
	> 100 mV	0		> 10,000 ohm-cm	0

SOIL CORROSIVITY	TOTAL POINTS
Severe	15.5
Appreciable	10.0 - 15.5
Moderate	5.0 - 9.5
Mild	0 - 4.5

DATE:	September 23, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 3 - Package 1C - HDD Crossing 5 – Revision 1 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the enclosed geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing Number 5 is STA 15175+00 (43.520129° N, 73.411283° W).

The geotechnical data at this HDD crossing is enclosed. The available data is from the previous investigation by TRC and the recent investigation by Schnabel, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Atlantic Testing Laboratories, Boring K-115.2 Subsurface Investigation Log and Laboratory Testing, dated March and April 2022.

Contact us if you have questions or require additional information.

HDD 5 Borings B115.2-1 and K-115.2 Segment 3

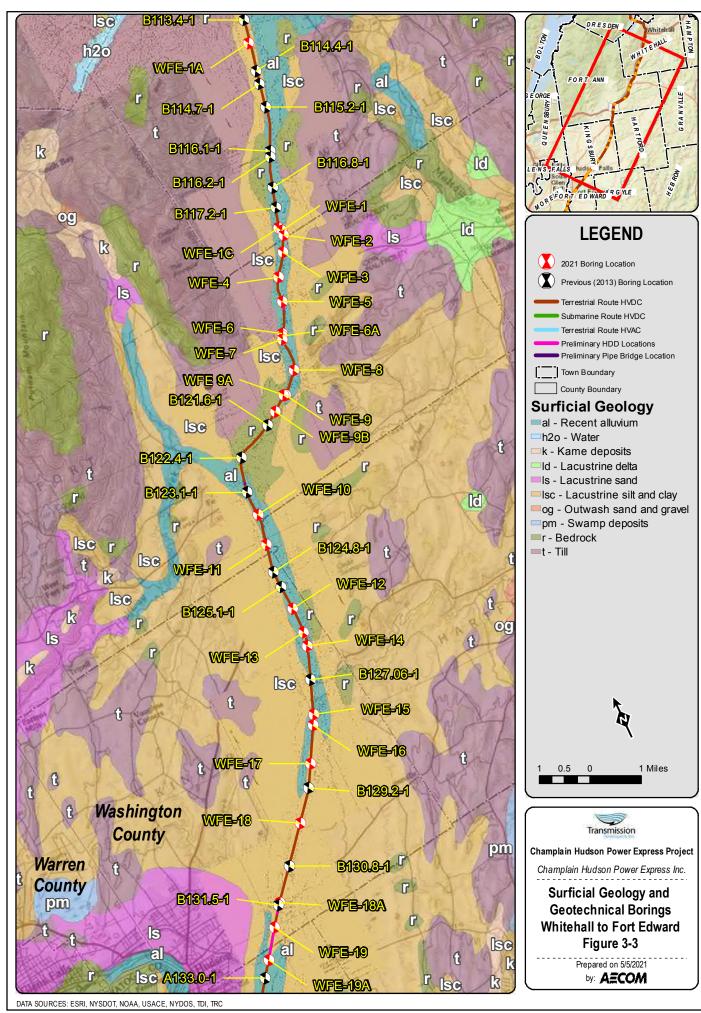
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

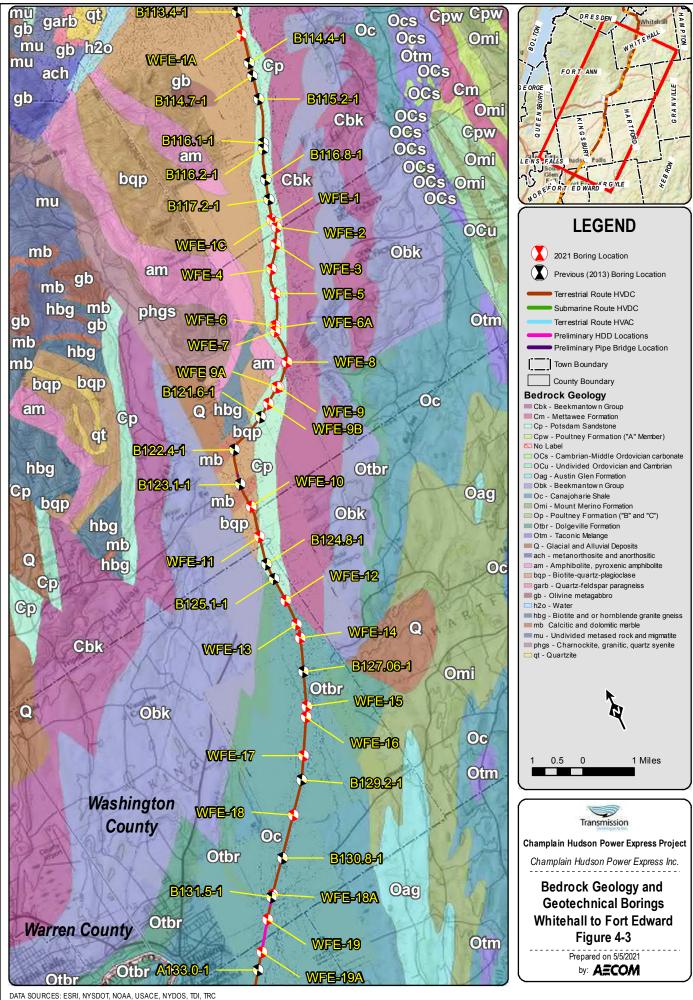
Firms	Dering	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet) (feet) 367.3 777951.9 397.5 774410.6 370.4 774869.2 42.0 776337.8 375.2 781894.9 558.6 780857.2 777.9 780186.6 426.5 778616.5 394.8 777308.2 019.4 778020.6 960.9 778149.9 492.9 776280.6	Elevation (feet)
	B102.4-1	1762367.3	777951.9	139.42
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8
	B110.1-1	1728142.0	776337.8	105.0
	B113.4-1	1714875.2	781894.9	122.9
	B114.4-1	1709558.6	780857.2	122.7
TRC*	B115.2-1	1705777.9	780186.6	120.9
INC	B116.1-1	1701426.5	778616.5	124.1
	B116.2-1	1700894.8	778375.8	124.3
	B116.8-1	1697938.4	777308.2	131.6
	PD-7	1783019.4	778020.6	266.4
AECOM**	PD-7A	1782960.9	778149.9	269.5
ALCOM	WFE-1	1693492.9	776280.6	127.9
	WFE-1C	1693895.8	776092.3	129.3

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

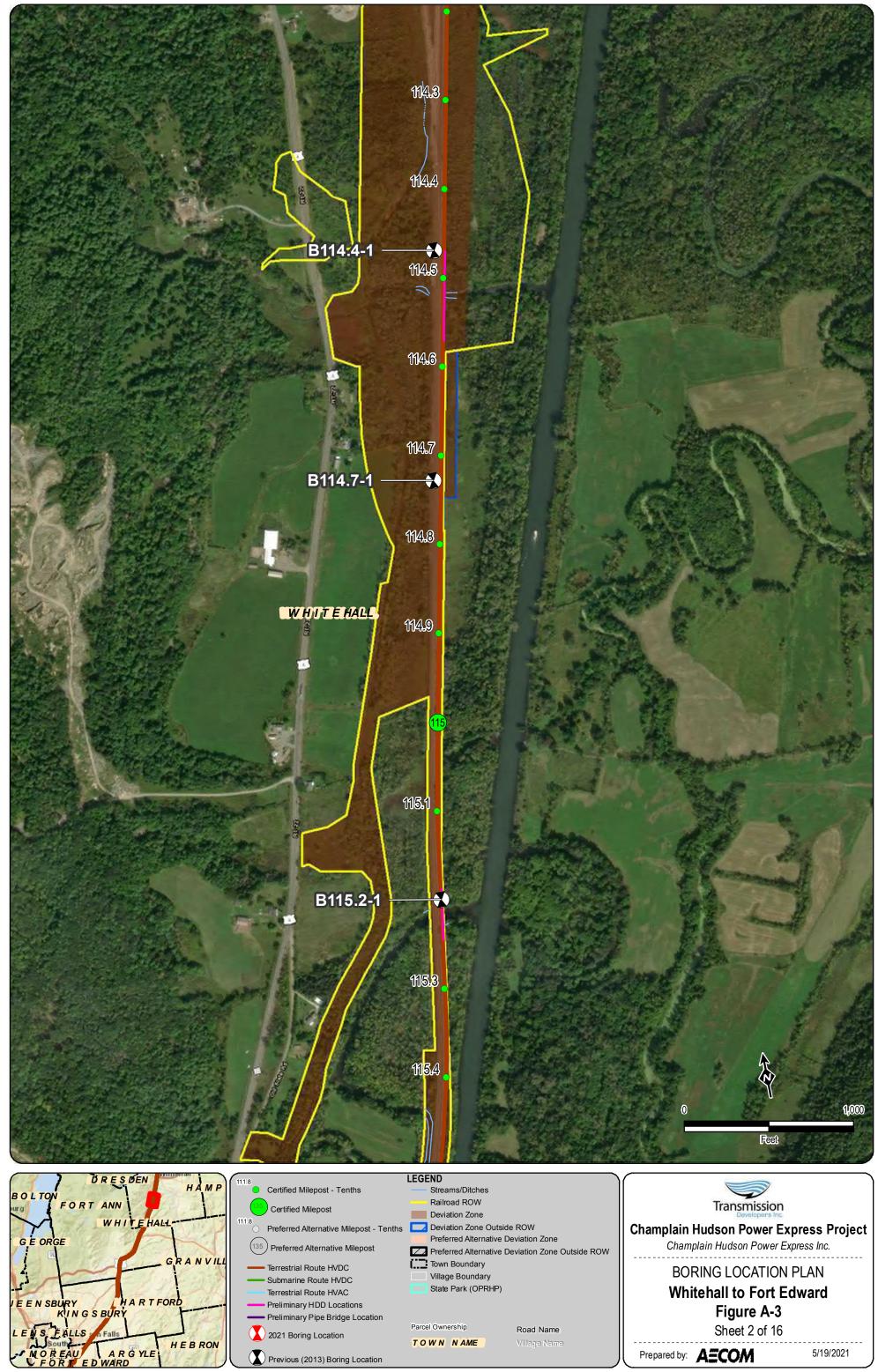

* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.



Vav

Bedrock

t E

Vav

Y:IP rojects/CHPEI/Route/Consensus_Alternative_Routes/MXDIAIt_5_Routes_DZ_201909/Boring_Locations/Maps_for

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

	GROU	NDWATEF	R DATA]	Ν	/ETHOD C	F ADVAN	CING BO	REHOLE	
FIRST E	NCOUNT	ERED 10	.0 '	∇	а	FROM	0.0 '	то	10.0 '	
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	10.0 '	TO	30.0 '	
				-						
				1						

BORING B115.2-1 G.S. ELEV. N/A FILE 195651

DRILLER	T. FARRELL
HELPER	J. LANGDON
INSPECTOR	J. STAPLETON
DATE STARTED	02/05/2013
DATE COMPLETE	D 02/05/2013

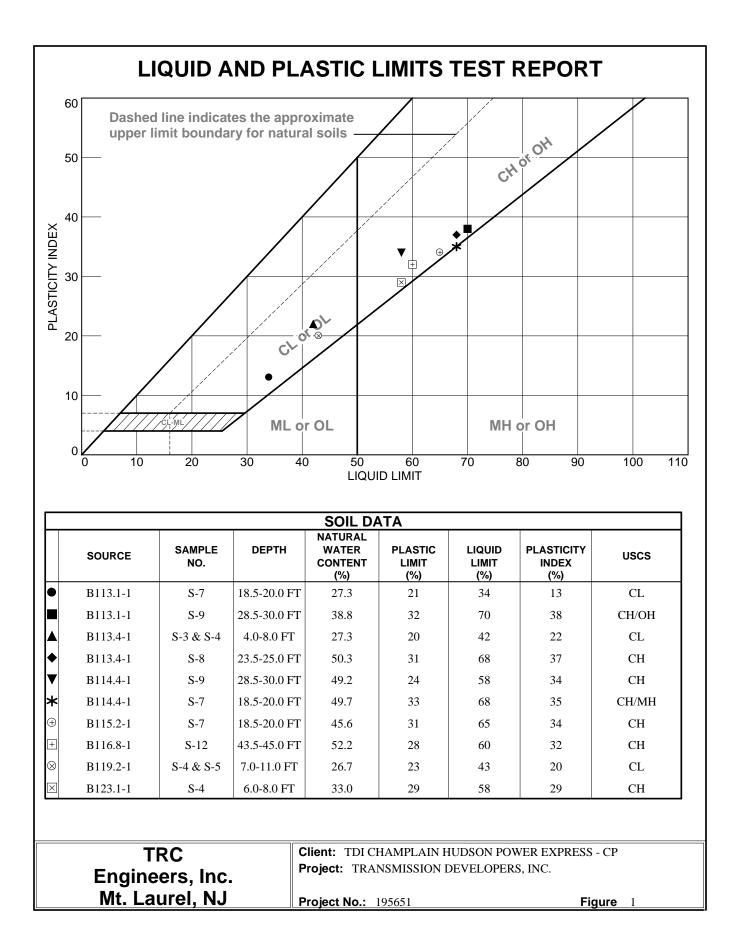
DEPTH		А			В		С	DESCRIPTION	Wn	REMARKS
_		S-1	10	4	3	3		ASH AND CINDERS (FILL)		
_		C O	0	0	4	2		3.0	26.9	
5		S-2	2	3	4	3				
		S-3	3	5	4	5				
_		S-4	6	7	7	8			26.4	
 10		S-5	7	8	7	8			37.5	
_										
		S-6	4	5	6				35.4	
		0-0	-		0					
_								OLIVE-BROWN CLAY, SM SILT		
_		~ -	-	_	_				45.6	
20		S-7	3	5	5					
_	-									
_										
25		S-8	3	3	4					
_										
_										
30		S-9	2	3	3			0.0 END OF BORING AT 30'		
_										
_										
35								DRN		JPB
								СКД		PWK

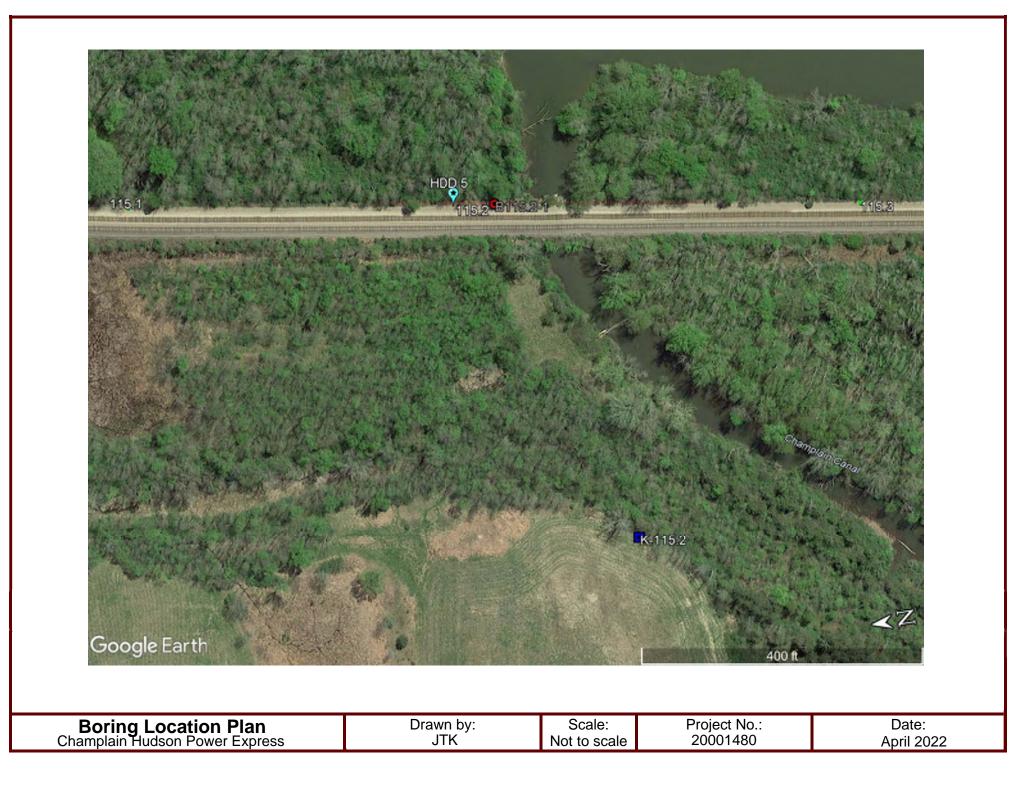
SHEET 1 OF 1

SUMMARY OF LABORATORY TEST DATA

Project Name: Client Name: TRC Project #: TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651

Organic Content (%) Soil Group (USCS System) **GRAIN SIZE** SAMPLE IDENTIFICATION PLASTICITY Moisture Content (%) Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Limit (%) Liquidity Index) # Limit (%) Boring # Sand (%) Clay (%) Sample ∮ Plastic Silt (%) Liquid S-2 2.0 - 4.0SW-SM 25.4 66.9 7.7 15.2 _ _ _ _ _ _ _ _ S-3 4.0-6.0 S-4 6.0-8.0 41.1 _ _ _ _ _ _ _ _ _ _ _ _ _ 8.0-10.0 37.8 84.5 S-5 _ _ _ _ _ _ _ _ _ _ _ _ B114.4-1 S-6 13.5-15.0 45.3 _ _ _ _ _ _ _ _ _ _ _ _ _ 18.5-20.0 CH/MH 33 35 49.7 S-7 68 0.5 -_ -_ ----23.5-25.0 S-8 _ _ _ 51.1 72.2 _ _ _ _ _ _ _ _ _ 28.5-30.0 CH 58 24 34 0.7 49.2 S-9 _ _ _ _ _ _ _ _ 6.0-8.0 S-4 55.7 _ _ -_ _ _ _ _ -_ _ _ _ 45.7 S-6 13.5-15.0 78.0 _ _ _ _ _ _ _ _ _ _ _ _ B114.7-1 18.5-20.0 49.0 S-7 _ _ _ _ _ _ _ _ _ _ _ -_ S-8 23.5-25.0 53.7 _ -_ _ _ _ _ _ _ _ _ _ _ B115.2-1 S-2 2.0 - 4.026.9 _ _ _ _ _ _ _ -_ _ _ _ -


SUMMARY OF LABORATORY TEST DATA


Project Name: Client Name: TRC Project #:

<u>TDI Champlain Hudson Power Express – CP</u> <u>Transmission Developers, Inc.</u> 195651

SAMPLE I	IDENTII	FICATION	USCS	GRAIN SIZE DISTRIBUTION PLASTICITY				ſΥ	vity	ntent	(pcf)	e (itent (%)			
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	26.4	-	-	-
	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	37.5	-	-	-
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	35.4	-	-	-
	S-7	18.5-20.0	CH	-	-	-	-	65	31	34	0.4	-	45.6	76.0	-	-
D116 1 1	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	24.8	-	-	-
B116.1-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	23.7	100.7	-	-
	S-2	2.0-4.0	SM	37.4	49.7	12	2.9	-	-	-	-	-	6.9	-	-	-
	S-3	4.0-6.0	-	-	-	-	-	-	-	-	-	-	8.2	-	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	27.4	-	-	-
B116.2-1	S-5	8.0-10.0	-	0.0	8.4	24.7	66.9	-	-	-	-	2.78	30.4	87.5	-	-
	S-6	13.5-15.0	-	0.0	22.7	46.6	30.7	-	-	-	-	2.84	26.8	-	-	-
	S-7	18.5-20.0	CD CM	2.4	05.0	1(ם פ						20.2			
	S-8	23.5-25.0	SP-SM	3.4	85.8).8	-	-	-	-	-	20.2	-	-	-

DRAWN BY: TBT 03/27/13

									240	2411400	Investig	Report No.:		CD [,]	10279D-01	-04-22	_
	Client:	_ K	iewit Eng	ineering	<u>a (NY) C</u>	Corp.						' Boring Loca	tion: Se		Location F		_
	Project:	S	ubsurfac	e Invest	igation												_
		C	hamplain	Hudsor	1 Powe	r Exp	oress	, Des	ign P	ackage 1							_
		Va	arious Lo	cations	, New Y	/ork						Start Date:	3/10/2022	_ Fii	nish Date:	3/10/2022	
	Boring N	lo.: _	K-115.2	2		She	et _	1	of	3		Date	Ground	- dwater Obs e	ervations Depth	Casing	
	Northing	Coordi				Wei	Sai ight:		Ham 140	mer Ibs.		3/10/2022	PM		4.3'	10.0'	-
	Easting		676.57		Hamm	I	Fall:		30	in.							-
	Ground	Elev.:	1;	26.4	_		-		omati Ivance								-
	 ,		1		H\ +	W (4'	') Ca:	sing/:	3 7/8"	Wet Rota	ary						-
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DEF O SAM	F	SAMPLE TYPE		SAN PE 2"	WS C MPLE ER 6" O.D. MPLE	R	DEPTH OF CHANGE	f - fine m - medium	CLASS	IFICATIO	N OF M	ATERIA	and - 35-50% some - 20-35% little - 10-20%	
		1	From 0.0	To 2.0	SS	4	5	2	1		c - coarse				(frozon pl	trace - 0-10%	
1 —		1	0.0	2.0	55	4	5	2	1	-	Brown	CLAY; little f	SAND; trace	I GRAVEL	(frozen, pla	astic) CL	\vdash
2 —	S	2	2.0	4.0	SS	2	3	4	5	2.0	Grove	1 AV: trace f		SII T (mois	t plactic) (<u>ור</u>	+
3 —	N N	2	2.0	4.0	33	<u> </u>	3	4	5		Grey C	LAY; trace f S		JILT (THOIS	, piasuc) (F
4 —	G	3	4.0	6.0	SS	3	4	4	5		Similar	[.] Soil (moist, p	plastic) Cl				-
5 —	$\left \right $	3	4.0	0.0	33	3	4	4	0		Similar		Jiasutj CL				\vdash
6 —	$\left \right $	4	6.0	8.0	SS	3	4	3	3		Similar	[.] Soil (moist, p	plastic) CI				-
/	$\left \right $	-	0.0	0.0			+	5	5	$\left \right $	Girindi						\vdash
3—	$\left \right $	5	8.0	10.0	SS	3	4	4	5	$\left \right $	Grevia	h-Brown Simi	lar Soil (mois	t. plastic)	CL		\vdash
) —	$\left \right $	5	0.0	10.0		Ĕ	-	7	5	$\left \right $	Ci Cyloi			., pidouo)	~-		-
-	WET										Advand	ced casing to	10.0 feet and	l beaan ad	vancing 3	7/8" tri-cone	┝
—	R					+						it wet rotary o		-	-		┝
<u> </u>	 T 					+				12.0	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • •		┢
	A R					+											┢
-	Y	6	14.0	16.0	SS	2	2	3	4		Greyis	h-Brown CLA	Y; trace SILT	(moist, pla	astic) w = 4	46.5% CH	
											-						F
						╀											\vdash
_										1							F
					1	+				1							F
-		7	19.0	21.0	SS	1	2	3	2	1	Grey S	imilar Soil (m	oist, plastic)	СН			F
_										1							
_						1				1							F
_						+				1							F
_						1				1							F
_		8	24.0	26.0	SS	W	H 1	2	3	1	Similar	Soil (moist, p	olastic) CH				F
_	<u> </u>		1		1	•											<u> </u>
																	_

									LABORATORIES, Limited		
	Boring I	No.: _	K-115.2	2		Repor	t No.:		CD10279D-01-04-22	Sheet <u>2</u> of <u>3</u>	-
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DEF O SAM From		SAMPLE TYPE	BLOW SAMP PER 2" O SAMP	PLER 8 6").D.	DEPTH OF CHANGE	f - fine m - medium c - course	OF MATERIAL and - 35-50% some - 20-35% little - 10-20% trace - 0-10%	RECOVERY (inches)
26 - 27 -											
27 - 28 - 29 -											
30 - 31 - 32 -		ST-1	30.0	32.0	SS	3 4	56		(3" Brass Lined Split Spoon) Similar w = 35.2%, LL = 51, PL = 25, PI = 26		24
33 — 34 — 35 —		9	34.0	36.0	SS	WH/12"	3 4	-	Similar Soil (moist, plastic) CH		24
36 - 37 - 37 - 38 - 39 -											
40 - 40 - 41 - 41 - 41 - 41 - 41 - 41 -		10	39.0	41.0	SS	WH/12"	2 3		Similar Soil (moist, plastic) CH		4
– 43 – 44 – 45 – 45 –		ST-2	45.0	47.0	SS	WH/12"	3 4	-	(3" Brass Lined Split Spoon) Similar	Soil (moist plastic)	24
46 - 47 - 48 -									w = 47.0%, LL = 70, PL = 23, PI = 43		
49 - 50 - 51 - 52 -		11	49.0	51.0	SS	WH/18"	4		Similar Soil (moist, plastic) CH		24
ATL-LOG1 NE CD10279 KIEWIT INFRASTRUCTURE CO - VARIOUS LOCATIONS (PACKAGE 1). GPJ ATL4-08. GDT 4/14/22 9 09 65 82 25 95 95 15 05 66 88 24 97 75 75 17 07 68 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12	54.0	56.0	SS	WH/24"			Similar Soil (moist, plastic) w = 37.7	% CH	24
- 67 00000 - 600 0000 0000 0000 0000 000		13	58.0	60.0	SS	WH/18"	2		Similar Soil (moist, plastic) CH		24
59 – 59 – 60 –								60.0			
61 - 62 -									Boring terminated at 60.0 feet. Notes:		
Ĩ,	I	I		I	I	I			1		」

ATLANTIC TESTING LABORATORIES, Limited

Subsurface Investigation

	Boring N	lo.: _	K-115.2	2		Report No.:		CD10279D-01-04-22 Sheet 3 of 3	
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DEF O SAM	F	SAMPLE TYPE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% f - fine some - 20-35% m medium little - 10-20%	RECOVERY (inches)
	2	S	From	То	1			c - course trace - 0-10%	-
63 —								1. Borehole backfilled with cement-bentonite grout.	
64 —							1	2. Soil classifications based on ATL Field Engineer's field	
65 —								classification.	
								3. Borehole was advanced with ATL's Geoprobe 7822DT (Rig Unit No. CDGV706) drill rig.	
66 —							1		
67 —							1		
68 —							1		
69 —					+		1		
70 —	$\left \right $		$\left \right $		+		-		
71 —			├		$\left \right $		-		
72 —							4		
73 —							1		
74 —									
75 —							1		
76 —							1		
77 —							1		
78 —							1	-	
79 —							-	-	
80 —					$\left \right $		-	-	
81 —							4	-	
82 —							4		
83 —							1		
84 —									
85 —							1		
86 —							1		
87 —							1		
88 —					+		1		
89 —							1		
90 —			$\left \right $		$\left \right $		-		
91 —			├				-		
92 —							4		
93 —							1		
94 —									
]	[
95 —							1	[
96 —							1		
97 —							1		
98 —			$\left \right $		$\left \right $		1		
99 —							-		
100 —									

ATLANTIC TESTING LABORATORIES

WBE certified company

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS

ASTM D 2216

PROJECT INFORMATION

Page 1 of 1

Client: Kiewit Intrastructure Co. Project: Champlain Hudson Power Express United Cable Installation Various Locations, New York

· · · · · · · · · · · · · · · · · · ·	TEST DATA										
Boring No.	Sample No.	Depth (ft)	Moisture Content (%)								
K-115.2	S-6	14-16	46.5								
	ST-1	30-32	35.2								
	ST-2	45-47	47.0								
	S-12	54-56	37.7								

Remarks

1. Sample mass was less than the minimum mass outlined in the referenced test method.

Reviewed By:

they -

Date: 04/14/22

Report Date:

Date Received:

ATL Report No.: CD10279E-12-04-22 April 14, 2022 April 6, 2022

ATLANTIC TESTING LABORATORIES

WBE certified company

AMOUNT OF MATERIAL IN SOILS FINER THAN THE NO. 200 SIEVE ASTM D 1140

PROJECT INFORMATION

Client: Klewit Intrastructure Co. Project: Champlain Hudson Power Express United Cable Installation Various Locations, New York

ATL Report No.:	CD10279E-12-04-22
Report Date:	April 14, 2022
Test Date:	April 6, 2022
Performed By:	H. Brownell

			IESI DATA			
Boring No.	Sample No.	Depth (ft)	Method (A or B)	Soak Time (min)	Initial Dry Weight (g)	% Finer than #200
K-115.2	ST-1	30-32	A	10	81.04	98.6
K-115.2	ST-2	45-47	A	10	75.54	91.9
	X					

TEST DATA

Reviewed By:

Date: 04/14/22

ATLANTIC TESTING LABORATORIES

WBE certified company

Page 1 of 2

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOIL ASTM D 4318

PROJECT INFORMATION

Client:	Kiewit Instrastructure Co.	ATL Report No.:	CD10279E-12-04-22
Project:	Champlain Hudson Power Express	Report Date:	April 14, 2022
	United Cable Installation	Date Received:	April 6, 2022
	Various Locations, New York		

TEST DATA							
Boring No.	Sample No.	LL	PL	PI			
K-115.2	ST-1	51	25	26			
K-115.2	ST-2	70	23	47			

SAMPLE INFORMATION

		Maximum Grain Size	Estimated Amount of Sample Retained on No. 40 Sieve	As Received Moisture Content
Boring No.	Sample No.	(mm)	(%)	(%)
K-115.2	ST-1	0.074	0	35.2
K-115.2	ST-2	0.074	0	47.0

PREPARATION INFORMATION

Boring No.	Sample No.	Preparation	Method of Removing Oversized Material
K-115.2	ST-1	Air Dry	Not Necessary
K-115.2	ST-2	Air Dry	Not Necessary

Client:	Kiewit Instrastruc	ture Co.					ATL Report No	. CD1027	9E-12-04-22
Project: Champlain Hudson Power Express							Date	14, 2022	
								Ра	ge 2 of 2
			EQUIPM	ENT INFO	ORM	ATION			
Liquid Limit P	rocedure: M	ultipoint -	Method A			X	Single Point -	Method B	
Liquid Limit A	pparatus:		Manual			X	Motor Driven		
Liquid Limit G	rooving Tool M	aterial:	Plastic			Х	Metal		

Х

Х

Flat

Hand Rolled

Liquid Limit Grooving Tool Shape:

Plastic Limit:

Date: 04/14/22

Curved (AASHTO Only)

Mechanical Rolling Device

Kiewit

DATE:	September 23, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 3 - Package 1C - HDD Crossing 6 – Revision 1 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the enclosed geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing Number 6 is STA 15224+00 (43.498216° N, 73.420237° W).

The geotechnical data at this HDD crossing is enclosed. The available data is from the previous investigation by TRC and the recent investigation by Schnabel, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Schnabel Engineering, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Subsurface Explorations, dated March 3, 2022.

Contact us if you have questions or require additional information.

HDD 6 Borings B116.1-1, B116.2-1, K-116.1 Segment 3

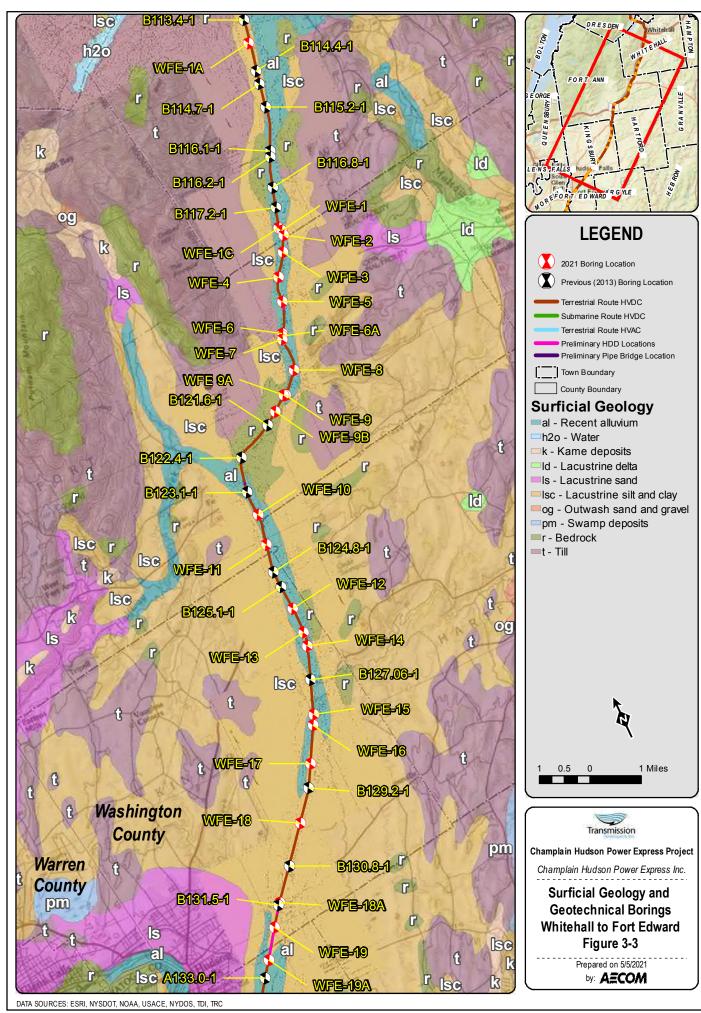
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

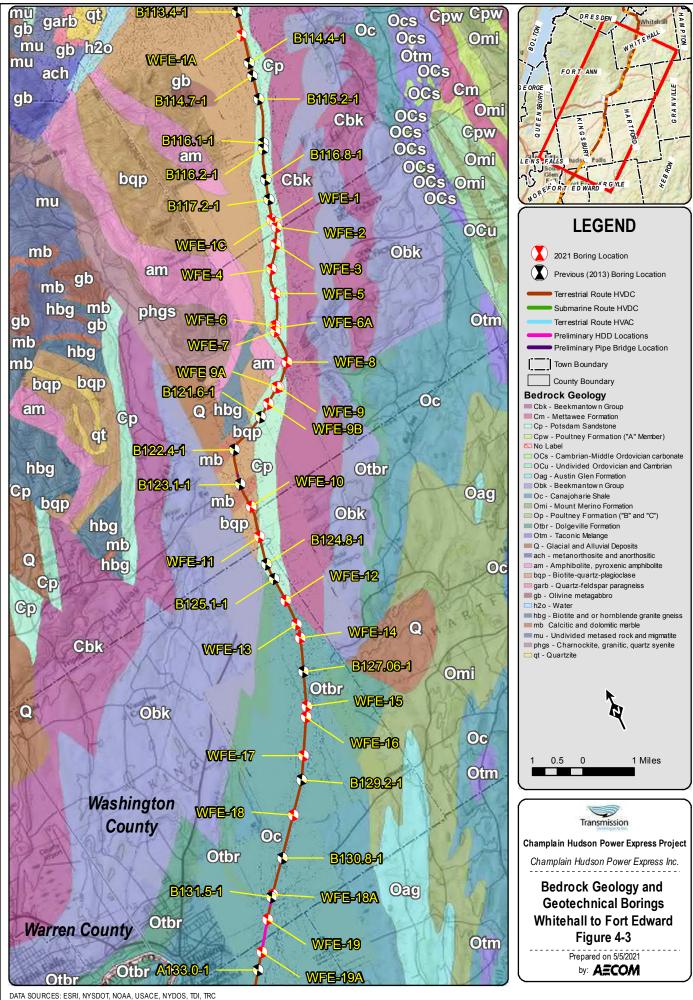
Firms	Dering	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B102.4-1	1762367.3	777951.9	139.42
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8
	B110.1-1	1728142.0	776337.8	105.0
	B113.4-1	1714875.2	781894.9	122.9
	B114.4-1	1709558.6	780857.2	122.7
TRC*	B115.2-1	1705777.9	780186.6	120.9
INC	B116.1-1	1701426.5	778616.5	124.1
	B116.2-1	1700894.8	778375.8	124.3
	B116.8-1	1697938.4	777308.2	131.6
	PD-7	1783019.4	778020.6	266.4
AECOM**	PD-7A	1782960.9	778149.9	269.5
ALCOM	WFE-1	1693492.9	776280.6	127.9
	WFE-1C	1693895.8	776092.3	129.3

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

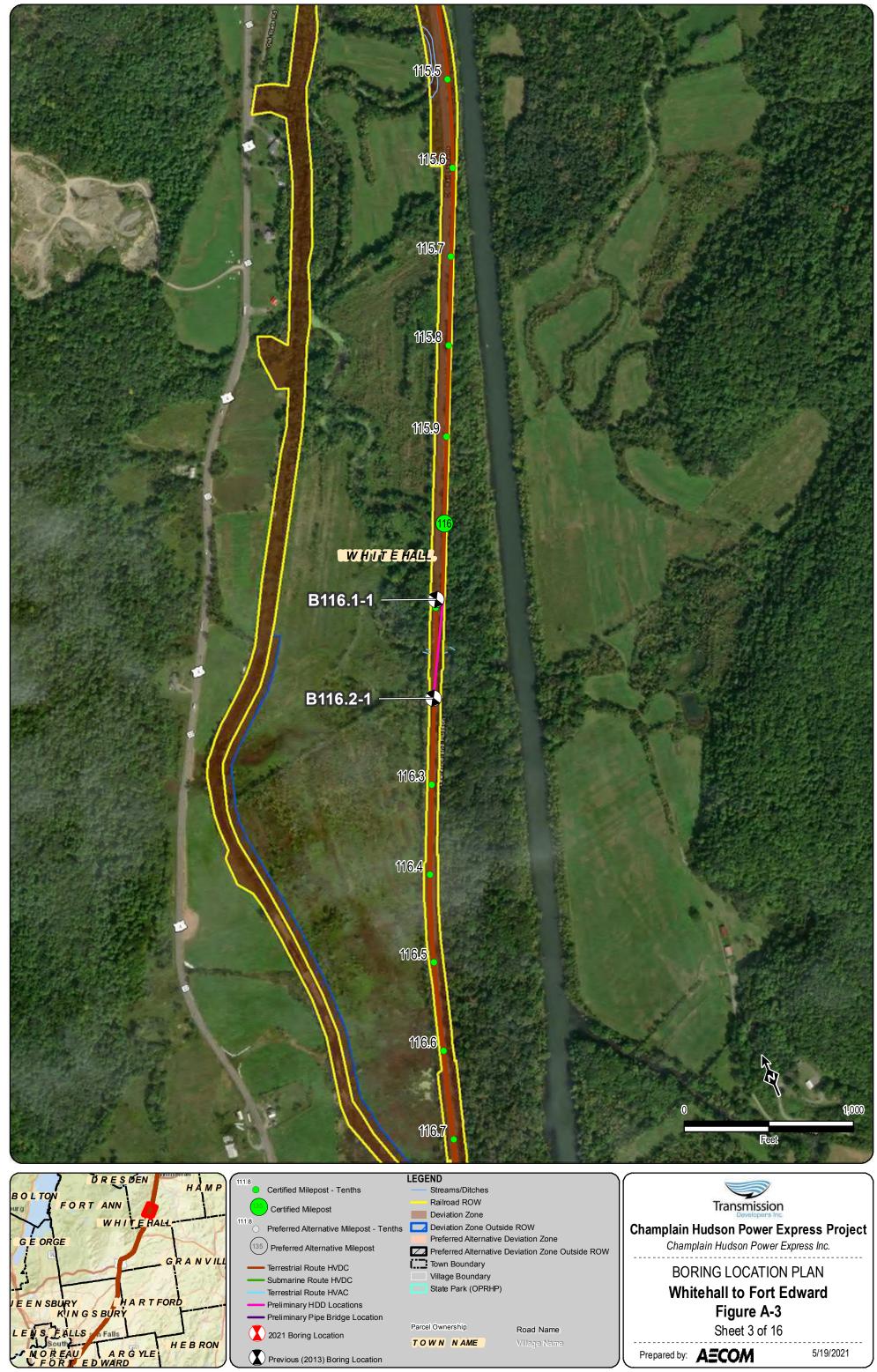

* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.



Vav

Bedrock

t E

Vav

lay_2021_ReportWhitehall_to_Edward_Boring_Locations_Mapset_May_2021_Report.mxd

f

r:\Projects\CHPE\\Route\Consensus_Alternative_Routes\MXD\Alt_5_Routes_DZ_201909\Boring_Locations\Maps_

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

				_			
	GROU		N	IETHOD C)		
FIRST E	NCOUNT	ERED 10	.0 '	∇	а	FROM	
DEPTH	HOUR	DATE	ELAPSED TIME		d	FROM	

METHOD OF ADVANCING BOREHOLE							
а	FROM	0.0 '	TO	10.0 '			
d	FROM	10.0 '	то	30.0 '			

 BORING
 B116.1-1

 G.S. ELEV.
 N/A

 FILE
 195651

 FILE
 195651

 SHEET
 1 OF 1

DRILLER	G. SPIZZIRRI
HELPER	E. WARD
INSPECTOR	J. STAPLETON
DATE STARTED	01/23/2013
DATE COMPLETED	01/23/2013

DEPT	н	Α			В		С	DESCRIPTION	Wn	REMARKS
	_	S-1 S-2	10 3	4	3	3		SILT & CLAY WITH COBBLES, GRAVEL, ASH, METAL (FILL)		
5_		S-3 S-4	3	3	2	3			24.8	
<u>⊽</u> 10 _	-	<u>S-5</u>	7	6	4	9		LIGHT TO DARK BROWN CLAY, TR TO SM SILT	23.7	
15 _		<u>S-6</u>	1	1	2			3.5		MILD TO HEAVY PETROLEUM ODOR ENCOUNTERED FROM 13.5-30 FT
5DT 3/27/13	-		1	2	1			DARK BROWN SILT, SM CLAY		
NEW PROJECTS TEST BORING LOG 195651_TDI_CP.GPJ_SITE BLAUVELT.GDT 3/27/13 C C C C C C C C C C C C C C C C C C C			1	1	5			3.5 OLIVE-GREEN F/M/C SAND, SM SILT		
RING LOG 195651_TDI00	-	<u>S-9</u>	4	5	5			80.0 END OF BORING AT 30'	_	
EW PROJECTS TEST BC								DRN CKD		JPB PWK

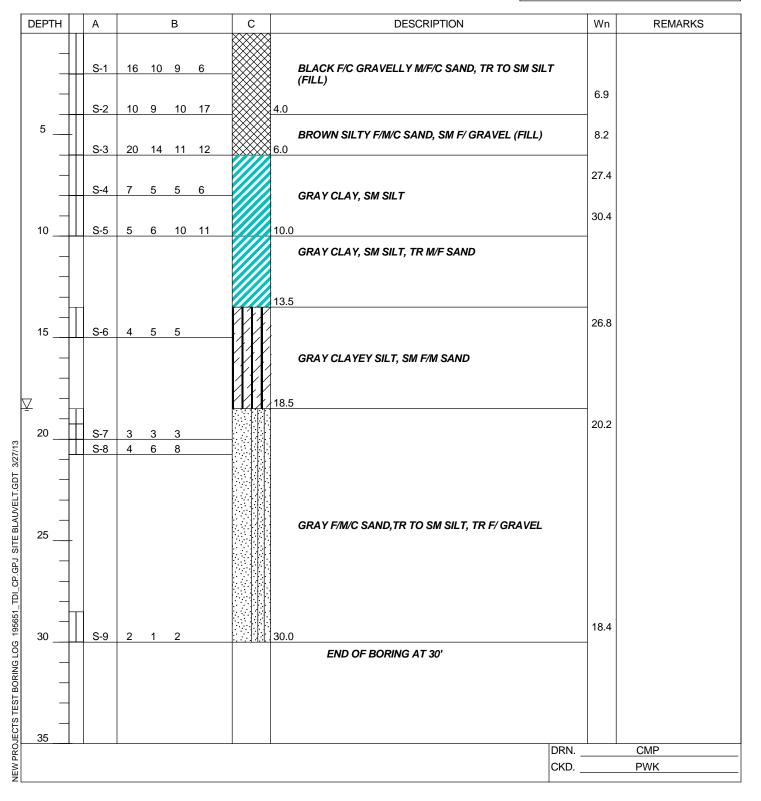
CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

				-					
	GROU	NDWATEF	R DATA		N	NETHOD C	OF ADVANO	CING BO	REHOLE
FIRST ENCOUNTERED 18.5 '				∇	а	FROM	0.0 '	ТО	10.0 '
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	10.0 '	ТО	30.0 '
				-					
]					


 BORING
 B116.2-1

 G.S. ELEV.
 N/A

 FILE
 195651

SHEET 1 0F 1

DRILLER	R. CARUSO
HELPER	C. SMART
INSPECTOR	C. POPPE
DATE STARTED	12/11/2012
DATE COMPLETED	12/11/2012

SUMMARY OF LABORATORY TEST DATA

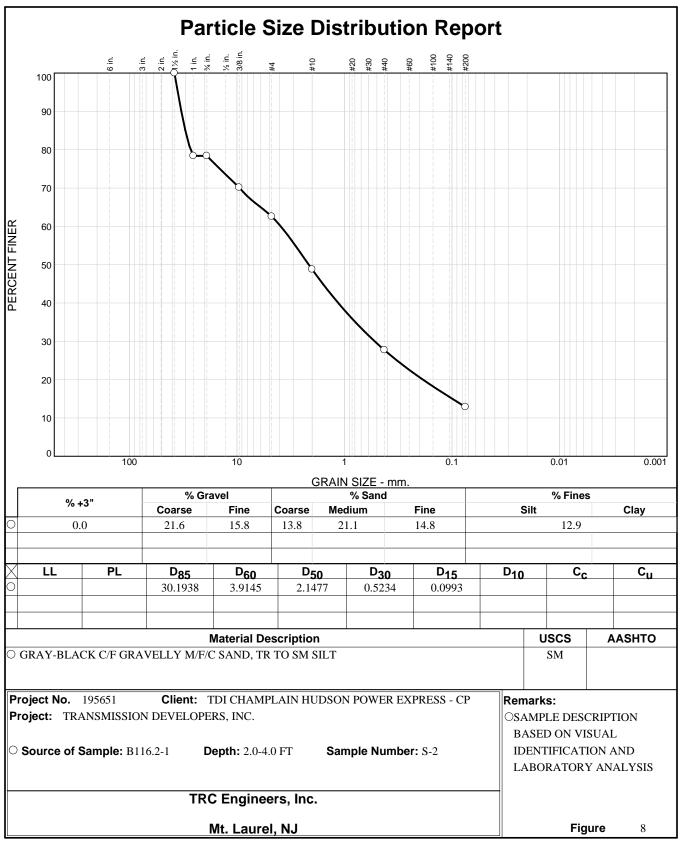
Project Name: Client Name: TRC Project #:

<u>TDI Champlain Hudson Power Express – CP</u> <u>Transmission Developers, Inc.</u> 195651

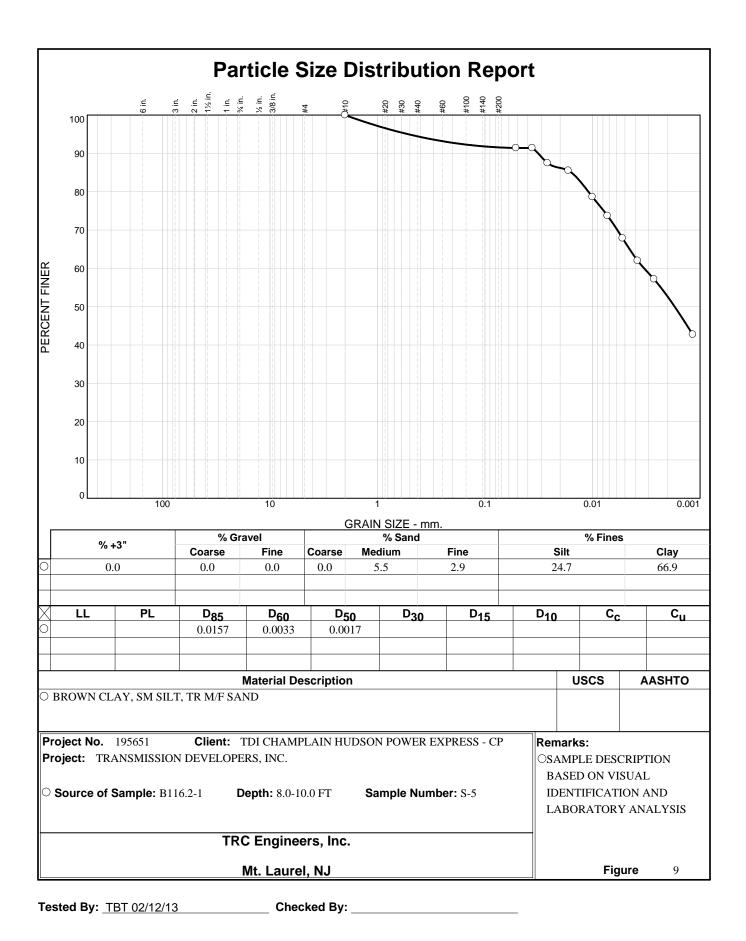
SAMPLE I	IDENTII	FICATION	USCS	-		N SIZE BUTIO	N		PLAS	TICIT	ſΥ	vity	ntent	(pcf)	e (itent (%)
Boring #	Sample #	Depth (ft)	Soil Group (USCS System)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index)	Specific Gravity	Moisture Content (%)	Unit Weight (pcf)	Compressive Strength (tsf)	Organic Content (%)
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	26.4	-	-	-
	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	37.5	-	-	-
	S-6	13.5-15.0	-	-	-	-	-	-	-	-	-	-	35.4	-	-	-
	S-7	18.5-20.0	CH	-	-	-	-	65	31	34	0.4	-	45.6	76.0	-	-
D116 1 1	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	24.8	-	-	-
B116.1-1	S-5	8.0-10.0	-	-	-	-	-	-	-	-	-	-	23.7	100.7	-	-
	S-2	2.0-4.0	SM	37.4	49.7	12	2.9	-	-	-	-	-	6.9	-	-	-
	S-3	4.0-6.0	-	-	-	-	-	-	-	-	-	-	8.2	-	-	-
	S-4	6.0-8.0	-	-	-	-	-	-	-	-	-	-	27.4	-	-	-
B116.2-1	S-5	8.0-10.0	-	0.0	8.4	24.7	66.9	-	-	-	-	2.78	30.4	87.5	-	-
	S-6	13.5-15.0	-	0.0	22.7	46.6	30.7	-	-	-	-	2.84	26.8	-	-	-
	S-7	18.5-20.0	CD CM	2.4	05.0	1(ם פ						90.9			
	S-8	23.5-25.0	SP-SM	3.4	85.8).8	-	-	-	-	-	20.2	-	-	-

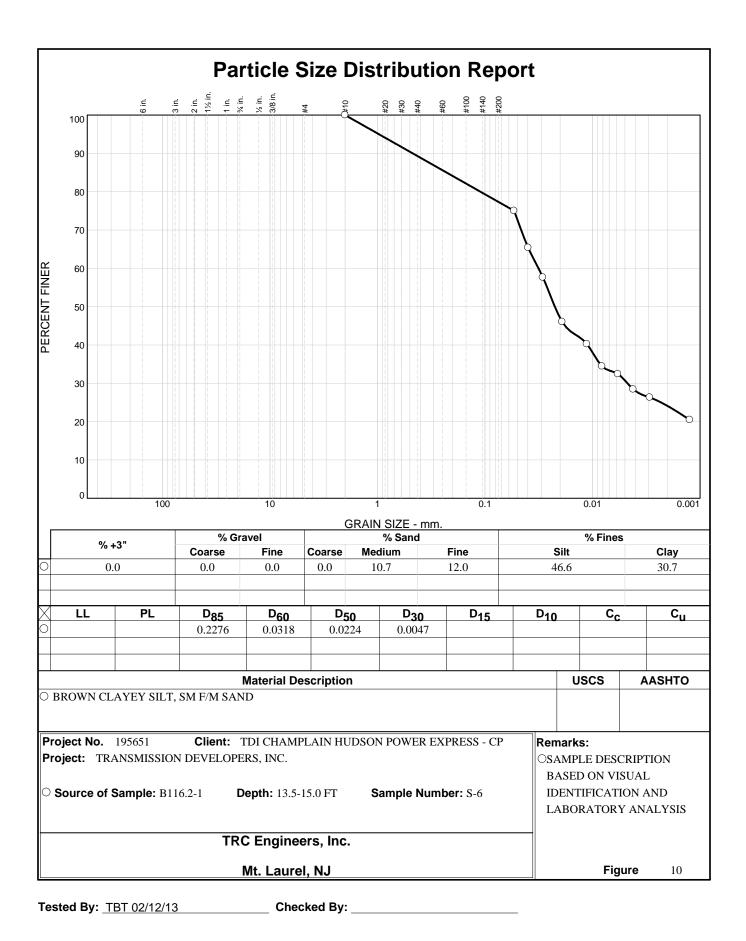
DRAWN BY: TBT 03/27/13

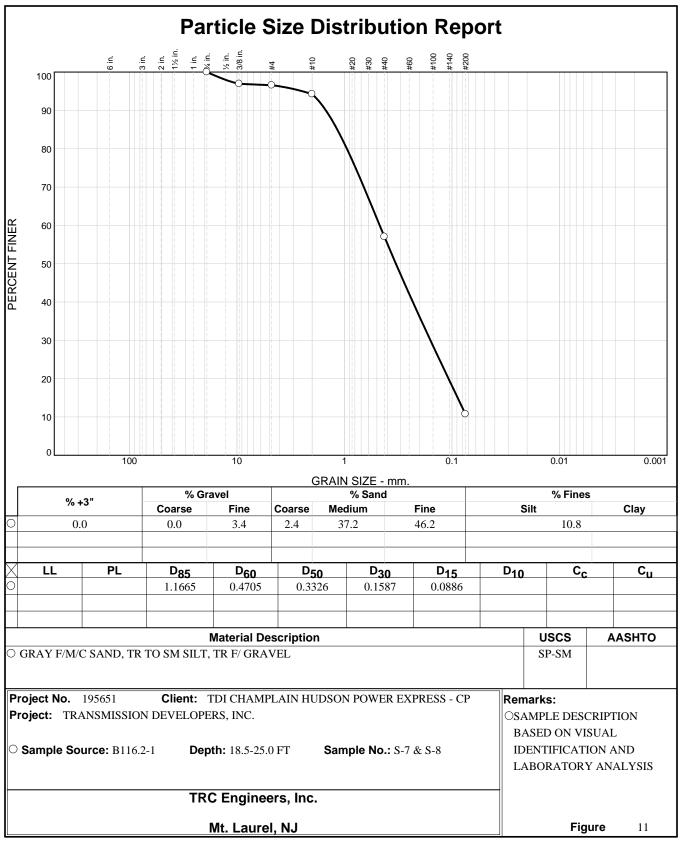
SUMMARY OF LABORATORY TEST DATA

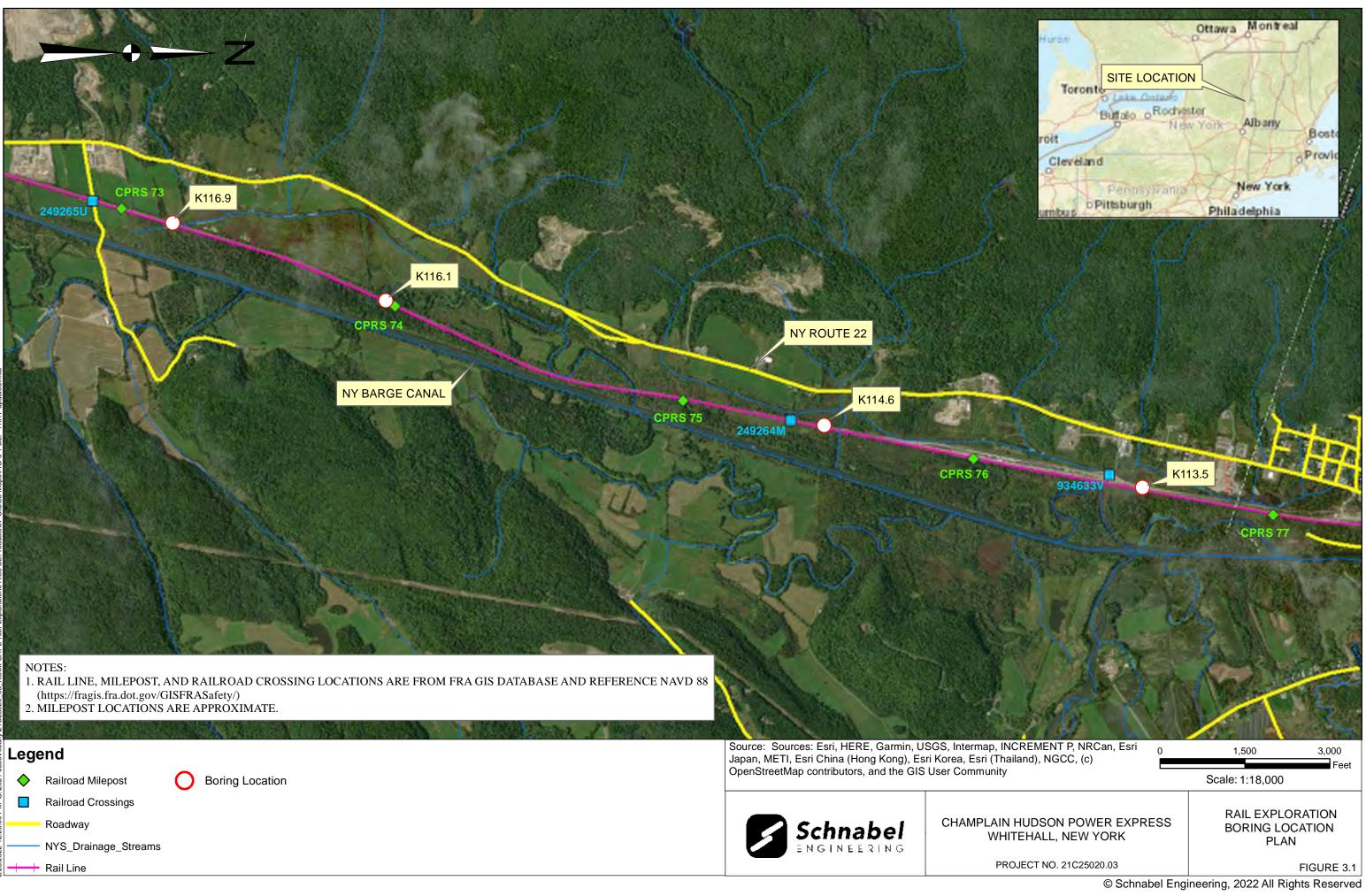

Project Name: Client Name:

TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651


TRC Project #:


Organic Content (%) **GRAIN SIZE** Soil Group (USCS System) SAMPLE IDENTIFICATION PLASTICITY Moisture Content (%) Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Limit (%) Liquidity Index) # Limit (%) Boring # Sand (%) Sample ∮ Clay (%) Plastic Silt (%) Liquid S-9 28.5-30.0 18.4 _ _ _ _ _ _ S-2 2.0 - 4.0S-3 4.0-6.0 SM 27.1 59.1 13.7 5.0 _ -------6.0-8.0 S-4 8.0-10.0 S-5 13.5-15.0 S-6 48.7 -_ _ ---_ -_ _ ---18.5-20.0 12.3 26.7 S-7 0.0 28.0 59.7 2.76 93.6 _ _ _ _ _ _ _ B116.8-1 S-9 28.5-30.0 40.5 _ _ _ _ _ _ -_ _ _ _ 33.5-35.0 S-10 66.9 _ -_ -_ _ _ -_ _ _ _ _ 38.5-40.0 S-11 64.3 _ _ _ _ _ _ _ _ _ _ _ _ _ S-12 43.5-45.0 CH 28 32 52.2 60 0.8 _ _ _ _ _ _ -_ S-13 48.5-50.0 43.6 _ --_ _ _ _ _ _ _ _ _ -53.5-55.0 0.3 1.2 98.5 2.83 69.1 S-14 0.0 _ _ _ _ _ _ _ -


DRAWN BY: TBT 03/27/13


Tested By: BMH 01/24/13 Checked By:

Tested By: BMH 02/01/13 Checked By:

5	Schnabel TEST BORING LOG	Rail E	, xplora		ower E	xpress	;		Contrac	Number: t Number: 2		16.1
Contract	tor: Soil Testing Inc.	vvhite	nall, N	ew York				Water L	Sheet: .evel Obse			
Contract	Oxford, Connecticut							Date	Time	Depth	Casing	Caved
	tor Foreman: S. DeAngelis el Representative: S. Henry			E	ncounte	ered	$\overline{\Delta}$	1/4/22	12:10 PM	20.0'	15.0'	
	ent: Diedrich D-50 (ATC)											
	4-1/4" I.D. Hollow Stem Auger / 3" Fluid R	otary										
	T 0(-										
	Type: Safety Hammer (140 lb) Started: 1/4/22 Finished: 1/4/22											
	56.8 ft Y: 1701289 ft By: Land Survey											
	ate System: Lat-Long (Decimal Degrees)											
Plunge:												
Ground	Surface Elevation: 124.9 (ft) Total De	pth: 6	5.0 ft		1							
DEPTH (ft)	MATERIAL DESCRIPTION	SYN	IBOL	ELEV (ft)	STRA TUM	DEPT		MPLING DATA		TESTS	REMA	RKS
-	0.0 - 1.5 ft: FILL, sampled as ballast	FILL				_	-					
1.5 - - -	1.5 - 4.3 ft: FILL, sampled as silty sand with gravel; moist, black	FILL		123.4 - ·	F	-	٦VI	S-1, SPT 4+3+3+3 REC=10",	42%			
4.3 -	4.3 - 16.2 ft: LEAN CLAY; moist, gray and brown, some silt, probable LACUSTRINE material			- 120.7	-	- 5 · 		S-2, SPT 3+4+5+7 REC=14",	PL	= 43 = 20 9 = 2.00 tsf		
-		CL		 	-	- - 10 - - -	\mathbb{N}	S-3, SPT 3+4+7+10 REC=16",	67% %	C = 30.5% Passing 00 = 98.1 9 = 3.25 tsf		
- 	16.2 - 18.5 ft: FAT CLAY; moist, gray,			 		- - 15 - -	-	S-4, SPT 2+4+4+7 REC=19",		9 = 1.50 tsf	15.0 ft: D method s to mud ro with tricol	witched otary
	probable LACUSTRINE material	СН				-					rollerbit.	
18.5 - _ _ _ _ _ _	18.5 - 28.5 ft: WELL GRADED SAND; wet, gray, probable LACUSTRINE material	sw			-	- 20 · -		S-5, SPT WOR+5+4 REC=15",				
_	(continued)					-	-					

(continued)

5	Schnabel ENGINEERING	TEST Project: BORING LOG	Champlain H Rail Explora Whitehall, N	tions	ower E	С	oring Number: ontract Number: 2 heet: 2 of 3	K116. 1C25020.03		
DEPTH (ft)	MATERIAL	DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	DEPT	Sampi H		TESTS	REMARKS
	18.5 - 28.5 ft: WEI wet, gray, probable material <i>(continued</i>	LL GRADED SAND; e LACUSTRINE d)	sw	- ·			RE	5, SPT 3+3+4 C=10", 42%	MC = 19.0%	
28.5 -	28.5 - 65.0 ft: FAT probable LACUST	CLAY; wet, gray, RINE material		96.4 _ 	-	- 30 - - 30 -	$ \rangle wc$	′, SPT)R/18"+WOł C=24", 1009	PP = 0.00 tsf	
				 	-	 - 35 - 	$ \rangle wc$	i, SPT)R/24" C=24", 1009	PP = 0.00 tsf	
				- ·	- - - -	 - 40 - 		-1, UNDIST C=7", 29%	PP = 0.00 tsf	
-			СН	- ·	-	 - 45 - 	\/ WC	I, SPT)H+1+2+3 C=24", 1009	LL = 71 PL = 25 MC = 71.4% % Passing #200 = 99.9 PP = 0.00 tsf	
-				- ·	-	 		-2, UNDIST C=21", 88% 0, SPT		
-				- ·	-	 		0, SPT)R/24" C=20", 83%		
						- 55 - 		-3, UNDIST C=23", 96%	PP = 0.00 tsf	
-				– ·	-		S-1 WC RE	1, SPT DR/24" C=24", 100%	MC = 66.6% PP = 0.00 tsf	57.0 ft: Rods sunk to 63 ft; Kiewit agreed

4	Schnabel	TEST BORING LOG Project: Champlain Hudson Power Express Rail Explorations Whitehall, New York							Con	ing Number: tract Number: 2 et: 3 of 3	K116.1 21C25020.03			
DEPTH (ft)	MATERIAL	DESCRIPTI	ON	SYMBOL	ELEV (ft)	STRA TUM	S DEPTH		MPLING DATA	TESTS	REMARKS			
-	28.5 - 65.0 ft: FAT probable LACUST (continued)	CLAY; wet RINE mater	, gray, rial	СН		- - - L	- 60 - 				take SPT from 63 - 65 ft instead of drilling the rest of the way.			
-	-					_		$ \rangle/ $	S-12, SPT 3+3+3+2 REC=24", 100%	PP = 0.00 tsf				
	Boring backfilled v Unable to obtain " Coordinates and e Stratum Designati F: Fill Material L: Lacustrine D	Completion" elevations we ions:	and "Casir	ng Pulled" gro	oundwater	reading	gs due t			grout.				

Summary Of Laboratory Tests

			-								Proje	Ct NUM	iber: 21	625020	1.03
Boring No.	Sample Depth ft	Sample	Description of Soil Specimen		(%)	nit	nit	Index	g ieve	Organic Content (%)		mg/Kg)	(mg/Kg)	>	Oxidation Reduction Potential (mV)
NO.	Elevation ft	туре	Specimen	Stratum	Natural Moisture (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Passing No. 200 Sieve	Organic C	На	Sulfates (mg/Kg)	Chlorides (mg/Kg)	Resistivit (ohm-cm)	Oxidation Potential
K114.6	55.0 - 57.0	Jar	Fat Clay (visual field description)		60.2										
K114.0	66.8 - 64.8	Jai		L	00.2	-									
K114.6	62.0 - 64.0	– Jar	FAT CLAY (CH), dark brownish gray		52.7	59	22	37	99.9						
	59.8 - 57.8	Jai		L	02.1	59	22	57	99.9						
K116.1	5.0 - 7.0	– Jar	Lean Clay (visual field description)	L		43	20	23							
	119.9 - 117.9	Jai				43	20	23							
K116.1	10.0 - 12.0	- Jar	Lean Clay (visual field description)	L	30.5	-			98.1						
K110.1	114.9 - 112.9	Jai			30.5				90.1						
K116.1	25.0 - 27.0	– Jar	Well-graded Sand (visual field description)	L	19.0										
K110.1	99.9 - 97.9	Jai			19.0										
K116 1	42.0 - 44.0	– Jar	FAT CLAY (CH), gray	L	71.4	71	25	46	99.9	0.88					
K116.1	82.9 - 80.9	Jai			71.4	71	25	40	99.9	0.00					
K116 1	57.0 - 59.0	– Jar	Fat Clay (visual field description)	L	66.6	-									
K116.1	1			-	00.0							·	, I		

1. Soil tests in general accordance with ASTM standards. Notes:

2. Soil classifications are in general accordance with ASTM D2487(as applicable), based on testing indicated

and visual classification.

3. Key to abbreviations: NP=Non-Plastic; -- indicates no test performed; BRL = below reporting limit

4. Strata: F=Fill; L=Lacustrine

67.9 - 65.9

2 2008

₫

DATA .

SCHNABEL

Ъ

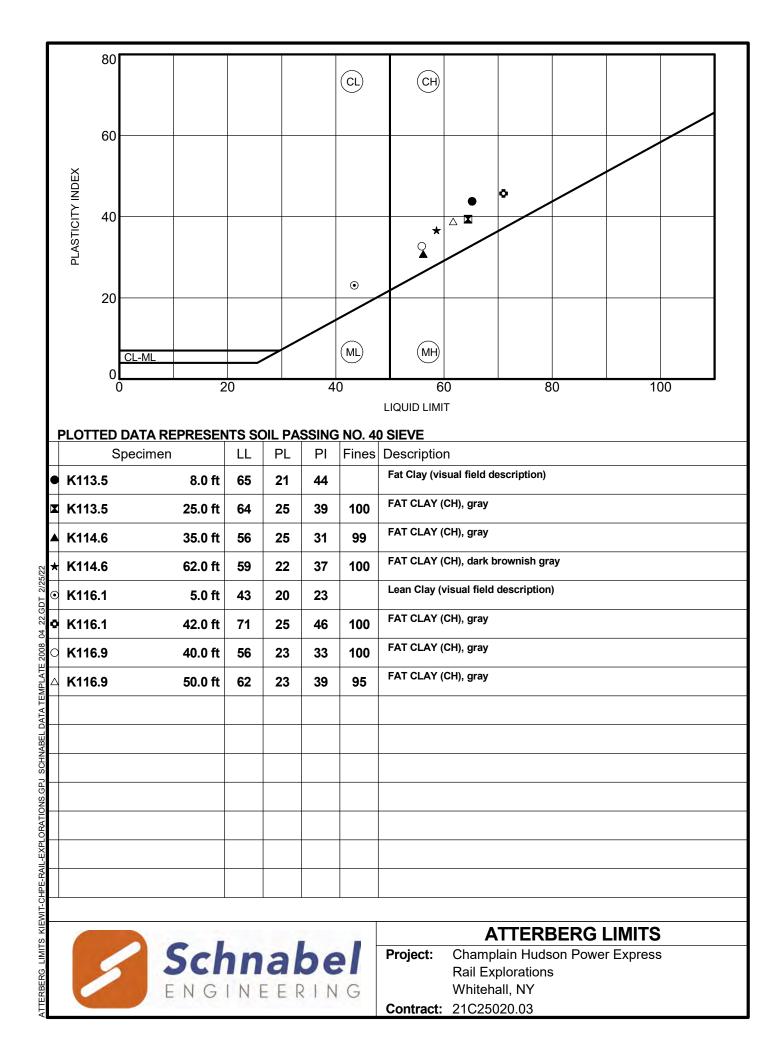
DRATIONS

ñ 2 CHPE

FWIT

Y

SUMMARY


KNAMIC LAB

Project: Champlain Hudson Power Express Rail Explorations Whitehall, NY

Schnabel ENGINEERING

Appendix Sheet 2 of 3

Project Number: 21C25020.03

Kiewit

DATE:	September 23, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 3 - Package 1C - HDD Crossing 7 – Revision 1 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the enclosed geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing Number 7 is STA 15256+00 (43.488742° N, 73.425331° W).

The geotechnical data at this HDD crossing is enclosed. The available data is from the previous investigation by TRC and the recent investigation by Schnabel, referenced below.

- TRC, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Borings MP 113.1-177.1, dated March 29, 2013.
- Schnabel Engineering, Geotechnical Data Report, Champlain Hudson Power Express, Canadian Pacific Railway Subsurface Explorations, dated March 3, 2022.

Contact us if you have questions or require additional information.

HDD 7 Borings B116.8-1, K-116.9 Segment 3

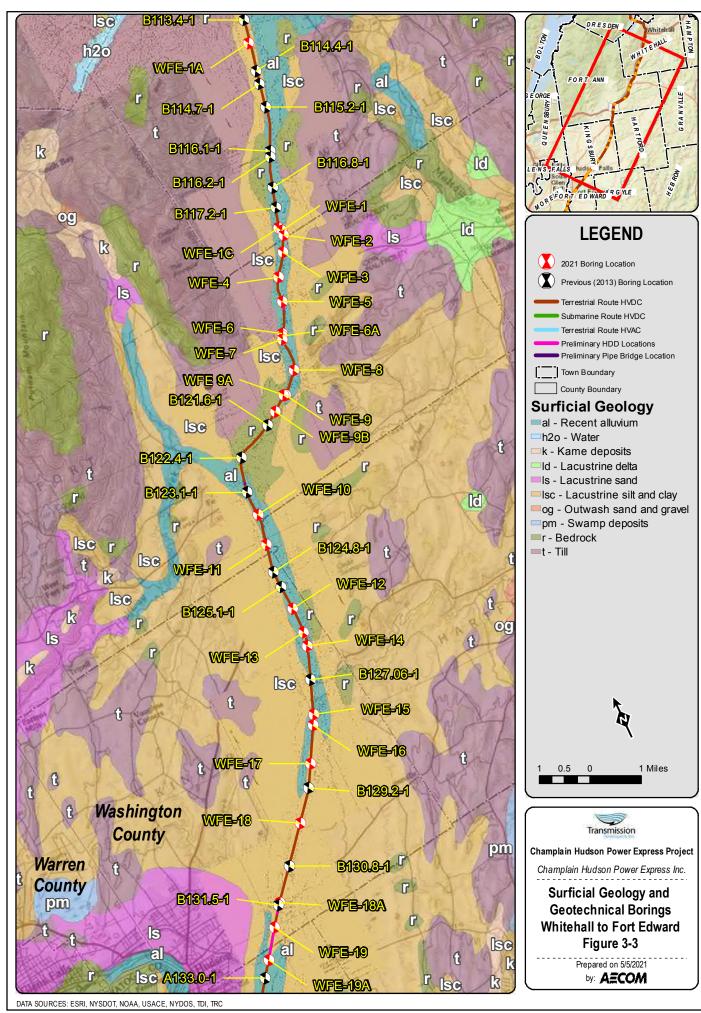
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

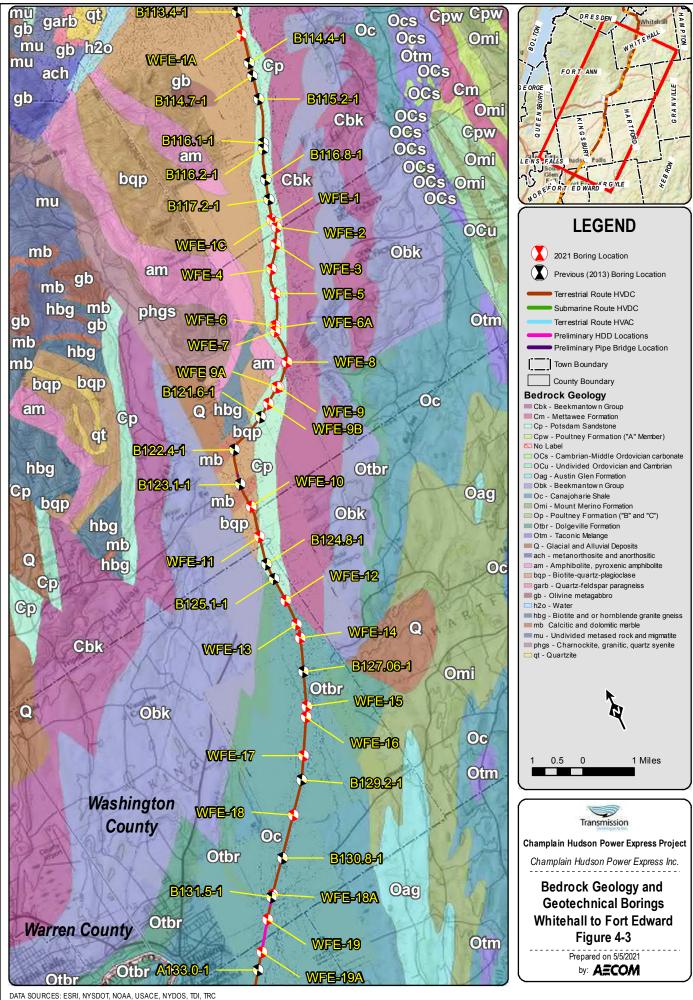
Firme	Dering	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B102.4-1	1762367.3	777951.9	139.4
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8
	B110.1-1	1728142.0	776337.8	105.0
	B113.4-1	1714875.2	781894.9	122.9
	B114.4-1	1709558.6	780857.2	122.7
TRC*	B115.2-1	1705777.9	780186.6	120.9
INC	B116.1-1	1701426.5	778616.5	124.1
	B116.2-1	1700894.8	778375.8	124.3
	B116.8-1	1697938.4	777308.2	131.6
	PD-7	1783019.4	778020.6	266.4
AECOM**	PD-7A	1782960.9	778149.9	269.5
ALCOM	WFE-1	1693492.9	776280.6	127.9
	WFE-1C	1693895.8	776092.3	129.3

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

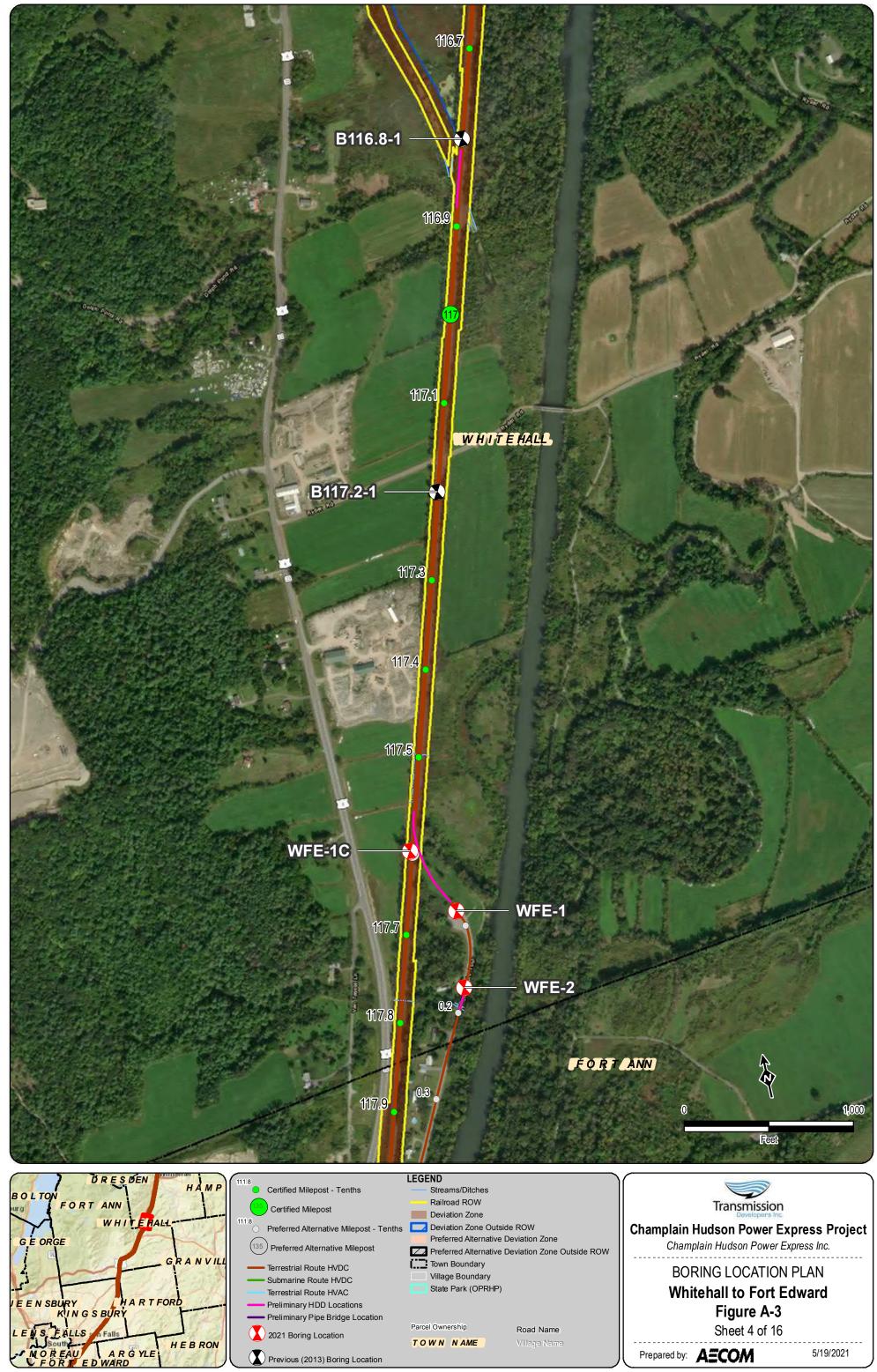

* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.



Vav

Bedrock

t E

Vav

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

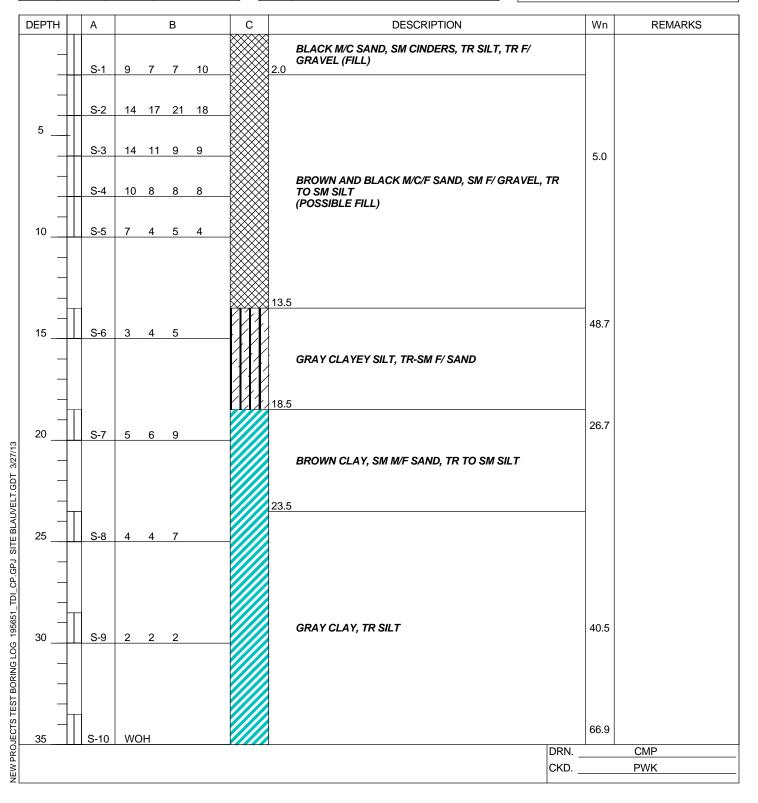
CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

	GROUI	NDWATEF	R DATA]	Ν	METHOD OF ADVANCING BOREHOLE						
FIRST E	NCOUNT	ERED NF	2	∇	а	FROM	0.0 '	то	10.0 '			
DEPTH	HOUR	DATE	ELAPSED TIME	-	d	FROM	10.0 '	то	65.0 '			
49.2'	NR	12/11	0									
				1								


 BORING
 B116.8-1

 G.S. ELEV.
 N/A

 FILE
 195651

SHEET 1 OF 2

DRILLER	R. CARUSO
HELPER	C. SMART
INSPECTOR	C. POPPE
DATE STARTED	12/12/2012
DATE COMPLETED	12/12/2012

CTRC

TEST BORING LOG

PROJECT: TDI CHAMPLAIN HUDSON POWER EXPRESS

LOCATION: CP RAILROAD ROW, NY

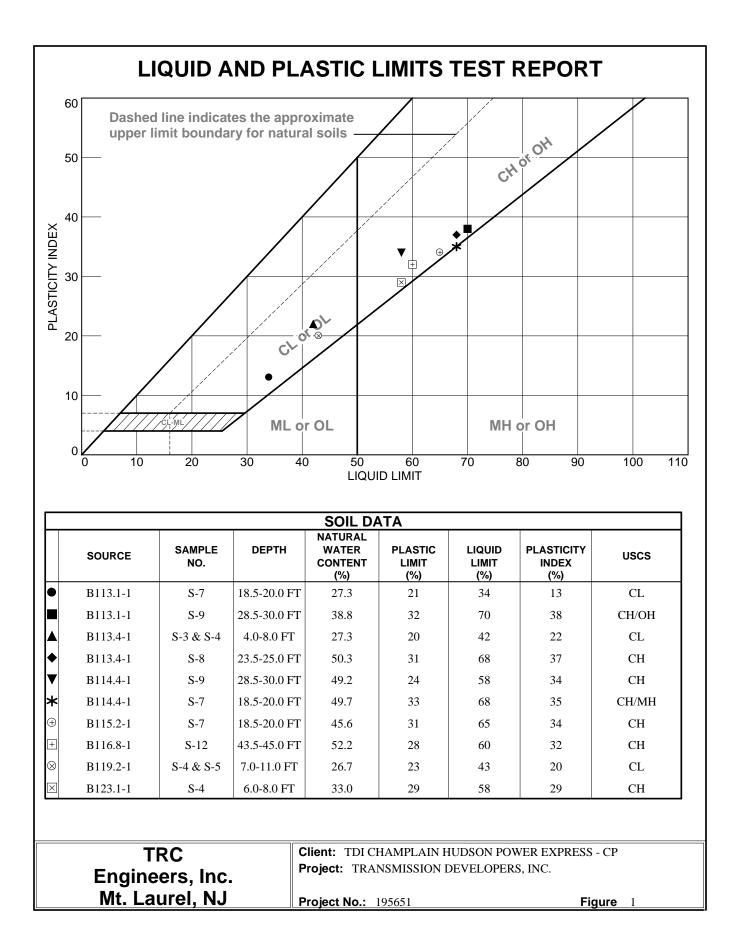
 BORING
 B116.8-1

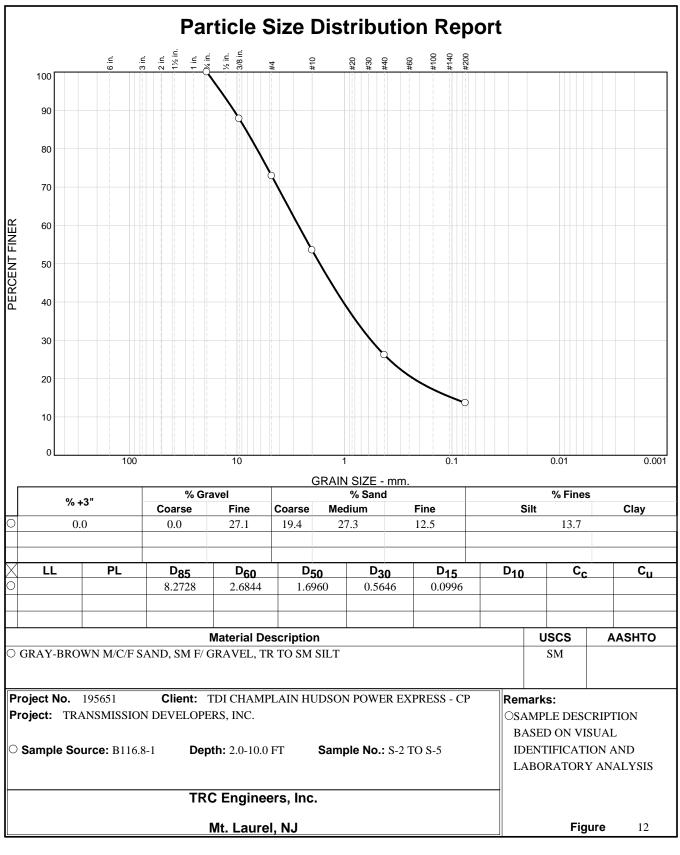
 G.S. ELEV.
 N/A

 FILE
 195651

SHEET 2 OF 2

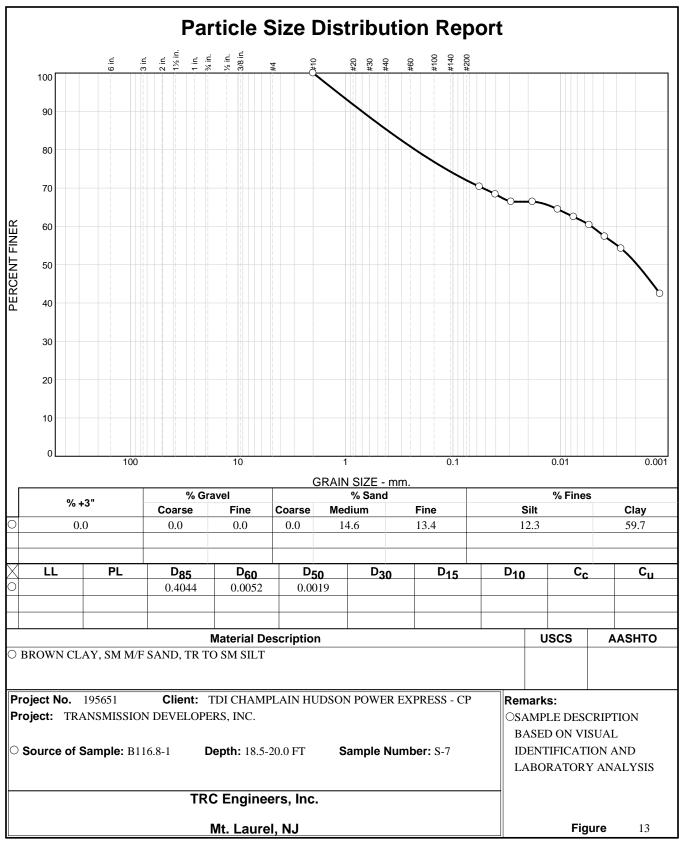
SUMMARY OF LABORATORY TEST DATA

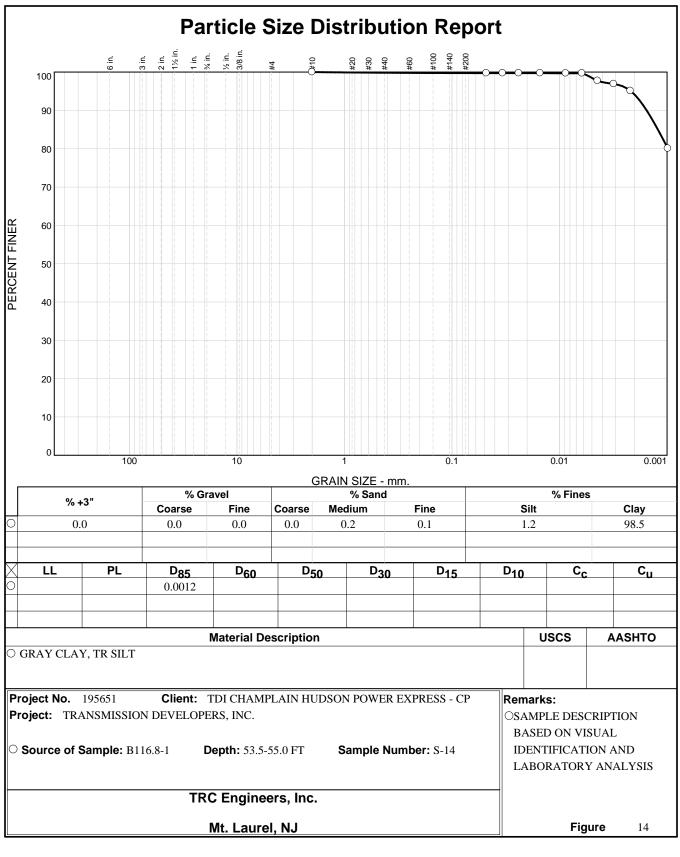

Project Name: Client Name:


TDI Champlain Hudson Power Express - CP **Transmission Developers, Inc.** 195651

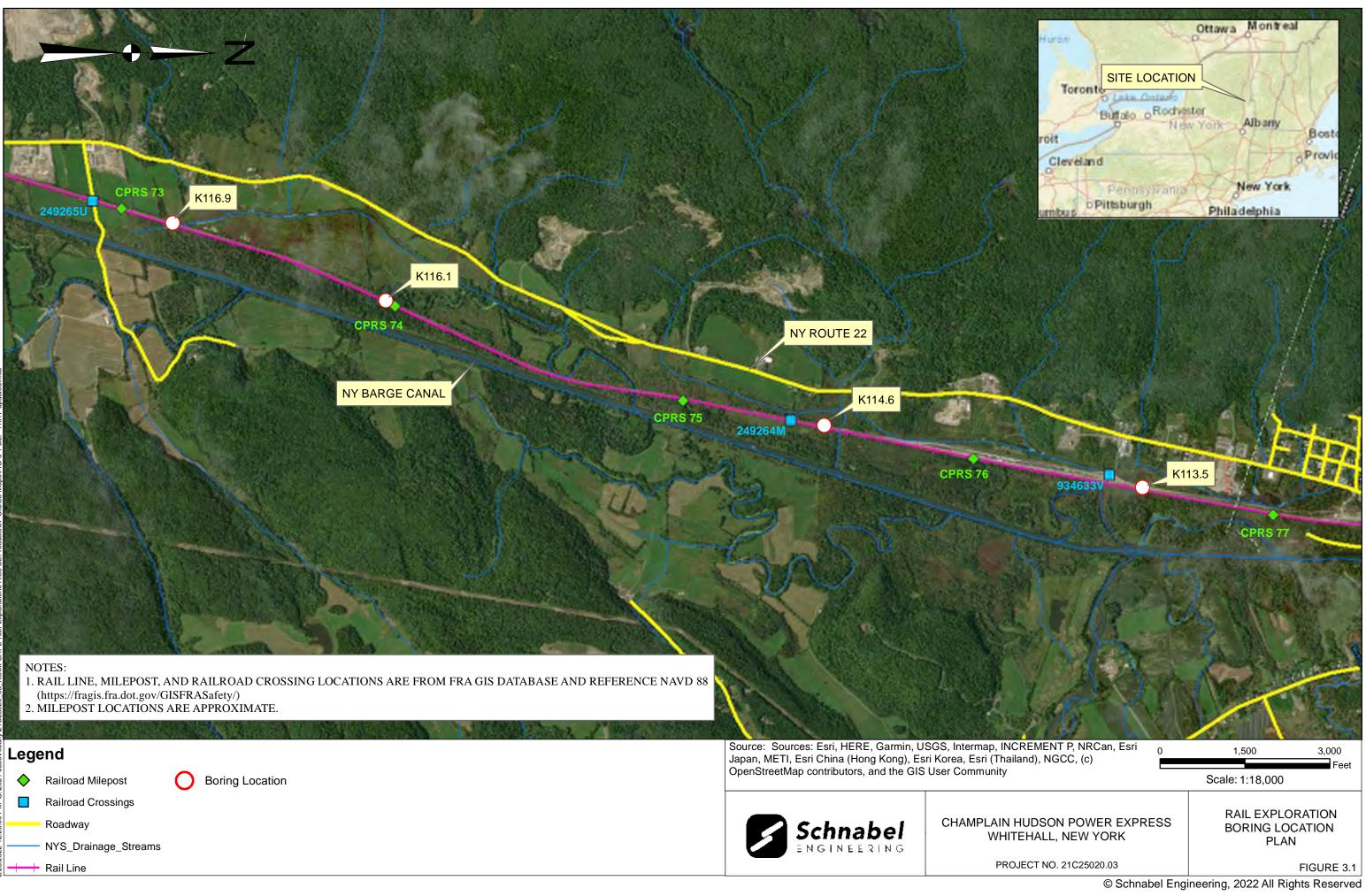
TRC Project #:

Organic Content (%) **GRAIN SIZE** Soil Group (USCS System) SAMPLE IDENTIFICATION PLASTICITY Moisture Content (%) Unit Weight (pcf) DISTRIBUTION Specific Gravity Compressive Strength (tsf) Gravel (%) Plasticity Index (%) Depth (ft) Limit (%) Liquidity Index) # Limit (%) Boring # Sand (%) Sample ∮ Clay (%) Plastic Silt (%) Liquid S-9 28.5-30.0 18.4 _ _ _ _ _ _ S-2 2.0 - 4.0S-3 4.0-6.0 SM 27.1 59.1 13.7 5.0 _ -------6.0-8.0 S-4 8.0-10.0 S-5 13.5-15.0 S-6 48.7 _ -_ ---_ -_ _ ---18.5-20.0 12.3 26.7 S-7 0.0 28.0 59.7 2.76 93.6 _ _ _ _ _ _ _ B116.8-1 S-9 28.5-30.0 40.5 _ _ _ _ _ _ -_ _ _ _ 33.5-35.0 S-10 66.9 _ -_ -_ _ _ -_ _ _ _ _ 38.5-40.0 S-11 64.3 _ _ _ _ _ _ _ _ _ _ _ _ _ S-12 43.5-45.0 CH 28 32 52.2 60 0.8 _ _ _ _ _ _ -_ S-13 48.5-50.0 43.6 _ --_ _ _ _ _ _ _ _ _ -53.5-55.0 0.3 1.2 98.5 2.83 69.1 S-14 0.0 _ _ _ _ _ _ _ -


DRAWN BY: TBT 03/27/13


Tested By: BMH 01/25/13

Checked By:


Tested By: <u>TBT 02/12/13</u>

_____ Checked By: ____

Tested By: <u>TBT 02/12/13</u>

Checked By:

1	BORING	Champla Rail Expl Whitehal	loration	IS	ower E	xpress				Number: t Number: 2 1 of 3		16.9 ³
Contrac	tor: Soil Testing Inc. Oxford, Connecticut							Water I Date	_evel Obse		Casing	Caved
Contrac	tor Foreman: S. DeAngelis			Er	ncounte	rod	$\overline{\Delta}$	1/5/22	11:00 AM	· ·	13.0'	
Schnabe	el Representative: S. Henry				counte	erea	<u> </u>	1/5/22	11.00 AIV	1 13.0	13.0	
	ent: Diedrich D-50 (ATC)											
Method:	: 4-1/4" I.D. Hollow Stem Auger											
Hammei	r Type: Safety Hammer (140 lb)											
Dates	Started: 1/5/22 Finished: 1/5/22											
	88.4 ft Y: 1697522 ft By: Land Survey											
Coordin Plunge:	-90 Bearing:									-		
-	Surface Elevation: 133.2 (ft) Total Dep	th: 67.0) ft									
DEPTH			-	LEV	STRA		6VI			1		
(ft)	MATERIAL DESCRIPTION	SYMBO		(ft)	TUM	DEPT	-	DATA		TESTS	REMA	RKS
	0.0 - 4.0 ft: FILL, sampled as sandy lean clay; moist, black, contains gravel							S-1, AUGE	R		0.0 - 5.0 f	
				-							avoid pot utilities.	ential
_		FILL		-	1							
-				-	1							
4.0 -	4.0 - 5.0 ft: FILL, sampled as silty sand		1	29.2 -	-			S-2, AUGE	R			
5.0	with gravel; moist, brown	FILL	XI-1	28.2	1	- 5 -						
_	5.0 - 8.5 ft: FILL, sampled as clayey gravel with sand; moist, grayish brown			_		L.	IVI	S-3, SPT 2+2+2+3 REC=3", 1	30/			
	5 , , 5 ,	FILL					M	NEC-5, 1	570			
_				-	F	F -						
8.5 -			1	- 24.7								
-	8.5 - 12.5 ft: FILL, sampled as silty sand with gravel; moist, grayish brown		×-		-							
			×-	_	-	- 10 -		S-4, SPT				
-		FILL	×-	-	-	<u> </u>	\mathbb{N}/\mathbb{I}	6+6+6+6 REC=7", 2	9%			
_				_		L.	$\backslash $					
12.5	12.5 - 15.3 ft: FILL, sampled as well $\underline{\nabla}$		1	20.7							12.5 - 13.	0 ft:
_	graded sand; wet, dark gray			-		F -		S-5, SPT 2+4+3+2			Moderate grinding.	
-		FILL		-				REC=6", 2	5%		grinding.	
15.3			2 -1	17.9	-	- 15 -		S-6, SPT	м	C = 41.8%		
-	15.3 - 67.0 ft: FAT CLAY; wet, gray with mottles of brown, probable			-	-			5+3+5+9 REC=14",	58% PF	9 = 0.75 tsf		
_	LACUSTRINE material			-	_	Ļ .	$\langle \rangle$					
				_		L.						
				-	1	F -	1					
		СН		_	L	- 20 -		S-7, SPT	PF	9 = 1.75 tsf		
-				-	-			2+3+5+9 REC=18",	75%			
_				-	-		$ \rangle$					
- 12.5 - - 15.3 - - - - - - - - - - - - - - - - - - -				-	1	Ļ.						
				-	1		1					
	(continued)				1	1					1	

(continued)

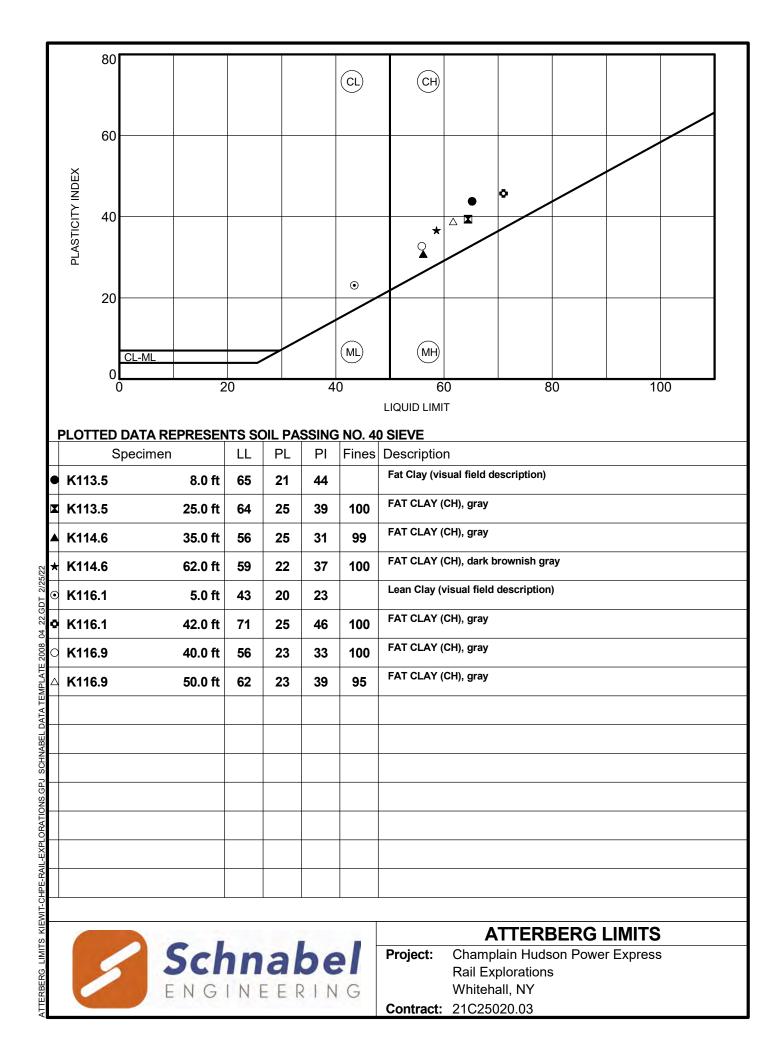
5	Schnabel ENGINEERING DORING	Rail Explora	tions		xpress			Boring Number: K1 Contract Number: 21C25020.0		
	LOG	Whitehall, N	ew York				:	Sheet: 2 of 3		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	DEPT		IPLING DATA	TESTS	REMARKS	
-	15.3 - 67.0 ft: FAT CLAY; wet, gray with mottles of brown, probable LACUSTRINE material <i>(continued)</i>			-		$1 \times 1^{\circ}$	S-8, SPT 1+2+3+7 REC=24", 100	MC = 49.4% PP = 0.50 tsf		
				-	 - 30 -	I\/I:	S-9, SPT 2+2+3+6 REC=24", 100	PP = 0.00 tsf		
_	31.0 ft: Change: gray			-		\square				
					- 35 -	$ \rangle/ $	S-10, SPT 1+2+1+5 REC=24", 100	PP = 0.00 tsf		
-										
		сн	 - ·	- - - L	- 40 - 		UD-1, UNDIS REC=12", 509 S-11, SPT	[%] PL = 23 MC = 41.6% % Passing #200 = 99.8		
-			- ·	-	 - 45 -		WOH+1+4+4 REC=24", 100			
_				_			S-12, SPT WOH/12"+2+; REC=24", 10(3 3%		
_				-	 - 50 -	\;	S-13, SPT WOR+WOH/1	LL = 62 12"+4 pl = 23		
				-	 		REC=24", 100	I2"+4 PL = 23 MC = 42.6% % Passing #200 = 95.0 PP = 0.00 tsf		
			 	-	 55	UD	UD-2, UNDIS REC=13", 549	T PP = 0.00 tsf		
_				_		۱VI	S-14, SPT WOH+3+4+4 REC=24", 100	PP = 0.00 tsf		

(continued)

5	Schnabel BORING LOG	Champlain I Rail Explora Whitehall, N	tions	ower E	xpress	С	Boring Number: K116.9 Contract Number: 21C25020.03 Sheet: 3 of 3		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	MPLING DATA	TESTS	REMARKS	
-	15.3 - 67.0 ft: FAT CLAY; wet, gray with mottles of brown, probable LACUSTRINE material <i>(continued)</i>	СН		- L	- 60 - 	S-15, SPT 1+2+3+3 REC=24", 1009	MC = 44.4% PP = 0.00 tsf		
- - 67.0 -	Bottom of Boring at 67.0 ft.		66.2	-		S-16, SPT WOR/24" REC=24", 1009	PP = 0.00 tsf		

Bottom of Boring at 67.0 ft. Boring terminated at selected depth. Boring backfilled with cement grout through tremie pipe upon completion. Unable to obtain "Completion" and "Casing Pulled" groundwater readings due to grout. Coordinates and elevations were provided by Kiewit Engineering (NY) Corp. on Jan. 18, 2022.

Stratum Designations:


F: Fill Material

L: Lacustrine Deposits

Summary Of Laboratory Tests

Appendix Sheet 3 of 3 Project Number: 21C25020.03

Boring	Sample Depth ft	Sample	Description of Soil		(%	it	Plastic Limit	ndex	jve	ontent (%)		(gyl/gr	(mg/Kg)		
No.	Elevation ft	Type	e Describtion of Soil Sbecimen Moisture (%) Liquid Limit					Plasticity Index	% Passing No. 200 Sieve	Organic Content (%)	Hd	Sulfates (mg/Kg)	Chlorides (mg/Kg)	Resistivity (ohm-cm)	
K116.9	15.0 - 17.0	- Jar	Fat Clay (visual field description)	L	41.8										Γ
	118.2 - 116.2														
25.0 - 27.0 K116.9 108.2 - 106.2		lor	Fat Clay (visual field description)		49.4										
		- Jar			49.4										
K116.9	40.0 - 42.0	Tuba	FAT CLAY (CH), gray		44.0	50		20	00.0						
93.2 - 91.2		- Tube		L	41.6	56	23	33	99.8						
K116.0	50.0 - 52.0	le r	FAT CLAY (CH), gray	1	42.6	60	22	20	05.0						
K116.9	83.2 - 81.2	- Jar		62	23	39	95.0								
K116.9	60.0 - 62.0	1.5.5	Fat Clay (visual field description)												
K116.9	73.2 - 71.2	- Jar		L	44.4										
lotes: 1. 5	Soil tests in genera	l accordar	nce with ASTM standards. eral accordance with ASTM D2487(as applicat		on testing	indicate	d				6				
and 3. k	visual classificatio	n. s: NP=No	eral accordance with ASTM D2487(as applicat n-Plastic; indicates no test performed; BRL =		-		u			۶	SC ENG	hna	RING		
4. 3	Juaia. i −Fill, L−Là	CUSUIIE						Proje	ct: Cha Rail Whit	mplain Explora tehall, N	ations	ר Powei	^r Expre	SS	

DATE:	September 23, 2022
TO:	Antonio Marruso, P.E.; CHA Consulting, Inc.
FROM:	Matthew Hawley, P.E.; Kiewit Engineering (NY) Corp. MKH Jaren Knighton; Kiewit Engineering (NY) Corp.
SUBJECT:	Geotechnical Data: Segment 3 - Package 1C - HDD Crossing 8 – Revision 1 Champlain Hudson Power Express Project Whitehall, New York

Kiewit Engineering is providing the enclosed geotechnical data for use in the horizontal direction drill (HDD) design for the Champlain Hudson Power Express project in Upstate New York. This HDD crossing is located south of Whitehall, New York. The approximate station for the start of HDD crossing Number 8 is STA 15296+00 (43.478169° N, 73.429841° W).

The geotechnical data at this HDD crossing is enclosed. The available data is from the previous investigation by AECOM, referenced below. No additional exploratory borings were performed at this HDD location.

• AECOM, Geotechnical Data Report, Upland Segments, Champlain Hudson Power Express, dated May 28, 2021.

Contact us if you have questions or require additional information.

HDD 8 Borings WFE-1C, WFE-1 Segment 3

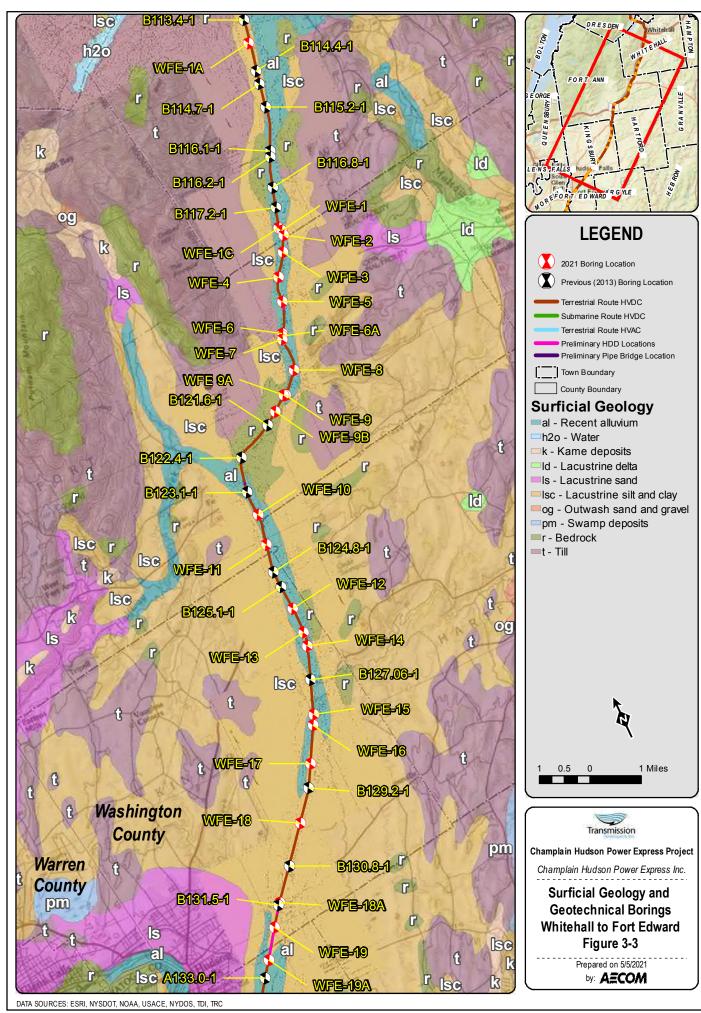
CHPE Segments 1, 2, and 3 - Packages 1A, 1B, and 1C HDD Soil Boring Coordinates and Elevations

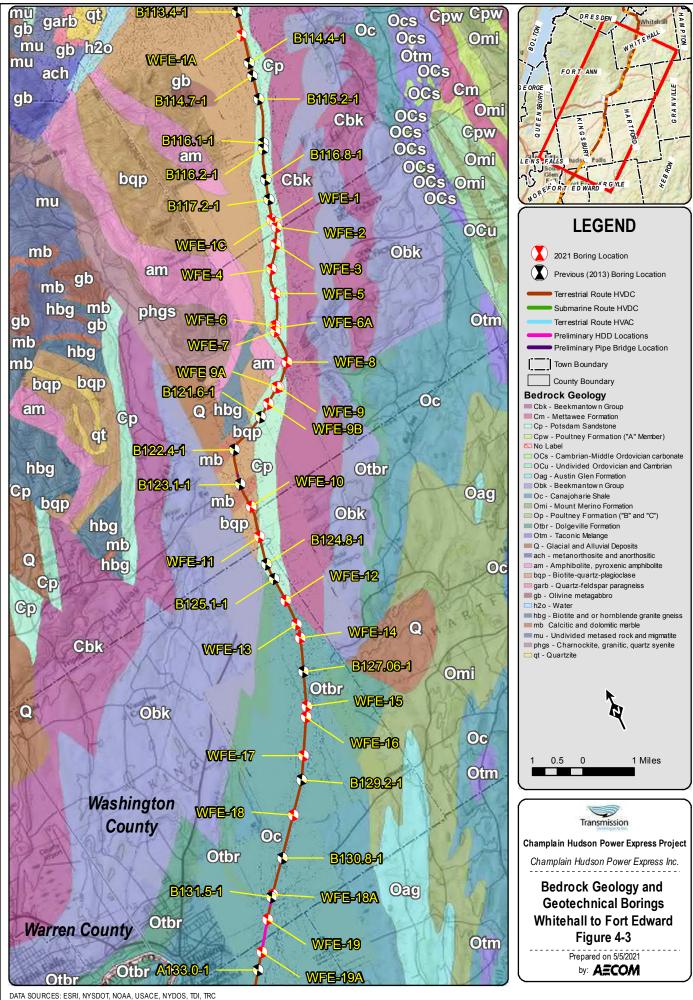
Firms	Dering	Northing	Easting	Ground Surface
Firm	Boring	(feet)	(feet)	Elevation (feet)
	B102.4-1	1762367.3	777951.9	139.42
S.W. Cole*	B109.7-1	1729097.5	774410.6	116.4
5.W. COIE	B109.8-1	1728870.4	774869.2	99.8
	B110.1-1	1728142.0	776337.8	105.0
	B113.4-1	1714875.2	781894.9	122.9
	B114.4-1	1709558.6	780857.2	122.7
TRC*	B115.2-1	1705777.9	780186.6	120.9
INC	B116.1-1	1701426.5	778616.5	124.1
	B116.2-1	1700894.8	778375.8	124.3
	B116.8-1	1697938.4	777308.2	131.6
	PD-7	1783019.4	778020.6	266.4
AECOM**	PD-7A	1782960.9	778149.9	269.5
ALCOM	WFE-1	1693492.9	776280.6	127.9
	WFE-1C	1693895.8	776092.3	129.3

Notes:

- Northings and Eastings are provided in NAD83 New York State Plane East Zone.

- Elevations are referenced to the NAVD88 datum.

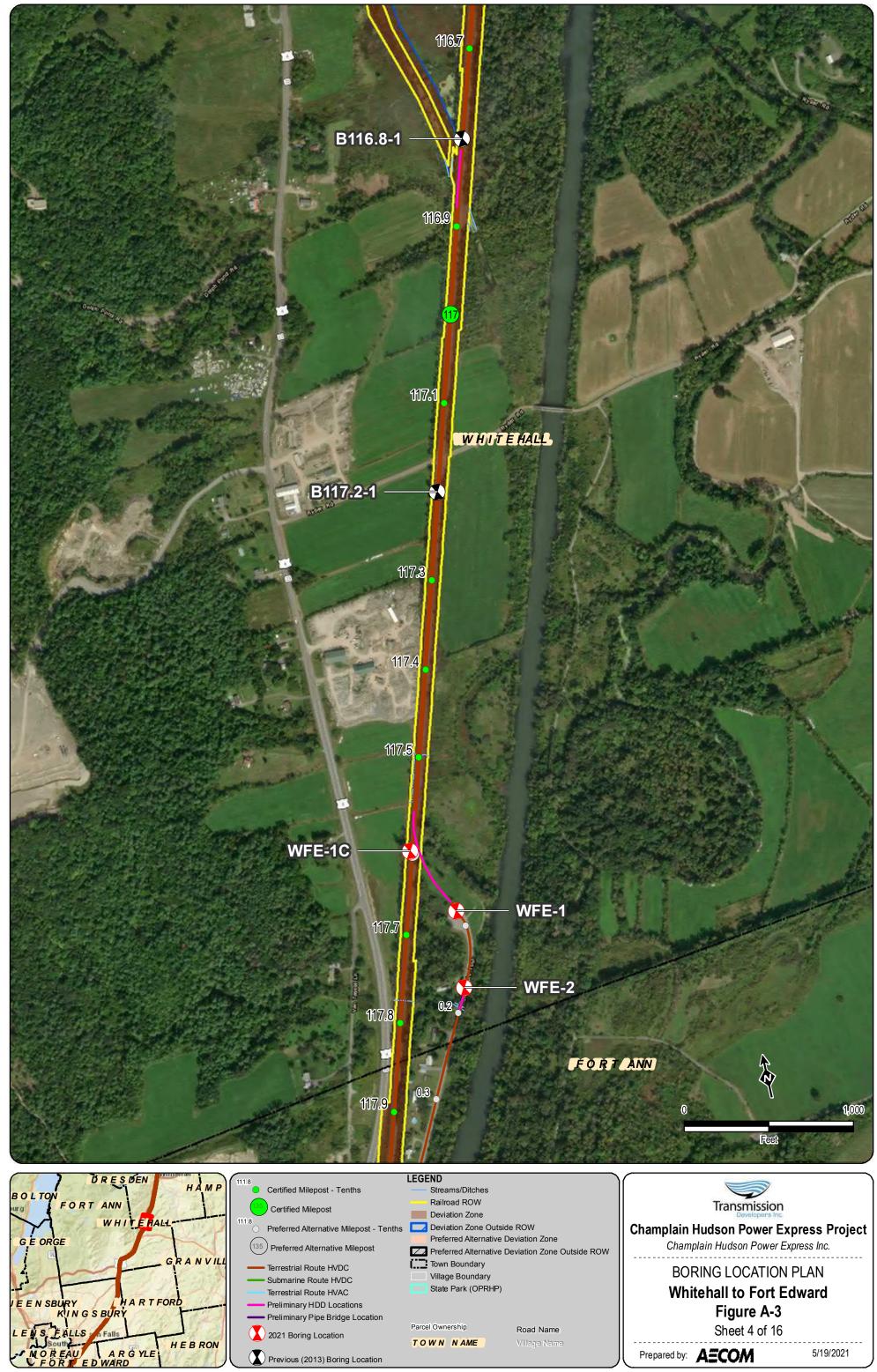

* TRC and S.W. Cole boring coordinates as shown in Table 1-6 in AECOM report (reference below). Boring elevations estimated from November 2021 topographic survey by Williams Aerial.


** AECOM boring coordinates and elevations as shown in Table 1-6 in AECOM report.

*** Kiewit boring coordinates and elevations are noted on the boring logs.

Reference:

AECOM, Geotechnical Data Report, Upland Segments: Putnam Station, Washington County, to Cementon, Green County, NY, Champlain Hudson Power Express, dated May 28, 2021.



Vav

Bedrock

t E

Vav

DATA SOURCES: ESRI, NETWORK MAPPING 2010, NYSDOT, OPRHP, TDI, TRC

	BORING CO	NTRACTOR:												SHEET 1 OF 2
	ADT					1			-					PROJECT NAME: CHPE -
	DRILLER:						λΞ			М				PROJECT NO.: 60323056
	Chris Chaillo	u				-								HOLE NO.: WFE-1
	SOILS ENGI	NEER/GEOLOGIST	:											START DATE: 12/21/2021
	Chris French							BORIN	G LOG					FINISH DATE: 12/21/2021
	LOCATION:	Ft Ann Bypass MF	o - 0.09							1				OFFSET: N/A
GRO	UND WATER	OBSERVATIONS				CAS	SING		IPLER		L BIT	CORE E	ARREL	DRILL RIG: Geoprobe 7822DT
	No water obs	served		California Tricone TYPE Flush Joint Steel Modified Roller Bit								BORING TYPE: SPT		
				SIZE I.D).	4	! "	2	2.5"					BORING O.D.: 4.5"
				SIZE O.	SIZE O.D. 4.5" 3" 37/8"									SURFACE ELEV.:
				HAMME	R WT.	140	lbs	14	0 lbs					LONGITUDE:
D	CORING	SAMPL		HAMME		3	0"	3	30"					LATITUDE:
E P T H	RATE MIN/FT	DEPTHS FROM - TO (FEET)	TYPE AND NO.	PEN. in	REC. in		S PER 6 i QUALITY			N Corr. ⁽²⁾	USCS CLASS.	STRAT. CHNG. DEPTH		FIELD IDENTIFICATION OF SOILS
		0'-5'					Hand C	leared			SM/SP			f-c SAND, little silt, little sub angular gravel, loose,
1.0												ри	moist (f	ill)
2.0												Silty Sand		
2.0										_		Silt		
3.0		3'-5'	S-1											
4.0													3'-4'; Br moist	rown SILT and clay, little f-m sand, medium stiff,
4.0										_				rown f-c SAND, little silt, loose, saturated,
5.0														3.0'-5.0')
6.0		5'-7'	S-2	24"	24"	4	8	9	5	11	СН			LAY and silt, occasional f-c sand laminates, material, stiff, moist
6.0										-			0	
7.0														
		7'-9'	S-3	24"	24"	6	6	6	6	8	СН		Gray sil stiff, mo	Ity CLAY, occasional fine sand laminates, medium bist
8.0										_				8.0'-8.5')
9.0														
10.0		9'-11'	S-4	24"	24"	8	9	9	5	12	СН		Gray sil	Ity CLAY, medium stiff, moist
10.0										_				
11.0												≻		
10.0		11'-13'	S-5	24"	12"	5	6	6	6	8	СН	Silty CLAY	Gray sil	Ity CLAY, medium stiff, moist
12.0										-		Silty		
13.0														
44.0		13'-15'	S-6	24"	20"	8	9	9	9	12	СН		Gray sil	Ity CLAY, brown, mottling, medium stiff, moist
14.0										-				
15.0														
10.0		15'-17'	S-7	24"	24"	5	5	6	8	7	СН		-	Ity CLAY, soft, moist 16.0'-16.5')
16.0										_			IR-3, (10.0 - 10.5)
17.0														
46.6										-				
18.0														
19.0														
20.0														
20.0	 (1) Thick-wall ring lined drive sampler (California sampler) used for SPT samples. Rings dimensions = 2-1/2" O.D. by 2-7/16" I.D. by 6" length. (2) Correction factor: Ncorr=N*(2.0²-1.375²)in./(3.0²-2.4²)in. = N*0.65. 												to show agrees if he fin	ormation contained on this log is not warranted the actual subsurface condition. The contractor that he will make no claims against AECOM ids that the actual conditions do not conform a indicated by this log.
SAMF	LE TYPE:	a nelu						.55 110160		K CORE				
	SAMPLE TYPE: S= SPLIT SPOON U=SHELBY TUBE R=ROCK CORE PROPORTIONS: TRACE=1-10% LITTLE=10-20% SOME=20-35% AND=35								50%					

	BORING CO	NTRACTOR:												SHEET 2 OF 2
	ADT							-	-					PROJECT NAME: CHPE -
	DRILLER:								0	\mathbf{N}				PROJECT NO.: 60323056
	Chris Chaillo	u				-								HOLE NO.: WFE-1
	SOILS ENGI													START DATE: 12/21/2021
	Chris French							BORING	g log					FINISH DATE: 12/21/2021
D	CORING	Ft Ann Bypass MF DEPTHS	TYPE	PEN.	REC.					N	USCS	STRAT.	1	OFFSET: N/A
E P T	RATE MIN/FT	FROM - TO (FEET)	AND NO.	in	in		6 PER 6 ir QUALITY			Corr.		CHNG. DEPTH		FIELD IDENTIFICATION OF SOILS
Ĥ		(1 22 1)	110.				QUALITI	DEGION	Anony					
21.0		20'-22'	S-8	24"	24"	3	8	11	12	12	СН		Gray sil	Ity CLAY, brown mottling, very stiff, moist
22.0														
23.0														
24.0														
25.0										-				
26.0		25'-27'	S-9	24"	24"	WOH	/15"	1	3	1	СН		Gray sil	ilty CLAY, soft, moist
27.0														
28.0														
29.0										-				
30.0												Silty CLAY		
31.0		30'-32'	S-10	24"	24"	\	WOH/17"		2	-	СН	Silty	Gray sil	ilty CLAY, soft, moist
32.0														
33.0														
34.0														
35.0										-				
36.0		35'-37'	S-11	24"	24"	1	WOH/20"		1		СН		Gray sil	ilty CLAY, very soft, moist-wet
37.0														
38.0														
39.0		38'-40'	S-12	24"	24"	\	WOH/18"		1		СН		SAA TR-4; (3	39.0'-39.5')
40.0														
41.0													Boring t	terminated at 40', grouted to surface
42.0														
43.0														
44.0										-				
45.0														
	NOTES:	on represents a field	lidentifica	tion after	D.M. Bur	mieter unles	es otherwi	ise noted					to show agrees if he fin	ormation contained on this log is not warranted v the actual subsurface condition. The contractor that he will make no claims against AECOM nds that the actual conditions do not conform e indicated by this log.
SAMP	LE TYPE:		S= SPLI	F SPOON		U=SHELB	Y TUBE	.se noted.	R=ROCI					
PROP	ORTIONS:		TRACE=	1-10%		LITTLE=10	0-20%		SOME=2	20-35%		AND=3	5-50%	

	BORING CO	NTRACTOR:							SHEET 1 OF 2									
	ADT						-		PROJECT NAME: CHPE -									
	DRILLER:					43			PROJECT NO.: 60323056									
	Chris Chaillo	u			-								HOLE NO.: WFE-1C					
-	SOILS ENGI	NEER/GEOLOGIST								START DATE: 12/10/20								
	Chris French						BORIN		FINISH DATE: 12/10/20									
-		MP- 117.6 (CP Rai	n					-		OFFSET: N/A								
		ROBSERVATIONS	.,			CA	SING	SAM	IPLER	DRI	L BIT	CORE	BARREL	DRILL RIG: Geoprobe 7822DT				
				-				Cali	fornia	Tric	Tricone							
-	Water at 1.5'			TYPE			oint Steel		dified		er Bit							
-				SIZE I.C			4"		2.5" 3"									
-				SIZE O. HAMME			.5") lbs		o Ibs	3	3 7/8"			SURFACE ELEV.: LONGITUDE:				
D	CORING	SAMPLI	=	HAMME			0"		30"					LATITUDE:				
E	RATE	DEPTHS	TYPE	PEN.	REC.		0			N	USCS	STRAT.	Γ					
Р	MIN/FT	FROM - TO	AND	in	in	BLOW	S PER 6	in ON SA	MPLER	Corr.(2)	CLASS.	CHNG.		FIELD IDENTIFICATION OF SOILS				
т		(FEET)	NO.			(ROCK	QUALITY	Y DESIGN	NATION)			DEPTH						
Н							1	1	1				0.01.2.01	Dark brown coarse SAND, little angular-subrounded				
1.0		0'-3'					Hand (Cleared		_	SP			ittle medium-fine sand, trace cobbles				
1.0		0-5					Tiana v				01	le						
2.0												and Gravel	Hand cle	earing stopped, material sloughing in				
												and						
3.0							-			_		Sand	Crowma	edium-coarse SAND, little subangular gravel, little fine				
4.0		3'-5'	S-1	24"	24"	8	2	1	1	2	SP	S		ose, saturated				
4.0													TR-1; (3	0'-5.0')				
5.0													4.5'; Gra	y silty CLAY, trace subangular gravel				
		5'-7'	S-2	24"	6"	4	4	7	5	7	СН		Gray CL wet, stiff	AY and silt, little coarse sand, little subangular gravel;				
6.0													wet, still					
7.0										-								
7.0		7'-9'	S-3	24"	12"	7	9	8	8	11	СН		Light bro	own silty CLAY; very stiff, moist				
8.0																		
													TR-2; (8.0'-8.5')					
9.0		0' 11'	6.4	24"	24"	10	7	6	6	8	СН		Light brown slity CLAY; stiff, moist					
10.0		9'-11'	S-4	24"	24"	12	1	6	6	8	СН		Light bit					
11.0																		
		11'-13'	S-5	24"	24"	7	7	7	6	9	СН	≻	Light bro	t brown silty CLAY; stiff, moist				
12.0			-									CLAY	TR-3: (1	2.0'-12.5')				
13.0												Silty	-7 (/				
		13'-15'	S-6	24"	24"	8	6	4	6	7	СН		Light bro	own silty CLAY; stiff, moist				
14.0																		
15.0										-								
15.0		15'-17'	S-7	24"	24"	7	8	10	10	12	СН		Light bro	own silty CLAY; soft to stiff, increasing stiffness with				
16.0						Ŀ				1			depth, m					
1																		
17.0																		
18.0										-								
10.0						1												
19.0																		
1																		
20.0	NOTES									l	l	I	TL · ·					
	NOTES: (1) Thick-wall ri	ing lined drive sampler	sampler) u	sed for SP	T samples	Rinas dime	ensions = 2	2-1/2" O D I	by 2-7/16"	ID by 6" le	enath		rmation contained on this log is not warranted the actual subsurface condition. The contractor					
		actor: Ncorr=N*(2.0 ² -1.3					<u>g</u> _ a		5.2.1	,	-, 0 10	5		o show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM				
														if he finds that the actual conditions do not conform				
	0-1-4		late a CE										to those	indicated by this log.				
CAN												I						
	PLE TYPE: PORTIONS:		S= SPLI TRACE=	T SPOON =1-10%		LITTLE=	BY TUBE 10-20%		SOME=2	K CORE 20-35%		AND=3	5-50%					
	2		070			//		CONL-4	0 00 /0									

	BORING CO	NTRACTOR:											SHEET 2 OF 2
	ADT							-	PROJECT NAME: CHPE -				
	DRILLER:						4	=(PROJECT NO.: 60323056				
	Chris Chaillo							HOLE NO.: WFE-1C					
	SOILS ENGI							BORIN	START DATE: 12/10/20				
	Chris French	MP- 117.6 (CP Rai	il)					BURIN	FINISH DATE: 12/10/20 OFFSET: N/A				
D	CORING	DEPTHS	TYPE	PEN.	REC.					Ν	USCS	STRAT.	
E P T	RATE MIN/FT	FROM - TO (FEET)	AND NO.	in	in		'S PER 6 (QUALIT			Corr.	CLASS.	CHNG. DEPTH	FIELD IDENTIFICATION OF SOILS
Ĥ		()				(don En	. 520.0				52	
21.0		20'-22'	S-8	24"	24"	2	3	5	8	5	СН		Gray silty CLAY; soft to stiff, increasing stiffness with depth, moist
22.0													
23.0													
24.0													
25.0													
26.0		25'-27'	S-9	24"	24"	4	6	14	17	13	СН		Gray silty CLAY; soft-medium stiff, stiffness increasing with depth, wet
27.0													
28.0													
29.0													
30.0			0.40	0.4	0.41		_	_		_	0.1	Silty CLAY	Gray silty CLAY, soft-medium stiff, increasing stiffness with
31.0		30'-32'	S-10	24"	24"	2	5	5	9	7	СН	Silt	depth, moist
32.0													
33.0													
34.0													
35.0		35'-37'	S-11	24"	24"	3	3	6	10	6	СН		SAA
36.0							-						TR-4; (36.0'-36.5')
37.0													
38.0		38'-40'	S-12	24"	24"	2	5	8	10	8	СН		SAA
39.0													
40.0													EOB at 40', borehole grouted
41.0													
42.0													
43.0													
44.0													
45.0	NOTES:												The information contained on this los is not warrant -
Soil description represents a field identification after D.M. Burmister unless otherwise noted.												The information contained on this log is not warranted to show the actual subsurface condition. The contractor agrees that he will make no claims against AECOM if he finds that the actual conditions do not conform to those indicated by this log.	
SAMF	PLE TYPE: PORTIONS:		S= SPLI TRACE=	T SPOON			BY TUBE		R=ROCH SOME=2			AND=3	• • •
1 10	SITTONS.		INACE=	1-10/0		201126	10-20/0		JOINL=2	/0			0070

Aquifer CHPE- Whitehall-Ft. Edward Borings LABORATORY SOIL TESTING DATA SUMMARY

BORING	SAMPLE	DEPTH	IDENTIFICATION TESTS									
			WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDROMETER	ORGANIC		
NO.	NO.		CONTENT	LIMIT	LIMIT	INDEX	SYMB.	MINUS	% MINUS	CONTENT		
							(1)	NO. 200	2 µm	(burnoff)		
		(ft)	(%)	(-)	(-)	(-)		(%)	(%)	(%)		
WFE-1A	S-2	5-7	24.4	44	17	27	CL	93	39			
WFE-1A	S-5	11-13	43.0	68	23	45	СН	99.8	84			
WFE-1C	S-3	7-9	44.5				СН	99.3	86			
WFE-1C	S-7	15-17	44.5	78	27	51	СН	100	94			
WFE-1C	S-10	30-32	45.7	61	23	38	СН	100	87			
WFE-2	S-2	5-7	7.3				SW-SM	10.7	3			
WFE-2	S-7	15-17	26.0				SC	28.5	13			
WFE-2	S-9	25-27	66.0	71	26	45	СН	100	90			
WFE-4	S-2	5-7	18.0				SC	34	13			
WFE-4	S-4	9-11	18.3				SM	17	5			
WFE-5	S-2	5-7	19.9				SM	19	3			
WFE-5	S-4	9-11	18.6	28	15	13	CL	91	28			
WFE-6A	S-2	5-7	13.6				SP-SC	9	3			
WFE-6A	S-4	9-11	17.4				SP-SM	7	2			
WFE-8	S-3	6-8	24.9				SC	48.5	12			
WFE-8	S-4	8-10	88.5	128	53	75	MH	94	43			
WFE-10	S-2	5-7	38.0	71	24	47	СН	94	76			
WFE-10	S-4	9-11	22.5				CL	83.9	32			
WFE-12	S-2	5-7	23.5	49	20	29	CL	62.5	35			
WFE-12	S-4	9-11	28.3				CL	95.8	37			
WFE-14	S-3	7-9	25.7				CL	75.7	44			
WFE-14	S-5	13-15	22.5				ML	53.9	17			
WFE-16	S-3	7-9	36.7	75	25	50	СН	100	90			
WFE-16	S-9	25-27	37.1	73	24	49	СН	100	80			
WFE-18	S-3	7-9	229.7	293	93	200	OH	58	43	34.1		
WFE-18	S-8	20-22	34.3	30	21	9	CL	95	26			
WFE-18	S-10	30-32	64.3	56	21	35	СН	100	87			
WFE-18A	S-2	5-7	19.9	30	13	17	CL	88.5	29			
WFE-18A	S-7	15-17	18.9				SM	14.3	1			
WFE-18A	S-10	30-32	62.9	62	22	40	СН	99	86			
WFE-19A	S-3	7-9	38.1				SP-SM	8	3			
WFE-19A	S-8	20-22	31.8				SP-SM	8.3	2			
WFE-19A	S-10	30-32	17.6				SW-SM	8	1			
Mater	(4) 1100							ما ۸۸۸ م	and Buside name			

Note:

(1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

COBBLES GRAVEL SA						SAND SILT or CLAY								Symbol		\diamond	0				
	CC	DARSE		FINE	СО	ARSE	MEDI	JM	FINE									Boring	WFE-1C	WFE-1C	WFE-1C
		=			-													Sample	S-3	S-7	S-10
	-	1/2	' 4"	.8		10	00	5 64 2	100 felo	140 1200								Depth	7-9	15-17	30-32
100	⁰╥╋╤	. 0 . (⇒¢∂-	• @	(P)	<u>, ₹</u>		ð						*	-	.		% +3"	0	0	0
										-11			;∎-∎'		† P -j			% Gravel	0	0	0
90	0 	++				+ +						+		╫╫	$\left\{ \right\}$			% SAND	0.7	0	0
		++				+ $+$						+	1					%C SAND	0	0	0
80	o 	++				+ $+$						+			$\left \right $			%M SAND	0.3	0	0
		++				+ $+$											+	%F SAND	0.4	0	0
높 70	0 	++		<u> </u>		+ +						+		╫╫	┼┼┤			% FINES	99.3	100	100
DFRCENT PASSING BY WEIGHT		++				+ +			+ + -			-	1				+	D ₁₀₀ (mm)	2	4.75	2
≥ ₆₀	o 	++	_			+ +						—		╢╢	$\left \right $		+	D ₆₀ (mm)			
B		++	_	<u> </u>		+ +						-			Hİ		<u> </u>	D ₃₀ (mm)			
U Z 50	o 	++				+ +									$\left \right $			D ₁₀ (mm)			
SS		++				+ +											<u>+</u>	Сс			
40 d	o 	++	_			+ $+$ $+$						_	<u>i</u>		111		<u> </u>	Cu			
L.		++				+ +											+	Sieve			
D 30															Size/ID #	Percent Finer Data					
PEI						+ $+$							<u>i</u>					6"	100.0	100	100.0
20	o 	++	_	<u> </u>		+ $+$						_					+	4"	100.0	100	100.0
			_			+ $+$							-					3"	100.0	100	100.0
10	o 	44	_			+ $+$				_		4		╢╟			4	1 1/2"	100.0	100	100.0
		44		[İ						-111		<u> </u>	<u>i</u>					1"	100.0	100	100.0
0	₀∔ішііі											Ì	ł					3/4"	100.0	100	100.0
	100			10			1	0.1 0.01 0.001									1/2"	100.0	100	100.0	
							•										3/8"	100.0	100	100.0	
Open S	Symbols: Si	ieve ar	nalysis	s by AS	67M D691	3												#4	100.0	100	100.0
Filled sy		/drome	eter ar	nalysis	by ASTM	D7928 c	orrecte	ed for complete sample								#10	100.0	100	100.0		
SYMBOL	w (%)	LL	PL	PI	USCS	AAS	HTO		USCS D	ESCR	IPTION		REM/	ARKS			DATE	#20	99.9	100	100.0
	44.5				СН			Brown	Fat clay								03/29/21	#40	99.7	100	100.0
-	11.0							J. 5 WH,	. at only								00,20,21	#60	99.6	100	100.0
\diamond	44.5	78	27	51	СН			Gray, F	at clav								03/29/21	#100	99.4	100	100.0
~	11.0	.0	-'					J. G. y, 1	at only								00,20,21	#140	99.4	100	100.0
O 45.7 61 23 38 CH Gray, Fat clay												03/26/21	#200	99.3	100	100.0					
						<i>2</i> ,, 1	00/20/21								5μ m	96	99	100			
Aquifer														2μ m	86	94	87				
						CHPE- Whitehall-Ft. Edward Borings								1μ m	78	81	71				
👖 Terra	aSens	e, Ll	LC		#7853-	-21003		Ŭ								PARTICLE SIZE DISTRIBUTION ASTM D6913 & ASTM D7928					
erraSense Analysis File: GrainSizeV6Rev1a14																		AS I WI D69		sx 4/30/202 ⁻	

TerraSense Analysis File: GrainSizeV6Rev1a14

Appendix D

BoreAid HDD Simulation Output

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

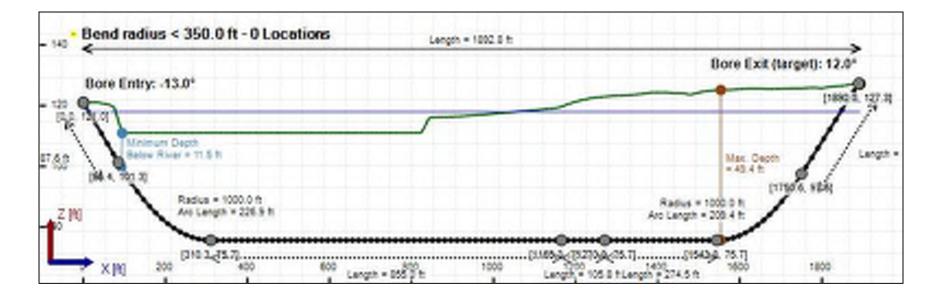
Project Summary

General:	CHPE HDD 3 - Conduit 1 P1C Start Date: 12-10-2021 End Date: 12-10-2021
Project Owner: Project Contractor: Project Consultant:	TDI KIE CHA/BCE
Designer:	AB CHA
Description:	HDD 3 10-inch DR 9 - Conduit 1

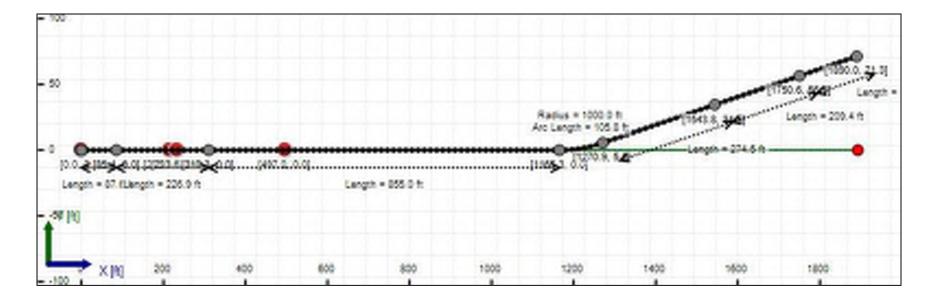
Input Summary

Start Coordinate	(0.00, 0.00, 121.00) ft
End Coordinate	(1892.80, 0.00, 127.20) ft
Project Length	1892.80 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Gravel (G), GP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 5.56 [psi]

Soil Layer #3 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1904.99 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 3.32999992370605 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.0	22.6
Water Pressure	18.4	18.3
Surface Surcharge	3.3	3.3
Internal Pressure	0.0	0.0
Net Pressure	34.4	40.9
Deflection		
Earth Load Deflection	4.358	6.151
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	4.490	6.283
Compressive Stress [psi]		
Compressive Wall Stress	154.6	184.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	32810.7	32810.7
Pullback Stress [psi]	915.0	915.0
Pullback Strain	1.591E-2	1.591E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	915.0	938.2
Tensile Strain	1.591E-2	1.677E-2

Net External Pressure = 25.4 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.490	7.5	1.7	OK
Unconstrained Collapse [psi]	34.4	92.5	2.7	OK
Compressive Wall Stress [psi]	154.6	1150.0	7.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	43.9	198.5	4.5	OK
Tensile Stress [psi]	938.2	1200.0	1.3	OK

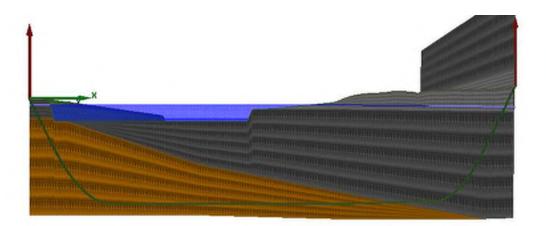
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	71.182 psi	64.599 psi
1	8.00 in	12.00 in	71.158 psi	64.566 psi
2	12.00 in	16.13 in	71.123 psi	64.519 psi

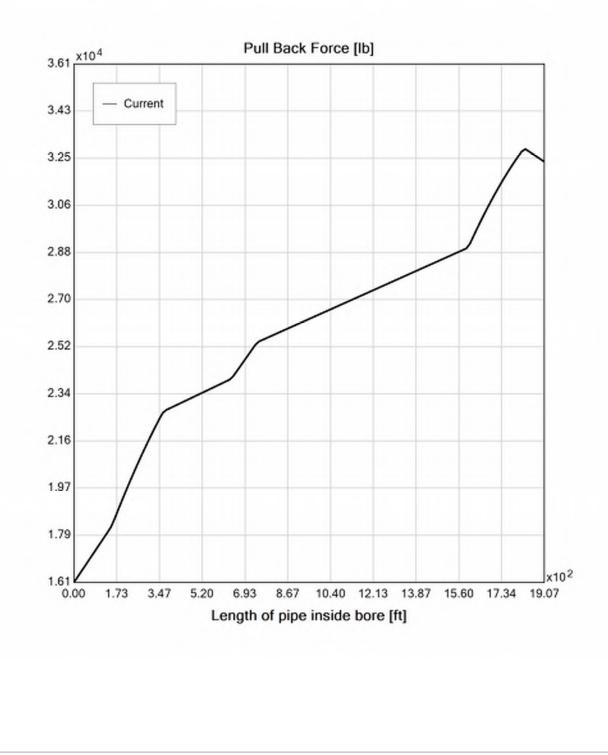
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

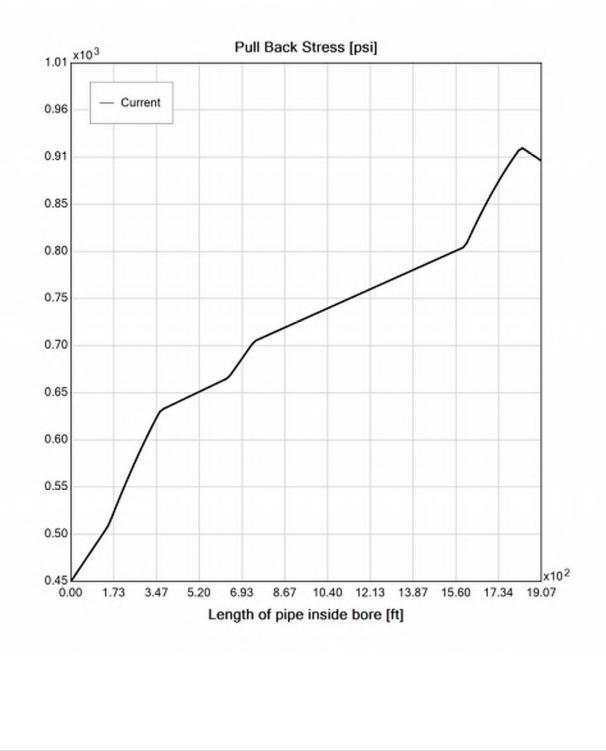
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

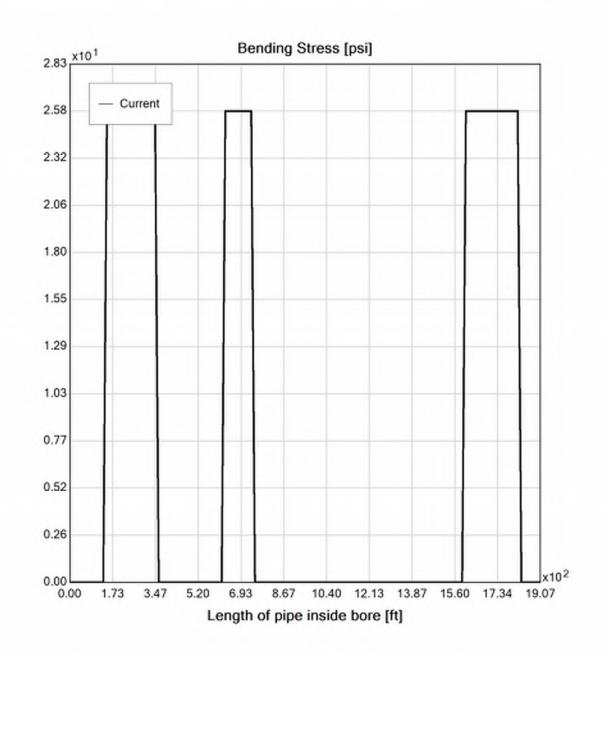

Flow Rate (Q): 40.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

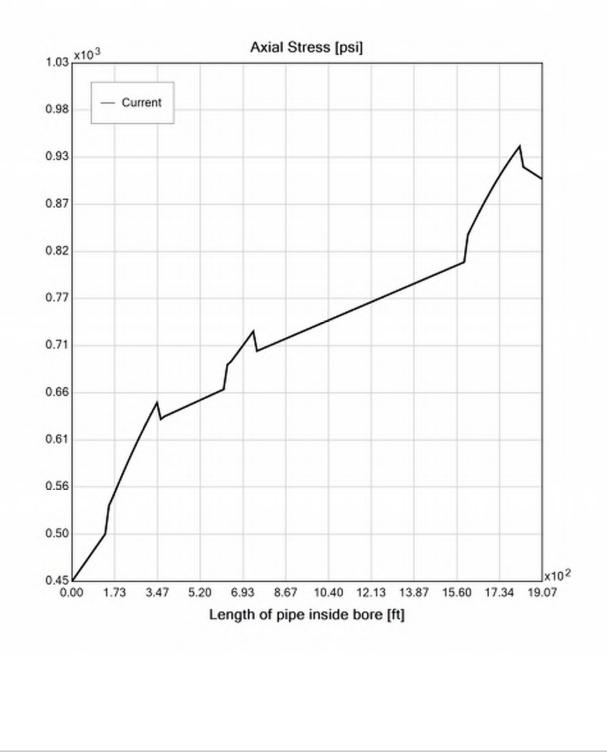
Fluid Consistency Index (K): 63.17

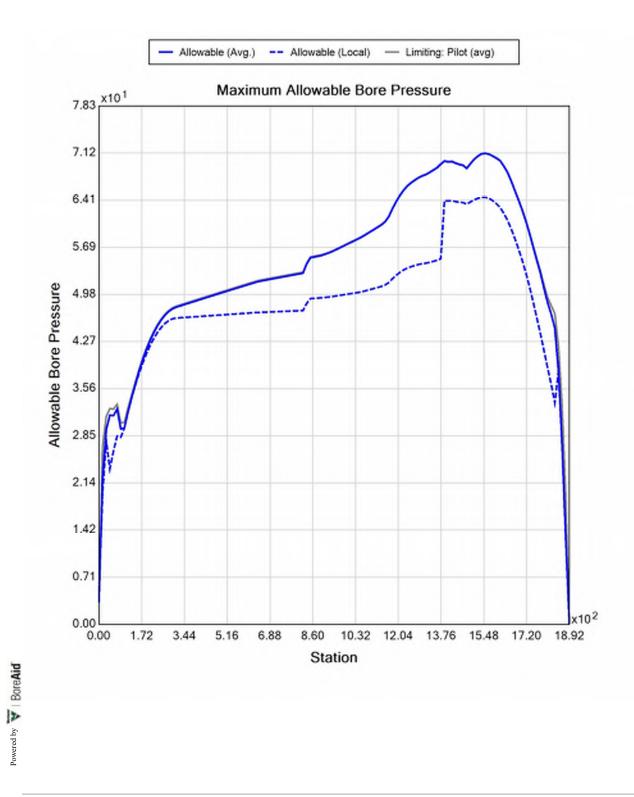

Power Law Exponent (n): 0.14

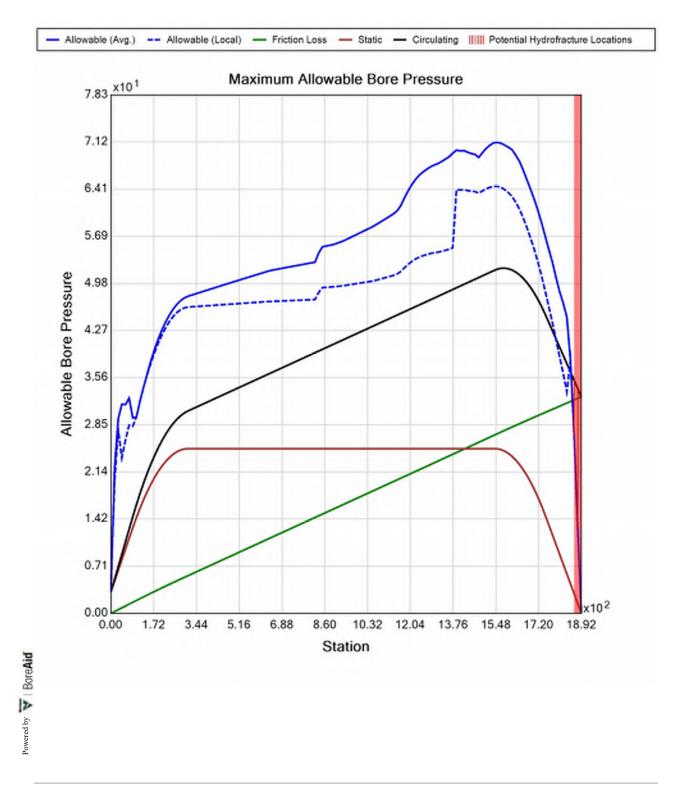
Effective Viscosity (cP): 859.3


Virtual Site






Powered by 🐺 | BoreAid



Powered by 🐺 | Bore Aid

Powered by 🐺 | BoreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 121.00) ft
End Coordinate	(1892.80, 0.00, 127.20) ft
Project Length	1892.80 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1904.99 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 3.32999992370605 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.0	22.6
Water Pressure	18.4	18.3
Surface Surcharge	3.3	3.3
Internal Pressure	0.0	0.0
Net Pressure	34.4	40.9
Deflection		
Earth Load Deflection	4.358	6.151
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	4.388	6.180
Compressive Stress [psi]		
Compressive Wall Stress	154.6	184.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1711.1	1711.1
Pullback Stress [psi]	977.7	977.7
Pullback Strain	1.700E-2	1.700E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	977.7	980.8
Tensile Strain	1.700E-2	1.716E-2

Net External Pressure = 25.4 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.388	7.5	1.7	OK
Unconstrained Collapse [psi]	34.4	93.3	2.7	OK
Compressive Wall Stress [psi]	154.6	1150.0	7.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	43.9	195.9	4.5	OK
Tensile Stress [psi]	980.8	1200.0	1.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

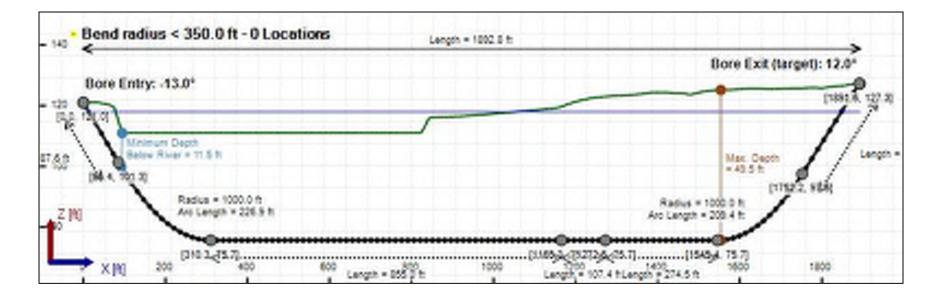
Project Summary

General:	CHPE HDD 3 - Conduit 2 P1C Start Date: 12-10-2021 End Date: 12-10-2021
Project Owner: Project Contractor: Project Consultant:	TDI KIE CHA/BCE
Designer:	AB CHA
Description:	HDD 3 10-inch DR 9 - Conduit 2

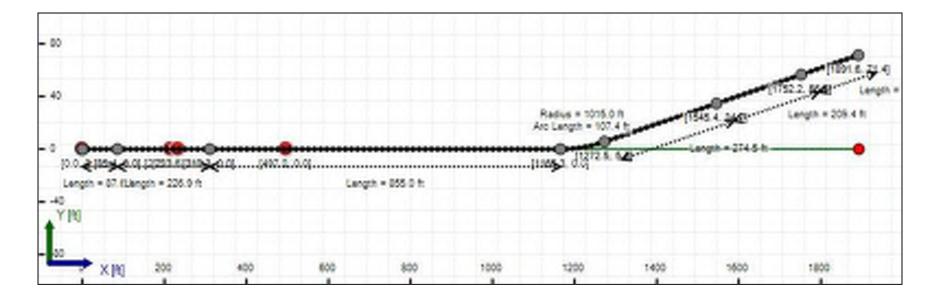
Input Summary

Start Coordinate	(0.00, 0.00, 121.00) ft
End Coordinate	(1892.80, 0.00, 127.20) ft
Project Length	1892.80 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Gravel (G), GP From Assistant Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 145.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 5.56 [psi]

Soil Layer #3 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 145.00, Coh: 3.13 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1905.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 3.32999992370605 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.0	22.6
Water Pressure	18.4	18.3
Surface Surcharge	3.3	3.3
Internal Pressure	0.0	0.0
Net Pressure	34.4	40.9
Deflection		
Earth Load Deflection	4.358	6.152
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	4.490	6.284
Compressive Stress [psi]		
Compressive Wall Stress	154.6	184.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	32786.4	32786.4
Pullback Stress [psi]	914.4	914.4
Pullback Strain	1.590E-2	1.590E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	914.4	937.6
Tensile Strain	1.590E-2	1.675E-2

Net External Pressure = 25.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.490	7.5	1.7	OK
Unconstrained Collapse [psi]	34.4	92.5	2.7	OK
Compressive Wall Stress [psi]	154.6	1150.0	7.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	43.6	198.6	4.6	OK
Tensile Stress [psi]	937.6	1200.0	1.3	OK

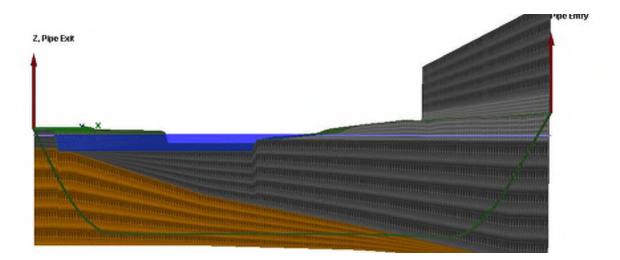
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	71.193 psi	64.610 psi
1	8.00 in	12.00 in	71.169 psi	64.578 psi
2	12.00 in	16.13 in	71.134 psi	64.531 psi

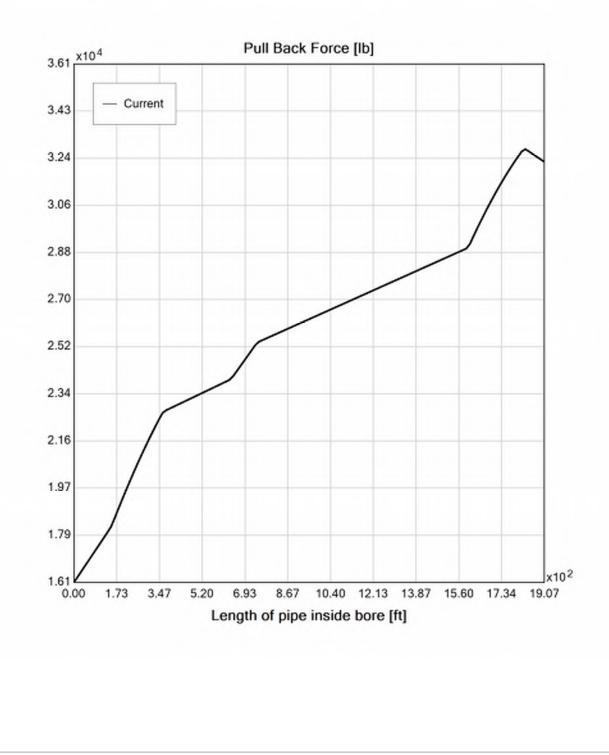
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary

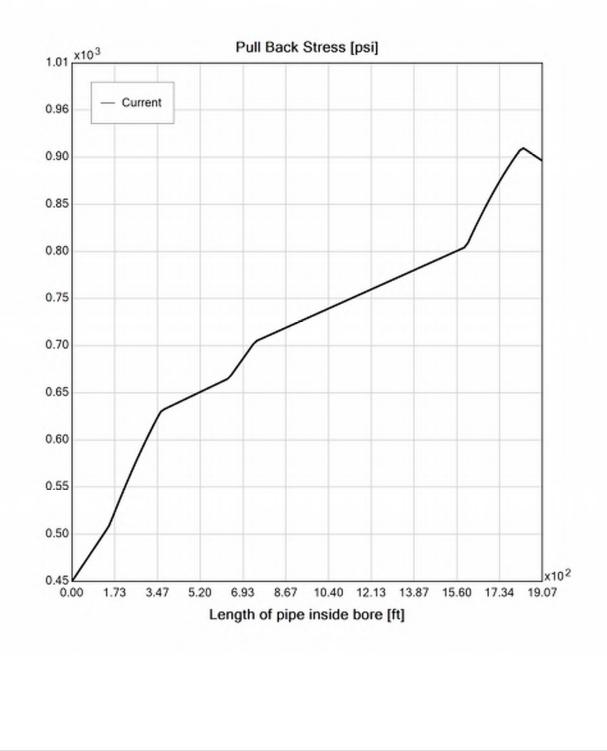
Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

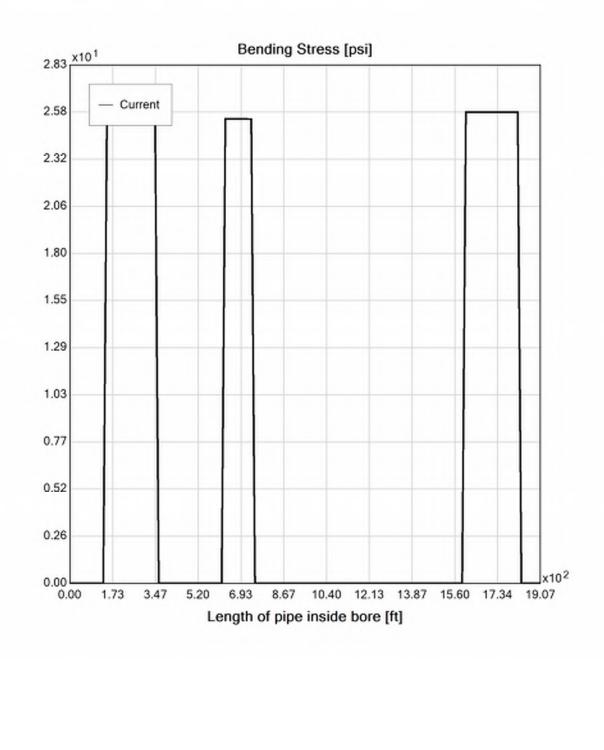

Flow Rate (Q): 40.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Power-Law

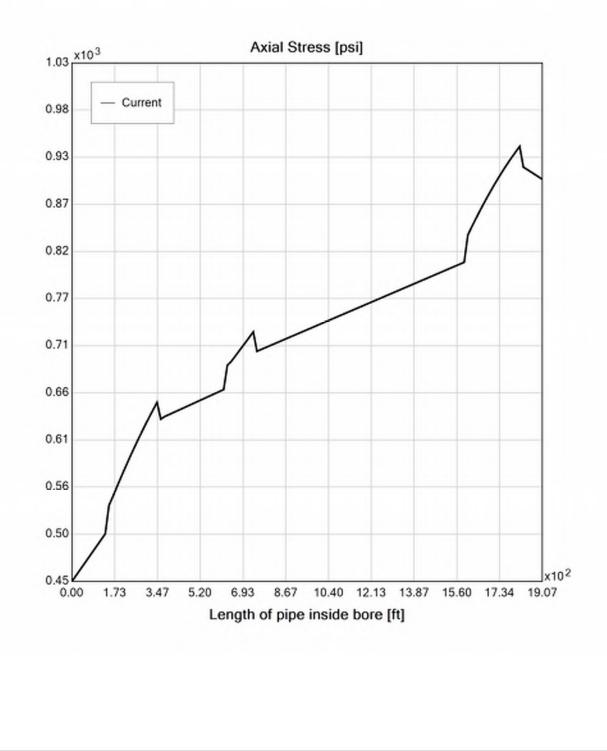
Fluid Consistency Index (K): 63.17


Power Law Exponent (n): 0.14

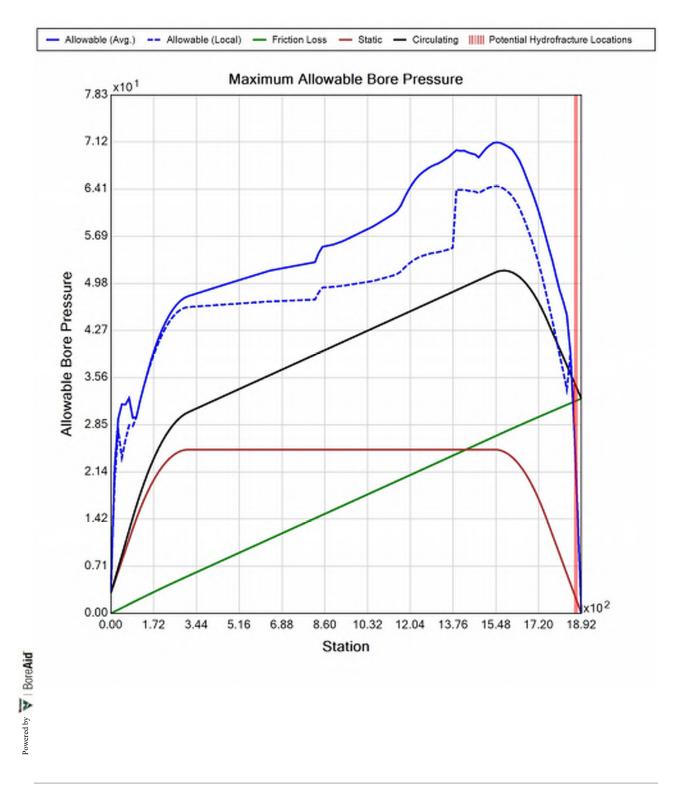
Effective Viscosity (cP): 859.3


Virtual Site





Powered by 🐺 | BoreAid



Powered by 🐺 | Bore Aid

Powered by 🐺 | BoreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 121.00) ft
End Coordinate	(1892.80, 0.00, 127.20) ft
Project Length	1892.80 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1905.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 3.32999992370605 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.0	22.6
Water Pressure	18.4	18.3
Surface Surcharge	3.3	3.3
Internal Pressure	0.0	0.0
Net Pressure	34.4	40.9
Deflection		
Earth Load Deflection	4.358	6.152
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	4.388	6.181
Compressive Stress [psi]		
Compressive Wall Stress	154.6	184.2

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1709.9	1709.9
Pullback Stress [psi]	977.0	977.0
Pullback Strain	1.699E-2	1.699E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	977.0	980.1
Tensile Strain	1.699E-2	1.714E-2

Net External Pressure = 25.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.388	7.5	1.7	OK
Unconstrained Collapse [psi]	34.4	93.3	2.7	OK
Compressive Wall Stress [psi]	154.6	1150.0	7.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	43.6	196.0	4.5	OK
Tensile Stress [psi]	980.1	1200.0	1.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD #4
	P1C
	Start Date: 03-01-2022
	End Date: 03-01-2022
Project Owner:	TDI
Project Owner: Project Contractor:	TDI Kiewit
Project Contractor:	Kiewit

Description:

HDD 4 10-inch DR 9

Powered by 🐺 | Bore Aid

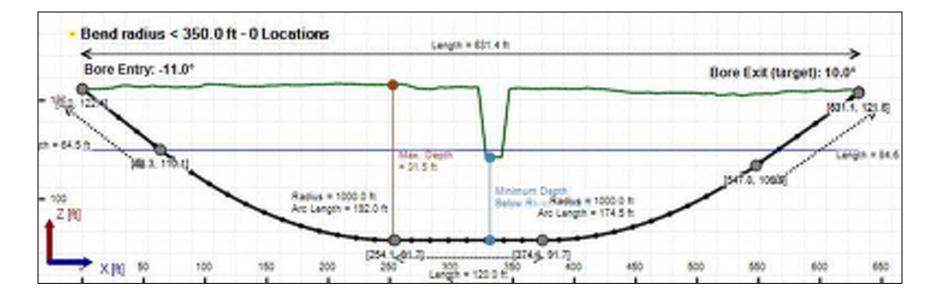
Input Summary

Start Coordinate	(0.00, 0.00, 122.36) ft
End Coordinate	(631.40, 0.00, 121.70) ft
Project Length	631.40 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

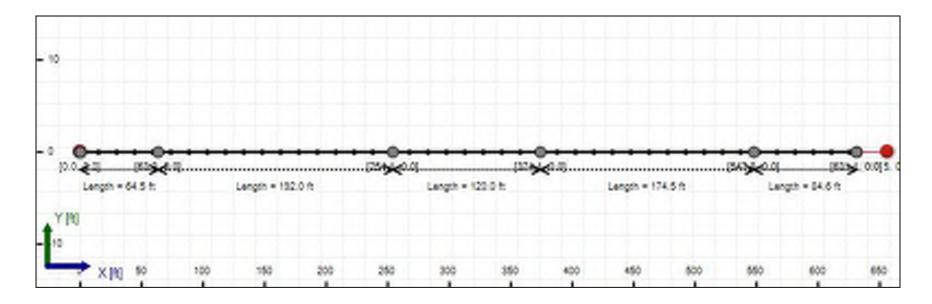
Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Gravel (G), GM Depth: 6.00 ft Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 37.00, S.M.: 1000.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Silt (M), ML Depth: 2.00 ft Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 50.00, Coh: 4.40 [psi]

Soil Layer #3 USCS, Clay (C), CH Depth: 15.50 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]


Soil Layer #4 USCS, Clay (C), CH Depth: 6.50 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #5 USCS, Clay (C), CH Depth: 10.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 645.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.8	14.8
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.7	22.7
Deflection		
Earth Load Deflection	1.845	4.036
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.978	4.168
Compressive Stress [psi]		
Compressive Wall Stress	66.2	102.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11031.9	11031.9
Pullback Stress [psi]	307.7	307.7
Pullback Strain	5.351E-3	5.351E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	307.7	332.6
Tensile Strain	5.351E-3	6.232E-3

Net External Pressure = 18.0 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.978	7.5	3.8	OK
Unconstrained Collapse [psi]	20.5	115.7	5.6	OK
Compressive Wall Stress [psi]	66.2	1150.0	17.4	OK

Installation Analysis

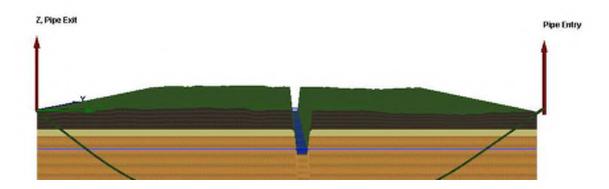
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	30.5	237.4	7.8	OK
Tensile Stress [psi]	332.6	1200.0	3.6	OK

Maximum Allowable Bore Pressure Summary

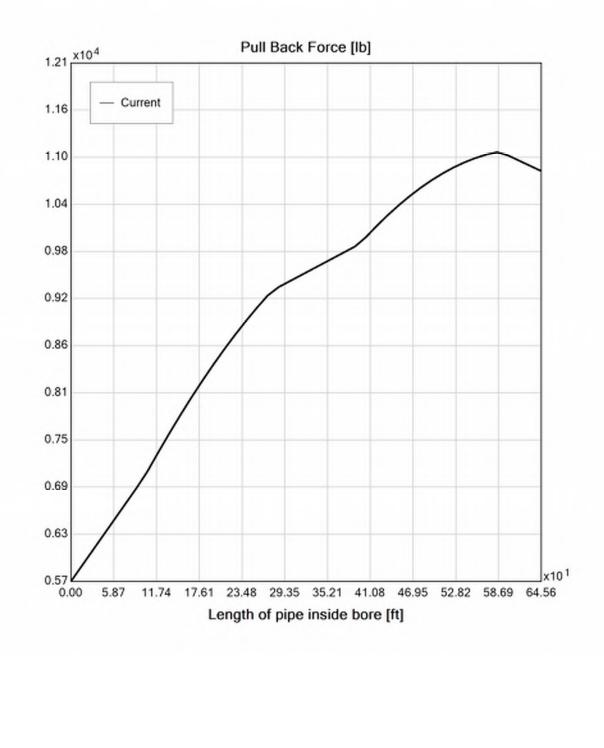
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	61.383 psi	48.194 psi
1	8.00 in	12.00 in	61.145 psi	44.345 psi
2	12.00 in	16.13 in	60.810 psi	43.969 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

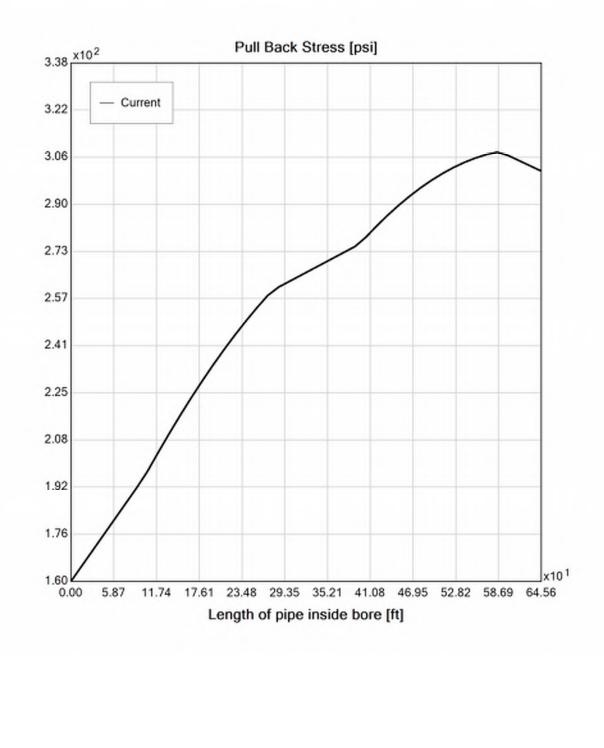
Estimated Circulating Pressure Summary

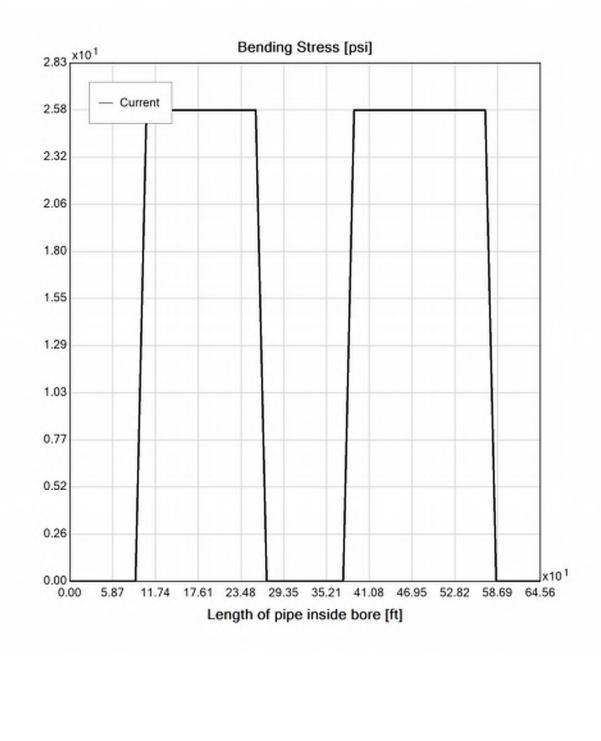

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

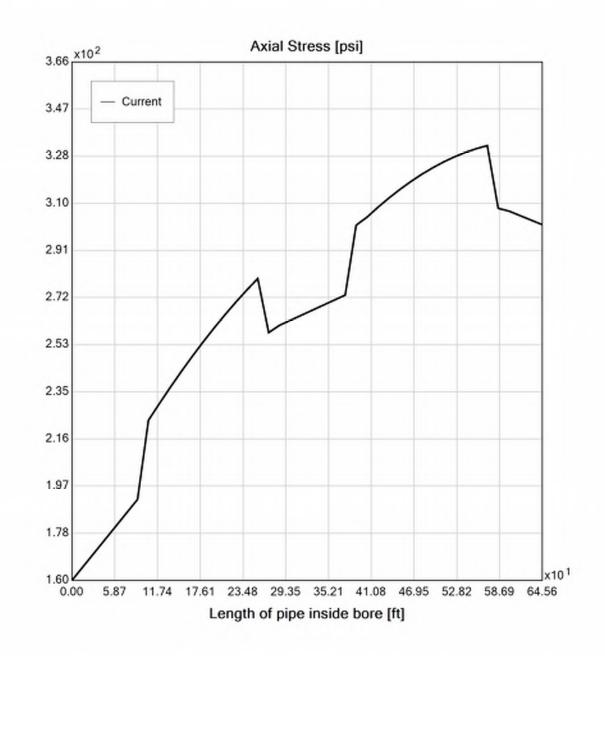
Flow Rate (Q): 40.00 US (liquid) gallon/min
Drill Fluid Density: 68.700 lb/ft3
Rheological model: Bingham-Plastic
Plastic Viscosity (PV): 25.53

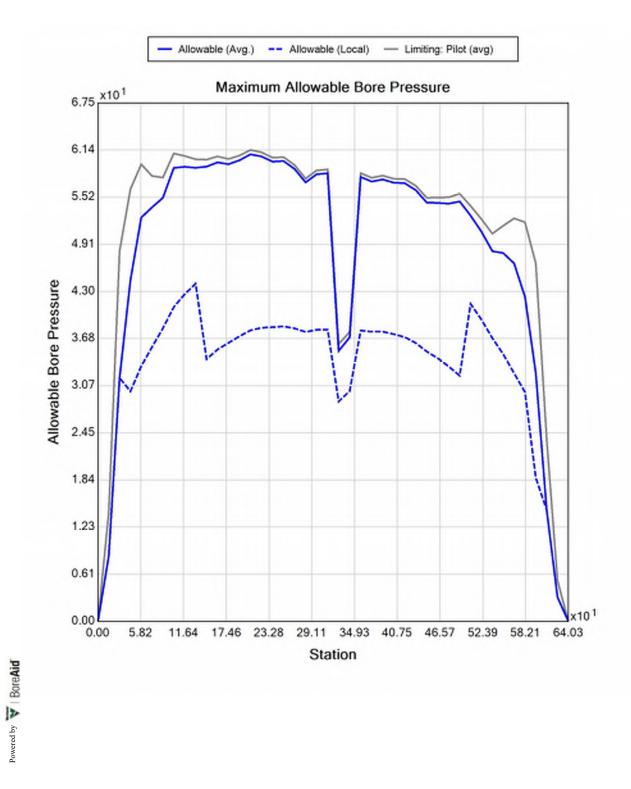

Yield Point (YP): 16.49

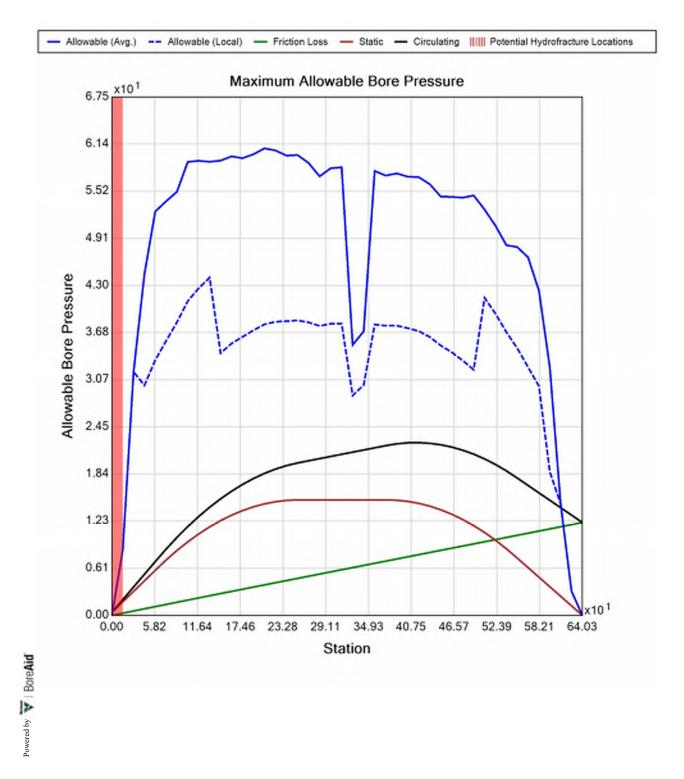
Effective Viscosity (cP): 1202.0


Virtual Site




Powered by 🐺 | BoreAid


Powered by 🐺 | BoreAid



Powered by 🐺 | BoreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 122.36) ft
End Coordinate	(631.40, 0.00, 121.70) ft
Project Length	631.40 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 645.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.8	14.8
Water Pressure	7.9	7.9
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.7	22.7
Deflection		
Earth Load Deflection	1.845	4.036
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.875	4.065
Compressive Stress [psi]		
Compressive Wall Stress	66.2	102.3

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	648.1	648.1
Pullback Stress [psi]	370.3	370.3
Pullback Strain	6.440E-3	6.440E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	370.3	375.2
Tensile Strain	6.440E-3	6.623E-3

Net External Pressure = 18.0 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.875	7.5	4.0	OK
Unconstrained Collapse [psi]	20.5	116.7	5.7	OK
Compressive Wall Stress [psi]	66.2	1150.0	17.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	30.5	235.8	7.7	OK
Tensile Stress [psi]	375.2	1200.0	3.2	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

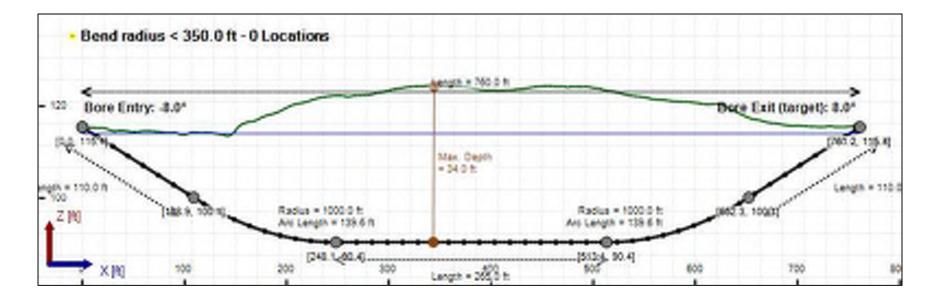
Project Summary

General:	CHPE HDD 4A Conduit 1	
	P1C	
	Start Date: 02-28-2022	
	End Date: 02-28-2022	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	CHA/BCE	
Designer:		
Description:	HDD 4A 10-inch DR 9 Conduit 1	

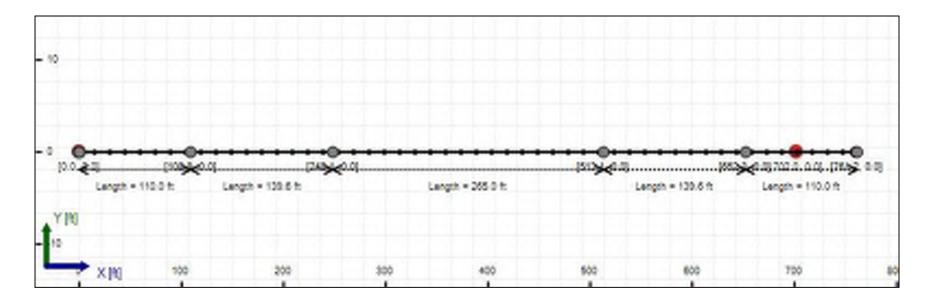
Input Summary

Start Coordinate	(0.00, 0.00, 115.42) ft
End Coordinate	(760.00, 0.00, 115.33) ft
Project Length	760.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Gravel (G), GM Depth: 4.00 ft Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 100.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL Depth: 8.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Clay (C), CH Depth: 30.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 8.70 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 765.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.1	16.1
Water Pressure	10.2	10.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	26.3	26.3
Deflection		
Earth Load Deflection	4.375	4.375
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	4.507	4.507
Compressive Stress [psi]		
Compressive Wall Stress	118.4	118.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12209.5	12209.5
Pullback Stress [psi]	340.5	340.5
Pullback Strain	5.922E-3	5.922E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	340.5	364.1
Tensile Strain	5.922E-3	6.780E-3

Net External Pressure = 18.2 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.507	7.5	1.7	OK
Unconstrained Collapse [psi]	26.3	92.3	3.5	OK
Compressive Wall Stress [psi]	118.4	1150.0	9.7	OK

Installation Analysis

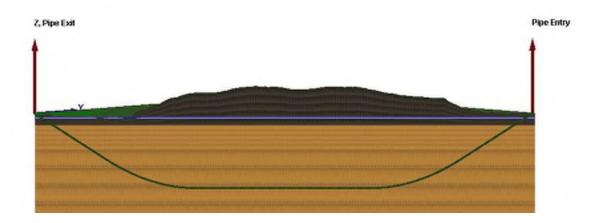
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	26.3	235.2	8.9	OK
Tensile Stress [psi]	364.1	1200.0	3.3	OK

Maximum Allowable Bore Pressure Summary

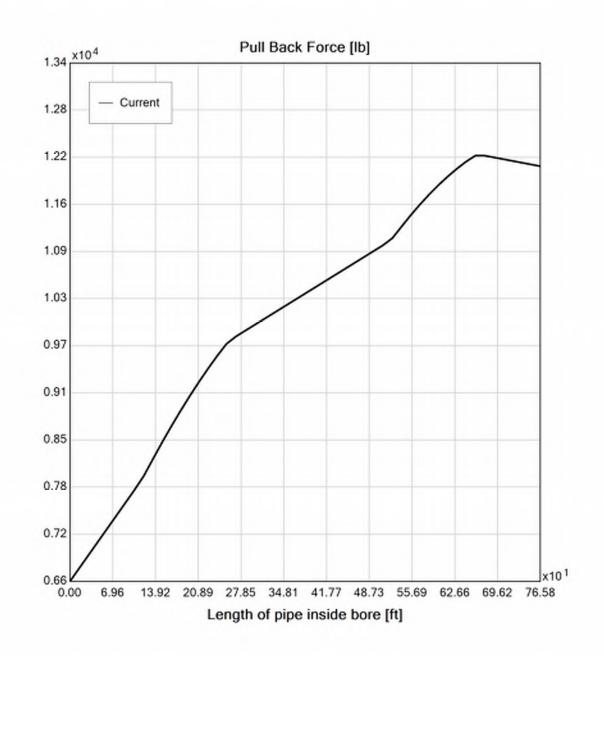
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	48.848 psi	62.218 psi
1	8.00 in	12.00 in	48.772 psi	62.123 psi
2	12.00 in	16.13 in	48.663 psi	61.987 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

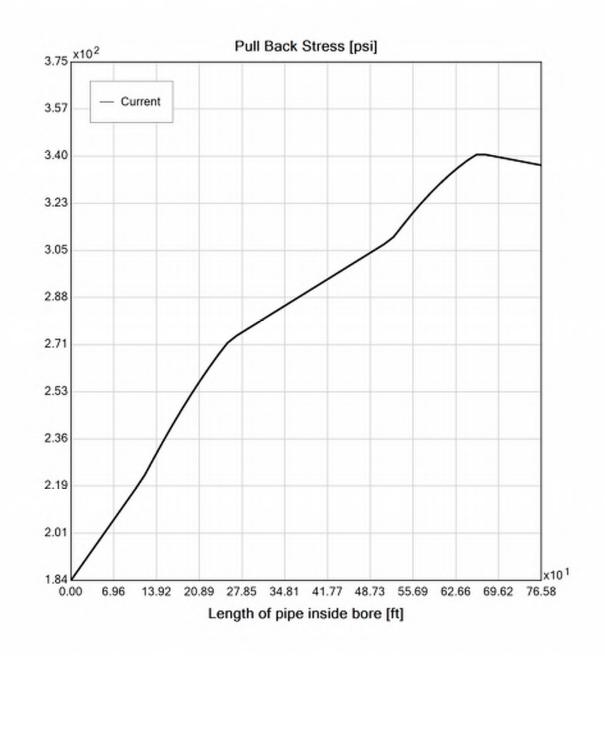
Estimated Circulating Pressure Summary

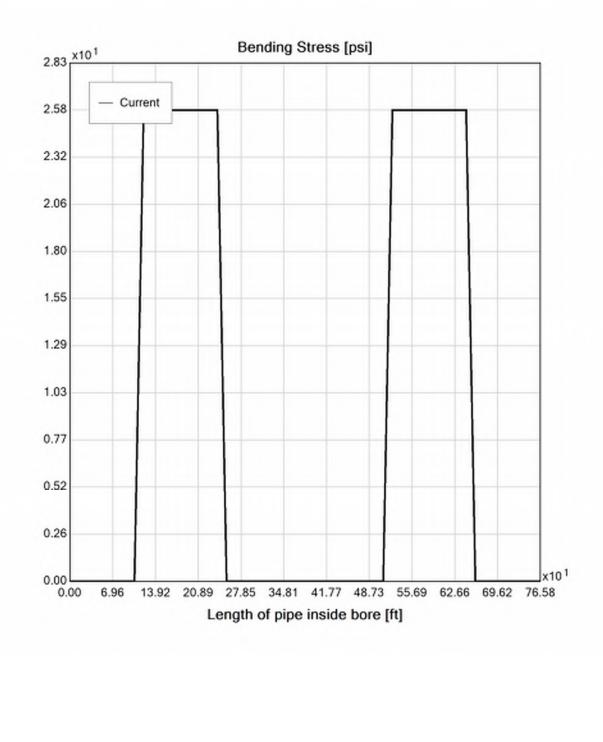

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

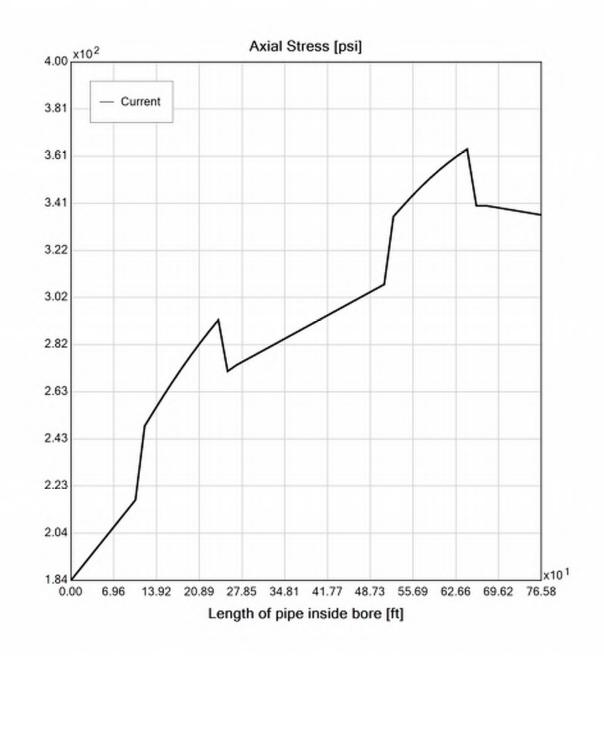
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

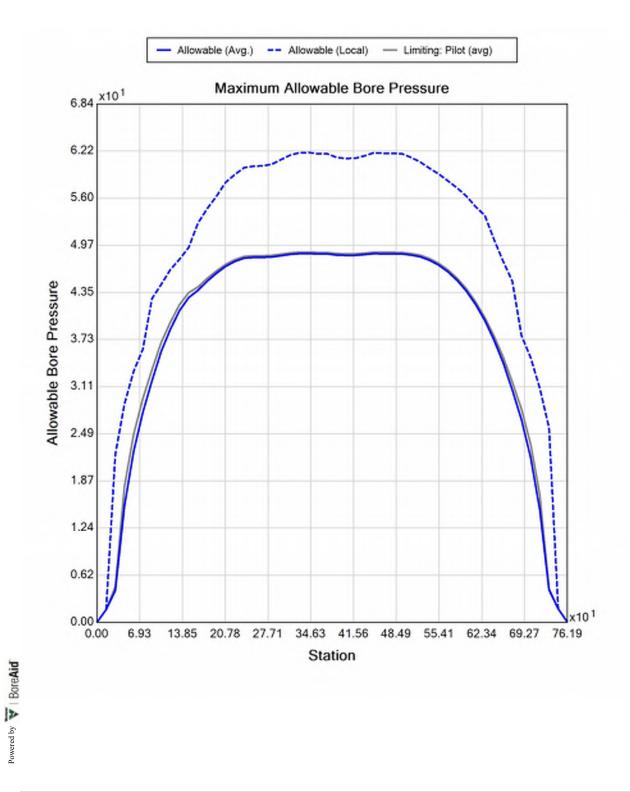

Yield Point (YP): 16.49

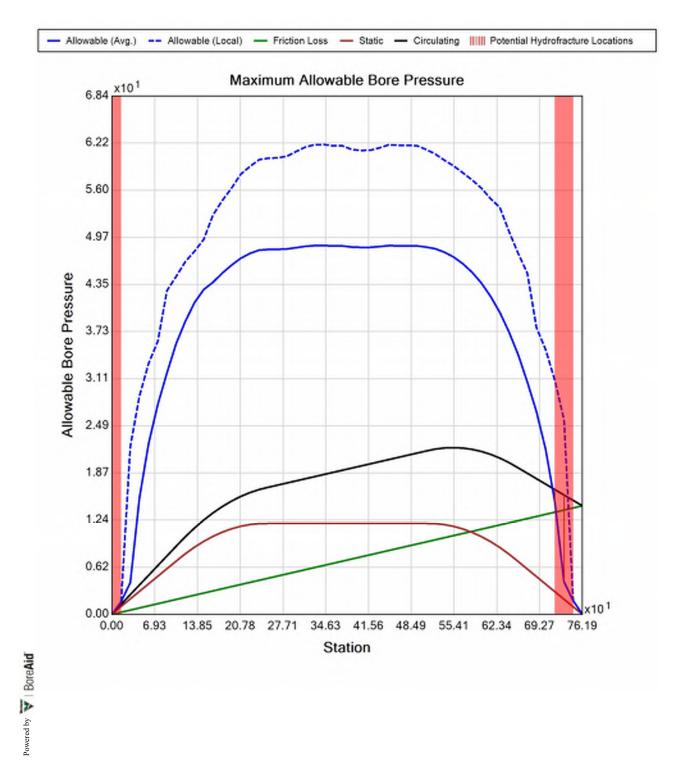
Effective Viscosity (cP): 1202.0


Virtual Site




Powered by 🐺 | Bore Aid





Powered by 🐺 | BoreAid

Powered by 🐺 | BoreAid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

(0.00, 0.00, 115.42) ft
(760.00, 0.00, 115.33) ft
760.00 ft
HDPE
IPS
2.375 in
9.0
0.26 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 765.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	16.1	16.1
Water Pressure	10.2	10.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	26.3	26.3
Deflection		
Earth Load Deflection	4.375	4.375
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	4.404	4.404
Compressive Stress [psi]		
Compressive Wall Stress	118.4	118.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	705.5	705.5
Pullback Stress [psi]	403.1	403.1
Pullback Strain	7.011E-3	7.011E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	403.1	406.6
Tensile Strain	7.011E-3	7.171E-3

Net External Pressure = 18.2 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.404	7.5	1.7	OK
Unconstrained Collapse [psi]	26.3	93.2	3.5	OK
Compressive Wall Stress [psi]	118.4	1150.0	9.7	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	26.3	233.5	8.9	OK
Tensile Stress [psi]	406.6	1200.0	3.0	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

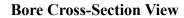
OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

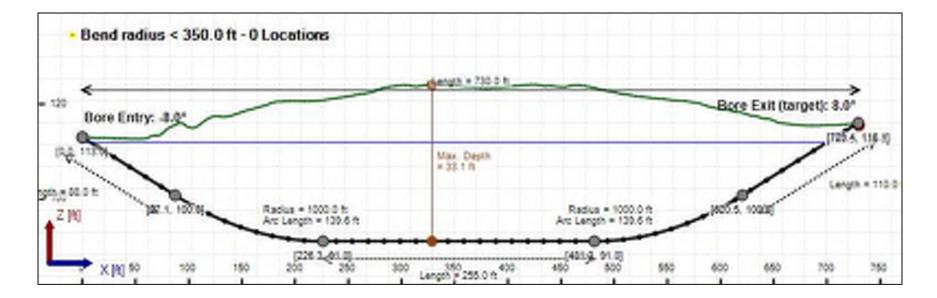
Project Summary

General:	CHPE HDD 4A Conduit 2
	P1C
	Start Date: 02-28-2022
	End Date: 02-28-2022
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	
Description:	HDD 4A 10-inch DR 9 Conduit 2

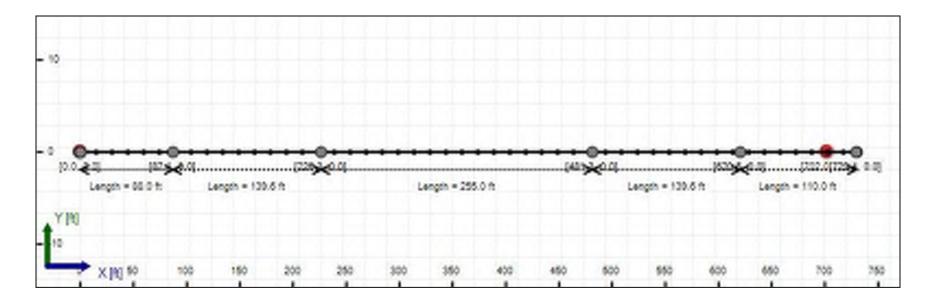
Input Summary

(0.00, 0.00, 113.00) ft
(730.00, 0.00, 115.56) ft
730.00 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft


Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Gravel (G), GM From Assistant Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 100.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 8.70 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 735.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	4.4	16.3
Water Pressure	9.1	9.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.5	25.4
Deflection		
Earth Load Deflection	1.206	4.452
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.338	4.584
Compressive Stress [psi]		
Compressive Wall Stress	60.8	114.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	11912.9	11912.9
Pullback Stress [psi]	332.2	332.2
Pullback Strain	5.778E-3	5.778E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	332.2	356.8
Tensile Strain	5.778E-3	6.654E-3

Net External Pressure = 19.0 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.338	7.5	5.6	OK
Unconstrained Collapse [psi]	16.5	122.5	7.4	OK
Compressive Wall Stress [psi]	60.8	1150.0	18.9	OK

Installation Analysis

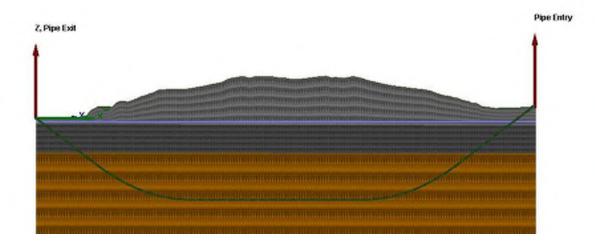
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	26.5	235.8	8.9	OK
Tensile Stress [psi]	356.8	1200.0	3.4	OK

Maximum Allowable Bore Pressure Summary

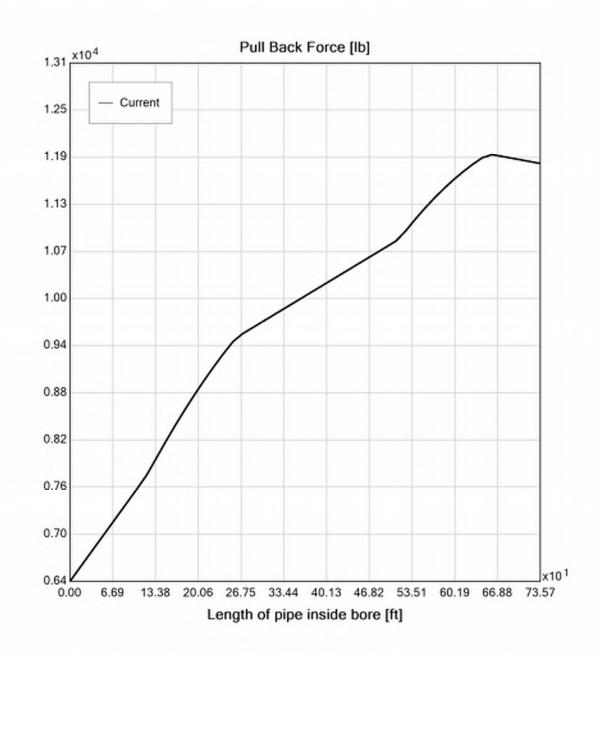
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	67.541 psi	61.353 psi
1	8.00 in	12.00 in	67.462 psi	61.253 psi
2	12.00 in	16.13 in	67.349 psi	61.110 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

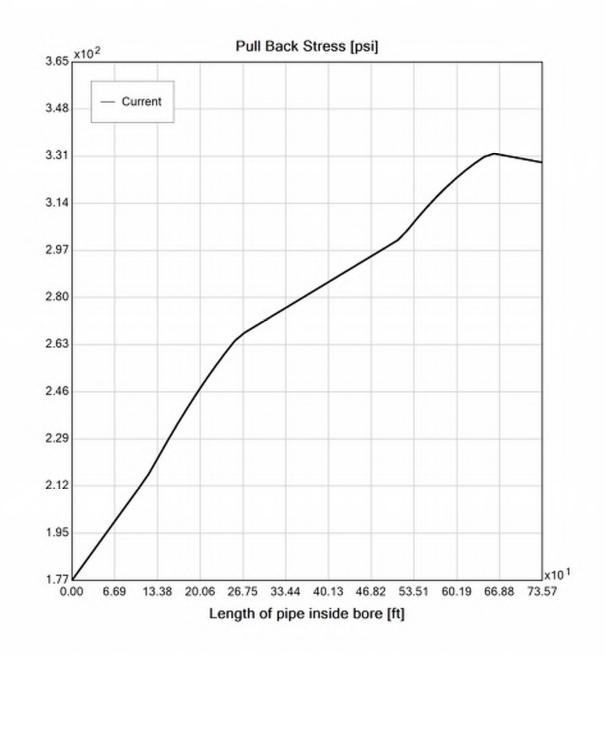
Estimated Circulating Pressure Summary

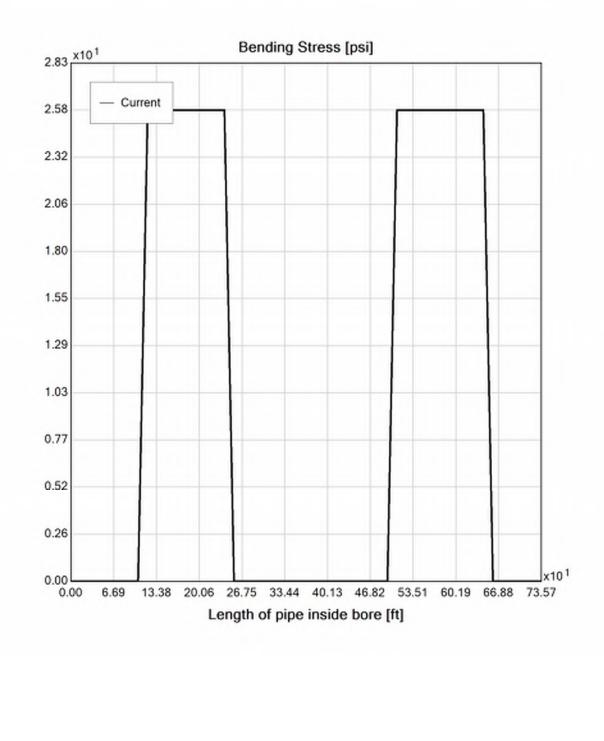

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

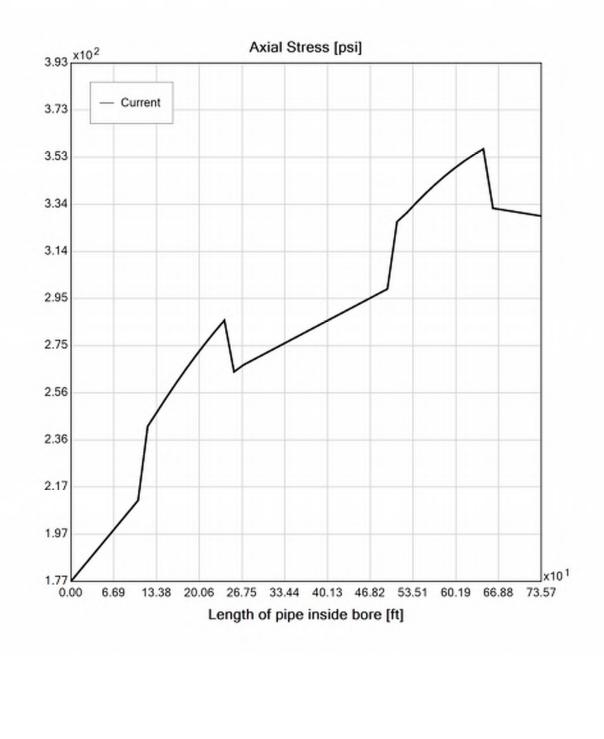
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53


Yield Point (YP): 16.49

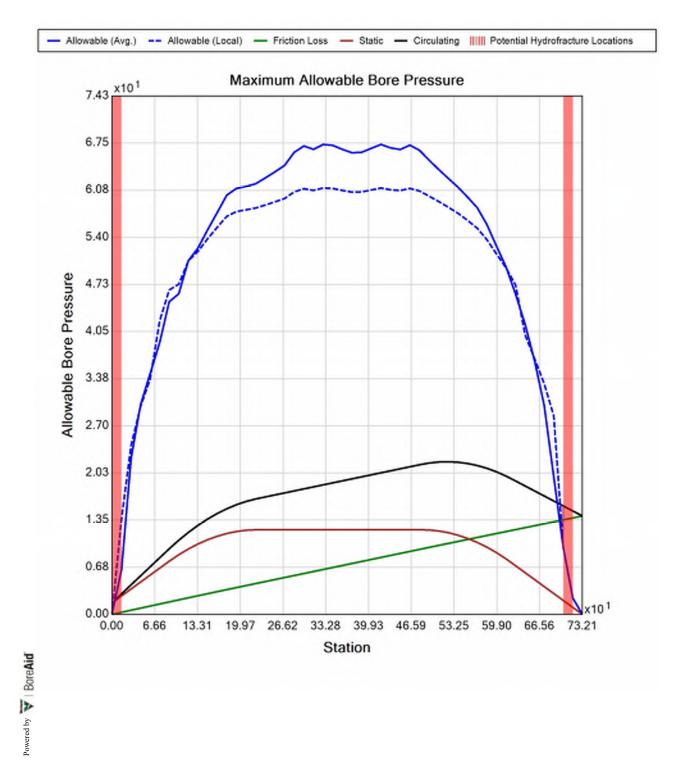
Effective Viscosity (cP): 1202.0


Virtual Site




Powered by 🐺 | Bore Aid

Powered by 🐺 | BoreAid


Powered by 🐺 | BoreAid

Powered by 🐺 | Bore Aid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

(0.00, 0.00, 113.00) ft
(730.00, 0.00, 115.56) ft
730.00 ft
HDPE
IPS
2.375 in
9.0
0.26 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 735.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.9	16.3
Water Pressure	9.1	9.1
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	10.9	25.4
Deflection		
Earth Load Deflection	0.552	4.452
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	0.582	4.481
Compressive Stress [psi]		
Compressive Wall Stress	49.2	114.5

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	691.1	691.1
Pullback Stress [psi]	394.9	394.9
Pullback Strain	6.867E-3	6.867E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	394.9	399.4
Tensile Strain	6.867E-3	7.045E-3

Net External Pressure = 19.0 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.582	7.5	12.9	OK
Unconstrained Collapse [psi]	16.5	131.7	8.0	OK
Compressive Wall Stress [psi]	49.2	1150.0	23.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	26.5	234.1	8.8	OK
Tensile Stress [psi]	399.4	1200.0	3.0	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 5
	P1C
	Start Date: 02-28-2022
	End Date: 02-28-2022
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	

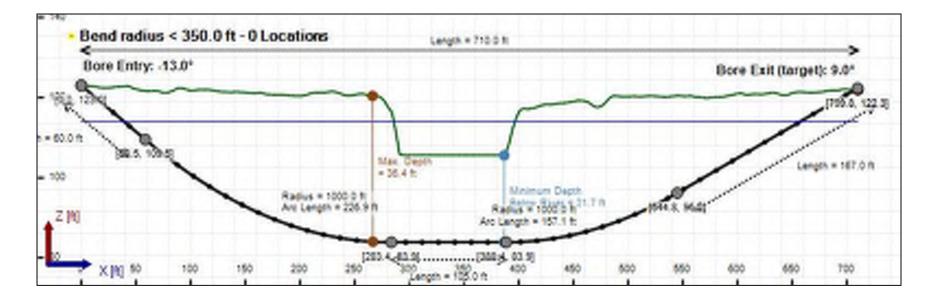
Description:

HDD 5 10-inch DR 9

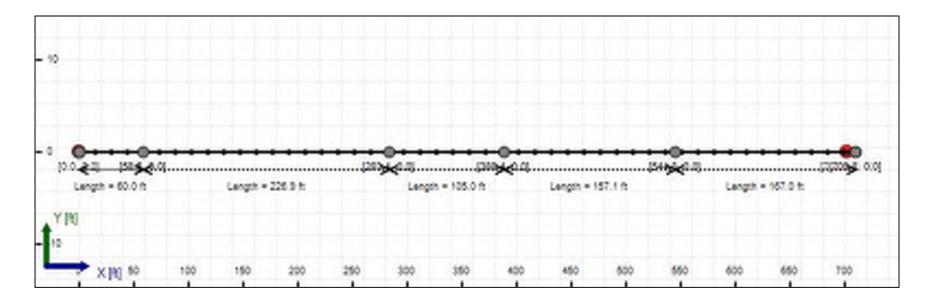
Input Summary

(0.00, 0.00, 123.02) ft
(710.00, 0.00, 122.00) ft
710.00 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Soil Summary


Number of Layers: 3

Soil Layer #1 USCS, Gravel (G), GM Depth: 4.00 ft Unit Weight: 120.0000 (dry), 140.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 100.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL Depth: 8.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 7.30 [psi]

Soil Layer #3 USCS, Clay (C), CH Depth: 30.00 ft Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 8.70 [psi]

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 720.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	11.6	11.6
Water Pressure	12.8	12.8
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	24.5	24.5
Deflection		
Earth Load Deflection	3.183	3.183
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	3.315	3.315
Compressive Stress [psi]		
Compressive Wall Stress	110.1	110.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	12466.7	12466.7
Pullback Stress [psi]	347.7	347.7
Pullback Strain	6.047E-3	6.047E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	347.7	372.7
Tensile Strain	6.047E-3	6.930E-3

Net External Pressure = 18.8 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	3.315	7.5	2.3	OK
Unconstrained Collapse [psi]	25.4	103.3	4.1	OK
Compressive Wall Stress [psi]	110.1	1150.0	10.4	OK

Installation Analysis

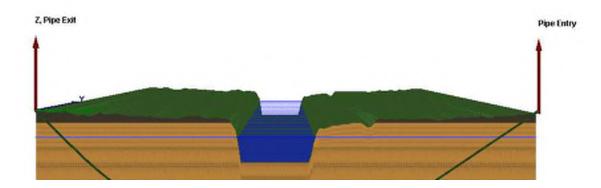
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	35.4	235.3	6.6	OK
Tensile Stress [psi]	372.7	1200.0	3.2	OK

Maximum Allowable Bore Pressure Summary

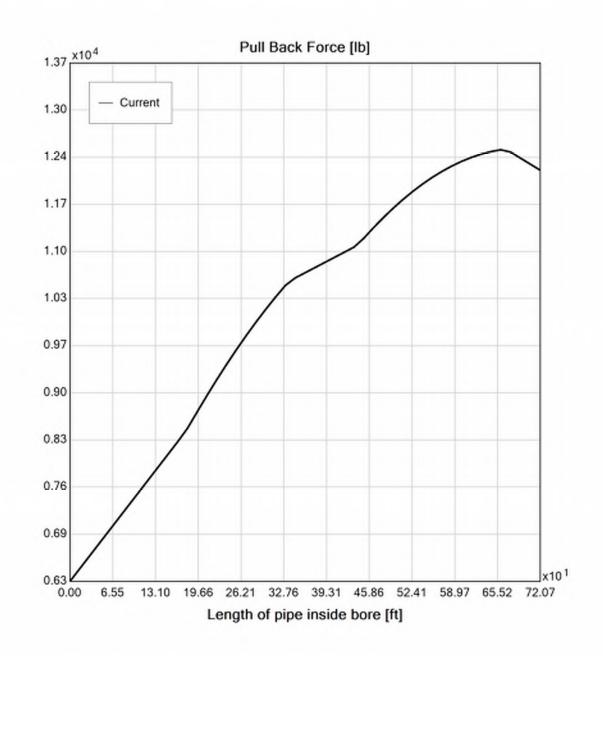
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	58.142 psi	60.390 psi
1	8.00 in	12.00 in	58.061 psi	60.307 psi
2	12.00 in	16.13 in	57.944 psi	60.188 psi

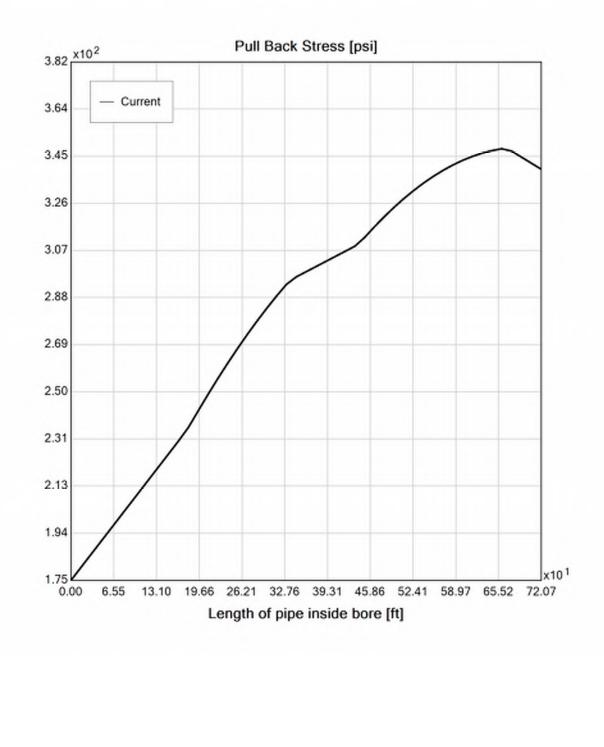
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

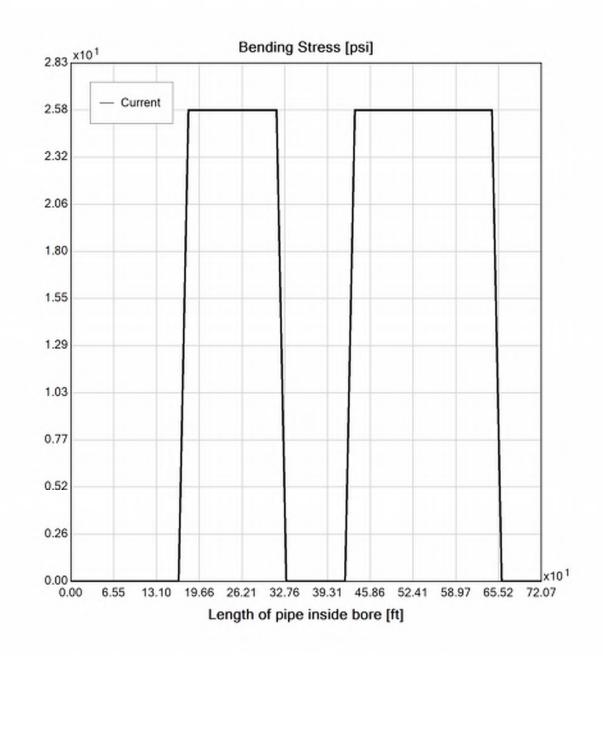
Estimated Circulating Pressure Summary

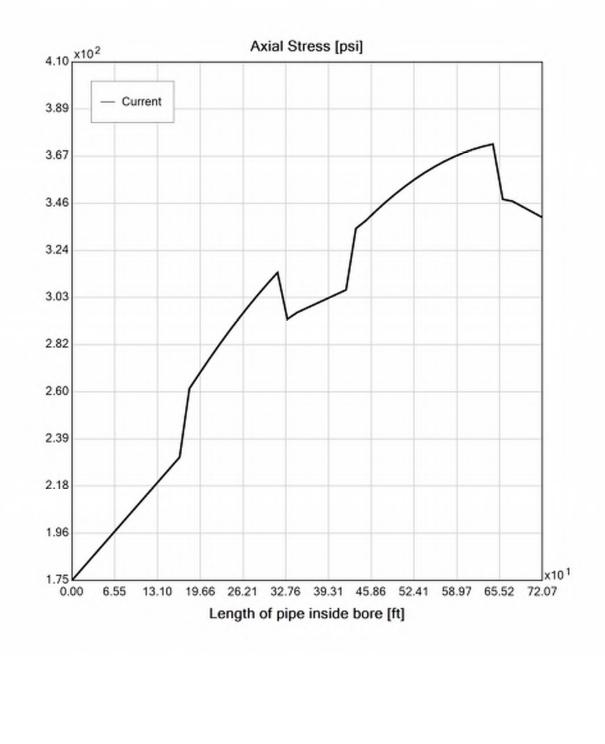

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

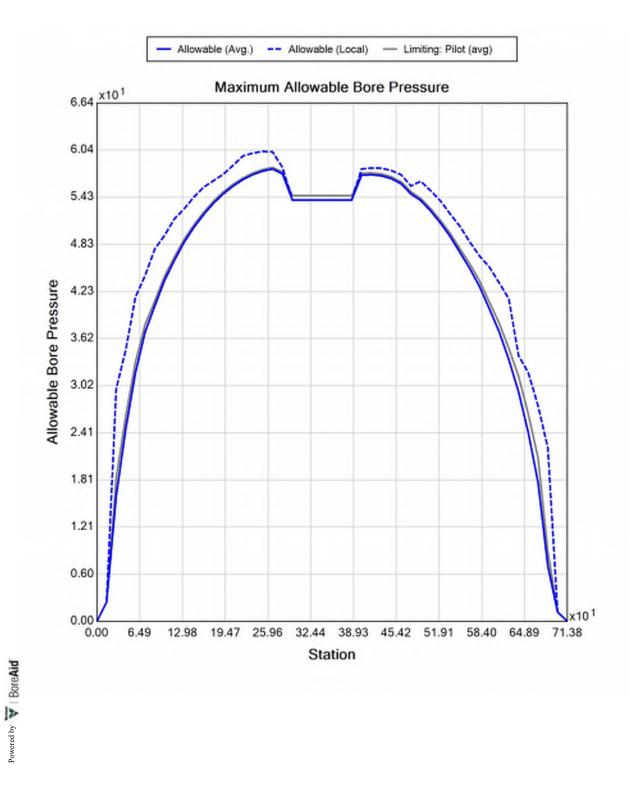
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

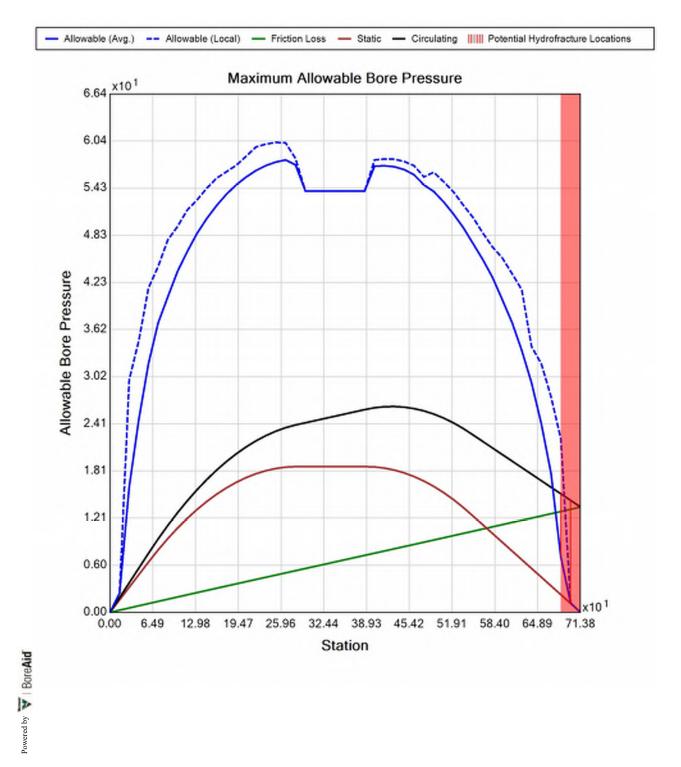

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 123.02) ft
End Coordinate	(710.00, 0.00, 122.00) ft
Project Length	710.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 720.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	11.6	11.6
Water Pressure	12.8	12.8
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	24.5	24.5
Deflection		
Earth Load Deflection	3.183	3.183
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	3.212	3.212
Compressive Stress [psi]		
Compressive Wall Stress	110.1	110.1

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	718.1	718.1
Pullback Stress [psi]	410.3	410.3
Pullback Strain	7.136E-3	7.136E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	410.3	415.2
Tensile Strain	7.136E-3	7.321E-3

Net External Pressure = 18.8 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	3.212	7.5	2.3	OK
Unconstrained Collapse [psi]	25.4	104.3	4.1	OK
Compressive Wall Stress [psi]	110.1	1150.0	10.4	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	35.4	233.6	6.6	OK
Tensile Stress [psi]	415.2	1200.0	2.9	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 6 Conduit 1		
	P1C		
	Start Date: 02-24-2022		
	End Date: 02-24-2022		
Project Owner:	TDI		
Project Contractor:	Kiewit		
Project Consultant:	CHA/BCE		
Designer:			
Description:	HDD 6 10-inch DR 9 Conduit 1		

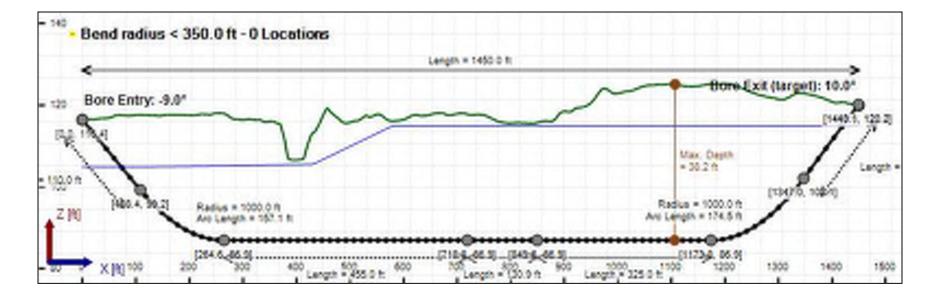
Input Summary

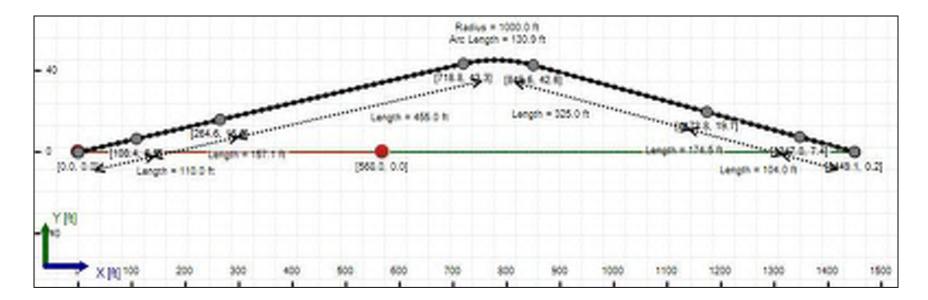
Start Coordinate	(0.00, 0.00, 116.44) ft
End Coordinate	(1450.00, 0.00, 120.00) ft
Project Length	1450.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Silt (M), ML From Assistant Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]


Soil Layer #3 USCS, Silt (M), ML From Assistant Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 75.0000 (dry), 105.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 250.00, Coh: 4.30 [psi]

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1470.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.2	14.7
Water Pressure	12.2	12.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	15.4	26.8
Deflection		
Earth Load Deflection	1.319	3.996
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.451	4.128
Compressive Stress [psi]		
Compressive Wall Stress	69.1	120.8

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	24270.3	24270.3
Pullback Stress [psi]	676.9	676.9
Pullback Strain	1.177E-2	1.177E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	676.9	698.1
Tensile Strain	1.177E-2	1.259E-2

Net External Pressure = 23.1 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.451	7.5	5.2	OK
Unconstrained Collapse [psi]	23.1	123.6	5.3	OK
Compressive Wall Stress [psi]	69.1	1150.0	16.6	OK

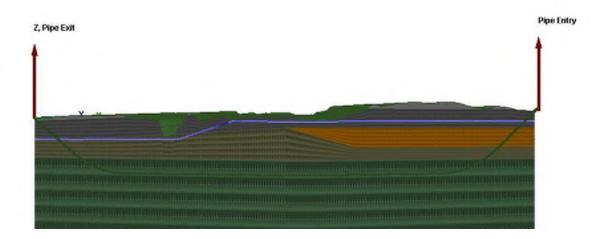
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.1	213.7	6.5	OK
Tensile Stress [psi]	698.1	1200.0	1.7	OK

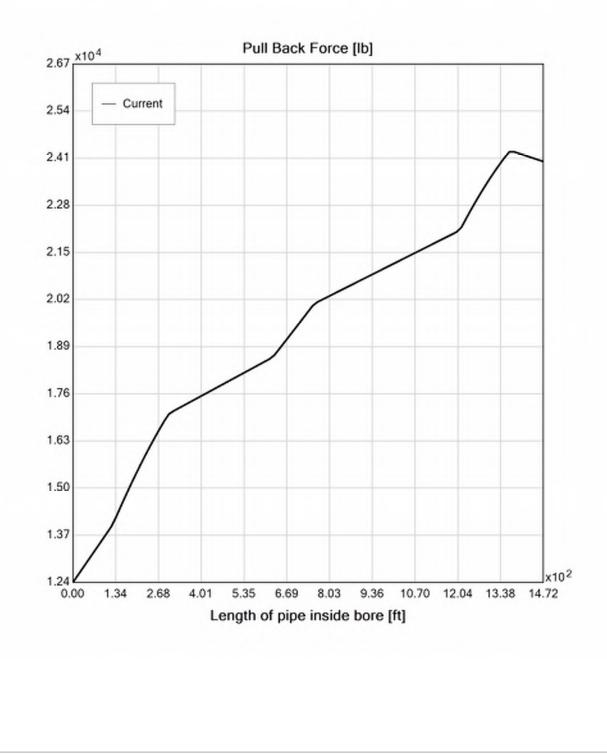
Maximum Allowable Bore Pressure Summary

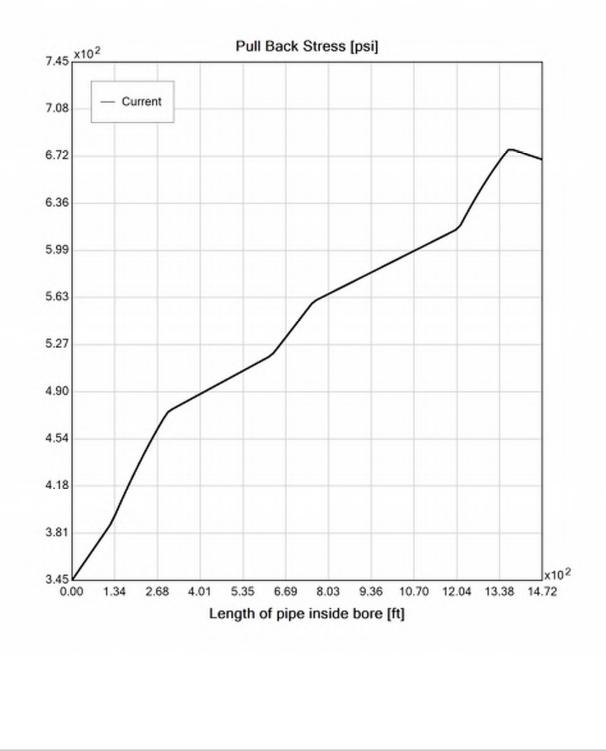
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	74.281 psi	86.738 psi
1	8.00 in	12.00 in	73.926 psi	85.613 psi
2	12.00 in	16.13 in	73.427 psi	84.200 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

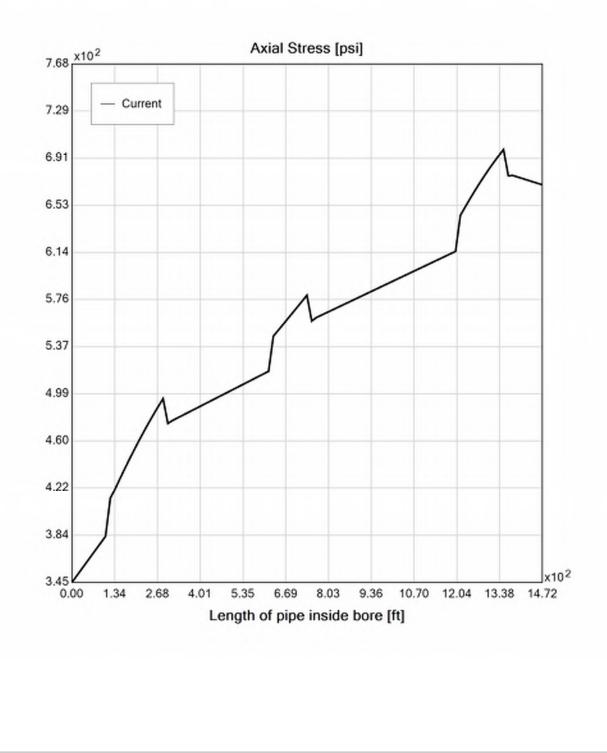

Estimated Circulating Pressure Summary

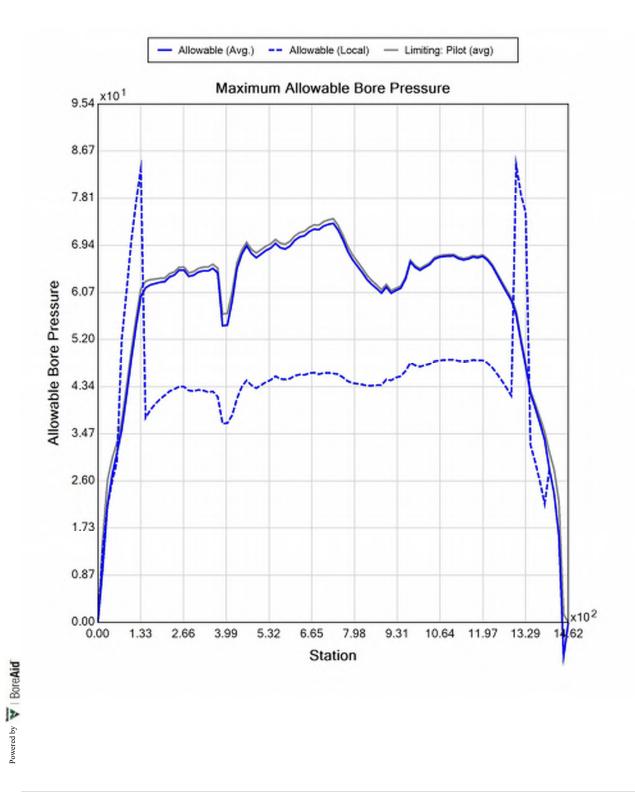
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

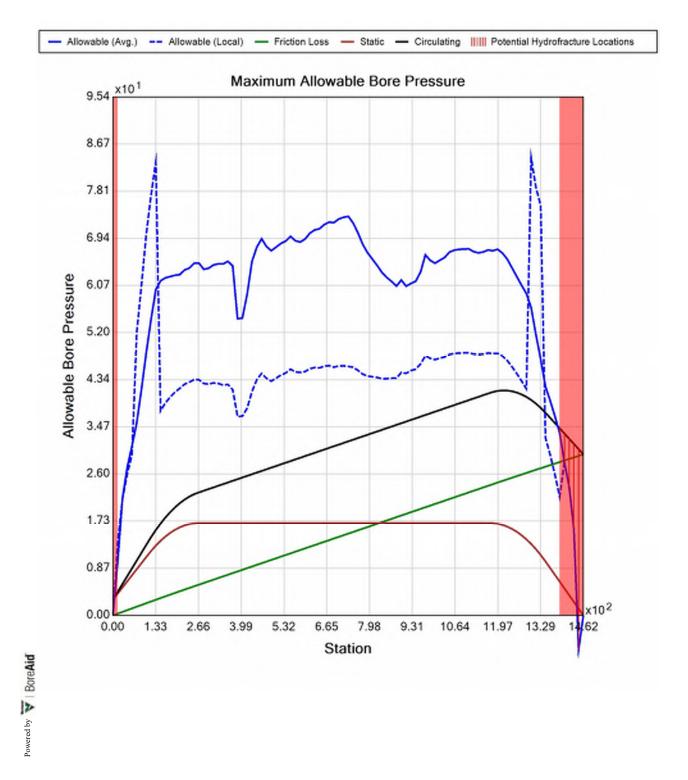

Yield Point (YP): 16.49


Effective Viscosity (cP): 1202.0

Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

(0.00, 0.00, 116.44) ft
(1450.00, 0.00, 120.00) ft
1450.00 ft
HDPE
IPS
2.375 in
9.0
0.26 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1470.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.3	14.7
Water Pressure	12.2	12.2
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.4	26.8
Deflection		
Earth Load Deflection	1.119	3.996
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.148	4.025
Compressive Stress [psi]		
Compressive Wall Stress	60.5	120.8

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1294.2	1294.2
Pullback Stress [psi]	739.5	739.5
Pullback Strain	1.286E-2	1.286E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	739.5	740.6
Tensile Strain	1.286E-2	1.298E-2

Net External Pressure = 23.1 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.148	7.5	6.5	OK
Unconstrained Collapse [psi]	23.1	132.3	5.7	OK
Compressive Wall Stress [psi]	60.5	1150.0	19.0	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	33.1	211.5	6.4	OK
Tensile Stress [psi]	740.6	1200.0	1.6	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 6 Conduit 2
	P1C
	Start Date: 02-24-2022
	End Date: 02-24-2022
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	
Description:	HDD 6 10-inch DR 9 Conduit 2

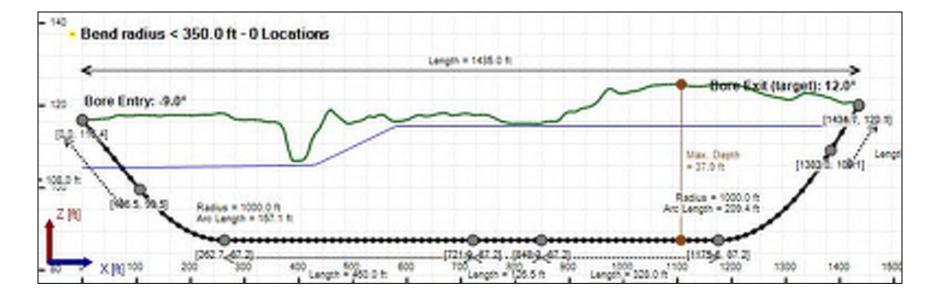
Input Summary

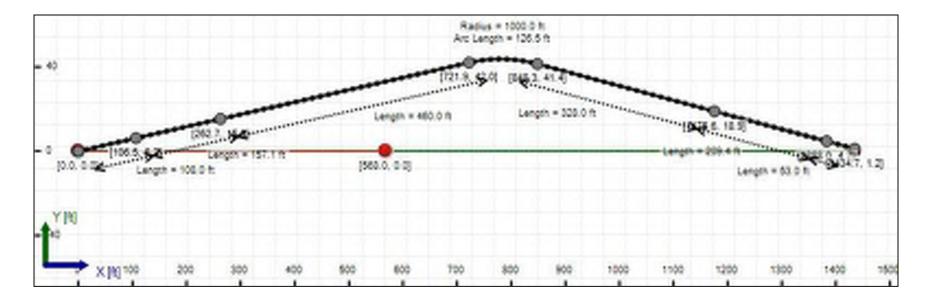
Start Coordinate	(0.00, 0.00, 116.44) ft
End Coordinate	(1435.00, 0.00, 120.00) ft
Project Length	1435.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 5

Soil Layer #1 USCS, Silt (M), ML From Assistant Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]


Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 5.50 [psi]


Soil Layer #3 USCS, Silt (M), ML From Assistant Unit Weight: 80.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 28.00, S.M.: 50.00, Coh: 0.00 [psi]

Soil Layer #4 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #5 USCS, Clay (C), CL From Assistant Unit Weight: 75.0000 (dry), 105.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 250.00, Coh: 4.30 [psi]

Bore Plan View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1455.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	3.2	14.6
Water Pressure	12.0	12.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	15.2	26.6
Deflection		
Earth Load Deflection	1.319	3.974
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.451	4.106
Compressive Stress [psi]		
Compressive Wall Stress	68.5	119.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	24251.7	24251.7
Pullback Stress [psi]	676.3	676.3
Pullback Strain	1.176E-2	1.176E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	676.3	697.0
Tensile Strain	1.176E-2	1.257E-2

Net External Pressure = 23.3 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.451	7.5	5.2	OK
Unconstrained Collapse [psi]	23.1	123.7	5.3	OK
Compressive Wall Stress [psi]	68.5	1150.0	16.8	OK

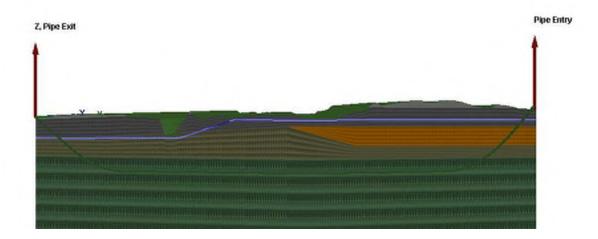
Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	33.1	213.8	6.5	OK
Tensile Stress [psi]	697.0	1200.0	1.7	OK

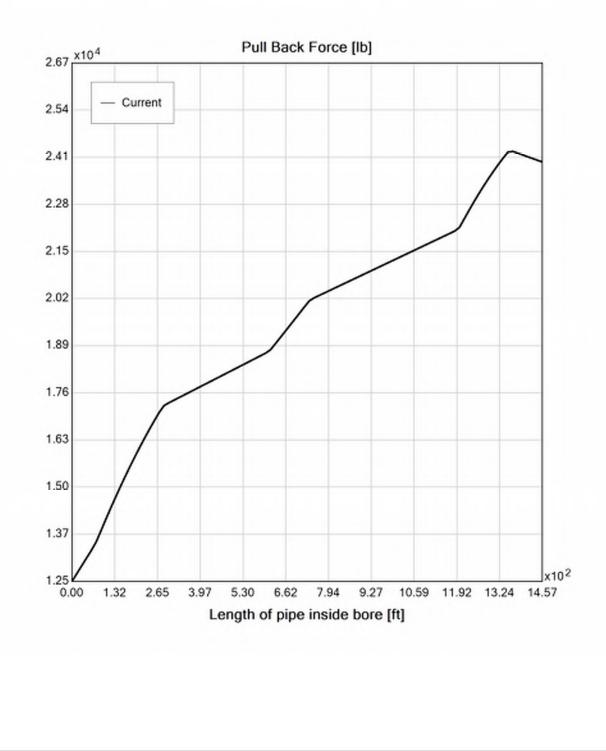
Maximum Allowable Bore Pressure Summary

Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	74.231 psi	86.601 psi
1	8.00 in	12.00 in	73.865 psi	85.299 psi
2	12.00 in	16.13 in	73.350 psi	83.874 psi

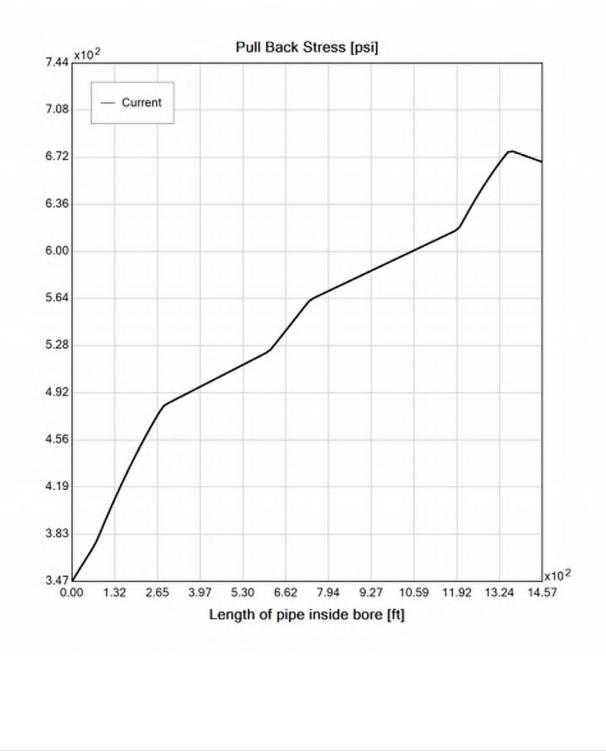
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

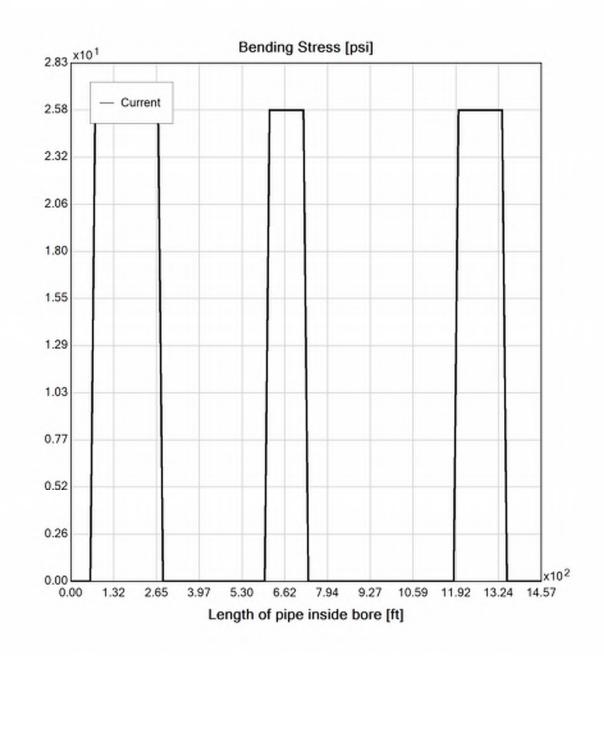

Estimated Circulating Pressure Summary

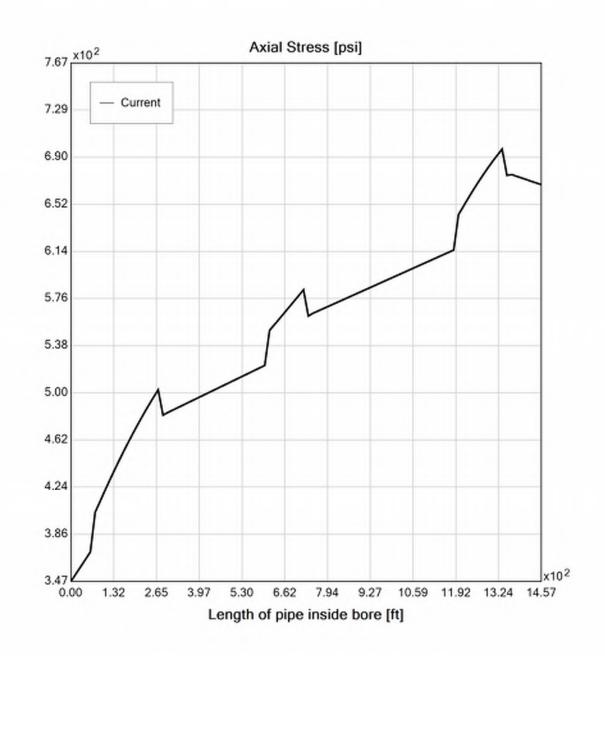
Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

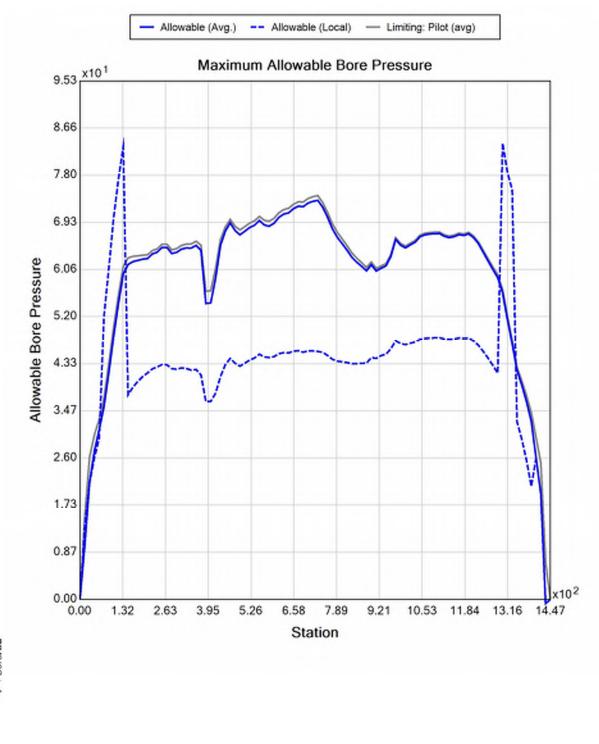

Yield Point (YP): 16.49

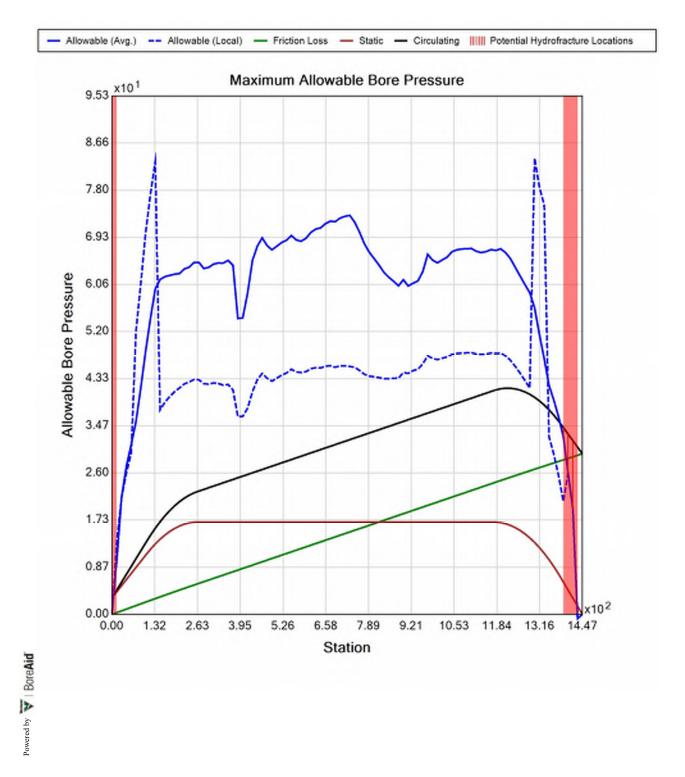
Effective Viscosity (cP): 1202.0


Virtual Site




Powered by 🐺 | BoreAid


Powered by 🐺 | BoreAid


Powered by 🐺 | Bore Aid

Powered by 🐺 | BoreAid

Powered by 🐺 | Bore Aid

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

(0.00, 0.00, 116.44) ft
(1435.00, 0.00, 120.00) ft
1435.00 ft
HDPE
IPS
2.375 in
9.0
0.26 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1455.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	1.3	14.6
Water Pressure	12.0	12.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	13.3	26.6
Deflection		
Earth Load Deflection	0.998	3.974
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.028	4.003
Compressive Stress [psi]		
Compressive Wall Stress	59.9	119.7

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1293.3	1293.3
Pullback Stress [psi]	739.0	739.0
Pullback Strain	1.285E-2	1.285E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	739.0	739.5
Tensile Strain	1.285E-2	1.296E-2

Net External Pressure = 23.3 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.028	7.5	7.3	OK
Unconstrained Collapse [psi]	23.1	132.3	5.7	OK
Compressive Wall Stress [psi]	59.9	1150.0	19.2	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	33.1	211.5	6.4	OK
Tensile Stress [psi]	739.5	1200.0	1.6	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

General:	CHPE HDD 7
	P1C
	Start Date: 02-23-2022
	End Date: 02-23-2022
Project Owner:	TDI
Project Contractor:	Kiewit
Project Consultant:	CHA/BCE
Designer:	MCS
	CHA

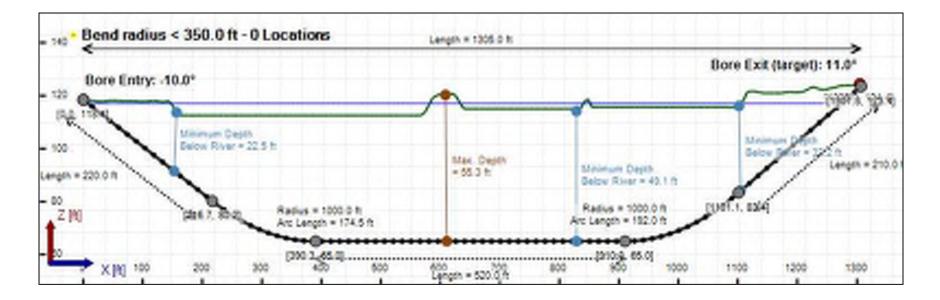
Description:

Input Summary

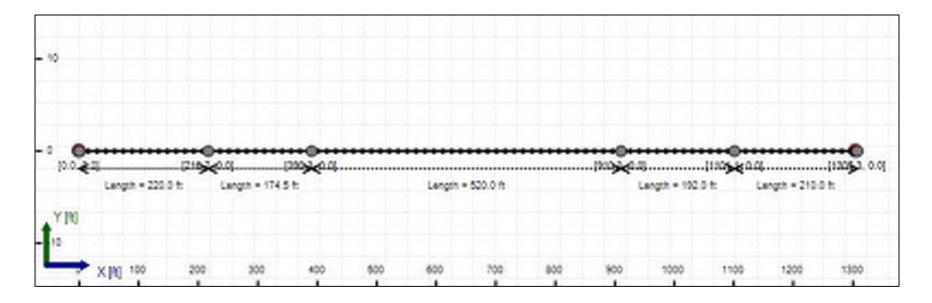
Start Coordinate	(0.00, 0.00, 118.40) ft
End Coordinate	(1305.00, 0.00, 124.40) ft
Project Length	1305.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Soil Summary

Number of Layers: 4


Soil Layer #1 USCS, Sand (S), SP From Assistant Unit Weight: 110.0000 (dry), 125.0000 (sat) [lb/ft3] Phi: 34.00, S.M.: 500.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CL From Assistant Unit Weight: 100.0000 (dry), 120.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 400.00, Coh: 5.60 [psi]


Soil Layer #3 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Soil Layer #4 USCS, Clay (C), CH From Assistant Unit Weight: 70.0000 (dry), 100.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 200.00, Coh: 3.10 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 1320.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	15.1	18.1
Water Pressure	22.5	22.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	37.6	40.7
Deflection		
Earth Load Deflection	4.110	4.937
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	4.242	5.069
Compressive Stress [psi]		
Compressive Wall Stress	169.3	183.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	22294.6	22294.6
Pullback Stress [psi]	621.8	621.8
Pullback Strain	1.081E-2	1.081E-2
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	621.8	644.7
Tensile Strain	1.081E-2	1.166E-2

Net External Pressure = 37.4 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.242	7.5	1.8	OK
Unconstrained Collapse [psi]	38.4	94.5	2.5	OK
Compressive Wall Stress [psi]	169.3	1150.0	6.8	OK

Installation Analysis

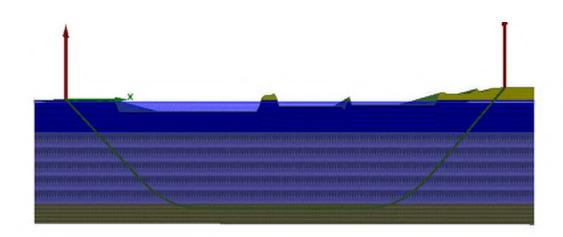
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	48.4	218.0	4.5	OK
Tensile Stress [psi]	644.7	1200.0	1.9	OK

Maximum Allowable Bore Pressure Summary

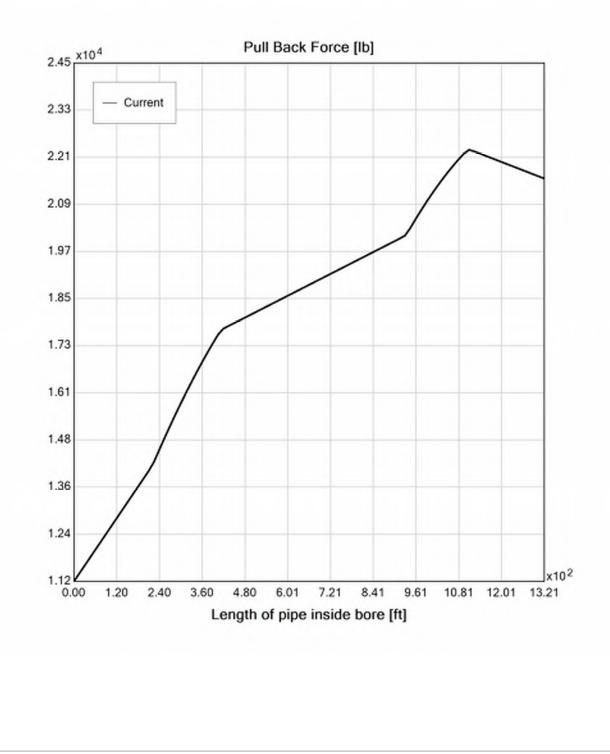
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	63.019 psi	56.674 psi
1	8.00 in	12.00 in	62.989 psi	56.638 psi
2	12.00 in	16.13 in	62.945 psi	56.587 psi

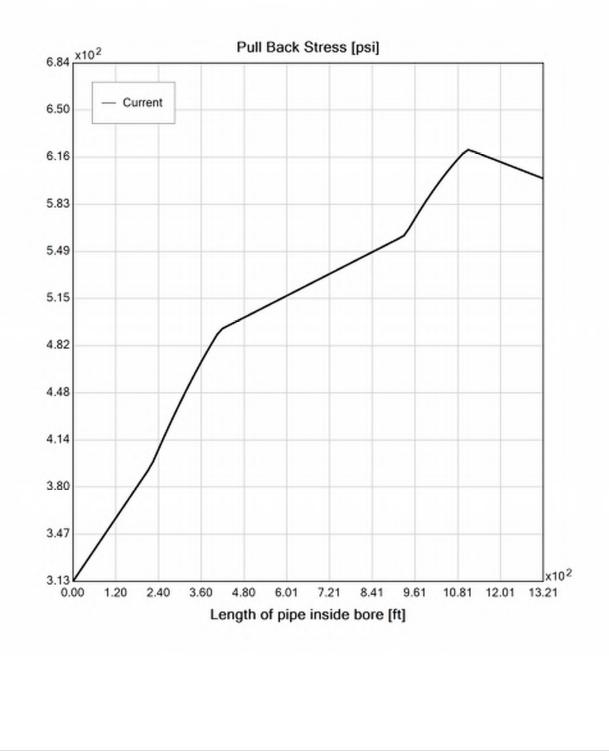
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

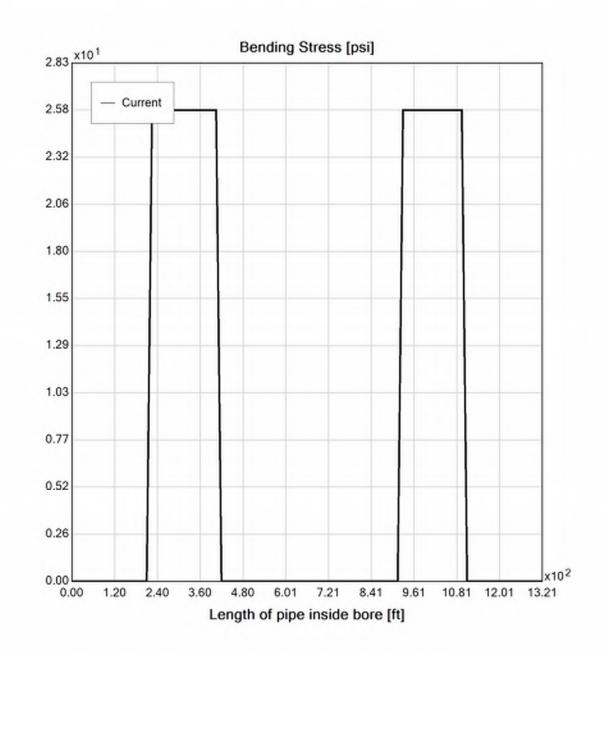
Estimated Circulating Pressure Summary

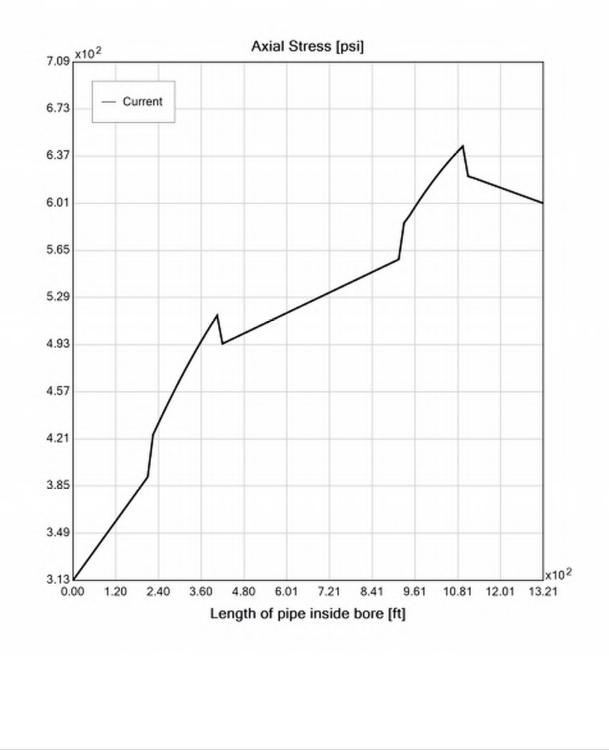

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

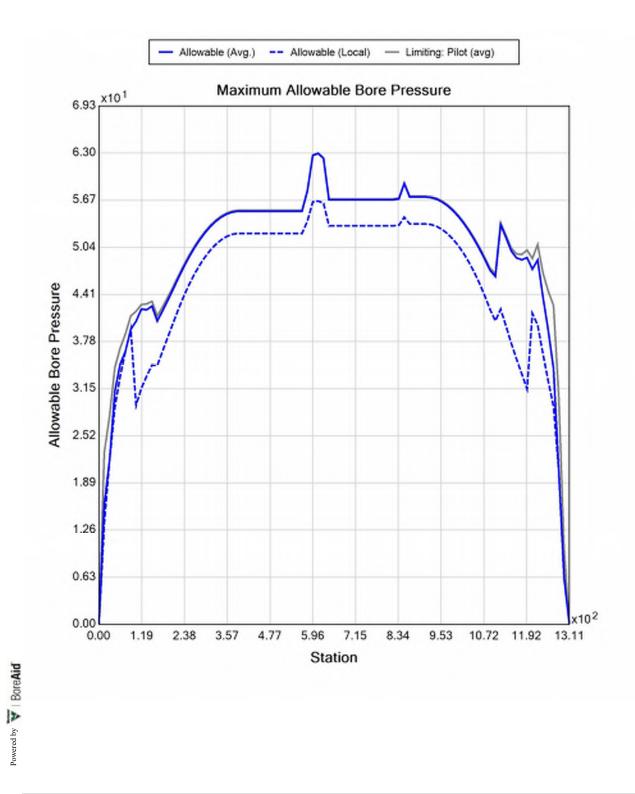
Flow Rate (Q): 25.00 US (liquid) gallon/minDrill Fluid Density: 68.670 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53

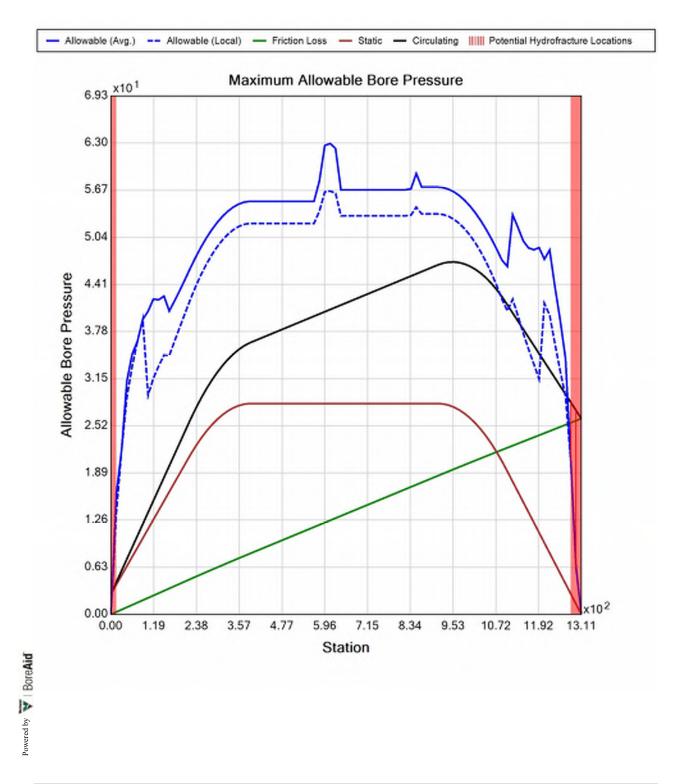

Yield Point (YP): 16.49


Effective Viscosity (cP): 1907.9


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 118.40) ft
End Coordinate	(1305.00, 0.00, 124.40) ft
Project Length	1305.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 1320.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	15.1	18.1
Water Pressure	22.5	22.5
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	37.6	40.7
Deflection		
Earth Load Deflection	4.110	4.937
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	4.139	4.966
Compressive Stress [psi]		
Compressive Wall Stress	169.3	183.0

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	1197.8	1197.8
Pullback Stress [psi]	684.4	684.4
Pullback Strain	1.190E-2	1.190E-2
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	684.4	687.3
Tensile Strain	1.190E-2	1.205E-2

Net External Pressure = 37.4 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	4.139	7.5	1.8	OK
Unconstrained Collapse [psi]	38.4	95.4	2.5	OK
Compressive Wall Stress [psi]	169.3	1150.0	6.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	48.4	215.9	4.5	OK
Tensile Stress [psi]	687.3	1200.0	1.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

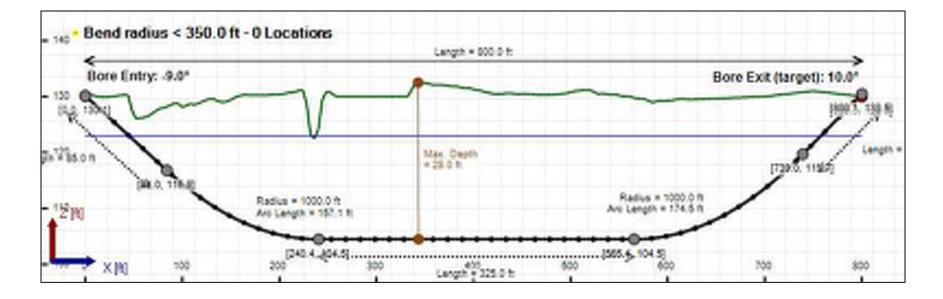
OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

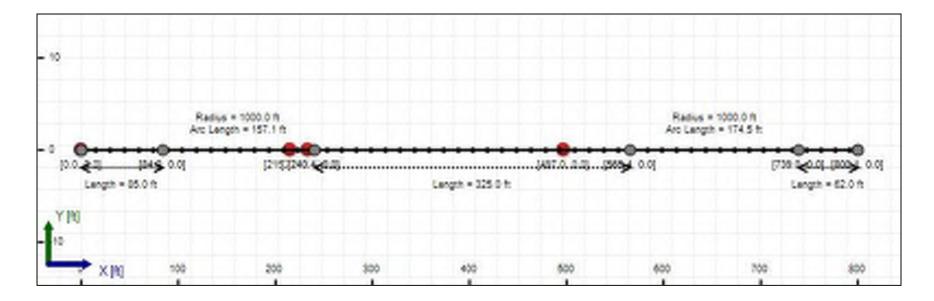
General:	CHPE HDD 8 Conduit 1	
	P1C	
	Start Date: 12-10-2021	
	End Date: 12-10-2021	
Project Owner:	TDI	
Project Contractor:	Kiewit	
Project Consultant:	CHA/BCE	
Designer:		
Description:	HDD 8 Conduit 1 10-inch DR 9	

Input Summary

(0.00, 0.00, 130.11) ft
(800.00, 0.00, 130.00) ft
800.00 ft
HDPE
IPS
10.750 in
9.0
1.19 in
15.00 ft
3.5 in
(0.00, 0.00, 0.00) ft


Soil Summary

Number of Layers: 2


Soil Layer #1 USCS, Sand (S), SP Depth: 6.00 ft Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CH Depth: 25.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 8.70 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 810.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.3	12.8
Water Pressure	8.0	8.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.4	20.9
Deflection		
Earth Load Deflection	1.728	3.499
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.860	3.631
Compressive Stress [psi]		
Compressive Wall Stress	64.6	93.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	13251.4	13251.4
Pullback Stress [psi]	369.6	369.6
Pullback Strain	6.427E-3	6.427E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	369.6	393.9
Tensile Strain	6.427E-3	7.298E-3

Net External Pressure = 18.6 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.860	7.5	4.0	OK
Unconstrained Collapse [psi]	17.6	116.9	6.6	OK
Compressive Wall Stress [psi]	64.6	1150.0	17.8	OK

Installation Analysis

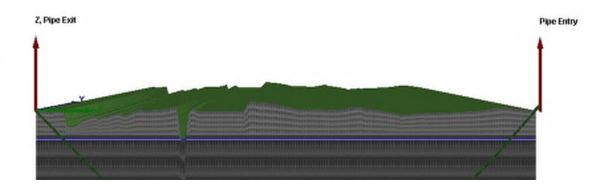
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	27.6	233.7	8.5	OK
Tensile Stress [psi]	393.9	1200.0	3.0	OK

Maximum Allowable Bore Pressure Summary

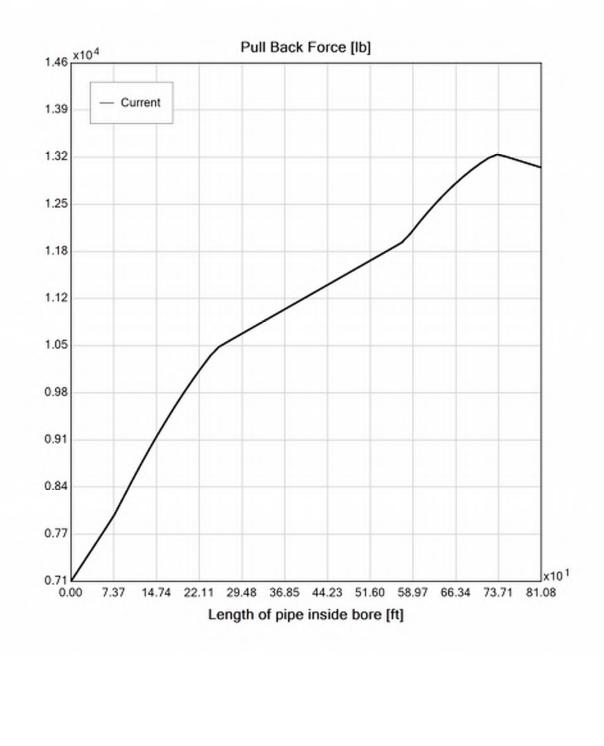
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	64.880 psi	60.219 psi
1	8.00 in	12.00 in	64.710 psi	60.013 psi
2	12.00 in	16.13 in	64.468 psi	59.722 psi

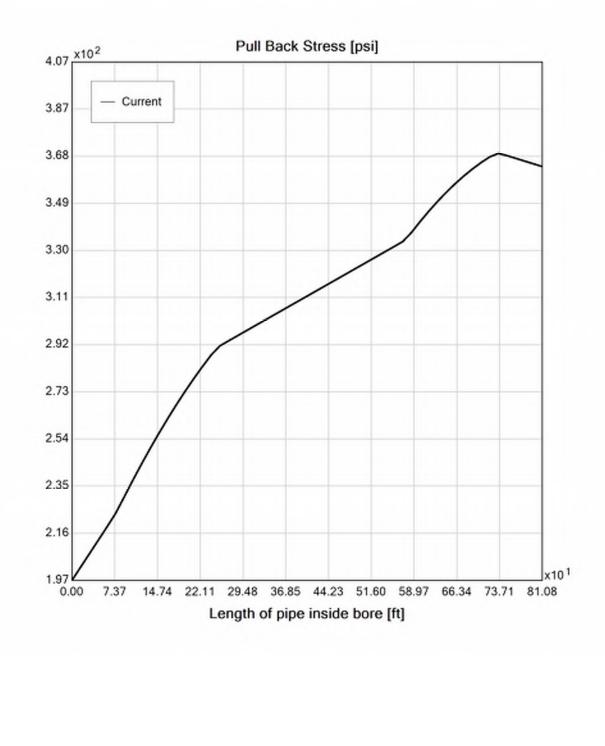
Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

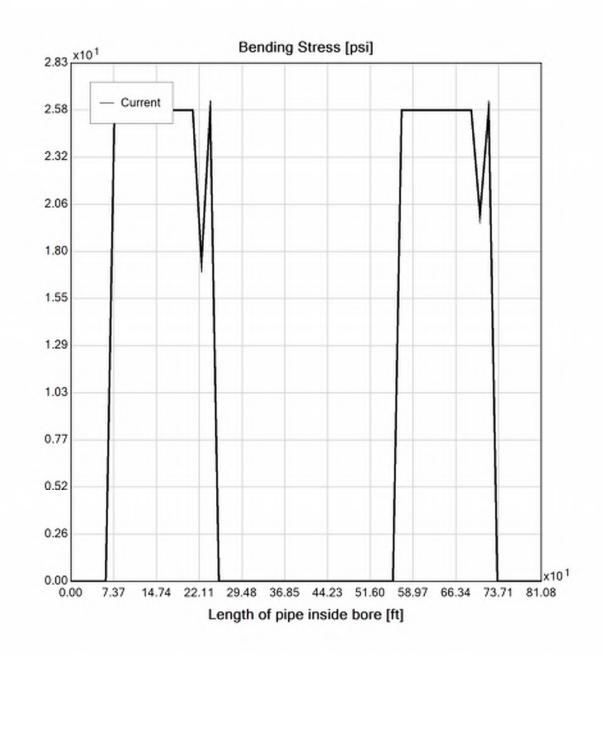
Estimated Circulating Pressure Summary

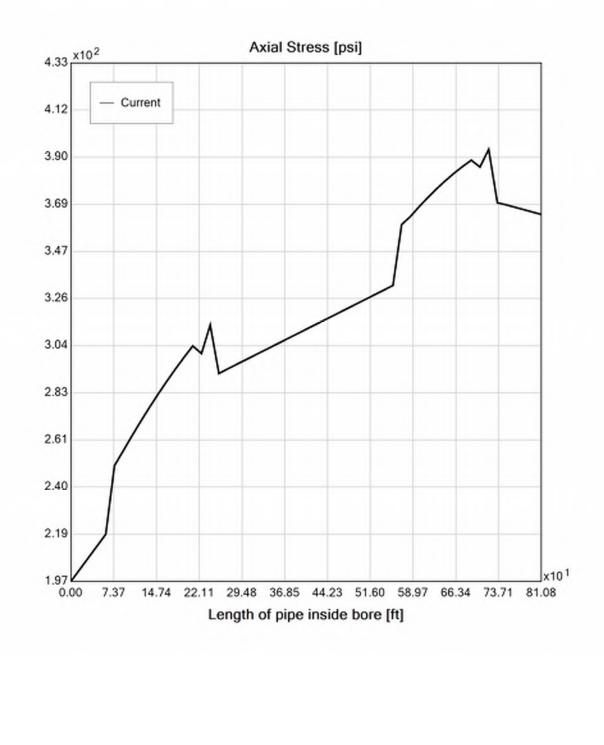

Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

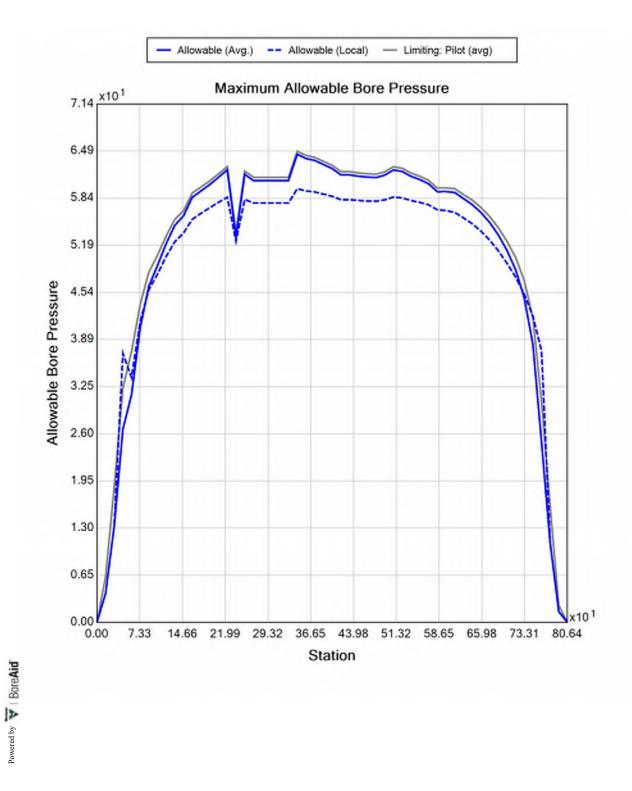
Flow Rate (Q): 0.00 US (liquid) gallon/min Drill Fluid Density: 68.700 lb/ft3 Rheological model: Bingham-Plastic Plastic Viscosity (PV): 25.53

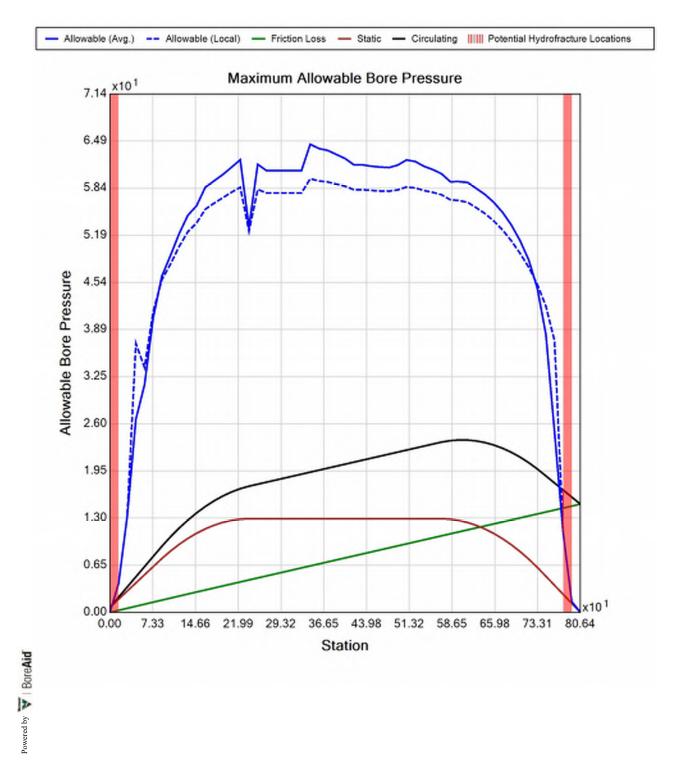

Yield Point (YP): 16.49


Effective Viscosity (cP): Infinity


Virtual Site







Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Input Summary

Start Coordinate	(0.00, 0.00, 130.11) ft
End Coordinate	(800.00, 0.00, 130.00) ft
Project Length	800.00 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	2.375 in
Pipe DR	9.0
Pipe Thickness	0.26 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 2" (2.375") Pipe DR: 9 Pipe Length: 810.00 ft Internal Pressure: 0 psi Borehole Diameter: 0.531000018119812 ft Silo Width: 0.531000018119812 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	6.3	12.8
Water Pressure	8.0	8.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.3	20.9
Deflection		
Earth Load Deflection	1.724	3.499
Buoyant Deflection	0.029	0.029
Reissner Effect	0	0
Net Deflection	1.753	3.528
Compressive Stress [psi]		
Compressive Wall Stress	64.6	93.9

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	756.4	756.4
Pullback Stress [psi]	432.2	432.2
Pullback Strain	7.516E-3	7.516E-3
Bending Stress [psi]	0.0	5.7
Bending Strain	0	9.896E-5
Tensile Stress [psi]	432.2	436.5
Tensile Strain	7.516E-3	7.690E-3

Net External Pressure = 18.6 [psi] Buoyant Deflection = 0.0 Hydrokinetic Force = 137.3 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.753	7.5	4.3	OK
Unconstrained Collapse [psi]	17.6	118.0	6.7	OK
Compressive Wall Stress [psi]	64.6	1150.0	17.8	OK

Installation Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.014	7.5	524.3	OK
Unconstrained Collapse [psi]	27.6	231.9	8.4	OK
Tensile Stress [psi]	436.5	1200.0	2.7	OK

Generated Output

WARNING: The accuracy of the data obtained by the BoreAid® system is highly dependent upon accurate data gathering, data input and proper use of the software. Vermeer is not responsible for that information. BoreAid® data is not intended to replace the need for future on-site utility locating, measuring and verification procedures, which are essential for accurate placement of new underground installations and avoidance of existing utilities.

CALL YOUR ONE-CALL SYSTEM FIRST

WARNING: Always contact your local One-Call system before the start of your digging project. The BoreAid® system is intended to be used with other utility locating methods, such as the use of the One-Call system and the exposing of existing utilities by potholing.

Locate utilities before drilling. Call 811 (U.S. only) or 1-888-258-0808 (U.S. or Canada) or local utility companies or national regulating authority.

Before you start any digging project, do not forget to call the local One-Call system in your area and any utility company that does not subscribe to the One-Call system. For areas not represented by One-Call Systems International, contact the appropriate utility companies or national regulating authority to locate and mark the underground installations. If you do not call, you may have an accident or suffer injuries; cause interruption of services; damage the environment; or experience job delays.

OSHA CFR 29 1926.651 requires that the estimated location of underground utilities be determined before beginning the excavation or underground drilling operation. When the actual excavation or bore approaches an estimated utility location, the exact location of the underground installation must be determined by a safe, acceptable and dependable method. If the utility cannot be precisely located, it must be shut off by the utility company.

Project Summary

 General:
 HDD #8 - Conduit 2

 Start Date: 12-10-2021
 End Date: 12-10-2021

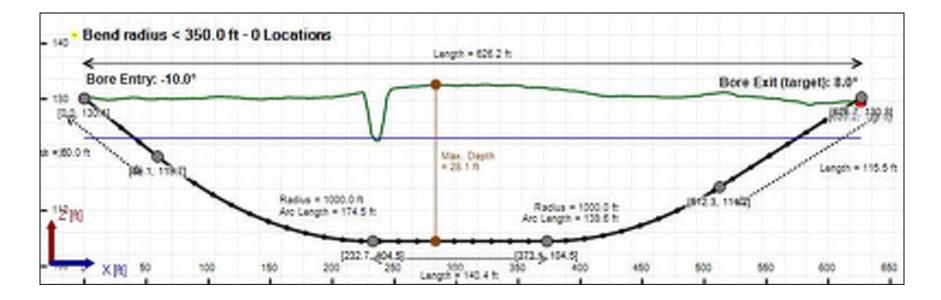
Designer:

TAR CHA

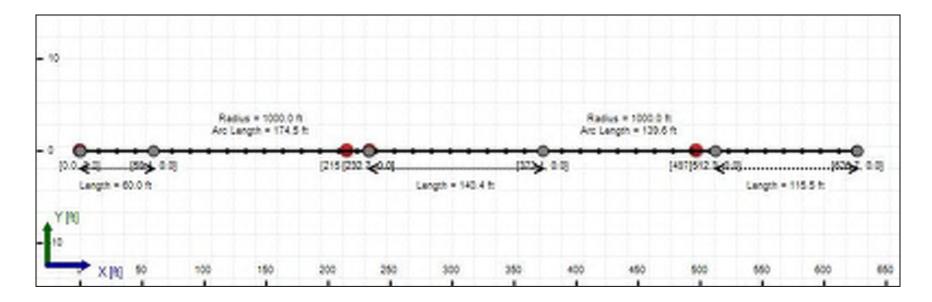
Description:

Input Summary

Start Coordinate	(0.00, 0.00, 130.11) ft
End Coordinate	(626.20, 0.00, 129.50) ft
Project Length	626.20 ft
Pipe Type	HDPE
OD Classification	IPS
Pipe OD	10.750 in
Pipe DR	9.0
Pipe Thickness	1.19 in
Rod Length	15.00 ft
Rod Diameter	3.5 in
Drill Rig Location	(0.00, 0.00, 0.00) ft


Soil Summary

Number of Layers: 2


Soil Layer #1 USCS, Sand (S), SP Depth: 6.00 ft Unit Weight: 105.0000 (dry), 115.0000 (sat) [lb/ft3] Phi: 30.00, S.M.: 200.00, Coh: 0.00 [psi]

Soil Layer #2 USCS, Clay (C), CH Depth: 25.00 ft Unit Weight: 80.0000 (dry), 110.0000 (sat) [lb/ft3] Phi: 0.00, S.M.: 300.00, Coh: 8.70 [psi]

Bore Cross-Section View

Load Verifier Input Summary:

Pipe Application: Electrical Cable Pipe Type: HDPE Classification: IPS Pipe OD: 10" (10.75") Pipe DR: 9 Pipe Length: 630.00 ft Internal Pressure: 0 psi Borehole Diameter: 1.34400002161662 ft Silo Width: 1.34400002161662 ft Surface Surcharge: 0 psi Short Term Modulus: 57500 psi Long Term Modulus: 28200 psi Short Term Poisson Ratio: 0.35 Long Term Poisson Ratio: 0.45 Pipe Unit Weight: 59.30500 lb/ft3 Allowable Tensile Stress (Short Term): 1200 psi Allowable Tensile Stress (Long Term): 1100 psi Allowable Compressive Stress (Short Term): 1150 psi Allowable Compressive Stress (Long Term): 1150 psi Surface-pipe friction coefficient at entrance: 0.5 Surface-pipe friction coefficient in borehole: 0.3 Pipe-soil friction angle: 30 Slurry Unit Weight: 93.64118 lb/ft3 Hydrokinetic Pressure: 10 psi Ballast Unit Weight: 62.42746 lb/ft3

In-service Load Summary:

Pressure [psi]	Deformed	Collapsed
Earth Pressure	5.9	13.0
Water Pressure	8.0	8.0
Surface Surcharge	0.0	0.0
Internal Pressure	0.0	0.0
Net Pressure	14.0	21.0
Deflection		
Earth Load Deflection	1.620	3.530
Buoyant Deflection	0.132	0.132
Reissner Effect	0	0
Net Deflection	1.752	3.662
Compressive Stress [psi]		
Compressive Wall Stress	62.9	94.4

Installation Load Summary:

Forces/Stresses	@Maximum Force	Absolute Maximum
Pullback Force [lb]	10437.4	10437.4
Pullback Stress [psi]	291.1	291.1
Pullback Strain	5.062E-3	5.062E-3
Bending Stress [psi]	0.0	25.8
Bending Strain	0	4.479E-4
Tensile Stress [psi]	291.1	314.0
Tensile Strain	5.062E-3	5.908E-3

Net External Pressure = 16.9 [psi] Buoyant Deflection = 0.1 Hydrokinetic Force = 567.6 lb

In-service Analysis

	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	1.752	7.5	4.3	OK
Unconstrained Collapse [psi]	16.8	118.0	7.0	OK
Compressive Wall Stress [psi]	62.9	1150.0	18.3	OK

Installation Analysis

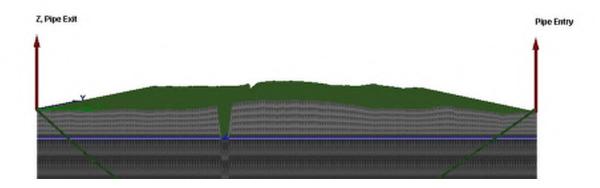
	Calculated	Allowable	Factor of Safety	Check
Deflection [%]	0.065	7.5	115.8	OK
Unconstrained Collapse [psi]	26.7	238.3	8.9	OK
Tensile Stress [psi]	314.0	1200.0	3.8	OK

Maximum Allowable Bore Pressure Summary

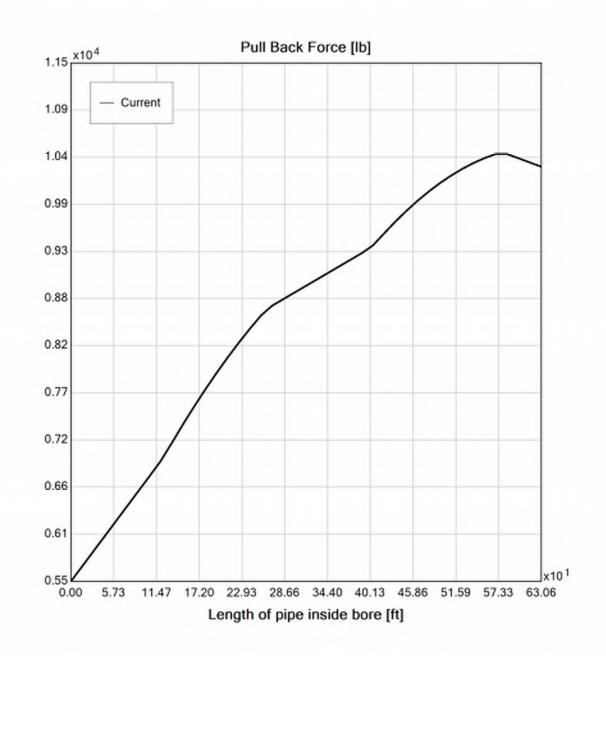
Ream Number	Initial Diameter	Final Diameter	Estimated Maximum Pressure (Avg.)	Estimated Maximum Pressure (Local)
Pilot Bore	0.00 in	8.00 in	65.109 psi	60.334 psi
1	8.00 in	12.00 in	64.940 psi	60.130 psi
2	12.00 in	16.13 in	64.700 psi	59.842 psi

Note: The maximum bore pressures presented in this table are the maximum values along the length of the bore and not the maximum allowable at any point. The estimated maximum pressures should be compared to the estimated circulating pressures along the bore to determine potential locations of inadvertant returns.

Estimated Circulating Pressure Summary


Active	Shear Rate [rpm]	Shear Stress [Fann Degrees]
No	600	37
No	300	32
No	200	29
Yes	100	25
Yes	6	17
No	3	15

Flow Rate (Q): 40.00 US (liquid) gallon/minDrill Fluid Density: 68.700 lb/ft3Rheological model: Bingham-PlasticPlastic Viscosity (PV): 25.53


Yield Point (YP): 16.49

Effective Viscosity (cP): 1202.0

Virtual Site

Powered by 🐺 | BoreAid