

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Washington County, New York

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	. 11
Map Unit Descriptions	. 12
Washington County, New York	14
Ca—Catden muck, 0 to 2 percent slopes	14
CHC—Charlton fine sandy loam, 3 to 8 percent slopes, very stony	. 15
CHE—Charlton soils, very stony, moderately steep and steep	. 17
CIB—Claverack loamy fine sand, 2 to 6 percent slopes	. 18
Cv—Covington silty clay loam	20
FCC—Farmington-Rock outcrop association, nearly level through	21
HcB Hartland very fine candy loam 2 to 6 percent slopes	. Z I 23
HIE Hollis Charlton association moderately steep and steep	20
HNC—Hollis-Bock outcrop association, moderately sleep and sleep	26
HSDK—Hoosic gravelly sandy loam rolling and hilly	. 20
HWE—Hudson and Vergennes soils steen and very steen	. 21
KhA_Kingshury silty clay. 0 to 2 percent slopes	30
KbB Kingsbury silty clay, 0 to 2 percent slopes	. 30
I m limerick silt loom	. UZ
CaC Oakville loamv fine sand 5 to 15 percent clones	. 55 34
Dr. Dite gravel and sand	36
POE – Pock outeren Hollis association, moderately steen through yory	
steep through very	26
Sieep	. 30
mederately steep	27
PPE Pack outeron Vergennes association, steep and very steep	20
So Soco silt loom	
SB Sanrists Aquents and Aquents	.41
VoR Vorgonnos silty day loam 3 to 8 porcent clones	42
VeC Vergennes silty clay loam 6 to 12 percent slopes	.45
VeD Vergennes silty clay loam, 0 to 12 percent slopes	.40
Web-vergennes sity day loan, 12 to 20 percent slopes	.40
Soil Information for All Lloss	.49
Soil Drapartias and Qualitias	.50
Soil Qualities and Eestures	. 50 50
Hydrologic Soil Group	50
References	56
1/5/5/5/1/5/5	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND				MAP INFORMATION
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.
Special I	Soil Map Unit Points Point Features	۵ ••	Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0	Blowout Borrow Pit	Water Feat	tu res Streams and Canals ation	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
¥ ◇	Clay Spot Closed Depression	+++ ~	Rails Interstate Highways	Albers equal-area conic projection that preserves area, such as the accurate calculations of distance or area are required.
:	Gravel Pit Gravelly Spot	~	US Routes Major Roads	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
A.	Lava Flow Marsh or swamp	Local Roads Background Aerial Photography		Soil Survey Area: Washington County, New York Survey Area Data: Version 21, Sep 1, 2021
~ ©	Mine or Quarry Miscellaneous Water			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
0 V	Perennial Water Rock Outcrop			Date(s) aerial images were photographed: Apr 1, 2020—Oct 1, 2020
+	Saline Spot Sandy Spot			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
⊕ ◊	Severely Eroded Spot Sinkhole			
\$ Ø	Slide or Slip Sodic Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Са	Catden muck, 0 to 2 percent slopes	0.4	0.1%
СНС	Charlton fine sandy loam, 3 to 8 percent slopes, very stony	19.9	4.6%
CHE	Charlton soils, very stony, moderately steep and steep	7.8	1.8%
CIB	Claverack loamy fine sand, 2 to 6 percent slopes	0.1	0.0%
Cv	Covington silty clay loam	2.8	0.7%
FCC	Farmington-Rock outcrop association, nearly level through moderately steep	8.0	1.9%
НсВ	Hartland very fine sandy loam, 2 to 6 percent slopes	1.0	0.2%
HLE	Hollis-Charlton association, moderately steep and steep	134.7	31.4%
HNC	Hollis-Rock outcrop association, gently sloping and sloping	33.6	7.8%
HSDK	Hoosic gravelly sandy loam, rolling and hilly	1.0	0.2%
HWE	Hudson and Vergennes soils, steep and very steep	18.5	4.3%
KbA	Kingsbury silty clay, 0 to 2 percent slopes	7.6	1.8%
КbВ	Kingsbury silty clay, 2 to 6 percent slopes	8.0	1.9%
Lm	Limerick silt loam	1.7	0.4%
OaC	Oakville loamy fine sand, 5 to 15 percent slopes	9.8	2.3%
Pr	Pits, gravel and sand	4.7	1.1%
ROF	Rock outcrop-Hollis association, moderately steep through very steep	8.1	1.9%
RPC	Rock outcrop-Vergennes association, gently sloping through moderately steep	16.1	3.8%
RPF	Rock outcrop-Vergennes association, steep and very steep	0.4	0.1%
Sa	Saco silt loam	4.4	1.0%
SB	Saprists, Aquepts, and Aquents	6.1	1.4%
VeB Vergennes silty clay loam, 3 to 8 percent slopes		40.0	9.3%

	T		
Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI
VeC	Vergennes silty clay loam, 6 to 12 percent slopes	50.5	11.8%
VeD	D Vergennes silty clay loam, 12 to 20 percent slopes		9.0%
W	Water	4.9	1.2%
Totals for Area of Interest		429.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Washington County, New York

Ca-Catden muck, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2t2qk Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Catden and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Catden

Setting

Landform: Depressions, depressions, fens, depressions, kettles, marshes, bogs, swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed herbaceous organic material and/or highly decomposed woody organic material

Typical profile

Oa1 - 0 to 2 inches: muck Oa2 - 2 to 79 inches: muck

Properties and qualities

Slope: 0 to 1 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 26.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F144AY042NY - Semi-Rich Organic Wetlands Hydric soil rating: Yes

Minor Components

Canandaigua

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Natchaug

Percent of map unit: 5 percent Landform: Depressions, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Timakwa

Percent of map unit: 5 percent Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Alden

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

CHC—Charlton fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2wh0r Elevation: 0 to 1,570 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Charlton, very stony, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Charlton, Very Stony

Setting

Landform: Ridges, ground moraines, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 4 inches: fine sandy loam

Bw - 4 to 27 inches: gravelly fine sandy loam

C - 27 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F142XB009VT - Acidic Till Upland Hydric soil rating: No

Minor Components

Sutton, very stony

Percent of map unit: 5 percent Landform: Ground moraines, hills Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Paxton, very stony

Percent of map unit: 5 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest *Down-slope shape:* Convex, linear *Across-slope shape:* Convex *Hydric soil rating:* No

Chatfield, very stony

Percent of map unit: 3 percent Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Leicester, very stony

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: Yes

CHE—Charlton soils, very stony, moderately steep and steep

Map Unit Setting

National map unit symbol: 227tj Elevation: 110 to 1,970 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Charlton, very stony, and similar soils: 70 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Charlton, Very Stony

Setting

Landform: Till plains, ridges, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Acid loamy till derived mainly from schist, gneiss, or granite

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

- H1 1 to 3 inches: sandy loam
- H2 3 to 29 inches: gravelly sandy loam
- H3 29 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F142XB008VT - Steep Acidic Till Upland Hydric soil rating: No

Minor Components

Pittsfield

Percent of map unit: 8 percent Hydric soil rating: No

Bernardston

Percent of map unit: 7 percent Hydric soil rating: No

Hollis

Percent of map unit: 6 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 6 percent

Rock outcrop

Percent of map unit: 3 percent Hydric soil rating: Unranked

CIB—Claverack loamy fine sand, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 9xyz Elevation: 600 to 1,800 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: All areas are prime farmland

Map Unit Composition

Claverack and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Claverack

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Convex Parent material: Sandy glaciolacustrine deposits, derived primarily from noncalcareous sandstone or granite, that overlie clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 8 inches: loamy fine sand H2 - 8 to 33 inches: loamy fine sand H3 - 33 to 80 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to strongly contrasting textural stratification

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: F142XB018VT - Moist Lake Plain Hydric soil rating: No

Minor Components

Cosad

Percent of map unit: 8 percent Hydric soil rating: No

Oakville

Percent of map unit: 6 percent Hydric soil rating: No

Hudson

Percent of map unit: 4 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 2 percent

Cv—Covington silty clay loam

Map Unit Setting

National map unit symbol: 9xz1 Elevation: 50 to 1,000 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Covington and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Covington

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Calcareous clayey glaciolacustrine deposits or glaciomarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam H2 - 6 to 13 inches: silty clay

- H3 13 to 27 inches: clay
- H4 27 to 80 inches: clay

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: F142XB007VT - Wet Clayplain Depression Hydric soil rating: Yes

Minor Components

Kingsbury

Percent of map unit: 8 percent Hydric soil rating: No

Madalin

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Rhinebeck

Percent of map unit: 4 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 3 percent

FCC—Farmington-Rock outcrop association, nearly level through moderately steep

Map Unit Setting

National map unit symbol: 9xz2 Elevation: 100 to 900 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Farmington and similar soils: 50 percent *Rock outcrop:* 20 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Farmington

Setting

Landform: Till plains, ridges, benches Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till or congeliturbate derived from limestone, dolomite, shale, and sandstone, and in many places mixed with wind and water deposits

Typical profile

H1 - 0 to 6 inches: loam

H2 - 6 to 18 inches: loam

H3 - 18 to 22 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F142XB010NY - Shallow Rich Till Upland Hydric soil rating: No

Description of Rock Outcrop

Properties and qualities

Slope: 3 to 15 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydric soil rating: Unranked

Minor Components

Amenia

Percent of map unit: 8 percent Hydric soil rating: No

Pittsfield

Percent of map unit: 8 percent Hydric soil rating: No

Vergennes

Percent of map unit: 7 percent *Hydric soil rating:* No

Kingsbury

Percent of map unit: 7 percent Hydric soil rating: No

HcB—Hartland very fine sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 9xzh Elevation: 50 to 500 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: All areas are prime farmland

Map Unit Composition

Hartland and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hartland

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Silty eolian or glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: very fine sandy loam

- H2 10 to 26 inches: very fine sandy loam
- H3 26 to 75 inches: very fine sandy loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Available water supply, 0 to 60 inches: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F144AY017NH - Well Drained Lake Plain Hydric soil rating: No

Minor Components

Belgrade

Percent of map unit: 6 percent Hydric soil rating: No

Wallington

Percent of map unit: 5 percent Hydric soil rating: No

Oakville

Percent of map unit: 5 percent Hydric soil rating: No

Hamlin

Percent of map unit: 4 percent Hydric soil rating: No

HLE—Hollis-Charlton association, moderately steep and steep

Map Unit Setting

National map unit symbol: 9xz7 Elevation: 100 to 2,570 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 60 percent Charlton and similar soils: 30 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hollis

Setting

Landform: Ridges, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: A thin mantle of loamy till derived mainly from schist, granite, and gneiss

Typical profile

- H1 0 to 4 inches: loam
- H2 4 to 19 inches: fine sandy loam
- H3 19 to 23 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Hydric soil rating: No

Description of Charlton

Setting

Landform: Till plains, ridges, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Acid loamy till derived mainly from schist, gneiss, or granite

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

H1 - 1 to 3 inches: sandy loam

H2 - 3 to 29 inches: gravelly sandy loam

H3 - 29 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 40 to 72 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: F142XB008VT - Steep Acidic Till Upland Hydric soil rating: No

Minor Components

Pittsfield

Percent of map unit: 5 percent

Hydric soil rating: No

Rock outcrop

Percent of map unit: 3 percent Hydric soil rating: Unranked

Unnamed soils

Percent of map unit: 2 percent

HNC—Hollis-Rock outcrop association, gently sloping and sloping

Map Unit Setting

National map unit symbol: 9xz8 Elevation: 100 to 2,150 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 70 percent *Rock outcrop:* 15 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hollis

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: A thin mantle of loamy till derived mainly from schist, granite, and gneiss

Typical profile

H1 - 0 to 4 inches: loam H2 - 4 to 19 inches: fine sandy loam H3 - 19 to 23 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None

Frequency of ponding: None *Available water supply, 0 to 60 inches:* Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Hydric soil rating: No

Description of Rock Outcrop

Properties and qualities

Slope: 3 to 8 percent Depth to restrictive feature: 0 inches to lithic bedrock

Minor Components

Charlton

Percent of map unit: 6 percent Hydric soil rating: No

Sun

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Carlisle

Percent of map unit: 4 percent Landform: Swamps, marshes Hydric soil rating: Yes

HSDK—Hoosic gravelly sandy loam, rolling and hilly

Map Unit Setting

National map unit symbol: 9xz9 Elevation: 100 to 1,100 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Hoosic and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hoosic

Setting

Landform: Terraces, outwash plains, deltas Landform position (two-dimensional): Backslope Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

H1 - 0 to 8 inches: gravelly sandy loam H2 - 8 to 35 inches: very gravelly loamy sand H3 - 35 to 80 inches: very gravelly sand

Properties and qualities

Slope: 8 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (1.98 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Oakville

Percent of map unit: 5 percent Hydric soil rating: No

Fredon

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Unnamed soils

Percent of map unit: 5 percent

Otisville

Percent of map unit: 5 percent Hydric soil rating: No

HWE—Hudson and Vergennes soils, steep and very steep

Map Unit Setting

National map unit symbol: 9xzc Elevation: 90 to 1,800 feet Mean annual precipitation: 35 to 42 inches *Mean annual air temperature:* 45 to 48 degrees F *Frost-free period:* 110 to 175 days *Farmland classification:* Not prime farmland

Map Unit Composition

Hudson and similar soils: 50 percent *Vergennes and similar soils:* 40 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hudson

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 4 inches: silt loam H2 - 4 to 12 inches: silt loam H3 - 12 to 26 inches: silty clay H4 - 26 to 60 inches: stratified silty clay

Properties and qualities

Slope: 25 to 50 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C/D Hydric soil rating: No

Description of Vergennes

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey calcareous glaciolacustrine, glaciomarine, or estuarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam

H2 - 6 to 13 inches: silty clay

H3 - 13 to 25 inches: clay

H4 - 25 to 60 inches: clay

Properties and qualities

Slope: 25 to 50 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 13 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Fluvaquents

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Nassau

Percent of map unit: 3 percent Hydric soil rating: No

Severely eroded soils

Percent of map unit: 2 percent Hydric soil rating: No

KbA—Kingsbury silty clay, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 9xzv Elevation: 80 to 600 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Kingsbury and similar soils: 80 percent *Minor components:* 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kingsbury

Setting

Landform: Lake plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Calcareous, clayey glaciomarine deposits or glaciolacustrine deposits

Typical profile

H1 - 0 to 8 inches: silty clay H2 - 8 to 28 inches: clay

H3 - 28 to 60 inches: clay

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: D Ecological site: F142XB006NY - Moist Clayplain Hydric soil rating: No

Minor Components

Vergennes

Percent of map unit: 5 percent Hydric soil rating: No

Covington

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Farmington

Percent of map unit: 4 percent Hydric soil rating: No

Hollis

Percent of map unit: 3 percent Hydric soil rating: No

Charlton

Percent of map unit: 3 percent Hydric soil rating: No

KbB—Kingsbury silty clay, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 9xzw Elevation: 80 to 600 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Kingsbury and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kingsbury

Setting

Landform: Lake plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Calcareous, clayey glaciomarine deposits or glaciolacustrine deposits

Typical profile

H1 - 0 to 8 inches: silty clay

- H2 8 to 28 inches: clay
- H3 28 to 60 inches: clay

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: D Ecological site: F142XB006NY - Moist Clayplain Hydric soil rating: No

Minor Components

Covington

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Vergennes

Percent of map unit: 5 percent Hydric soil rating: No

Farmington

Percent of map unit: 4 percent Hydric soil rating: No

Charlton

Percent of map unit: 3 percent Hydric soil rating: No

Hollis

Percent of map unit: 3 percent Hydric soil rating: No

Lm—Limerick silt loam

Map Unit Setting

National map unit symbol: 9xzx Elevation: 50 to 500 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Limerick and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Limerick

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Alluvium that is dominantly silt and very fine sand

Typical profile

H1 - 0 to 3 inches: silt loam *H2 - 3 to 26 inches:* silt loam

H3 - 26 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very high (about 13.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F144AY015NY - Wet Silty Low Floodplain Hydric soil rating: Yes

Minor Components

Hamlin

Percent of map unit: 5 percent Hydric soil rating: No

Teel

Percent of map unit: 5 percent Hydric soil rating: No

Saco

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Unnamed soils

Percent of map unit: 5 percent

OaC—Oakville loamy fine sand, 5 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9y06 Elevation: 600 to 1,200 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Oakville and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Oakville

Setting

Landform: Terraces, outwash plains, deltas Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy eolian, beach ridge, or glaciofluvial deposits

Typical profile

H1 - 0 to 9 inches: loamy fine sand

H2 - 9 to 24 inches: loamy fine sand

H3 - 24 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Hoosic

Percent of map unit: 7 percent Hydric soil rating: No

Otisville

Percent of map unit: 7 percent Hydric soil rating: No

Claverack

Percent of map unit: 3 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 3 percent

Pr—Pits, gravel and sand

Map Unit Setting

National map unit symbol: 1qdsw Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Gravel and sand pits: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

ROF—Rock outcrop-Hollis association, moderately steep through very steep

Map Unit Setting

National map unit symbol: 9y0h Elevation: 100 to 2,640 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Rock outcrop: 70 percent Hollis and similar soils: 20 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rock Outcrop

Properties and qualities

Slope: 15 to 50 percent *Surface area covered with cobbles, stones or boulders:* 0.0 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydric soil rating: Unranked

Description of Hollis

Setting

Landform: Ridges, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and gneiss

Typical profile

H1 - 0 to 4 inches: loam H2 - 4 to 19 inches: fine sandy loam H3 - 19 to 23 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 50 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

Charlton

Percent of map unit: 3 percent Hydric soil rating: No

Kingsbury

Percent of map unit: 1 percent Hydric soil rating: No

Vergennes

Percent of map unit: 1 percent Hydric soil rating: No

RPC—Rock outcrop-Vergennes association, gently sloping through moderately steep

Map Unit Setting

National map unit symbol: 9y0j

Elevation: 50 to 1,000 feet *Mean annual precipitation:* 35 to 42 inches *Mean annual air temperature:* 45 to 48 degrees F *Frost-free period:* 110 to 175 days *Farmland classification:* Not prime farmland

Map Unit Composition

Rock outcrop: 35 percent Vergennes and similar soils: 25 percent Minor components: 40 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rock Outcrop

Properties and qualities

Slope: 3 to 15 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydric soil rating: Unranked

Description of Vergennes

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey calcareous glaciolacustrine, glaciomarine, or estuarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam

- H2 6 to 13 inches: silty clay
- H3 13 to 25 inches: clay
- H4 25 to 60 inches: clay

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 13 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 13 percent

Kingsbury

Percent of map unit: 9 percent Hydric soil rating: No

Charlton

Percent of map unit: 9 percent Hydric soil rating: No

Covington

Percent of map unit: 9 percent Landform: Depressions Hydric soil rating: Yes

RPF—Rock outcrop-Vergennes association, steep and very steep

Map Unit Setting

National map unit symbol: 9y0k Elevation: 50 to 1,000 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Rock outcrop: 40 percent Vergennes and similar soils: 30 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rock Outcrop

Properties and qualities

Slope: 25 to 50 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydric soil rating: Unranked

Description of Vergennes

Setting

Landform: Lake plains Landform position (two-dimensional): Summit

Custom Soil Resource Report

Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey calcareous glaciolacustrine, glaciomarine, or estuarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam *H2 - 6 to 13 inches:* silty clay *H3 - 13 to 25 inches:* clay *H4 - 25 to 60 inches:* clay

Properties and qualities

Slope: 25 to 50 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 13 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

Farmington

Percent of map unit: 5 percent Hydric soil rating: No

Nassau

Percent of map unit: 5 percent Hydric soil rating: No

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Hollis

Percent of map unit: 5 percent Hydric soil rating: No

Bernardston

Percent of map unit: 5 percent Hydric soil rating: No

Sa—Saco silt loam

Map Unit Setting

National map unit symbol: 9y0r Elevation: 80 to 950 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Saco and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Saco

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Silty alluvium derived mainly from crystalline rock, shale, and sandstone

Typical profile

H1 - 0 to 12 inches: silt loam *H2 - 12 to 30 inches:* silt loam *H3 - 30 to 60 inches:* silt loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very high (about 13.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Limerick

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Teel

Percent of map unit: 5 percent *Hydric soil rating:* No

Wallington

Percent of map unit: 4 percent Hydric soil rating: No

Belgrade

Percent of map unit: 4 percent Hydric soil rating: No

Fluvaquents

Percent of map unit: 2 percent Landform: Flood plains Hydric soil rating: Yes

SB—Saprists, Aquepts, and Aquents

Map Unit Setting

National map unit symbol: 9y0n Elevation: 10 to 2,400 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Saprists and similar soils: 30 percent Aquepts and similar soils: 25 percent Aquents and similar soils: 20 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Saprists

Setting

Landform: Marshes, swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Parent material: Organic material

Typical profile

H1 - 0 to 70 inches: muck

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (0.20 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 23.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Hydric soil rating: Yes

Description of Aquepts

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Concave

Typical profile

H1 - 0 to 9 inches: mucky silty clay loam *H2 - 9 to 72 inches:* silt loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 7.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Aquents

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Concave

Typical profile

H1 - 0 to 12 inches: gravelly fine sandy loam *H2 - 12 to 70 inches:* gravelly loamy sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Carlisle

Percent of map unit: 5 percent Landform: Swamps, marshes Hydric soil rating: Yes

Madalin

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Sun

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Fluvaquents

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Halsey

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

VeB—Vergennes silty clay loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2rvsk Elevation: 100 to 510 feet Mean annual precipitation: 31 to 59 inches Mean annual air temperature: 39 to 48 degrees F Frost-free period: 120 to 175 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Vergennes and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vergennes

Setting

Landform: Lake terraces Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Calcareous clayey estuarine deposits derived from limestone and/or calcareous clayey glaciolacustrine deposits derived from limestone

Typical profile

Ap - 0 to 8 inches: silty clay loam B/E - 8 to 10 inches: clay Bt - 10 to 22 inches: clay BC - 22 to 29 inches: silty clay C1 - 29 to 37 inches: silty clay C2 - 37 to 45 inches: silty clay C3 - 45 to 79 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 20 percent
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Cayuga

Percent of map unit: 5 percent Landform: Drumlinoid ridges Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Kingsbury

Percent of map unit: 5 percent Landform: Lake terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Wilpoint

Percent of map unit: 3 percent Landform: Lake terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Convex Hydric soil rating: No

Farmington

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

VeC—Vergennes silty clay loam, 6 to 12 percent slopes

Map Unit Setting

National map unit symbol: 9y0y Elevation: 50 to 1,000 feet Mean annual precipitation: 35 to 42 inches *Mean annual air temperature:* 45 to 48 degrees F *Frost-free period:* 110 to 175 days *Farmland classification:* Farmland of statewide importance

Map Unit Composition

Vergennes and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Vergennes

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey calcareous glaciolacustrine, glaciomarine, or estuarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam H2 - 6 to 13 inches: silty clay H3 - 13 to 25 inches: clay H4 - 25 to 60 inches: clay

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Kingsbury

Percent of map unit: 5 percent Hydric soil rating: No

Farmington

Percent of map unit: 5 percent Hydric soil rating: No

Hollis

Percent of map unit: 5 percent *Hydric soil rating:* No

Hudson

Percent of map unit: 3 percent Hydric soil rating: No

Eroded soils

Percent of map unit: 2 percent Hydric soil rating: No

VeD—Vergennes silty clay loam, 12 to 20 percent slopes

Map Unit Setting

National map unit symbol: 9y0z Elevation: 50 to 1,000 feet Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Vergennes and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Vergennes

Setting

Landform: Lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Convex Parent material: Clayey calcareous glaciolacustrine, glaciomarine, or estuarine deposits

Typical profile

H1 - 0 to 6 inches: silty clay loam *H2 - 6 to 13 inches:* silty clay *H3 - 13 to 25 inches:* clay *H4 - 25 to 60 inches:* clay

Properties and qualities

Slope: 12 to 20 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Kingsbury

Percent of map unit: 5 percent Hydric soil rating: No

Unnamed soils

Percent of map unit: 5 percent

Farmington

Percent of map unit: 5 percent *Hydric soil rating:* No

Eroded soils

Percent of map unit: 3 percent Hydric soil rating: No

Hudson

Percent of map unit: 2 percent Hydric soil rating: No

W—Water

Map Unit Setting

National map unit symbol: 1qdsb Mean annual precipitation: 35 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 110 to 175 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Washington County, New York Survey Area Data: Version 21, Sep 1, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 1, 2020—Oct 1, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Са	Catden muck, 0 to 2 percent slopes	B/D	0.4	0.1%
СНС	Charlton fine sandy loam, 3 to 8 percent slopes, very stony	В	19.9	4.6%
CHE	Charlton soils, very stony, moderately steep and steep	В	7.8	1.8%
CIB	Claverack loamy fine sand, 2 to 6 percent slopes	C/D	0.1	0.0%
Cv	Covington silty clay loam	D	2.8	0.7%
FCC	Farmington-Rock outcrop association, nearly level through moderately steep	D	8.0	1.9%
НсВ	Hartland very fine sandy loam, 2 to 6 percent slopes	В	1.0	0.2%
HLE	Hollis-Charlton association, moderately steep and steep	D	134.7	31.4%
HNC	Hollis-Rock outcrop association, gently sloping and sloping	D	33.6	7.8%
HSDK	Hoosic gravelly sandy loam, rolling and hilly	A	1.0	0.2%
HWE	Hudson and Vergennes soils, steep and very steep	C/D	18.5	4.3%
КЬА	Kingsbury silty clay, 0 to 2 percent slopes	D	7.6	1.8%
КbВ	Kingsbury silty clay, 2 to 6 percent slopes	D	8.0	1.9%
Lm	Limerick silt loam	B/D	1.7	0.4%
OaC	Oakville loamy fine sand, 5 to 15 percent slopes	A	9.8	2.3%
Pr	Pits, gravel and sand		4.7	1.1%
ROF	Rock outcrop-Hollis association, moderately steep through very steep		8.1	1.9%
RPC	Rock outcrop-Vergennes association, gently sloping through moderately steep		16.1	3.8%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
RPF	Rock outcrop-Vergennes association, steep and very steep		0.4	0.1%	
Sa	Saco silt loam	B/D	4.4	1.0%	
SB	Saprists, Aquepts, and Aquents	B/D	6.1	1.4%	
VeB	Vergennes silty clay loam, 3 to 8 percent slopes	D	40.0	9.3%	
VeC	Vergennes silty clay loam, 6 to 12 percent slopes	D	50.5	11.8%	
VeD	Vergennes silty clay loam, 12 to 20 percent slopes	D	38.6	9.0%	
W	Water		4.9	1.2%	
Totals for Area of Inter	est	429.0	100.0%		

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix C Receiving Waters Maps